Resilient Formal Synthesis

Size: px
Start display at page:

Download "Resilient Formal Synthesis"

Transcription

1 Resilient Formal Synthesis Calin Belta Boston University CDC 2017 Workshop: 30 years of the Ramadge-Wonham Theory of Supervisory Control: A Retrospective and Future Perspectives

2 Outline Formal Synthesis Resilient Formal Synthesis Probabilistic Formal Synthesis Quantitative Formal Synthesis Quantitative Distributed Formal Synthesis

3 Outline Formal Synthesis Resilient Formal Synthesis Probabilistic Formal Synthesis Quantitative Formal Synthesis Quantitative Distributed Formal Synthesis

4 Formal Synthesis Design or control a system from a temporal logic specification Messenger robot (black disk) moves in an environment with a base B, data gather region G, recharge regions R, dangerous region D, intersections I Inputs: West, East, South, North. Unreliable actuators and sensors: the transition to a next intersection is not guaranteed (probabilities not known) Specification: Keep on collecting messages from data gather region G and bring them back to the base B. Collect a message and recharge between any two visits to the base. Always avoid the dangerous region D.

5 Formal Synthesis Specification: Keep on collecting messaged from data gather region G and bring them back to the base B. Collect a message and recharge between any two visits to the base. Always avoid the dangerous region D.

6 Formal Synthesis Product automaton Rabin game Nondeterministic transition system Rabin / Buchi automaton

7 Formal Synthesis Product automaton Rabin game Nondeterministic transition system abstraction Rabin / Buchi automaton ẋ = f(x, u)

8 Formal Synthesis Spec: Keep taking photos and upload current photo before taking another photo. Unsafe regions should always be avoided. If fires are detected, then they should be extinguished. If survivors are detected, then they should be provided medical assistance. If both fires and survivors are detected locally, priority should be given to the survivors. z y x photo unsafe upload extinguish upload assist Ulusoy and Belta, IJRR 2014

9 Formal Synthesis Complete but expensive solutions for the finite case Very conservative (incomplete) solutions for the infinite case Not robust (not resilient) Produces Yes / No answers: no information on how close the solution it to a Yes or No How to exploit statistical data if available? If the problem is infeasible, can we get a solution that is ``close to satisfaction?

10 Outline Formal Synthesis Resilient Formal Synthesis Probabilistic Formal Synthesis Quantitative Formal Synthesis Quantitative Distributed Formal Synthesis

11 Probabilistic Formal Synthesis Find a control policy that maximizes the probability of satisfying: Eventually reach Destination by driving through either only Safe regions or through Relatively safe regions only if MedicalSupply is available at such regions

12 Probabilistic Formal Synthesis Maximize the probability of satisfying: Eventually reach Destination by driving through either only Safe regions or through Relatively safe regions only if Medical Supply is available at such regions [(S (R M)) U D] Rabin, Buchi, FS Automaton Experiment1_movie.wmv MDP Product probabilistic automaton MRPP Control policy Ding et.al. IEEE TAC 2014

13 Probabilistic Formal Synthesis Works for stochastic linear systems with additive Gaussian noise Abate et.al., IEEE TAC 2011 Lahijanian et.al., IEEE TAC 2015

14 Outline Formal Synthesis Resilient Formal Synthesis Probabilistic Formal Synthesis Quantitative Formal Synthesis Quantitative Distributed Formal Synthesis

15 Signal Temporal Logic: Boolean and Quantitative Semantics Temporal operators are timed Semantics defined over signals Has qualitative semantics: real-valued function (s, ) [t1,t 2 ](s apple 2.5) [t3,t 4 ](s >3.5) Boolean: True Quantitative: 0.01 Boolean: False Quantitative: -0.2 [t1,t 2 ](s apple 2.5) ^ [t3,t 4 ](s >3.5) Boolean: False Quantitative: -0.2 Boolean satisfaction of STL formulae over linear predicates can be mapped to feasibility of mixed integer linear equalities / inequalities (MILP feasibility) Robustness is piecewise affine in the integer and continuous variables Donze & Maler 2004, Fainekos et.al Raman et. al, 2014 Sadraddini & Belta, 2015 Bemporad and Morari, 1999

16 Optimization-based STL Control min u H J(x H,u H ) (any linear cost, robustness of STL formula) Subject to x + = f(x, u) (any MLD system, e.g., piecewise affine) x H,u H satisfy STL formula over linear predicates Reduces to solving a MILP!

17 Planar Robot Example x + = x + u ' = [40,50] A ^ [0,40] [0,10] B ^ [0,30] C H = 50 Maximum robustness + Minimum fuel Minimum Fuel Only HX 1 HX 1 J = u[ ] J = u[ ] =0 =0

18 STL Model Predictive Control (MPC) Repetitive tasks in infinite time: global STL formulas: [0,1] ' u H [t] = argmin J = J c J = J(x H [t],u H [t]) subject to x + = f(x, u) x H [t] = [t H,t] ' J = M( k k)+j c M is a large number. When < 0, effectively maximize 2M Raman et. al, 2015, Sadraddini and Belta 2015

19 x + = Double Integrator Example x w Spec: [0,1] [0,4] ((x 1 apple 4) ^ (x 1 2)) ^ [0,4] ((x 1 4) ^ (x 1 apple 2)) Minimize fuel. If the spec becomes infeasible, maximize robustness. J = c t+h X 1 =t u[ ] Sadraddini and Belta 2015

20 Optimal Control with Temporal Logic Correctness What we learned so far Boolean satisfaction of STL formulas over linear predicates in state can be mapped to mixed integer linear equalities and inequalities Control of MLD systems to optimize linear costs with correctness as above maps to MILP. Terminal constraints can also be guaranteed To make the above robust to uncertainties in the model, add robustness of the formula in the cost

21 Outline Formal Synthesis Resilient Formal Synthesis Probabilistic Formal Synthesis Quantitative Formal Synthesis Quantitative Distributed Formal Synthesis

22 Multi-agent Systems: coupled dynamics and specification Dynamically coupled agents Network-level (STL) specification system states ' over Network-level cost function J(x, u) A i : x + i 2 F (x i,u i, {x j } j2ni ) S = {A i } i2i Find (optimal) distributed controls policy: minimize J(x, u) s.t. u i = u i (x i, {x j } j2ni ) x = '

23 Contract Based Design Assumption: distributable specifications and costs ^ (A i = ' i ) ) S = ' ' i over x i i A contract is a protocol between agents j!i J(x, u) = X i is a specification over those states of j that appear in the dynamics of i (a promise of j to i) In general, agent i has to solve a robust optimal control problem: Tradeoff: Contract restrictiveness / optimality u i = argmin ui J(x i,u i ) x i ' i ^i2nj i!j x j j!i, 8j 2 N i x + i 2 F (x i,u i, {x j } j2ni ) j i Assume-Guarantee Protocols Henzinger et al, CAV 1998 J(x i, u i )

24 How to find contracts? Challenges: Circular reasoning in networks with many two-way connections Contracts should not block the satisfaction of the original specs. Approach I based on contract mining (compositional synthesis) Parameterize contracts Search until original spec becomes feasible Kim, Arcak, Seshia, CDC 15, HSCC 16, 17 Search can be efficient for some system classes (e.g. monotone systems) Approach II based on control invariant sets for timeglobal specifications Satisfaction can be mapped to invariance in an augmented space If the invariant set is decomposable for individual agents Extract contracts from the sets Nilsson and Ozay, ACC 16 Sadraddini, et.al. ICCPS 17 Sets synthesized using a feasibility problem (LMI/MILP) Straightforward extension: In both approaches, if satisfying contracts are not found, minimally violating ones can be generated

25 Example: Distributed Traffic Management ' = [0,1) ((x, u) 2 ) ^ [0,1) [0,120s] (u 12 = u 46 = u 54 =red)^ [0,1) (x 59 + x 60 + x 65 + x 66 apple 100) Issue: No congestion Pedestrian liveness at all directions every at most 120 seconds Optimal correct control is computationally difficult for online implementation. Solution: Low volume on eastern bridge Divide the network to distinct neighborhoods. Each neighborhood is an agent interacting with other agents

26 Distributed Optimal Traffic Control Network and Specification Partitioning to neighborhoods (agents) Contract Synthesis Control Synthesis Sadraddini, Rudan, Belta, ICCPS 17 Example: contract between agent 3 and agent 4: Agent 3 Promises to agent 4 about flow of links 12 and 83: 3!4 = V 2N {6 } ((y 12 = 0) ^ {6 +1} (y 12 apple 12) ^ {6 +2} (y 12 apple 1.5) ^ {6 +3} (y 12 apple 9.6) ^ {6 +4} (y 12 = 0) ^ {6 +5} (y 12 apple 3.95) ^ {6 } ((y 83 = 0) ^ {6 +1} (y 83 apple 3) ^ {6 +2} (y 83 apple 0.36) ^ {6 +3} (y 83 apple 2.4) ^ {6 +4} (y 83 = 0) ^ {6 +5} (y 83 apple 0.99) Agent 4 promises to agent 3 about flow of link 6 4!3 = V 2N {6 } ((y 6 apple 2.4) ^ {6 +1} (y 6 apple 3.1) ^ {6 +2} (y 6 apple 4.5) ^ {6 +3} (y 6 apple 2.4) ^ {6 +4} (y 12 apple 3.4) ^ {6 +5} (y 6 apple 8.95) Results: Spec is satisfied for all allowable exogenous demands Network-level delay minimized Computational times on PC: Contract synthesis: ~ 5 seconds MPC optimization one instance: Centralized: ~ 30 mins Distributed : ~ 1 second Total Vehicular Delay in 15 mins simulation: Fixed lights: ~ 27 hours Centralized: ~ 16 hours Distributed: ~ 18 hours

27 Acknowledgements Sadra Sadradini Jana Tumova (now at KTH) Alphan Ulusoy (now at Mathworks) Morteza Lahijanian (now at U. of Oxford)

Exploiting System Structure in Formal Synthesis

Exploiting System Structure in Formal Synthesis CDC 2015 Pre-Conference Workshop Exploiting System Structure in Formal Synthesis Murat Arcak with Sam Coogan and Eric Kim Electrical Engineering and Computer Sciences, UC Berkeley This Talk: Formal synthesis,

More information

ONR MURI AIRFOILS: Animal Inspired Robust Flight with Outer and Inner Loop Strategies. Calin Belta

ONR MURI AIRFOILS: Animal Inspired Robust Flight with Outer and Inner Loop Strategies. Calin Belta ONR MURI AIRFOILS: Animal Inspired Robust Flight with Outer and Inner Loop Strategies Provable safety for animal inspired agile flight Calin Belta Hybrid and Networked Systems (HyNeSs) Lab Department of

More information

Preface. Motivation and Objectives

Preface. Motivation and Objectives Preface Motivation and Objectives In control theory, complex models of physical processes, such as systems of differential or difference equations, are usually checked against simple specifications, such

More information

Motion planning applications of Satisfiability Modulo Convex Optimization

Motion planning applications of Satisfiability Modulo Convex Optimization Motion planning applications of Satisfiability Modulo Convex Optimization Yasser Shoukry (1) and Paulo Tabuada (2) (1) Department of Electrical and Computer Engineering, UMD (2) Electrical and Computer

More information

LTL Control in Uncertain Environments with Probabilistic Satisfaction Guarantees

LTL Control in Uncertain Environments with Probabilistic Satisfaction Guarantees LTL Control in Uncertain Environments with Probabilistic Satisfaction Guarantees Xu Chu (Dennis) Ding Stephen L. Smith Calin Belta Daniela Rus Department of Mechanical Engineering, Boston University, Boston,

More information

Optimal Control of Markov Decision Processes with Temporal Logic Constraints

Optimal Control of Markov Decision Processes with Temporal Logic Constraints Optimal Control of Markov Decision Processes with Temporal Logic Constraints Xuchu (Dennis) Ding Stephen L. Smith Calin Belta Daniela Rus Abstract In this paper, we develop a method to automatically generate

More information

A Learning Based Approach to Control Synthesis of Markov Decision Processes for Linear Temporal Logic Specifications

A Learning Based Approach to Control Synthesis of Markov Decision Processes for Linear Temporal Logic Specifications A Learning Based Approach to Control Synthesis of Markov Decision Processes for Linear Temporal Logic Specifications Dorsa Sadigh, Eric S. Kim, Samuel Coogan, S. Shankar Sastry, Sanjit A. Seshia Abstract

More information

Lecture 8 Receding Horizon Temporal Logic Planning & Finite-State Abstraction

Lecture 8 Receding Horizon Temporal Logic Planning & Finite-State Abstraction Lecture 8 Receding Horizon Temporal Logic Planning & Finite-State Abstraction Ufuk Topcu Nok Wongpiromsarn Richard M. Murray AFRL, 26 April 2012 Contents of the lecture: Intro: Incorporating continuous

More information

Probabilistic Model Checking and Strategy Synthesis for Robot Navigation

Probabilistic Model Checking and Strategy Synthesis for Robot Navigation Probabilistic Model Checking and Strategy Synthesis for Robot Navigation Dave Parker University of Birmingham (joint work with Bruno Lacerda, Nick Hawes) AIMS CDT, Oxford, May 2015 Overview Probabilistic

More information

arxiv: v1 [cs.ro] 12 Mar 2019

arxiv: v1 [cs.ro] 12 Mar 2019 Arithmetic-Geometric Mean Robustness for Control from Signal Temporal Logic Specifications *Noushin Mehdipour, *Cristian-Ioan Vasile and Calin Belta arxiv:93.5v [cs.ro] Mar 9 Abstract We present a new

More information

Mdp Optimal Control under Temporal Logic Constraints

Mdp Optimal Control under Temporal Logic Constraints Mdp Optimal Control under Temporal Logic Constraints The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher

More information

A Learning Based Approach to Control Synthesis of Markov Decision Processes for Linear Temporal Logic Specifications

A Learning Based Approach to Control Synthesis of Markov Decision Processes for Linear Temporal Logic Specifications A Learning Based Approach to Control Synthesis of Markov Decision Processes for Linear Temporal Logic Specifications Dorsa Sadigh Eric Kim Samuel Coogan S. Shankar Sastry Sanjit A. Seshia Electrical Engineering

More information

EE C128 / ME C134 Feedback Control Systems

EE C128 / ME C134 Feedback Control Systems EE C128 / ME C134 Feedback Control Systems Lecture Additional Material Introduction to Model Predictive Control Maximilian Balandat Department of Electrical Engineering & Computer Science University of

More information

Temporal Logic Motion Control using Actor-Critic Methods

Temporal Logic Motion Control using Actor-Critic Methods Temporal Logic Motion Control using Actor-Critic Methods Jing Wang, Xuchu Ding, Morteza Lahijanian, Ioannis Ch. Paschalidis, and Calin A. Belta March 20, 2015 Abstract This paper considers the problem

More information

Receding Horizon Control in Dynamic Environments from Temporal Logic Specifications

Receding Horizon Control in Dynamic Environments from Temporal Logic Specifications Receding Horizon Control in Dynamic Environments from Temporal Logic Specifications Alphan Ulusoy, Michael Marrazzo, and Calin Belta Division of Systems Engineering, Boston University, Brookline, MA, 02446

More information

Integrating Induction and Deduction for Verification and Synthesis

Integrating Induction and Deduction for Verification and Synthesis Integrating Induction and Deduction for Verification and Synthesis Sanjit A. Seshia Associate Professor EECS Department UC Berkeley DATE 2013 Tutorial March 18, 2013 Bob s Vision: Exploit Synergies between

More information

arxiv: v1 [cs.sy] 8 Mar 2017

arxiv: v1 [cs.sy] 8 Mar 2017 Control Synthesis for Multi-Agent Systems under Metric Interval Temporal Logic Specifications Sofie Andersson Alexandros Nikou Dimos V. Dimarogonas ACCESS Linnaeus Center, School of Electrical Engineering

More information

MDP Optimal Control under Temporal Logic Constraints - Technical Report -

MDP Optimal Control under Temporal Logic Constraints - Technical Report - MDP Optimal Control under Temporal Logic Constraints - Technical Report - Xu Chu Ding Stephen L. Smith Calin Belta Daniela Rus Abstract In this paper, we develop a method to automatically generate a control

More information

Specification Mining of Industrial-scale Control Systems

Specification Mining of Industrial-scale Control Systems 100 120 Specification Mining of Industrial-scale Control Systems Alexandre Donzé Joint work with Xiaoqing Jin, Jyotirmoy V. Deshmuck, Sanjit A. Seshia University of California, Berkeley May 14, 2013 Alexandre

More information

Op#mal Control of Nonlinear Systems with Temporal Logic Specifica#ons

Op#mal Control of Nonlinear Systems with Temporal Logic Specifica#ons Op#mal Control of Nonlinear Systems with Temporal Logic Specifica#ons Eric M. Wolff 1 Ufuk Topcu 2 and Richard M. Murray 1 1 Caltech and 2 UPenn University of Michigan October 1, 2013 Autonomous Systems

More information

Decomposition of planning for multi-agent systems under LTL specifications

Decomposition of planning for multi-agent systems under LTL specifications Decomposition of planning for multi-agent systems under LTL specifications Jana Tumova and Dimos V. Dimarogonas KTH Royal Institute of Technology R E C O N F I G December 14, 2015 General Motivation and

More information

Online Horizon Selection in Receding Horizon Temporal Logic Planning

Online Horizon Selection in Receding Horizon Temporal Logic Planning Online Horizon Selection in Receding Horizon Temporal Logic Planning Vasumathi Raman 1 and Mattias Fält 2 and Tichakorn Wongpiromsarn 3 and Richard M. Murray 1 Abstract Temporal logics have proven effective

More information

Symbolic Control. From discrete synthesis to certified continuous controllers. Antoine Girard

Symbolic Control. From discrete synthesis to certified continuous controllers. Antoine Girard Symbolic Control From discrete synthesis to certified continuous controllers Antoine Girard CNRS, Laboratoire des Signaux et Systèmes Gif-sur-Yvette, France Journées de l Automatique du GdR MACS Nantes,

More information

Optimal Control of MDPs with Temporal Logic Constraints

Optimal Control of MDPs with Temporal Logic Constraints 52nd IEEE Conference on Decision and Control December 10-13, 2013. Florence, Italy Optimal Control of MDPs with Temporal Logic Constraints Mária Svoreňová, Ivana Černá and Calin Belta Abstract In this

More information

Data-Driven Optimization under Distributional Uncertainty

Data-Driven Optimization under Distributional Uncertainty Data-Driven Optimization under Distributional Uncertainty Postdoctoral Researcher Electrical and Systems Engineering University of Pennsylvania A network of physical objects - Devices - Vehicles - Buildings

More information

Optimal Multi-Robot Path Planning with LTL Constraints: Guaranteeing Correctness Through Synchronization

Optimal Multi-Robot Path Planning with LTL Constraints: Guaranteeing Correctness Through Synchronization Optimal Multi-Robot Path Planning with LTL Constraints: Guaranteeing Correctness Through Synchronization Alphan Ulusoy, Stephen L. Smith, and Calin Belta Abstract In this paper, we consider the automated

More information

Testing System Conformance for Cyber-Physical Systems

Testing System Conformance for Cyber-Physical Systems Testing System Conformance for Cyber-Physical Systems Testing systems by walking the dog Rupak Majumdar Max Planck Institute for Software Systems Joint work with Vinayak Prabhu (MPI-SWS) and Jyo Deshmukh

More information

Switching Protocol Synthesis for Temporal Logic Specifications

Switching Protocol Synthesis for Temporal Logic Specifications Switching Protocol Synthesis for Temporal Logic Specifications Jun Liu, Necmiye Ozay, Ufuk Topcu, and Richard M. Murray Abstract We consider the problem of synthesizing a robust switching controller for

More information

Formal Synthesis of Distributed Optimal Traffic Control Policies

Formal Synthesis of Distributed Optimal Traffic Control Policies This is author s copy. Download the published version from doi:10.1145/3055004.3055011 Formal Synthesis of Distributed Optimal Traffic Control Policies Sadra Sadraddini Boston University 110 Cummington

More information

Theory in Model Predictive Control :" Constraint Satisfaction and Stability!

Theory in Model Predictive Control : Constraint Satisfaction and Stability! Theory in Model Predictive Control :" Constraint Satisfaction and Stability Colin Jones, Melanie Zeilinger Automatic Control Laboratory, EPFL Example: Cessna Citation Aircraft Linearized continuous-time

More information

THE classical objectives considered in automatic control

THE classical objectives considered in automatic control Control Barrier Functions for Signal Temporal Logic Tasks Lars Lindemann, Student Member, IEEE, and Dimos V. Dimarogonas, Senior Member, IEEE Abstract The need for computationally-efficient control methods

More information

Dynamic and Adversarial Reachavoid Symbolic Planning

Dynamic and Adversarial Reachavoid Symbolic Planning Dynamic and Adversarial Reachavoid Symbolic Planning Laya Shamgah Advisor: Dr. Karimoddini July 21 st 2017 Thrust 1: Modeling, Analysis and Control of Large-scale Autonomous Vehicles (MACLAV) Sub-trust

More information

Information-guided persistent monitoring under temporal logic constraints

Information-guided persistent monitoring under temporal logic constraints Information-guided persistent monitoring under temporal logic constraints Austin Jones, Mac Schwager, and Calin Belta Abstract We study the problem of planning the motion of an agent such that it maintains

More information

Time-Constrained Temporal Logic Control of Multi-Affine Systems

Time-Constrained Temporal Logic Control of Multi-Affine Systems Time-Constrained Temporal Logic Control of Multi-Affine Systems Ebru Aydin Gol Calin Belta Boston University, Boston, MA 02215, USA e-mail: {ebru,cbelta}@bu.edu Abstract: We consider the problem of controlling

More information

FMCAD 2013 Parameter Synthesis with IC3

FMCAD 2013 Parameter Synthesis with IC3 FMCAD 2013 Parameter Synthesis with IC3 A. Cimatti, A. Griggio, S. Mover, S. Tonetta FBK, Trento, Italy Motivations and Contributions Parametric descriptions of systems arise in many domains E.g. software,

More information

Optimal Multi-Robot Path Planning with LTL Constraints: Guaranteeing Correctness Through Synchronization

Optimal Multi-Robot Path Planning with LTL Constraints: Guaranteeing Correctness Through Synchronization Optimal Multi-Robot Path Planning with LTL Constraints: Guaranteeing Correctness Through Synchronization Alphan Ulusoy, Stephen L. Smith, and Calin Belta Abstract In this paper, we consider the automated

More information

Probably Approximately Correct MDP Learning and Control With Temporal Logic Constraints

Probably Approximately Correct MDP Learning and Control With Temporal Logic Constraints Probably Approximately Correct MDP Learning and Control With Temporal Logic Constraints Jie Fu and Ufuk Topcu Department of Electrical and Systems Engineering University of Pennsylvania Philadelphia, Pennsylvania

More information

Georgios E. Fainekos, Savvas G. Loizou and George J. Pappas. GRASP Lab Departments of CIS, MEAM and ESE University of Pennsylvania

Georgios E. Fainekos, Savvas G. Loizou and George J. Pappas. GRASP Lab Departments of CIS, MEAM and ESE University of Pennsylvania Georgios E. Fainekos, Savvas G. Loizou and George J. Pappas CDC 2006 Math free Presentation! Lab Departments of CIS, MEAM and ESE University of Pennsylvania Motivation Motion Planning 60 50 40 π 0 π 4

More information

Approximation Metrics for Discrete and Continuous Systems

Approximation Metrics for Discrete and Continuous Systems University of Pennsylvania ScholarlyCommons Departmental Papers (CIS) Department of Computer & Information Science May 2007 Approximation Metrics for Discrete Continuous Systems Antoine Girard University

More information

The algorithmic analysis of hybrid system

The algorithmic analysis of hybrid system The algorithmic analysis of hybrid system Authors: R.Alur, C. Courcoubetis etc. Course teacher: Prof. Ugo Buy Xin Li, Huiyong Xiao Nov. 13, 2002 Summary What s a hybrid system? Definition of Hybrid Automaton

More information

Probably Approximately Correct MDP Learning and Control With Temporal Logic Constraints

Probably Approximately Correct MDP Learning and Control With Temporal Logic Constraints Probably Approximately Correct MDP Learning and Control With Temporal Logic Constraints Jie Fu and Ufuk Topcu Department of Electrical and Systems Engineering University of Pennsylvania Philadelphia, Pennsylvania

More information

TEMPORAL LOGIC [1], [2] is the natural framework for

TEMPORAL LOGIC [1], [2] is the natural framework for IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 1, FEBRUARY 2008 287 A Fully Automated Framework for Control of Linear Systems from Temporal Logic Specifications Marius Kloetzer, Student Member, IEEE,

More information

Distributed Multi-Agent Persistent Surveillance Under Temporal Logic Constraints

Distributed Multi-Agent Persistent Surveillance Under Temporal Logic Constraints Distributed Multi-Agent Persistent Surveillance Under Temporal Logic Constraints Derya Aksaray Kevin Leahy Calin Belta Department of Mechanical Engineering, Boston University, Boston, MA 2215, USA (e-mail:

More information

Assertions and Measurements for Mixed-Signal Simulation

Assertions and Measurements for Mixed-Signal Simulation Assertions and Measurements for Mixed-Signal Simulation PhD Thesis Thomas Ferrère VERIMAG, University of Grenoble (directeur: Oded Maler) Mentor Graphics Corporation (co-encadrant: Ernst Christen) October

More information

Synthesis of Reactive Control Protocols for Differentially Flat Systems

Synthesis of Reactive Control Protocols for Differentially Flat Systems DRAFT 1 Synthesis of Reactive Control Protocols for Differentially Flat Systems Jun Liu, Ufuk Topcu, Necmiye Ozay, and Richard M. Murray Abstract We propose a procedure for the synthesis of control protocols

More information

arxiv: v1 [math.oc] 11 Jan 2018

arxiv: v1 [math.oc] 11 Jan 2018 From Uncertainty Data to Robust Policies for Temporal Logic Planning arxiv:181.3663v1 [math.oc 11 Jan 218 ABSTRACT Pier Giuseppe Sessa* Automatic Control Laboratory, ETH Zürich Zürich, Switzerland sessap@student.ethz.ch

More information

Efficient Robust Monitoring for STL

Efficient Robust Monitoring for STL 100 120 Efficient Robust Monitoring for STL Alexandre Donzé 1, Thomas Ferrère 2, Oded Maler 2 1 University of California, Berkeley, EECS dept 2 Verimag, CNRS and Grenoble University May 28, 2013 Efficient

More information

Hierarchical Synthesis of Hybrid Controllers from Temporal Logic Specifications

Hierarchical Synthesis of Hybrid Controllers from Temporal Logic Specifications Hierarchical Synthesis of Hybrid Controllers from Temporal Logic Specifications Georgios E. Fainekos 1, Antoine Girard 2, and George J. Pappas 3 1 Department of Computer and Information Science, Univ.

More information

Lecture 9 Synthesis of Reactive Control Protocols

Lecture 9 Synthesis of Reactive Control Protocols Lecture 9 Synthesis of Reactive Control Protocols Nok Wongpiromsarn Singapore-MIT Alliance for Research and Technology Richard M. Murray and Ufuk Topcu California Institute of Technology EECI, 16 May 2012

More information

Synthesis of Reactive Switching Protocols from Temporal Logic Specifications

Synthesis of Reactive Switching Protocols from Temporal Logic Specifications 1 Synthesis of Reactive Switching Protocols from Temporal Logic Specifications Jun Liu, Necmiye Ozay, Ufuk Topcu, and Richard M. Murray Abstract We propose formal means for synthesizing switching protocols

More information

arxiv: v2 [math.oc] 27 Aug 2018

arxiv: v2 [math.oc] 27 Aug 2018 From Uncertainty Data to Robust Policies for Temporal Logic Planning arxiv:181.3663v2 [math.oc 27 Aug 218 ABSTRACT Pier Giuseppe Sessa Automatic Control Laboratory, ETH Zurich Zurich, Switzerland sessap@student.ethz.ch

More information

Polynomial-Time Verification of PCTL Properties of MDPs with Convex Uncertainties and its Application to Cyber-Physical Systems

Polynomial-Time Verification of PCTL Properties of MDPs with Convex Uncertainties and its Application to Cyber-Physical Systems Polynomial-Time Verification of PCTL Properties of MDPs with Convex Uncertainties and its Application to Cyber-Physical Systems Alberto Puggelli DREAM Seminar - November 26, 2013 Collaborators and PIs:

More information

Safe Control under Uncertainty

Safe Control under Uncertainty Safe Control under Uncertainty Dorsa Sadigh UC Berkeley Berkeley, CA, USA dsadigh@berkeley.edu Ashish Kapoor Microsoft Research Redmond, WA, USA akapoor@microsoft.com ical models [20] have been very popular

More information

Synthesis via Sampling-Based Abstractions

Synthesis via Sampling-Based Abstractions Synthesis via Sampling-Based Abstractions Some Problems and Initial Ideas Matthias Rungger 2 Morteza Lahijanian 1 Lydia E Kavraki 1 Paulo Tabuada 2 Moshe Y Vardi 1 1 Department of Computer Science, Rice

More information

Robust Control of Uncertain Markov Decision Processes with Temporal Logic Specifications

Robust Control of Uncertain Markov Decision Processes with Temporal Logic Specifications Robust Control of Uncertain Markov Decision Processes with Temporal Logic Specifications Eric M. Wolff, Ufuk Topcu, and Richard M. Murray Abstract We present a method for designing a robust control policy

More information

Intermittent Connectivity Control in Mobile Robot Networks

Intermittent Connectivity Control in Mobile Robot Networks Intermittent Connectivity Control in Mobile Robot Networks Yiannis Kantaros and Michael M. Zavlanos Abstract In this paper, we consider networks of mobile robots responsible for accomplishing tasks, captured

More information

Planning With Information States: A Survey Term Project for cs397sml Spring 2002

Planning With Information States: A Survey Term Project for cs397sml Spring 2002 Planning With Information States: A Survey Term Project for cs397sml Spring 2002 Jason O Kane jokane@uiuc.edu April 18, 2003 1 Introduction Classical planning generally depends on the assumption that the

More information

THE objective of this paper is to synthesize switching. Synthesis of Reactive Switching Protocols from Temporal Logic Specifications

THE objective of this paper is to synthesize switching. Synthesis of Reactive Switching Protocols from Temporal Logic Specifications Synthesis of Reactive Switching Protocols from Temporal Logic Specifications Jun Liu, Member, IEEE, Necmiye Ozay, Member, IEEE, Ufuk Topcu, Member, IEEE, and Richard M Murray, Fellow, IEEE Abstract We

More information

Partially Observable Markov Decision Processes (POMDPs)

Partially Observable Markov Decision Processes (POMDPs) Partially Observable Markov Decision Processes (POMDPs) Sachin Patil Guest Lecture: CS287 Advanced Robotics Slides adapted from Pieter Abbeel, Alex Lee Outline Introduction to POMDPs Locally Optimal Solutions

More information

arxiv: v1 [cs.sy] 26 Mar 2012

arxiv: v1 [cs.sy] 26 Mar 2012 Time-Constrained Temporal Logic Control of Multi-Affine Systems Ebru Aydin Gol Calin Belta Boston University, Boston, MA 02215, USA e-mail: {ebru,cbelta}@bu.edu arxiv:1203.5683v1 [cs.sy] 26 Mar 2012 Abstract:

More information

Feedback Control Theory: Architectures and Tools for Real-Time Decision Making

Feedback Control Theory: Architectures and Tools for Real-Time Decision Making Feedback Control Theory: Architectures and Tools for Real-Time Decision Making Richard M. Murray California Institute of Technology Real-Time Decision Making Bootcamp Simons Institute for the Theory of

More information

Abstractions and Decision Procedures for Effective Software Model Checking

Abstractions and Decision Procedures for Effective Software Model Checking Abstractions and Decision Procedures for Effective Software Model Checking Prof. Natasha Sharygina The University of Lugano, Carnegie Mellon University Microsoft Summer School, Moscow, July 2011 Lecture

More information

Synthesis of Reactive Switching Protocols From Temporal Logic Specifications

Synthesis of Reactive Switching Protocols From Temporal Logic Specifications IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 7, JULY 2013 1771 Synthesis of Reactive Switching Protocols From Temporal Logic Specifications Jun Liu, Member, IEEE, Necmiye Ozay, Member, IEEE, Ufuk

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Formal models of interaction Daniel Hennes 27.11.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Taxonomy of domains Models of

More information

Synthesis of Distributed Control and Communication Schemes from Global LTL Specifications

Synthesis of Distributed Control and Communication Schemes from Global LTL Specifications Synthesis of Distributed Control and Communication Schemes from Global LTL Specifications Yushan Chen, Xu Chu Ding, and Calin Belta Abstract We introduce a technique for synthesis of control and communication

More information

Probabilistic model checking with PRISM

Probabilistic model checking with PRISM Probabilistic model checking with PRISM Marta Kwiatkowska Department of Computer Science, University of Oxford 4th SSFT, Menlo College, May 204 Part 2 Markov decision processes Overview (Part 2) Introduction

More information

ECE7850 Lecture 9. Model Predictive Control: Computational Aspects

ECE7850 Lecture 9. Model Predictive Control: Computational Aspects ECE785 ECE785 Lecture 9 Model Predictive Control: Computational Aspects Model Predictive Control for Constrained Linear Systems Online Solution to Linear MPC Multiparametric Programming Explicit Linear

More information

Synthesis of Control Protocols for Autonomous Systems

Synthesis of Control Protocols for Autonomous Systems Unmanned Systems, Vol. 0, No. 0 (2013) 1 19 c World Scientific Publishing Company Synthesis of Control Protocols for Autonomous Systems Tichakorn Wongpiromsarn a, Ufuk Topcu b, Richard M. Murray c a Ministry

More information

A Decentralized Approach to Multi-agent Planning in the Presence of Constraints and Uncertainty

A Decentralized Approach to Multi-agent Planning in the Presence of Constraints and Uncertainty 2011 IEEE International Conference on Robotics and Automation Shanghai International Conference Center May 9-13, 2011, Shanghai, China A Decentralized Approach to Multi-agent Planning in the Presence of

More information

Safe Autonomy Under Perception Uncertainty Using Chance-Constrained Temporal Logic

Safe Autonomy Under Perception Uncertainty Using Chance-Constrained Temporal Logic Noname manuscript No. (will be inserted by the editor) Safe Autonomy Under Perception Uncertainty Using Chance-Constrained Temporal Logic Susmit Jha Vasumathi Raman Dorsa Sadigh Sanjit A. Seshia Received:

More information

Diagnosis of Repeated/Intermittent Failures in Discrete Event Systems

Diagnosis of Repeated/Intermittent Failures in Discrete Event Systems Diagnosis of Repeated/Intermittent Failures in Discrete Event Systems Shengbing Jiang, Ratnesh Kumar, and Humberto E. Garcia Abstract We introduce the notion of repeated failure diagnosability for diagnosing

More information

Decentralized Control of Stochastic Systems

Decentralized Control of Stochastic Systems Decentralized Control of Stochastic Systems Sanjay Lall Stanford University CDC-ECC Workshop, December 11, 2005 2 S. Lall, Stanford 2005.12.11.02 Decentralized Control G 1 G 2 G 3 G 4 G 5 y 1 u 1 y 2 u

More information

Language Stability and Stabilizability of Discrete Event Dynamical Systems 1

Language Stability and Stabilizability of Discrete Event Dynamical Systems 1 Language Stability and Stabilizability of Discrete Event Dynamical Systems 1 Ratnesh Kumar Department of Electrical Engineering University of Kentucky Lexington, KY 40506-0046 Vijay Garg Department of

More information

Algorithmic Verification of Stability of Hybrid Systems

Algorithmic Verification of Stability of Hybrid Systems Algorithmic Verification of Stability of Hybrid Systems Pavithra Prabhakar Kansas State University University of Kansas February 24, 2017 1 Cyber-Physical Systems (CPS) Systems in which software "cyber"

More information

Planning Under Uncertainty II

Planning Under Uncertainty II Planning Under Uncertainty II Intelligent Robotics 2014/15 Bruno Lacerda Announcement No class next Monday - 17/11/2014 2 Previous Lecture Approach to cope with uncertainty on outcome of actions Markov

More information

Automata, Logic and Games: Theory and Application

Automata, Logic and Games: Theory and Application Automata, Logic and Games: Theory and Application 1. Büchi Automata and S1S Luke Ong University of Oxford TACL Summer School University of Salerno, 14-19 June 2015 Luke Ong Büchi Automata & S1S 14-19 June

More information

Australian National University WORKSHOP ON SYSTEMS AND CONTROL

Australian National University WORKSHOP ON SYSTEMS AND CONTROL Australian National University WORKSHOP ON SYSTEMS AND CONTROL Canberra, AU December 7, 2017 Australian National University WORKSHOP ON SYSTEMS AND CONTROL A Distributed Algorithm for Finding a Common

More information

Hybrid Controllers for Path Planning: A Temporal Logic Approach

Hybrid Controllers for Path Planning: A Temporal Logic Approach Hybrid Controllers for Path Planning: A Temporal Logic Approach Georgios E. Fainekos, Hadas Kress-Gazit, and George J. Pappas Abstract Robot motion planning algorithms have focused on low-level reachability

More information

Logic Model Checking

Logic Model Checking Logic Model Checking Lecture Notes 10:18 Caltech 101b.2 January-March 2004 Course Text: The Spin Model Checker: Primer and Reference Manual Addison-Wesley 2003, ISBN 0-321-22862-6, 608 pgs. the assignment

More information

Synthesis of Maximally Permissive Non-blocking Supervisors for Partially Observed Discrete Event Systems

Synthesis of Maximally Permissive Non-blocking Supervisors for Partially Observed Discrete Event Systems 53rd IEEE Conference on Decision and Control December 5-7, 24. Los Angeles, California, USA Synthesis of Maximally Permissive Non-blocking Supervisors for Partially Observed Discrete Event Systems Xiang

More information

Provably Correct Persistent Surveillance for Unmanned Aerial Vehicles Subject to Charging Constraints

Provably Correct Persistent Surveillance for Unmanned Aerial Vehicles Subject to Charging Constraints Provably Correct Persistent Surveillance for Unmanned Aerial Vehicles Subject to Charging Constraints Kevin Leahy, Dingjiang Zhou, Cristian-Ioan Vasile, Konstantinos Oikonomopoulos, Mac Schwager, and Calin

More information

Formal Analysis of Timed Continuous Petri Nets

Formal Analysis of Timed Continuous Petri Nets Proceedings of the 47th IEEE Conference on Decision and Control Cancun, Mexico, Dec. 9 11, 008 Formal Analysis of Timed Continuous Petri Nets Marius Kloetzer, Cristian Mahulea, Calin Belta, Laura Recalde

More information

Decentralized Formation Control including Collision Avoidance

Decentralized Formation Control including Collision Avoidance Decentralized Formation Control including Collision Avoidance Nopthawat Kitudomrat Fujita Lab Dept. of Mechanical and Control Engineering Tokyo Institute of Technology FL07-16-1 Seminar 01/10/2007 1 /

More information

Failure Diagnosis of Discrete-Time Stochastic Systems subject to Temporal Logic Correctness Requirements

Failure Diagnosis of Discrete-Time Stochastic Systems subject to Temporal Logic Correctness Requirements Failure Diagnosis of Discrete-Time Stochastic Systems subject to Temporal Logic Correctness Requirements Jun Chen, Student Member, IEEE and Ratnesh Kumar, Fellow, IEEE Dept. of Elec. & Comp. Eng., Iowa

More information

INFORMS ANNUAL MEETING WASHINGTON D.C. 2008

INFORMS ANNUAL MEETING WASHINGTON D.C. 2008 Sensor Information Monotonicity in Disambiguation Protocols Xugang Ye Department of Applied Mathematics and Statistics, The Johns Hopkins University Stochastic ti Ordering Comparing Two Random Numbers:

More information

arxiv: v2 [cs.ro] 10 Jul 2012

arxiv: v2 [cs.ro] 10 Jul 2012 Robust Multi-Robot Optimal Path Planning with Temporal Logic Constraints Alphan Ulusoy Stephen L. Smith Xu Chu Ding Calin Belta arxiv:0.07v [cs.ro] 0 Jul 0 Abstract In this paper we present a method for

More information

Automatica. Formal analysis of piecewise affine systems through formula-guided refinement

Automatica. Formal analysis of piecewise affine systems through formula-guided refinement Automatica 49 (2013) 261 266 Contents lists available at SciVerse ScienceDirect Automatica journal homepage: www.elsevier.com/locate/automatica Brief paper Formal analysis of piecewise affine systems through

More information

Controlling probabilistic systems under partial observation an automata and verification perspective

Controlling probabilistic systems under partial observation an automata and verification perspective Controlling probabilistic systems under partial observation an automata and verification perspective Nathalie Bertrand, Inria Rennes, France Uncertainty in Computation Workshop October 4th 2016, Simons

More information

Online Task Planning and Control for Aerial Robots with Fuel Constraints in Winds

Online Task Planning and Control for Aerial Robots with Fuel Constraints in Winds Online Task Planning and Control for Aerial Robots with Fuel Constraints in Winds Chanyeol Yoo, Robert Fitch, and Salah Sukkarieh Australian Centre for Field Robotics, The University of Sydney, Australia,

More information

arxiv: v1 [cs.lo] 6 Mar 2012

arxiv: v1 [cs.lo] 6 Mar 2012 Control of Probabilistic Systems under Dynamic, Partially Known Environments with Temporal Logic Specifications Tichakorn Wongpiromsarn and Emilio Frazzoli arxiv:203.77v [cs.lo] 6 Mar 202 Abstract We consider

More information

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti 1 MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti Historical background 2 Original motivation: animal learning Early

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning March May, 2013 Schedule Update Introduction 03/13/2015 (10:15-12:15) Sala conferenze MDPs 03/18/2015 (10:15-12:15) Sala conferenze Solving MDPs 03/20/2015 (10:15-12:15) Aula Alpha

More information

SFM-11:CONNECT Summer School, Bertinoro, June 2011

SFM-11:CONNECT Summer School, Bertinoro, June 2011 SFM-:CONNECT Summer School, Bertinoro, June 20 EU-FP7: CONNECT LSCITS/PSS VERIWARE Part 3 Markov decision processes Overview Lectures and 2: Introduction 2 Discrete-time Markov chains 3 Markov decision

More information

Lecture 6 Verification of Hybrid Systems

Lecture 6 Verification of Hybrid Systems Lecture 6 Verification of Hybrid Systems Ufuk Topcu Nok Wongpiromsarn Richard M. Murray AFRL, 25 April 2012 Outline: A hybrid system model Finite-state abstractions and use of model checking Deductive

More information

Temporal Logic Control under Incomplete or Conflicting Information

Temporal Logic Control under Incomplete or Conflicting Information Temporal Logic Control under Incomplete or Conflicting Information Georgios Fainekos, and Herbert G. Tanner Abstract Temporal logic control methods have provided a viable path towards solving the single-

More information

MULTIPLE CHOICE QUESTIONS DECISION SCIENCE

MULTIPLE CHOICE QUESTIONS DECISION SCIENCE MULTIPLE CHOICE QUESTIONS DECISION SCIENCE 1. Decision Science approach is a. Multi-disciplinary b. Scientific c. Intuitive 2. For analyzing a problem, decision-makers should study a. Its qualitative aspects

More information

Distributed Optimization. Song Chong EE, KAIST

Distributed Optimization. Song Chong EE, KAIST Distributed Optimization Song Chong EE, KAIST songchong@kaist.edu Dynamic Programming for Path Planning A path-planning problem consists of a weighted directed graph with a set of n nodes N, directed links

More information

Logic-based Multi-Objective Design of Chemical Reaction Networks

Logic-based Multi-Objective Design of Chemical Reaction Networks Logic-based Multi-Objective Design of Chemical Reaction Networks Luca Bortolussi 1 Alberto Policriti 2 Simone Silvetti 2,3 1 DMG, University of Trieste, Trieste, Italy luca@dmi.units.it 2 Dima, University

More information

Lecture 7 Synthesis of Reactive Control Protocols

Lecture 7 Synthesis of Reactive Control Protocols Lecture 7 Synthesis of Reactive Control Protocols Richard M. Murray Nok Wongpiromsarn Ufuk Topcu California Institute of Technology AFRL, 25 April 2012 Outline Review: networked control systems and cooperative

More information