Logic Model Checking

Size: px
Start display at page:

Download "Logic Model Checking"

Transcription

1 Logic Model Checking Lecture Notes 10:18 Caltech 101b.2 January-March 2004 Course Text: The Spin Model Checker: Primer and Reference Manual Addison-Wesley 2003, ISBN , 608 pgs. the assignment some additional explanations Thread1: await (x!= 0); x = x 2 Thread2: await (x!= 0); x = x 3 Thread3: await (x == 0); x = x + 5 these are 3 sequential threads of two statements each no cycling is specified here... Thread1: while (x!= y) { x = x 1; y = y + 1; } Thread2: await (x == y); atomically { x = 8; y = 2; } the first thread is cyclic (repeating until x == y), the second is not cyclic unless statements are enclosed explicitly within an atomic block, they cannot be assumed to execute atomically Logic Model Checking [10 of 18] 2 1

2 some formalism (cf. p. 89 book) properties of models let E be the set of all executions of a model let f be a correctness property a model satisfies a property if all its executions do: (E = f ) ( δ, (δ E) (δ = f) ) a model violates a property if at least one of its executions does: (E = f ) ( δ, (δ E) (δ = f) ) δ:!p p!p!p!p!p!p p!p!q q q q q!q q q q x x x x x x true (p) (q) (q) (q) (δ = f) f: p always implies eventually!q Logic Model Checking [10 of 18] 3 negating a property showing that property f can be violated i.e., showing that (E = f ) is NOT the same as showing that f is satisfied i.e., showing that (E = f ) why not? (E = f ) ( δ, (δ E) (δ = f) ) but (E = f ) ( δ, (δ E) (δ = f) ) i.e. (E = f ) ( δ, (δ E) (δ = f) ) X Logic Model Checking [10 of 18] 4 2

3 synopsis (E = f ) (E = f ) but (E = f ) / (E = f ) (E = f) (E = f) f f (E = f) (E = f) EE E E (E = f) (E = f) both can be true at the same time Logic Model Checking [10 of 18] 5 an example (book p. 99) simple example where we can have simultaneously (E = f ) and (E = f ) byte x = 0; init { do :: x = 0 :: x = 2 od } never { f do :: assert(x == 0) od } never { f do :: assert(x!= 0) od } violated by x = 2 violated by x = 0 (x == 1) x=0 x=2 (x == 0) (x == 2) x is neither always zero nor is it always non-zero Logic Model Checking [10 of 18] 6 3

4 Outline introduction what is different about distributed systems the role of abstraction the concept of a verification model modeling concurrency, expressing correctness claims theoretical foundation automata and logic chapter 6 verification algorithms chapter 8 search optimization chapter 9 model checking in practice tools and tool design model building and model extraction challenges Logic Model Checking [10 of 18] 7 automata theory we ll now formally introduce the notion of finite automata, automata runs, words and languages ω-automata, ω-runs, and ω-regular languages Büchi acceptance the stuttering rule automata products linear temporal logic (LTL) and the link to ω-automata leading to our goal... the automata theoretic verification procedure Logic Model Checking [10 of 18] 8 4

5 finite state automata a finite state automaton is a tuple {S, s 0, L, F, T} S finite set of states s 0 S a distinguished initial state in S L finite set of labels (symbols) F S set of final states in S T SxLxS transition relation, connecting states in S dot notation: given an automaton A A.S is its set of states A.s 0 is its initial state... etc. Logic Model Checking [10 of 18] 9 an example finite state automaton A: {S, s0, L, F, T} α 0 s 0 s 1 α 2 α 4 α 1 s 2 s 4 α 5 A.S: { s 0, s 1, s 2, s 3, s 4 } A.L = { α, α 0 1, α 2, α 3, α 4, α 5 } A.F = { s 4 } A.T = {(s 0,α 0,s 1 ), (s 1, α 1,s 2 ),...} α 3 s 3 Logic Model Checking [10 of 18] 10 5

6 an interpretation of this automaton a process scheduler idle ready α 0 s 0 s 1 α 2 α 1 pre-empt run execute end α 4 s 2 s 4 α 5 unblock block α 3 s 3 Logic Model Checking [10 of 18] 11 never claim automaton never { idle: () -> ready: (run) -> execute: if :: (pre-empt) -> goto ready :: (block) -> goto :: -> goto end fi; : (unblock) -> goto execute; end: skip } idle ready pre-empt run execute unblock block end Logic Model Checking [10 of 18] 12 6

7 determinism and non-determism a finite state automaton A={S, s 0, L, F, T} is deterministic iff s l, ((s,l,s ) A.T (s,l,s ) A.T s s i.e., the destination state of a transition is uniquely determined by the source state and the transition label an automaton is called non-deterministic if it does not have this property deny s2 true s0 request approve s3 set F is empty here s1 true a very useful non-deterministic finite state automaton modeling a coarse abstraction of the behavior of a request server Logic Model Checking [10 of 18] 13 the definition of a run a run of finite state automaton {S, s 0, L, T, F} is an ordered, and possibly infinite, set of transitions from T: σ = {(s 0,l 0,s 1 ), (s 1,l 1,s 2 ), (s 2,l 2,s 3 ), } such that i, i 0 : (s i,l i,s i+1 ) T each run corresponds to a state sequence in S and a word in L idle ready (infinite) state sequence from a run: { idle, ready, { execute, } * } pre-empt run execute end the corresponding word in L: {, run, { block, unblock }* } unblock block note: for a non-deterministic automaton a single state sequence may correspond to more than one possible word Logic Model Checking [10 of 18] 14 7

8 the standard definition of acceptance an accepting run of finite state automaton A is a finite run σ for which the final transition (s n-1,l n-1,s n ) satisfies s n A.F i.e., the run ends in a final state idle ready state sequence of an accepting run: { idle, ready, execute,, execute, end } pre-empt run execute end the corresponding word in L: {, run, block, unblock, } unblock block Logic Model Checking [10 of 18] 15 the language accepted by an automaton the language of automaton A is the set of words in A.L that correspond to the set of all the accepting runs of automaton A (there can be infinitely many words in the language of even a small finite state automaton) idle ready pre-empt run execute unblock block end a characterization of the complete language of automaton A (an infinite set of words): {, run, { { pre-empt, run } + { block, unblock } }*, } a regular expression +: choose *: repeat zero or more times the shortest word in the language: {, run, } Logic Model Checking [10 of 18] 16 8

9 reasoning about runs formal properties of automata interpretation: sample property: if first p becomes true and then later q becomes true, then r can no longer become true reaching this state constitutes a complete match of the pattern that specifies the correctness violation this property is easily expressed with the standard definition of acceptance!q q r p error!r!p correctness claim: it is an error if in a run we see first p then q and then r Logic Model Checking [10 of 18] 17 but... sometimes we have to reason about potentially infinite delay... attempted interpretation: a classic liveness property:!p if p then eventually q!q error p q Problem: we cannot express with the standard definition of acceptance, we cannot express that a run may not remain in the error state infinitely long... this property can only be violated by an infinite run the standard notion of acceptance applies only to finite runs... Logic Model Checking [10 of 18] 18 9

10 how we would say this in a never claim better would be to use: true instead of!p (to state that every occurrence of p is eventually followed by q) never { s0: do ::!p :: p -> goto error od; error: accept: do ::!q od }!q error s0 p q!p acceptance states, though, are defined differently in classic automata theory... hence the switch to omega-automata theory... q takes us out of the error pattern, so need not be specified in the automaton Logic Model Checking [10 of 18] 19 notation for every infinite run σ of a finite automaton we can divide the transitions that appear in σ into two sets: a set σ + of transitions that are only taken finitely many times a set σ ω of transitions that are repeated infinitely often σ + σ σ ω Logic Model Checking [10 of 18] 20 10

11 Büchi acceptance a type of ω acceptance an accepting ω-run of finite state automaton A is an infinite run σ such that i 0,(s i-1,l i-1,s i ) σ : s i A.F s i σ ω i.e., at least one state in A.F is visited infinitely often idle ready pre-empt run execute unblock block end an accepting ω-run for this automaton: { idle, ready, {execute, ready}* } the corresponding ω-word: {, run, { pre-empt, run}* } the ω-language of an automaton is the set of all ω-words accepted Logic Model Checking [10 of 18] 21 accept-state labels Spin s accept-state label precisely capture the semantics of ω-acceptance we just defined Spin can report for any state marked with an accept-state label if the following two conditions can be met: the state is reachable from the initial system state, and the state is reachable from itself these are the necessary and sufficient conditions for an acceptance cycle to exist Q: but if we replace classic acceptance of finite runs with ω-acceptance on infinite runs, do we not lose the capability to reason about finite runs within this new theoretical framework? Logic Model Checking [10 of 18] 22 11

12 never claims precisely matches the definition of accept state labels in Promela never { idle: () -> ready: (run) -> accept: execute: : end: } if :: (pre-empt) -> goto ready :: (block) -> goto :: -> goto end fi; (unblock) -> goto execute; (false) idle ready pre-empt run execute unblock block end but what should we do with finite runs... Logic Model Checking [10 of 18] 23 the stutter extension rule interpreting finite runs as special cases of infinite runs the label set of the automaton is extended to L ε ε is a predefined nil symbol (a no-op or pause) to determine ω-acceptance, a finite run is (thought to be) extended into an equivalent infinite run by stuttering the final state on ε run: { idle, ready, execute, ready ε, execute, [end,]* } idle pre-empt unblock run execute block end word: {, run, block, unblock,, ε* } we can now use one single acceptance rule to reason about the liveness properties of both finite and infinite runs Logic Model Checking [10 of 18] 24 12

13 never claims allow us to reason about both infinite and finite runs never { idle: () -> ready: (run) -> accept: execute: : end: } if :: (pre-empt) -> goto ready :: (block) -> goto :: -> goto end fi; (unblock) -> goto execute; true idle ready true pre-empt run execute end unblock block accept2: do :: true od the default meaning of falling off the end of a never claim... which is an application of the stutter extension rule Logic Model Checking [10 of 18] 25 there are also other types of ω-acceptance generalized Büchi acceptance instead of one acceptance set F S, we define a family of sets F = { F 1,..., F n } we now require: j, 1 j n, i 0, (s i-1,l i-1,s i ) σ σ, s i F j s i σ ω i.e., some state in each acceptance set is visited infinitely often an automaton with generalized Büchi acceptance conditions is called a generalized Büchi automaton has the same expressive power as a standard Büchi automaton Logic Model Checking [10 of 18] 26 13

14 other types of ω-acceptance Muller automata Muller acceptance let F 2 S (F is a set if subsets of S) require: f, f F s, s f s σ ω (at least one of the elements of F contains all states that are visited infinitely often in σ) an automaton with Muller acceptance conditions is called a Muller automaton has the same expressive power as a Büchi automaton Logic Model Checking [10 of 18] 27 other types of ω-acceptance Rabin automata Rabin acceptance choose n pairs of sets (L i,u i ) with L i S and U i S require: i, (1 i n), s, (s L i s σ ω ) t, (t U i t σ ω ) (for at least one pair i, none of the states in L i and at least one state in U i appear infinitely often) an automaton with Rabin acceptance conditions is called a Rabin automaton has the same expressive power as a Büchi automaton Logic Model Checking [10 of 18] 28 14

15 other types of ω-acceptance Streett automata Streett acceptance choose n pairs of sets (L i,u i ) with L i S and U i S require i, (1 i n), s (s L i s σ ω ) t, (t U i t σ ω ) for at least one pair i, none of the states in U i or at least one state in L i appears infinitely often i.e., if you hit an L-state, you must also repeatedly hit a matching U state an automaton with Streett acceptance conditions is called a Streett automaton all these variants have the same expressive power Logic Model Checking [10 of 18] 29 useful properties of ω-automata Büchi automata, and ω-automata in general, are closed under all Boolean operations, e.g. for any two automata A and B: complement: C : L(C) = L ω \ L(A) there exists an automaton C that accepts precisely those runs that are not accepted by any given automaton A intersection: C : L(C) = L(A) L(B) there exists an automaton C that accepts all runs that are accepted by both A and by B union: C : L(C) = L(A) L(B) there exists an automaton C that accepts all runs that are accepted by either A or by B Logic Model Checking [10 of 18] 30 15

16 decidability issues two properties of Büchi automata in particular are of interest in applications of logic model checking: language emptiness are there any accepting runs? language intersection are there any runs that are accepted by 2 or more automata? both are formally decidable Spin s model checking algorithm is based on these two checks Spin determines if the intersection of the languages of a property automaton and a system automaton is empty even properties that are stated in linear temporal logic, can be converted into Büchi property automata (i.e., never claims) Logic Model Checking [10 of 18] 31 16

Alan Bundy. Automated Reasoning LTL Model Checking

Alan Bundy. Automated Reasoning LTL Model Checking Automated Reasoning LTL Model Checking Alan Bundy Lecture 9, page 1 Introduction So far we have looked at theorem proving Powerful, especially where good sets of rewrite rules or decision procedures have

More information

Timo Latvala. March 7, 2004

Timo Latvala. March 7, 2004 Reactive Systems: Safety, Liveness, and Fairness Timo Latvala March 7, 2004 Reactive Systems: Safety, Liveness, and Fairness 14-1 Safety Safety properties are a very useful subclass of specifications.

More information

Automata-based Verification - III

Automata-based Verification - III COMP30172: Advanced Algorithms Automata-based Verification - III Howard Barringer Room KB2.20: email: howard.barringer@manchester.ac.uk March 2009 Third Topic Infinite Word Automata Motivation Büchi Automata

More information

Linear Temporal Logic and Büchi Automata

Linear Temporal Logic and Büchi Automata Linear Temporal Logic and Büchi Automata Yih-Kuen Tsay Department of Information Management National Taiwan University FLOLAC 2009 Yih-Kuen Tsay (SVVRL @ IM.NTU) Linear Temporal Logic and Büchi Automata

More information

Automata-based Verification - III

Automata-based Verification - III CS3172: Advanced Algorithms Automata-based Verification - III Howard Barringer Room KB2.20/22: email: howard.barringer@manchester.ac.uk March 2005 Third Topic Infinite Word Automata Motivation Büchi Automata

More information

Helsinki University of Technology Laboratory for Theoretical Computer Science Research Reports 66

Helsinki University of Technology Laboratory for Theoretical Computer Science Research Reports 66 Helsinki University of Technology Laboratory for Theoretical Computer Science Research Reports 66 Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 66 Espoo 2000 HUT-TCS-A66

More information

CS256/Spring 2008 Lecture #11 Zohar Manna. Beyond Temporal Logics

CS256/Spring 2008 Lecture #11 Zohar Manna. Beyond Temporal Logics CS256/Spring 2008 Lecture #11 Zohar Manna Beyond Temporal Logics Temporal logic expresses properties of infinite sequences of states, but there are interesting properties that cannot be expressed, e.g.,

More information

Chapter 3: Linear temporal logic

Chapter 3: Linear temporal logic INFOF412 Formal verification of computer systems Chapter 3: Linear temporal logic Mickael Randour Formal Methods and Verification group Computer Science Department, ULB March 2017 1 LTL: a specification

More information

T Reactive Systems: Temporal Logic LTL

T Reactive Systems: Temporal Logic LTL Tik-79.186 Reactive Systems 1 T-79.186 Reactive Systems: Temporal Logic LTL Spring 2005, Lecture 4 January 31, 2005 Tik-79.186 Reactive Systems 2 Temporal Logics Temporal logics are currently the most

More information

Computer-Aided Program Design

Computer-Aided Program Design Computer-Aided Program Design Spring 2015, Rice University Unit 3 Swarat Chaudhuri February 5, 2015 Temporal logic Propositional logic is a good language for describing properties of program states. However,

More information

Finite Automata. Mahesh Viswanathan

Finite Automata. Mahesh Viswanathan Finite Automata Mahesh Viswanathan In this lecture, we will consider different models of finite state machines and study their relative power. These notes assume that the reader is familiar with DFAs,

More information

Automata, Logic and Games: Theory and Application

Automata, Logic and Games: Theory and Application Automata, Logic and Games: Theory and Application 1. Büchi Automata and S1S Luke Ong University of Oxford TACL Summer School University of Salerno, 14-19 June 2015 Luke Ong Büchi Automata & S1S 14-19 June

More information

Introduction. Büchi Automata and Model Checking. Outline. Büchi Automata. The simplest computation model for infinite behaviors is the

Introduction. Büchi Automata and Model Checking. Outline. Büchi Automata. The simplest computation model for infinite behaviors is the Introduction Büchi Automata and Model Checking Yih-Kuen Tsay Department of Information Management National Taiwan University FLOLAC 2009 The simplest computation model for finite behaviors is the finite

More information

Temporal Logic Model Checking

Temporal Logic Model Checking 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 1 Temporal Logic Model Checking Thomas Wahl Computing Laboratory, Oxford University 18 Feb, 2009 Thomas Wahl, Oxford University

More information

Formal Verification Techniques. Riccardo Sisto, Politecnico di Torino

Formal Verification Techniques. Riccardo Sisto, Politecnico di Torino Formal Verification Techniques Riccardo Sisto, Politecnico di Torino State exploration State Exploration and Theorem Proving Exhaustive exploration => result is certain (correctness or noncorrectness proof)

More information

LTL Model Checking. Wishnu Prasetya.

LTL Model Checking. Wishnu Prasetya. LTL Model Checking Wishnu Prasetya wishnu@cs.uu.nl www.cs.uu.nl/docs/vakken/pv Overview This pack : Abstract model of programs Temporal properties Verification (via model checking) algorithm Concurrency

More information

Temporal logics and explicit-state model checking. Pierre Wolper Université de Liège

Temporal logics and explicit-state model checking. Pierre Wolper Université de Liège Temporal logics and explicit-state model checking Pierre Wolper Université de Liège 1 Topics to be covered Introducing explicit-state model checking Finite automata on infinite words Temporal Logics and

More information

Lecture 4 Model Checking and Logic Synthesis

Lecture 4 Model Checking and Logic Synthesis Lecture 4 Model Checking and Logic Synthesis Nok Wongpiromsarn Richard M. Murray Ufuk Topcu EECI, 18 March 2013 Outline Model checking: what it is, how it works, how it is used Computational complexity

More information

Sanjit A. Seshia EECS, UC Berkeley

Sanjit A. Seshia EECS, UC Berkeley EECS 219C: Computer-Aided Verification Explicit-State Model Checking: Additional Material Sanjit A. Seshia EECS, UC Berkeley Acknowledgments: G. Holzmann Checking if M satisfies : Steps 1. Compute Buchi

More information

2. Elements of the Theory of Computation, Lewis and Papadimitrou,

2. Elements of the Theory of Computation, Lewis and Papadimitrou, Introduction Finite Automata DFA, regular languages Nondeterminism, NFA, subset construction Regular Epressions Synta, Semantics Relationship to regular languages Properties of regular languages Pumping

More information

ω-automata Automata that accept (or reject) words of infinite length. Languages of infinite words appear:

ω-automata Automata that accept (or reject) words of infinite length. Languages of infinite words appear: ω-automata ω-automata Automata that accept (or reject) words of infinite length. Languages of infinite words appear: in verification, as encodings of non-terminating executions of a program. in arithmetic,

More information

Timo Latvala. February 4, 2004

Timo Latvala. February 4, 2004 Reactive Systems: Temporal Logic LT L Timo Latvala February 4, 2004 Reactive Systems: Temporal Logic LT L 8-1 Temporal Logics Temporal logics are currently the most widely used specification formalism

More information

Embedded systems specification and design

Embedded systems specification and design Embedded systems specification and design David Kendall David Kendall Embedded systems specification and design 1 / 21 Introduction Finite state machines (FSM) FSMs and Labelled Transition Systems FSMs

More information

Büchi Automata and Their Determinization

Büchi Automata and Their Determinization Büchi Automata and Their Determinization Edinburgh, October 215 Plan of the Day 1. Büchi automata and their determinization 2. Infinite games 3. Rabin s Tree Theorem 4. Decidability of monadic theories

More information

EECS 144/244: Fundamental Algorithms for System Modeling, Analysis, and Optimization

EECS 144/244: Fundamental Algorithms for System Modeling, Analysis, and Optimization EECS 144/244: Fundamental Algorithms for System Modeling, Analysis, and Optimization Discrete Systems Lecture: Automata, State machines, Circuits Stavros Tripakis University of California, Berkeley Stavros

More information

Infinite Games. Sumit Nain. 28 January Slides Credit: Barbara Jobstmann (CNRS/Verimag) Department of Computer Science Rice University

Infinite Games. Sumit Nain. 28 January Slides Credit: Barbara Jobstmann (CNRS/Verimag) Department of Computer Science Rice University Infinite Games Sumit Nain Department of Computer Science Rice University 28 January 2013 Slides Credit: Barbara Jobstmann (CNRS/Verimag) Motivation Abstract games are of fundamental importance in mathematics

More information

Automatic Synthesis of Distributed Protocols

Automatic Synthesis of Distributed Protocols Automatic Synthesis of Distributed Protocols Rajeev Alur Stavros Tripakis 1 Introduction Protocols for coordination among concurrent processes are an essential component of modern multiprocessor and distributed

More information

Automata-Theoretic LTL Model-Checking

Automata-Theoretic LTL Model-Checking Automata-Theoretic LTL Model-Checking Arie Gurfinkel arie@cmu.edu SEI/CMU Automata-Theoretic LTL Model-Checking p.1 LTL - Linear Time Logic (Pn 77) Determines Patterns on Infinite Traces Atomic Propositions

More information

Automata Theory. Lecture on Discussion Course of CS120. Runzhe SJTU ACM CLASS

Automata Theory. Lecture on Discussion Course of CS120. Runzhe SJTU ACM CLASS Automata Theory Lecture on Discussion Course of CS2 This Lecture is about Mathematical Models of Computation. Why Should I Care? - Ways of thinking. - Theory can drive practice. - Don t be an Instrumentalist.

More information

On Model Checking for Visibly Pushdown Automata

On Model Checking for Visibly Pushdown Automata Japan Institute of Advanced Industrial Science and Technology Research Center for Specification and Verification LATA 2012 On Model Checking for Visibly Pushdown Automata Nguyen Van Tang and Hitoshi Ohsaki

More information

The State Explosion Problem

The State Explosion Problem The State Explosion Problem Martin Kot August 16, 2003 1 Introduction One from main approaches to checking correctness of a concurrent system are state space methods. They are suitable for automatic analysis

More information

From Liveness to Promptness

From Liveness to Promptness From Liveness to Promptness Orna Kupferman Hebrew University Nir Piterman EPFL Moshe Y. Vardi Rice University Abstract Liveness temporal properties state that something good eventually happens, e.g., every

More information

Tecniche di Specifica e di Verifica. Automata-based LTL Model-Checking

Tecniche di Specifica e di Verifica. Automata-based LTL Model-Checking Tecniche di Specifica e di Verifica Automata-based LTL Model-Checking Finite state automata A finite state automaton is a tuple A = (S,S,S 0,R,F) S: set of input symbols S: set of states -- S 0 : set of

More information

CS 154, Lecture 2: Finite Automata, Closure Properties Nondeterminism,

CS 154, Lecture 2: Finite Automata, Closure Properties Nondeterminism, CS 54, Lecture 2: Finite Automata, Closure Properties Nondeterminism, Why so Many Models? Streaming Algorithms 0 42 Deterministic Finite Automata Anatomy of Deterministic Finite Automata transition: for

More information

Timed Automata. Chapter Clocks and clock constraints Clock variables and clock constraints

Timed Automata. Chapter Clocks and clock constraints Clock variables and clock constraints Chapter 10 Timed Automata In the previous chapter, we have discussed a temporal logic where time was a discrete entities. A time unit was one application of the transition relation of an LTS. We could

More information

Tecniche di Specifica e di Verifica. Automata-based LTL Model-Checking

Tecniche di Specifica e di Verifica. Automata-based LTL Model-Checking Tecniche di Specifica e di Verifica Automata-based LTL Model-Checking Finite state automata A finite state automaton is a tuple A = (Σ,S,S 0,R,F) Σ: set of input symbols S: set of states -- S 0 : set of

More information

Temporal Logic. Stavros Tripakis University of California, Berkeley. We have designed a system. We want to check that it is correct.

Temporal Logic. Stavros Tripakis University of California, Berkeley. We have designed a system. We want to check that it is correct. EE 244: Fundamental Algorithms for System Modeling, Analysis, and Optimization Fall 2016 Temporal logic Stavros Tripakis University of California, Berkeley Stavros Tripakis (UC Berkeley) EE 244, Fall 2016

More information

Lecture 2 Automata Theory

Lecture 2 Automata Theory Lecture 2 Automata Theory Ufuk Topcu Nok Wongpiromsarn Richard M. Murray EECI, 18 March 2013 Outline Modeling (discrete) concurrent systems: transition systems, concurrency and interleaving Linear-time

More information

Chapter 4: Computation tree logic

Chapter 4: Computation tree logic INFOF412 Formal verification of computer systems Chapter 4: Computation tree logic Mickael Randour Formal Methods and Verification group Computer Science Department, ULB March 2017 1 CTL: a specification

More information

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova.

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova. Introduction to the Theory of Computation Automata 1VO + 1PS Lecturer: Dr. Ana Sokolova http://cs.uni-salzburg.at/~anas/ Setup and Dates Lectures Tuesday 10:45 pm - 12:15 pm Instructions Tuesday 12:30

More information

Lecture Notes on Emptiness Checking, LTL Büchi Automata

Lecture Notes on Emptiness Checking, LTL Büchi Automata 15-414: Bug Catching: Automated Program Verification Lecture Notes on Emptiness Checking, LTL Büchi Automata Matt Fredrikson André Platzer Carnegie Mellon University Lecture 18 1 Introduction We ve seen

More information

Lecture 2 Automata Theory

Lecture 2 Automata Theory Lecture 2 Automata Theory Ufuk Topcu Nok Wongpiromsarn Richard M. Murray Outline: Transition systems Linear-time properties Regular propereties EECI, 14 May 2012 This short-course is on this picture applied

More information

Definition of Büchi Automata

Definition of Büchi Automata Büchi Automata Definition of Büchi Automata Let Σ = {a,b,...} be a finite alphabet. By Σ ω we denote the set of all infinite words over Σ. A non-deterministic Büchi automaton (NBA) over Σ is a tuple A

More information

LTL is Closed Under Topological Closure

LTL is Closed Under Topological Closure LTL is Closed Under Topological Closure Grgur Petric Maretić, Mohammad Torabi Dashti, David Basin Department of Computer Science, ETH Universitätstrasse 6 Zürich, Switzerland Abstract We constructively

More information

Büchi Automata and Linear Temporal Logic

Büchi Automata and Linear Temporal Logic Büchi Automata and Linear Temporal Logic Joshua D. Guttman Worcester Polytechnic Institute 18 February 2010 Guttman ( WPI ) Büchi & LTL 18 Feb 10 1 / 10 Büchi Automata Definition A Büchi automaton is a

More information

Logic and Automata I. Wolfgang Thomas. EATCS School, Telc, July 2014

Logic and Automata I. Wolfgang Thomas. EATCS School, Telc, July 2014 Logic and Automata I EATCS School, Telc, July 2014 The Plan We present automata theory as a tool to make logic effective. Four parts: 1. Some history 2. Automata on infinite words First step: MSO-logic

More information

Finite-State Model Checking

Finite-State Model Checking EECS 219C: Computer-Aided Verification Intro. to Model Checking: Models and Properties Sanjit A. Seshia EECS, UC Berkeley Finite-State Model Checking G(p X q) Temporal logic q p FSM Model Checker Yes,

More information

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova.

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova. Introduction to the Theory of Computation Automata 1VO + 1PS Lecturer: Dr. Ana Sokolova http://cs.uni-salzburg.at/~anas/ Setup and Dates Lectures and Instructions 23.10. 3.11. 17.11. 24.11. 1.12. 11.12.

More information

Logic in Automatic Verification

Logic in Automatic Verification Logic in Automatic Verification Javier Esparza Sofware Reliability and Security Group Institute for Formal Methods in Computer Science University of Stuttgart Many thanks to Abdelwaheb Ayari, David Basin,

More information

Automata on Infinite words and LTL Model Checking

Automata on Infinite words and LTL Model Checking Automata on Infinite words and LTL Model Checking Rodica Condurache Lecture 4 Lecture 4 Automata on Infinite words and LTL Model Checking 1 / 35 Labeled Transition Systems Let AP be the (finite) set of

More information

3515ICT: Theory of Computation. Regular languages

3515ICT: Theory of Computation. Regular languages 3515ICT: Theory of Computation Regular languages Notation and concepts concerning alphabets, strings and languages, and identification of languages with problems (H, 1.5). Regular expressions (H, 3.1,

More information

Verification of Probabilistic Systems with Faulty Communication

Verification of Probabilistic Systems with Faulty Communication Verification of Probabilistic Systems with Faulty Communication P. A. Abdulla 1, N. Bertrand 2, A. Rabinovich 3, and Ph. Schnoebelen 2 1 Uppsala University, Sweden 2 LSV, ENS de Cachan, France 3 Tel Aviv

More information

Closure Properties of Regular Languages. Union, Intersection, Difference, Concatenation, Kleene Closure, Reversal, Homomorphism, Inverse Homomorphism

Closure Properties of Regular Languages. Union, Intersection, Difference, Concatenation, Kleene Closure, Reversal, Homomorphism, Inverse Homomorphism Closure Properties of Regular Languages Union, Intersection, Difference, Concatenation, Kleene Closure, Reversal, Homomorphism, Inverse Homomorphism Closure Properties Recall a closure property is a statement

More information

Automata-Theoretic Model Checking of Reactive Systems

Automata-Theoretic Model Checking of Reactive Systems Automata-Theoretic Model Checking of Reactive Systems Radu Iosif Verimag/CNRS (Grenoble, France) Thanks to Tom Henzinger (IST, Austria), Barbara Jobstmann (CNRS, Grenoble) and Doron Peled (Bar-Ilan University,

More information

The Expressivity of Universal Timed CCP: Undecidability of Monadic FLTL and Closure Operators for Security

The Expressivity of Universal Timed CCP: Undecidability of Monadic FLTL and Closure Operators for Security The Expressivity of Universal Timed CCP: Undecidability of Monadic FLTL and Closure Operators for Security Carlos Olarte and Frank D. Valencia INRIA /CNRS and LIX, Ecole Polytechnique Motivation Concurrent

More information

Great Theoretical Ideas in Computer Science. Lecture 4: Deterministic Finite Automaton (DFA), Part 2

Great Theoretical Ideas in Computer Science. Lecture 4: Deterministic Finite Automaton (DFA), Part 2 5-25 Great Theoretical Ideas in Computer Science Lecture 4: Deterministic Finite Automaton (DFA), Part 2 January 26th, 27 Formal definition: DFA A deterministic finite automaton (DFA) M =(Q,,,q,F) M is

More information

Failure Diagnosis of Discrete Event Systems With Linear-Time Temporal Logic Specifications

Failure Diagnosis of Discrete Event Systems With Linear-Time Temporal Logic Specifications Failure Diagnosis of Discrete Event Systems With Linear-Time Temporal Logic Specifications Shengbing Jiang and Ratnesh Kumar Abstract The paper studies failure diagnosis of discrete event systems with

More information

CHURCH SYNTHESIS PROBLEM and GAMES

CHURCH SYNTHESIS PROBLEM and GAMES p. 1/? CHURCH SYNTHESIS PROBLEM and GAMES Alexander Rabinovich Tel-Aviv University, Israel http://www.tau.ac.il/ rabinoa p. 2/? Plan of the Course 1. The Church problem - logic and automata. 2. Games -

More information

Impartial Anticipation in Runtime-Verification

Impartial Anticipation in Runtime-Verification Impartial Anticipation in Runtime-Verification Wei Dong 1, Martin Leucker 2, and Christian Schallhart 2 1 School of Computer, National University of Defense Technology, P.R.China 2 Institut für Informatik,

More information

Alternating Time Temporal Logics*

Alternating Time Temporal Logics* Alternating Time Temporal Logics* Sophie Pinchinat Visiting Research Fellow at RSISE Marie Curie Outgoing International Fellowship * @article{alur2002, title={alternating-time Temporal Logic}, author={alur,

More information

Course Runtime Verification

Course Runtime Verification Course Martin Leucker (ISP) Volker Stolz (Høgskolen i Bergen, NO) INF5140 / V17 Chapters of the Course Chapter 1 Recall in More Depth Chapter 2 Specification Languages on Words Chapter 3 LTL on Finite

More information

Automaten und Formale Sprachen Automata and Formal Languages

Automaten und Formale Sprachen Automata and Formal Languages WS 2014/15 Automaten und Formale Sprachen Automata and Formal Languages Ernst W. Mayr Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2014ws/afs/ Wintersemester 2014/15 AFS Chapter 0 Organizational

More information

Büchi Automata and their closure properties. - Ajith S and Ankit Kumar

Büchi Automata and their closure properties. - Ajith S and Ankit Kumar Büchi Automata and their closure properties - Ajith S and Ankit Kumar Motivation Conventional programs accept input, compute, output result, then terminate Reactive program : not expected to terminate

More information

COM364 Automata Theory Lecture Note 2 - Nondeterminism

COM364 Automata Theory Lecture Note 2 - Nondeterminism COM364 Automata Theory Lecture Note 2 - Nondeterminism Kurtuluş Küllü March 2018 The FA we saw until now were deterministic FA (DFA) in the sense that for each state and input symbol there was exactly

More information

Bounded Model Checking with SAT/SMT. Edmund M. Clarke School of Computer Science Carnegie Mellon University 1/39

Bounded Model Checking with SAT/SMT. Edmund M. Clarke School of Computer Science Carnegie Mellon University 1/39 Bounded Model Checking with SAT/SMT Edmund M. Clarke School of Computer Science Carnegie Mellon University 1/39 Recap: Symbolic Model Checking with BDDs Method used by most industrial strength model checkers:

More information

Computation Tree Logic (CTL) & Basic Model Checking Algorithms

Computation Tree Logic (CTL) & Basic Model Checking Algorithms Computation Tree Logic (CTL) & Basic Model Checking Algorithms Martin Fränzle Carl von Ossietzky Universität Dpt. of Computing Science Res. Grp. Hybride Systeme Oldenburg, Germany 02917: CTL & Model Checking

More information

Classes and conversions

Classes and conversions Classes and conversions Regular expressions Syntax: r = ε a r r r + r r Semantics: The language L r of a regular expression r is inductively defined as follows: L =, L ε = {ε}, L a = a L r r = L r L r

More information

Quasi-Weak Cost Automata

Quasi-Weak Cost Automata Quasi-Weak Cost Automata A New Variant of Weakness Denis Kuperberg 1 Michael Vanden Boom 2 1 LIAFA/CNRS/Université Paris 7, Denis Diderot, France 2 Department of Computer Science, University of Oxford,

More information

Using Patterns and Composite Propositions to Automate the Generation of Complex LTL Specifications

Using Patterns and Composite Propositions to Automate the Generation of Complex LTL Specifications Using Patterns and Composite Propositions to Automate the Generation of Complex LTL Specifications Salamah Salamah, Ann Q. Gates, Vladik Kreinovich, and Steve Roach Dept. of Computer Science, University

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY 5-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY 5-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY YOU NEED TO PICK UP THE SYLLABUS, THE COURSE SCHEDULE, THE PROJECT INFO SHEET, TODAY S CLASS NOTES

More information

Abstracting real-valued parameters in parameterised boolean equation systems

Abstracting real-valued parameters in parameterised boolean equation systems Department of Mathematics and Computer Science Formal System Analysis Research Group Abstracting real-valued parameters in parameterised boolean equation systems Master Thesis M. Laveaux Supervisor: dr.

More information

Guest lecturer: Prof. Mark Reynolds, The University of Western Australia

Guest lecturer: Prof. Mark Reynolds, The University of Western Australia Università degli studi di Udine Corso per il dottorato di ricerca: Temporal Logics: Satisfiability Checking, Model Checking, and Synthesis January 2017 Lecture 01, Part 02: Temporal Logics Guest lecturer:

More information

Further discussion of Turing machines

Further discussion of Turing machines Further discussion of Turing machines In this lecture we will discuss various aspects of decidable and Turing-recognizable languages that were not mentioned in previous lectures. In particular, we will

More information

Linear-time Temporal Logic

Linear-time Temporal Logic Linear-time Temporal Logic Pedro Cabalar Department of Computer Science University of Corunna, SPAIN cabalar@udc.es 2015/2016 P. Cabalar ( Department Linear oftemporal Computer Logic Science University

More information

EE249 - Fall 2012 Lecture 18: Overview of Concrete Contract Theories. Alberto Sangiovanni-Vincentelli Pierluigi Nuzzo

EE249 - Fall 2012 Lecture 18: Overview of Concrete Contract Theories. Alberto Sangiovanni-Vincentelli Pierluigi Nuzzo EE249 - Fall 2012 Lecture 18: Overview of Concrete Contract Theories 1 Alberto Sangiovanni-Vincentelli Pierluigi Nuzzo Outline: Contracts and compositional methods for system design Where and why using

More information

The Complexity of Computing the Behaviour of Lattice Automata on Infinite Trees

The Complexity of Computing the Behaviour of Lattice Automata on Infinite Trees The Complexity of Computing the Behaviour of Lattice Automata on Infinite Trees Karsten Lehmann a, Rafael Peñaloza b a Optimisation Research Group, NICTA Artificial Intelligence Group, Australian National

More information

Visibly Linear Dynamic Logic

Visibly Linear Dynamic Logic Visibly Linear Dynamic Logic Joint work with Alexander Weinert (Saarland University) Martin Zimmermann Saarland University September 8th, 2016 Highlights Conference, Brussels, Belgium Martin Zimmermann

More information

Undecidability Results for Timed Automata with Silent Transitions

Undecidability Results for Timed Automata with Silent Transitions Fundamenta Informaticae XXI (2001) 1001 1025 1001 IOS Press Undecidability Results for Timed Automata with Silent Transitions Patricia Bouyer LSV, ENS Cachan, CNRS, France bouyer@lsv.ens-cachan.fr Serge

More information

CS477 Formal Software Dev Methods

CS477 Formal Software Dev Methods CS477 Formal Software Dev Methods Elsa L Gunter 2112 SC, UIUC egunter@illinois.edu http://courses.engr.illinois.edu/cs477 Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha

More information

Design and Analysis of Distributed Interacting Systems

Design and Analysis of Distributed Interacting Systems Design and Analysis of Distributed Interacting Systems Organization Prof. Dr. Joel Greenyer April 11, 2013 Organization Lecture: Thursdays, 10:15 11:45, F 128 Tutorial: Thursdays, 13:00 13:45, G 323 first

More information

Automata, Logic and Games: Theory and Application

Automata, Logic and Games: Theory and Application Automata, Logic and Games: Theory and Application 2 Parity Games, Tree Automata, and S2S Luke Ong University of Oxford TACL Summer School University of Salerno, 14-19 June 2015 Luke Ong S2S 14-19 June

More information

Outline F eria AADL behavior 1/ 78

Outline F eria AADL behavior 1/ 78 Outline AADL behavior Annex Jean-Paul Bodeveix 2 Pierre Dissaux 3 Mamoun Filali 2 Pierre Gaufillet 1 François Vernadat 2 1 AIRBUS-FRANCE 2 FéRIA 3 ELLIDIS SAE AS2C Detroit Michigan April 2006 FéRIA AADL

More information

Property Checking of Safety- Critical Systems Mathematical Foundations and Concrete Algorithms

Property Checking of Safety- Critical Systems Mathematical Foundations and Concrete Algorithms Property Checking of Safety- Critical Systems Mathematical Foundations and Concrete Algorithms Wen-ling Huang and Jan Peleska University of Bremen {huang,jp}@cs.uni-bremen.de MBT-Paradigm Model Is a partial

More information

Partially Ordered Two-way Büchi Automata

Partially Ordered Two-way Büchi Automata Partially Ordered Two-way Büchi Automata Manfred Kufleitner Alexander Lauser FMI, Universität Stuttgart, Germany {kufleitner, lauser}@fmi.uni-stuttgart.de June 14, 2010 Abstract We introduce partially

More information

Intro to Theory of Computation

Intro to Theory of Computation Intro to Theory of Computation 1/19/2016 LECTURE 3 Last time: DFAs and NFAs Operations on languages Today: Nondeterminism Equivalence of NFAs and DFAs Closure properties of regular languages Sofya Raskhodnikova

More information

The theory of regular cost functions.

The theory of regular cost functions. The theory of regular cost functions. Denis Kuperberg PhD under supervision of Thomas Colcombet Hebrew University of Jerusalem ERC Workshop on Quantitative Formal Methods Jerusalem, 10-05-2013 1 / 30 Introduction

More information

Model Checking. Boris Feigin March 9, University College London

Model Checking. Boris Feigin March 9, University College London b.feigin@cs.ucl.ac.uk University College London March 9, 2005 Outline 1 2 Techniques Symbolic 3 Software 4 Vs. Deductive Verification Summary Further Reading In a nutshell... Model checking is a collection

More information

Using Patterns and Composite Propositions to Automate the Generation of LTL Specifications

Using Patterns and Composite Propositions to Automate the Generation of LTL Specifications Using Patterns and Composite Propositions to Automate the Generation of LTL Specifications Salamah Salamah, Ann Q. Gates, Vladik Kreinovich, and Steve Roach Dept. of Computer Science, University of Texas

More information

Advanced Automata Theory 7 Automatic Functions

Advanced Automata Theory 7 Automatic Functions Advanced Automata Theory 7 Automatic Functions Frank Stephan Department of Computer Science Department of Mathematics National University of Singapore fstephan@comp.nus.edu.sg Advanced Automata Theory

More information

Subsumption of concepts in FL 0 for (cyclic) terminologies with respect to descriptive semantics is PSPACE-complete.

Subsumption of concepts in FL 0 for (cyclic) terminologies with respect to descriptive semantics is PSPACE-complete. Subsumption of concepts in FL 0 for (cyclic) terminologies with respect to descriptive semantics is PSPACE-complete. Yevgeny Kazakov and Hans de Nivelle MPI für Informatik, Saarbrücken, Germany E-mail:

More information

FORMAL METHODS LECTURE III: LINEAR TEMPORAL LOGIC

FORMAL METHODS LECTURE III: LINEAR TEMPORAL LOGIC Alessandro Artale (FM First Semester 2007/2008) p. 1/39 FORMAL METHODS LECTURE III: LINEAR TEMPORAL LOGIC Alessandro Artale Faculty of Computer Science Free University of Bolzano artale@inf.unibz.it http://www.inf.unibz.it/

More information

Equivalence of DFAs and NFAs

Equivalence of DFAs and NFAs CS 172: Computability and Complexity Equivalence of DFAs and NFAs It s a tie! DFA NFA Sanjit A. Seshia EECS, UC Berkeley Acknowledgments: L.von Ahn, L. Blum, M. Blum What we ll do today Prove that DFAs

More information

Models for Efficient Timed Verification

Models for Efficient Timed Verification Models for Efficient Timed Verification François Laroussinie LSV / ENS de Cachan CNRS UMR 8643 Monterey Workshop - Composition of embedded systems Model checking System Properties Formalizing step? ϕ Model

More information

Equivalence of Regular Expressions and FSMs

Equivalence of Regular Expressions and FSMs Equivalence of Regular Expressions and FSMs Greg Plaxton Theory in Programming Practice, Spring 2005 Department of Computer Science University of Texas at Austin Regular Language Recall that a language

More information

Synthesis of Designs from Property Specifications

Synthesis of Designs from Property Specifications Synthesis of Designs from Property Specifications Amir Pnueli New York University and Weizmann Institute of Sciences FMCAD 06 San Jose, November, 2006 Joint work with Nir Piterman, Yaniv Sa ar, Research

More information

Automata Theory and Model Checking

Automata Theory and Model Checking Automata Theory and Model Checking Orna Kupferman Abstract We study automata on infinite words and their applications in system specification and verification. We first introduce Büchi automata and survey

More information

Chapter 3. Regular grammars

Chapter 3. Regular grammars Chapter 3 Regular grammars 59 3.1 Introduction Other view of the concept of language: not the formalization of the notion of effective procedure, but set of words satisfying a given set of rules Origin

More information

Sri vidya college of engineering and technology

Sri vidya college of engineering and technology Unit I FINITE AUTOMATA 1. Define hypothesis. The formal proof can be using deductive proof and inductive proof. The deductive proof consists of sequence of statements given with logical reasoning in order

More information

Generating Linear Temporal Logic Formulas for Pattern-Based Specifications

Generating Linear Temporal Logic Formulas for Pattern-Based Specifications Generating Linear Temporal Logic Formulas for Pattern-Based Specifications Salamah Salamah, Vladik Kreinovich, and Ann Q. Gates Dept. of Computer Science, University of Texas at El Paso El Paso, TX 79968,

More information

Course 4 Finite Automata/Finite State Machines

Course 4 Finite Automata/Finite State Machines Course 4 Finite Automata/Finite State Machines The structure and the content of the lecture is based on (1) http://www.eecs.wsu.edu/~ananth/cpts317/lectures/index.htm, (2) W. Schreiner Computability and

More information