Temporal Logic Model Checking

Size: px
Start display at page:

Download "Temporal Logic Model Checking"

Transcription

1 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 1 Temporal Logic Model Checking Thomas Wahl Computing Laboratory, Oxford University

2 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 2 Outline Temporal Logics LTL Model Checking CTL Model Checking

3 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 3 Temporal Logics: Purpose Temporal Logic: decidable logic to reason over program behavior along infinite timelines. Is statement x executed infinitely often? Is every request followed by a grant eventually? Is there an execution along which always x 0?

4 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 4 Temporal Logics: Ingredients All temporal logics have temporal operators, which quantify over states along a program execution path: in all future states in some future state in the next state Some also have branching operators, which quantify over execution paths of a program: for all executions for some execution

5 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 5 Temporal Logics: Representatives LTL: only temporal operators. cannot distinguish different program executions CTL: temporal + branching operators. can explicitly specify behavior along different paths CTL*: LTL CTL µ-calculus: CTL* [LTL: Pnueli 77, CTL: Emerson/Clarke 82]

6 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 6 Temporal Logics: Which One to Use? Infinite debate about which logic is best... Criteria: easy of use, expressiveness, efficiency. Allen Emerson: Modalities for Model Checking: Branching Time Logic Strikes Back. (1987) Moshe Vardi: Branching vs. Linear Time: Final Showdown. (2001)

7 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 7 Outline Temporal Logics LTL Model Checking CTL Model Checking

8 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 8 Linear Temporal Logic (LTL): Syntax LTL formulas are built out of: atomic propositions: p, q, r Boolean operators:,,... temporal operators: X p: next time p F q: eventually q G r: always r p U q: p until q Again: these apply to a fixed execution path

9 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 9 Linear Temporal Logic: Semantics LTL formulas evaluated over a path π = π 0 π 1 π 2... Suffix of π starting at the ith state: π i. Validity is defined as follows: π = p iff p L(π 0 ) π = f iff π = f π = g h iff π = g and π = h π = X f iff π 1 = f π = G f iff i : π i = f π = F f iff i : π i = f π = g U h iff i : (π i = h and j < i : π j = g)

10 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 10 LTL Model Checking Given Kripke structure M := (S, R, L, s 0 ) and LTL formula f : do all paths π through M satisfy f? M = f := π : π 0 = s 0 π path in M : π = f Approach: represent M and f in same data structure should be efficiently manipulatable Solution: finite-state automata

11 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 11 Finite-State Automata (FSA)... quite similar to a transition system like a Kripke structure: A = (Σ, Q, δ, Q 0, F). Σ, Q finite alphabet, finite state set Transition relation: δ Q Σ Q. Q 0 initial states, F accepting states. Automaton A accepts certain words, which form its language L(A).

12 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 12 Kripke Structure and FSA Goal: given structure M, define automaton A M such that L(A M ) = {π : π is a path in M}. Pretty straightforward. Technicality: FSAs have edge labels ( inputs ), M has state labels (atomic propositions). But that can be fixed...

13 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 13 Kripke Structure and FSA M: M A : i {p, q} {p, q} {p, q} s 0 {p} s 1 s 0 s 1 {p} {q} s 2 {q} {p, q} s 2 Every state of M A is accepting.

14 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 14 LTL Formula and FSA Goal: given LTL formula f, define automaton A f such that L(A f ) = {π : π = f }. Achieve this using Büchi acceptance condition: Infinite path is accepted by a FSA if some accepting state is visited infinitely often. Means: path goes through a cycle that contains an accepting state.

15 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 15 LTL Formula and FSA {p} {p} {p} {q}, {p, q} (These FSAs represent which LTL formulas?) Tableau Construction [GPVW ]

16 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 16 LTL Model Checking Finally: LTL Model Checking, by Language Containment: M = f iff L(A M ) L(A f ) iff L(A M ) L( A f ) = iff L(A M ) L(A f ) = iff L(A M A f ) =. Terminology in MCer SPIN: f is a never claim Our algorithm looks for violations of f.

17 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 17 LTL Model Checking We had: M = f iff L(A M A f ) =. Intersection of two FSAs: by lock-step execution (standard constructions) Emptiness of a FSA A with Büchi acceptance condition: L(A) iff there is a reachable cycle through A that contains an accepting state.

18 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 18 LTL Model Checking Final remarks. Counter examples: If L(A M A f ), then M = f. The path to and through the accepting cycle is a counter example. Complexity: O( M 2 f ). Exponential complexity in f is not as big a problem in practice as it may seem: Usually, f M

19 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 19 Outline Temporal Logics LTL Model Checking CTL Model Checking

20 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 20 Computation Tree Logic (CTL): Syntax Combines branching operators A: for all executions ( futures, paths ) E: for some execution and temporal operators X, F, G, U, but only in specific ways: [ ] X A F E G p U and arbitrarily nested: AG EF reset E(req U ack) EX AX false Not: A E p (makes no sense), A FG p (allowed in CTL*, not CTL)

21 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 21 AXp p CTL: Intuitive Semantics s 0 p EFp s 0 AFp p "p imminent" "p reachable" p AGp s 0 p s 0 p p p p p p p pp "p inevitable" pppp pppp "p invariant"

22 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 22 CTL Model Checking Input: M := (S, R, L, s 0 ) and CTL formula f Goal: determine whether M, s 0 = f. We will do this by 1. computing S f = {s S : M, s = f }, and then 2. checking whether s 0 S f, possibly on the fly.

23 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 23 The Tarski-Knaster Theorem View CTL formula as set of states satisfying it. Then observe: EG p = p EX p EX EX p... = p EX(p EX(p...)) = p EX(EG p).

24 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 24 The Tarski-Knaster Theorem View CTL formula as set of states satisfying it. Then observe: EG p = p EX p EX EX p... = p EX(p EX(p...)) = p EX(EG p). EG p is a fixpoint of the operator τ(z ) = p EX Z : in fact the greatest fixpoint of τ computable by series of overapproximations: Z 0 = S Z 1 = p EX Z 0 Z 2 = p EX Z 1... = νz.p EX Z

25 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 25 Computing Fixpoints Least fixpoint µz.τ(z ): 1: Z := 2: repeat 3: Z := Z 4: Z := τ(z ) 5: until Z = Z 6: return Z Greatest fixpoint νz.τ(z ): 1: Z := S 2: repeat 3: Z := Z 4: Z := τ(z ) 5: until Z = Z 6: return Z Only difference: initial value of Z

26 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 26 Fixpoint Characterization of CTL EF h = µz.(h EX Z ) EG h = νz.(h EX Z ) E(g U h) = µz.(h (g EX Z )) AF h = µz.(h AX Z ) AG h = νz.(h AX Z ) A(g U h) = µz.(h (g AX Z )) F, U: least fixpoint µ, uses. Liveness properties G : greatest fixpoint ν, uses. Safety properties

27 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 27 CTL Model Checking: Complexity Example AG EF p: It is always possible to reach a p-state. AG EF p = AG(EF p) = νz. (µy.p EX Y ) AX Z. Procedure: 1. Y 0 := µy. p EX Y (O( M )) 2. Z 0 := νz.y 0 AX Z (O( M )) 3. return Z 0 cost 2 M.

28 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 28 CTL Model Checking: Complexity Each fixpoint costs O( M ) steps (and each step only involves EX, AX,, ) number of fixpoint computations = number of EF, EG, AF, AG s that appear in f complexity O( M f ). Compare: LTL model checking: O( M 2 f ).

29 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 29 CTL Model Checking using BDDs All we need to do is implement the fixpoint routines: Set of states satisfying EF p: 1: Z := 2: repeat 3: Z := Z 4: Z := p EX Z 5: until Z = Z 6: return Z Need: disjunction (pre-)image EX termination Z = Z Termination easy with BDDs: canonicity!

30 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 30 Symbolic Transition Relations set of states: constraint over the state variables set of transitions: constraint over two copies of the state variables: if x then y := true as a Boolean formula over 4 (not 2) variables: R(x, x, y, y ) = ((x y ) ( x y = y)) x = x

31 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 31 Symbolic Image Operations Pre-image (predecessors) of a set of states Z : Given: EX Z = {s : z Z : R(s, z)}. BDD Z over x 1,..., x k, and BDD R over x 1,..., x k, x 1,..., x k. Wanted: BDD for EX Z over x 1,..., x k. Operation Result over variables 1. Z := Z with x i renamed to x i x 1..x k 2. L := Z R x 1..x k, x 1..x k 3. result := x 1..x k : L x 1..x k

Lecture 16: Computation Tree Logic (CTL)

Lecture 16: Computation Tree Logic (CTL) Lecture 16: Computation Tree Logic (CTL) 1 Programme for the upcoming lectures Introducing CTL Basic Algorithms for CTL CTL and Fairness; computing strongly connected components Basic Decision Diagrams

More information

Computer-Aided Program Design

Computer-Aided Program Design Computer-Aided Program Design Spring 2015, Rice University Unit 3 Swarat Chaudhuri February 5, 2015 Temporal logic Propositional logic is a good language for describing properties of program states. However,

More information

A brief history of model checking. Ken McMillan Cadence Berkeley Labs

A brief history of model checking. Ken McMillan Cadence Berkeley Labs A brief history of model checking Ken McMillan Cadence Berkeley Labs mcmillan@cadence.com Outline Part I -- Introduction to model checking Automatic formal verification of finite-state systems Applications

More information

Temporal Logic. Stavros Tripakis University of California, Berkeley. We have designed a system. We want to check that it is correct.

Temporal Logic. Stavros Tripakis University of California, Berkeley. We have designed a system. We want to check that it is correct. EE 244: Fundamental Algorithms for System Modeling, Analysis, and Optimization Fall 2016 Temporal logic Stavros Tripakis University of California, Berkeley Stavros Tripakis (UC Berkeley) EE 244, Fall 2016

More information

Summary. Computation Tree logic Vs. LTL. CTL at a glance. KM,s =! iff for every path " starting at s KM," =! COMPUTATION TREE LOGIC (CTL)

Summary. Computation Tree logic Vs. LTL. CTL at a glance. KM,s =! iff for every path  starting at s KM, =! COMPUTATION TREE LOGIC (CTL) Summary COMPUTATION TREE LOGIC (CTL) Slides by Alessandro Artale http://www.inf.unibz.it/ artale/ Some material (text, figures) displayed in these slides is courtesy of: M. Benerecetti, A. Cimatti, M.

More information

T Reactive Systems: Temporal Logic LTL

T Reactive Systems: Temporal Logic LTL Tik-79.186 Reactive Systems 1 T-79.186 Reactive Systems: Temporal Logic LTL Spring 2005, Lecture 4 January 31, 2005 Tik-79.186 Reactive Systems 2 Temporal Logics Temporal logics are currently the most

More information

Formal Verification Techniques. Riccardo Sisto, Politecnico di Torino

Formal Verification Techniques. Riccardo Sisto, Politecnico di Torino Formal Verification Techniques Riccardo Sisto, Politecnico di Torino State exploration State Exploration and Theorem Proving Exhaustive exploration => result is certain (correctness or noncorrectness proof)

More information

Alan Bundy. Automated Reasoning LTL Model Checking

Alan Bundy. Automated Reasoning LTL Model Checking Automated Reasoning LTL Model Checking Alan Bundy Lecture 9, page 1 Introduction So far we have looked at theorem proving Powerful, especially where good sets of rewrite rules or decision procedures have

More information

Timo Latvala. February 4, 2004

Timo Latvala. February 4, 2004 Reactive Systems: Temporal Logic LT L Timo Latvala February 4, 2004 Reactive Systems: Temporal Logic LT L 8-1 Temporal Logics Temporal logics are currently the most widely used specification formalism

More information

Temporal logics and explicit-state model checking. Pierre Wolper Université de Liège

Temporal logics and explicit-state model checking. Pierre Wolper Université de Liège Temporal logics and explicit-state model checking Pierre Wolper Université de Liège 1 Topics to be covered Introducing explicit-state model checking Finite automata on infinite words Temporal Logics and

More information

Model for reactive systems/software

Model for reactive systems/software Temporal Logics CS 5219 Abhik Roychoudhury National University of Singapore The big picture Software/ Sys. to be built (Dream) Properties to Satisfy (caution) Today s lecture System Model (Rough Idea)

More information

Lecture Notes on Emptiness Checking, LTL Büchi Automata

Lecture Notes on Emptiness Checking, LTL Büchi Automata 15-414: Bug Catching: Automated Program Verification Lecture Notes on Emptiness Checking, LTL Büchi Automata Matt Fredrikson André Platzer Carnegie Mellon University Lecture 18 1 Introduction We ve seen

More information

From Liveness to Promptness

From Liveness to Promptness From Liveness to Promptness Orna Kupferman Hebrew University Nir Piterman EPFL Moshe Y. Vardi Rice University Abstract Liveness temporal properties state that something good eventually happens, e.g., every

More information

Model Checking: An Introduction

Model Checking: An Introduction Model Checking: An Introduction Meeting 3, CSCI 5535, Spring 2013 Announcements Homework 0 ( Preliminaries ) out, due Friday Saturday This Week Dive into research motivating CSCI 5535 Next Week Begin foundations

More information

Finite-State Model Checking

Finite-State Model Checking EECS 219C: Computer-Aided Verification Intro. to Model Checking: Models and Properties Sanjit A. Seshia EECS, UC Berkeley Finite-State Model Checking G(p X q) Temporal logic q p FSM Model Checker Yes,

More information

Model checking the basic modalities of CTL with Description Logic

Model checking the basic modalities of CTL with Description Logic Model checking the basic modalities of CTL with Description Logic Shoham Ben-David Richard Trefler Grant Weddell David R. Cheriton School of Computer Science University of Waterloo Abstract. Model checking

More information

CS357: CTL Model Checking (two lectures worth) David Dill

CS357: CTL Model Checking (two lectures worth) David Dill CS357: CTL Model Checking (two lectures worth) David Dill 1 CTL CTL = Computation Tree Logic It is a propositional temporal logic temporal logic extended to properties of events over time. CTL is a branching

More information

Computation Tree Logic (CTL) & Basic Model Checking Algorithms

Computation Tree Logic (CTL) & Basic Model Checking Algorithms Computation Tree Logic (CTL) & Basic Model Checking Algorithms Martin Fränzle Carl von Ossietzky Universität Dpt. of Computing Science Res. Grp. Hybride Systeme Oldenburg, Germany 02917: CTL & Model Checking

More information

Verification. Arijit Mondal. Dept. of Computer Science & Engineering Indian Institute of Technology Patna

Verification. Arijit Mondal. Dept. of Computer Science & Engineering Indian Institute of Technology Patna IIT Patna 1 Verification Arijit Mondal Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in Introduction The goal of verification To ensure 100% correct in functionality

More information

Computation Tree Logic

Computation Tree Logic Computation Tree Logic Computation tree logic (CTL) is a branching-time logic that includes the propositional connectives as well as temporal connectives AX, EX, AU, EU, AG, EG, AF, and EF. The syntax

More information

Double Header. Model Checking. Model Checking. Overarching Plan. Take-Home Message. Spoiler Space. Topic: (Generic) Model Checking

Double Header. Model Checking. Model Checking. Overarching Plan. Take-Home Message. Spoiler Space. Topic: (Generic) Model Checking Double Header Model Checking #1 Two Lectures Model Checking SoftwareModel Checking SLAM and BLAST Flying Boxes It is traditional to describe this stuff (especially SLAM and BLAST) with high-gloss animation

More information

Automata-based Verification - III

Automata-based Verification - III COMP30172: Advanced Algorithms Automata-based Verification - III Howard Barringer Room KB2.20: email: howard.barringer@manchester.ac.uk March 2009 Third Topic Infinite Word Automata Motivation Büchi Automata

More information

Introduction to Temporal Logic. The purpose of temporal logics is to specify properties of dynamic systems. These can be either

Introduction to Temporal Logic. The purpose of temporal logics is to specify properties of dynamic systems. These can be either Introduction to Temporal Logic The purpose of temporal logics is to specify properties of dynamic systems. These can be either Desired properites. Often liveness properties like In every infinite run action

More information

FORMAL METHODS LECTURE IV: COMPUTATION TREE LOGIC (CTL)

FORMAL METHODS LECTURE IV: COMPUTATION TREE LOGIC (CTL) Alessandro Artale (FM First Semester 2007/2008) p. 1/37 FORMAL METHODS LECTURE IV: COMPUTATION TREE LOGIC (CTL) Alessandro Artale Faculty of Computer Science Free University of Bolzano artale@inf.unibz.it

More information

Overview. overview / 357

Overview. overview / 357 Overview overview6.1 Introduction Modelling parallel systems Linear Time Properties Regular Properties Linear Temporal Logic (LTL) Computation Tree Logic syntax and semantics of CTL expressiveness of CTL

More information

Principles. Model (System Requirements) Answer: Model Checker. Specification (System Property) Yes, if the model satisfies the specification

Principles. Model (System Requirements) Answer: Model Checker. Specification (System Property) Yes, if the model satisfies the specification Model Checking Princiles Model (System Requirements) Secification (System Proerty) Model Checker Answer: Yes, if the model satisfies the secification Counterexamle, otherwise Krike Model Krike Structure

More information

3. Temporal Logics and Model Checking

3. Temporal Logics and Model Checking 3. Temporal Logics and Model Checking Page Temporal Logics 3.2 Linear Temporal Logic (PLTL) 3.4 Branching Time Temporal Logic (BTTL) 3.8 Computation Tree Logic (CTL) 3.9 Linear vs. Branching Time TL 3.16

More information

Logic Model Checking

Logic Model Checking Logic Model Checking Lecture Notes 10:18 Caltech 101b.2 January-March 2004 Course Text: The Spin Model Checker: Primer and Reference Manual Addison-Wesley 2003, ISBN 0-321-22862-6, 608 pgs. the assignment

More information

Introduction to Model Checking

Introduction to Model Checking Introduction to Model Checking Fabio Somenzi Department of Electrical, Computer, and Energy Engineering University of Colorado at Boulder July 25, 2009 Outline 1 Introduction 2 Modeling Systems and Properties

More information

Automata-based Verification - III

Automata-based Verification - III CS3172: Advanced Algorithms Automata-based Verification - III Howard Barringer Room KB2.20/22: email: howard.barringer@manchester.ac.uk March 2005 Third Topic Infinite Word Automata Motivation Büchi Automata

More information

Temporal Logic. M φ. Outline. Why not standard logic? What is temporal logic? LTL CTL* CTL Fairness. Ralf Huuck. Kripke Structure

Temporal Logic. M φ. Outline. Why not standard logic? What is temporal logic? LTL CTL* CTL Fairness. Ralf Huuck. Kripke Structure Outline Temporal Logic Ralf Huuck Why not standard logic? What is temporal logic? LTL CTL* CTL Fairness Model Checking Problem model, program? M φ satisfies, Implements, refines property, specification

More information

Alternating Time Temporal Logics*

Alternating Time Temporal Logics* Alternating Time Temporal Logics* Sophie Pinchinat Visiting Research Fellow at RSISE Marie Curie Outgoing International Fellowship * @article{alur2002, title={alternating-time Temporal Logic}, author={alur,

More information

Lecture 9 Synthesis of Reactive Control Protocols

Lecture 9 Synthesis of Reactive Control Protocols Lecture 9 Synthesis of Reactive Control Protocols Nok Wongpiromsarn Singapore-MIT Alliance for Research and Technology Richard M. Murray and Ufuk Topcu California Institute of Technology EECI, 16 May 2012

More information

Model checking (III)

Model checking (III) Theory and Algorithms Model checking (III) Alternatives andextensions Rafael Ramirez rafael@iua.upf.es Trimester1, Oct2003 Slide 9.1 Logics for reactive systems The are many specification languages for

More information

Probabilistic Model Checking Michaelmas Term Dr. Dave Parker. Department of Computer Science University of Oxford

Probabilistic Model Checking Michaelmas Term Dr. Dave Parker. Department of Computer Science University of Oxford Probabilistic Model Checking Michaelmas Term 2011 Dr. Dave Parker Department of Computer Science University of Oxford Overview Temporal logic Non-probabilistic temporal logic CTL Probabilistic temporal

More information

Thorough Checking Revisited

Thorough Checking Revisited Thorough Checking Revisited Shiva Nejati Mihaela Gheorghiu Marsha Chechik {shiva,mg,chechik}@cs.toronto.edu University of Toronto 1 Automated Abstraction SW/HW Artifact Correctness Property Model Extraction

More information

Guest lecturer: Prof. Mark Reynolds, The University of Western Australia

Guest lecturer: Prof. Mark Reynolds, The University of Western Australia Università degli studi di Udine Corso per il dottorato di ricerca: Temporal Logics: Satisfiability Checking, Model Checking, and Synthesis January 2017 Lecture 01, Part 02: Temporal Logics Guest lecturer:

More information

Computation Tree Logic (CTL)

Computation Tree Logic (CTL) Computation Tree Logic (CTL) Fazle Rabbi University of Oslo, Oslo, Norway Bergen University College, Bergen, Norway fazlr@student.matnat.uio.no, Fazle.Rabbi@hib.no May 30, 2015 Fazle Rabbi et al. (UiO,

More information

Model Checking Algorithms

Model Checking Algorithms Model Checking Algorithms Bow-Yaw Wang Institute of Information Science Academia Sinica, Taiwan November 14, 2018 Bow-Yaw Wang (Academia Sinica) Model Checking Algorithms November 14, 2018 1 / 56 Outline

More information

Linear Temporal Logic and Büchi Automata

Linear Temporal Logic and Büchi Automata Linear Temporal Logic and Büchi Automata Yih-Kuen Tsay Department of Information Management National Taiwan University FLOLAC 2009 Yih-Kuen Tsay (SVVRL @ IM.NTU) Linear Temporal Logic and Büchi Automata

More information

The State Explosion Problem

The State Explosion Problem The State Explosion Problem Martin Kot August 16, 2003 1 Introduction One from main approaches to checking correctness of a concurrent system are state space methods. They are suitable for automatic analysis

More information

Automata, Logic and Games: Theory and Application

Automata, Logic and Games: Theory and Application Automata, Logic and Games: Theory and Application 1. Büchi Automata and S1S Luke Ong University of Oxford TACL Summer School University of Salerno, 14-19 June 2015 Luke Ong Büchi Automata & S1S 14-19 June

More information

PSPACE-completeness of LTL/CTL model checking

PSPACE-completeness of LTL/CTL model checking PSPACE-completeness of LTL/CTL model checking Peter Lohmann April 10, 2007 Abstract This paper will give a proof for the PSPACE-completeness of LTLsatisfiability and for the PSPACE-completeness of the

More information

Lecture 2: Symbolic Model Checking With SAT

Lecture 2: Symbolic Model Checking With SAT Lecture 2: Symbolic Model Checking With SAT Edmund M. Clarke, Jr. School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 (Joint work over several years with: A. Biere, A. Cimatti, Y.

More information

Chapter 6: Computation Tree Logic

Chapter 6: Computation Tree Logic Chapter 6: Computation Tree Logic Prof. Ali Movaghar Verification of Reactive Systems Outline We introduce Computation Tree Logic (CTL), a branching temporal logic for specifying system properties. A comparison

More information

Lecture 7 Synthesis of Reactive Control Protocols

Lecture 7 Synthesis of Reactive Control Protocols Lecture 7 Synthesis of Reactive Control Protocols Richard M. Murray Nok Wongpiromsarn Ufuk Topcu California Institute of Technology AFRL, 25 April 2012 Outline Review: networked control systems and cooperative

More information

Learning to Verify Branching Time Properties

Learning to Verify Branching Time Properties Learning to Verify Branching Time Properties Abhay Vardhan and Mahesh Viswanathan Dept. of Computer Science, Univ. of Illinois at Urbana-Champaign, USA Abstract. We present a new model checking algorithm

More information

What is Temporal Logic? The Basic Paradigm. The Idea of Temporal Logic. Formulas

What is Temporal Logic? The Basic Paradigm. The Idea of Temporal Logic. Formulas What is Temporal Logic? A logical formalism to describe sequences of any kind. We use it to describe state sequences. An automaton describes the actions of a system, a temporal logic formula describes

More information

CS256/Spring 2008 Lecture #11 Zohar Manna. Beyond Temporal Logics

CS256/Spring 2008 Lecture #11 Zohar Manna. Beyond Temporal Logics CS256/Spring 2008 Lecture #11 Zohar Manna Beyond Temporal Logics Temporal logic expresses properties of infinite sequences of states, but there are interesting properties that cannot be expressed, e.g.,

More information

Helsinki University of Technology Laboratory for Theoretical Computer Science Research Reports 66

Helsinki University of Technology Laboratory for Theoretical Computer Science Research Reports 66 Helsinki University of Technology Laboratory for Theoretical Computer Science Research Reports 66 Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 66 Espoo 2000 HUT-TCS-A66

More information

Büchi Automata and Linear Temporal Logic

Büchi Automata and Linear Temporal Logic Büchi Automata and Linear Temporal Logic Joshua D. Guttman Worcester Polytechnic Institute 18 February 2010 Guttman ( WPI ) Büchi & LTL 18 Feb 10 1 / 10 Büchi Automata Definition A Büchi automaton is a

More information

Model Checking of Safety Properties

Model Checking of Safety Properties Model Checking of Safety Properties Orna Kupferman Hebrew University Moshe Y. Vardi Rice University October 15, 2010 Abstract Of special interest in formal verification are safety properties, which assert

More information

3-Valued Abstraction-Refinement

3-Valued Abstraction-Refinement 3-Valued Abstraction-Refinement Sharon Shoham Academic College of Tel-Aviv Yaffo 1 Model Checking An efficient procedure that receives: A finite-state model describing a system A temporal logic formula

More information

From Löwenheim to Pnueli, from Pnueli to PSL and SVA

From Löwenheim to Pnueli, from Pnueli to PSL and SVA From Löwenheim to Pnueli, from Pnueli to PSL and SVA Moshe Y. Vardi Rice University Thread I: Monadic Logic Monadic Class: First-order logic with = and monadic predicates captures syllogisms. ( x)p(x),

More information

MODEL-CHECKING IN DENSE REAL-TIME SHANT HARUTUNIAN

MODEL-CHECKING IN DENSE REAL-TIME SHANT HARUTUNIAN MODEL-CHECKING IN DENSE REAL-TIME SHANT HARUTUNIAN 1. Introduction These slides are for a talk based on the paper Model-Checking in Dense Real- Time, by Rajeev Alur, Costas Courcoubetis, and David Dill.

More information

Finite State Model Checking

Finite State Model Checking Finite State Model Checking Finite State Model Checking Finite State Systems System Descrition A Requirement F CTL TOOL No! Debugging Information Yes, Prototyes Executable Code Test sequences Tools: visualstate,

More information

Temporal & Modal Logic. Acronyms. Contents. Temporal Logic Overview Classification PLTL Syntax Semantics Identities. Concurrency Model Checking

Temporal & Modal Logic. Acronyms. Contents. Temporal Logic Overview Classification PLTL Syntax Semantics Identities. Concurrency Model Checking Temporal & Modal Logic E. Allen Emerson Presenter: Aly Farahat 2/12/2009 CS5090 1 Acronyms TL: Temporal Logic BTL: Branching-time Logic LTL: Linear-Time Logic CTL: Computation Tree Logic PLTL: Propositional

More information

Model Checking. Temporal Logic. Fifth International Symposium in Programming, volume. of concurrent systems in CESAR. In Proceedings of the

Model Checking. Temporal Logic. Fifth International Symposium in Programming, volume. of concurrent systems in CESAR. In Proceedings of the Sérgio Campos, Edmund Why? Advantages: No proofs Fast Counter-examples No problem with partial specifications can easily express many concurrency properties Main Disadvantage: State Explosion Problem Too

More information

Computation Tree Logic

Computation Tree Logic Comutation Tree Logic Finite State Model Checking of Branching Time Logic Kim Guldstrand Larsen BRICS@Aalborg 1 Tool Suort Finite State Systems System Descrition A Reuirement F CTL TOOL Course Objectives:

More information

Computation Tree Logic

Computation Tree Logic Chapter 6 Computation Tree Logic Pnueli [88] has introduced linear temporal logic to the computer science community for the specification and verification of reactive systems. In Chapter 3 we have treated

More information

Chapter 4: Computation tree logic

Chapter 4: Computation tree logic INFOF412 Formal verification of computer systems Chapter 4: Computation tree logic Mickael Randour Formal Methods and Verification group Computer Science Department, ULB March 2017 1 CTL: a specification

More information

Decision Procedures for CTL

Decision Procedures for CTL Decision Procedures for CTL Oliver Friedmann 1 Markus Latte 1 1 Dept. of Computer Science, Ludwig-Maximilians-University, Munich, Germany CLoDeM Edinburgh, 15 July 2010 Introduction to CTL Origin: Emerson

More information

Model Checking with CTL. Presented by Jason Simas

Model Checking with CTL. Presented by Jason Simas Model Checking with CTL Presented by Jason Simas Model Checking with CTL Based Upon: Logic in Computer Science. Huth and Ryan. 2000. (148-215) Model Checking. Clarke, Grumberg and Peled. 1999. (1-26) Content

More information

Linear-time Temporal Logic

Linear-time Temporal Logic Linear-time Temporal Logic Pedro Cabalar Department of Computer Science University of Corunna, SPAIN cabalar@udc.es 2015/2016 P. Cabalar ( Department Linear oftemporal Computer Logic Science University

More information

An Introduction to Temporal Logics

An Introduction to Temporal Logics An Introduction to Temporal Logics c 2001,2004 M. Lawford Outline Motivation: Dining Philosophers Safety, Liveness, Fairness & Justice Kripke structures, LTS, SELTS, and Paths Linear Temporal Logic Branching

More information

Formal Verification of Mobile Network Protocols

Formal Verification of Mobile Network Protocols Dipartimento di Informatica, Università di Pisa, Italy milazzo@di.unipi.it Pisa April 26, 2005 Introduction Modelling Systems Specifications Examples Algorithms Introduction Design validation ensuring

More information

Automata-Theoretic Verification

Automata-Theoretic Verification Automata-Theoretic Verification Javier Esparza TU München Orna Kupferman The Hebrew University Moshe Y. Vardi Rice University 1 Introduction This chapter describes the automata-theoretic approach to the

More information

MODEL CHECKING. Arie Gurfinkel

MODEL CHECKING. Arie Gurfinkel 1 MODEL CHECKING Arie Gurfinkel 2 Overview Kripke structures as models of computation CTL, LTL and property patterns CTL model-checking and counterexample generation State of the Art Model-Checkers 3 SW/HW

More information

Chapter 3: Linear temporal logic

Chapter 3: Linear temporal logic INFOF412 Formal verification of computer systems Chapter 3: Linear temporal logic Mickael Randour Formal Methods and Verification group Computer Science Department, ULB March 2017 1 LTL: a specification

More information

Testing with model checkers: A survey

Testing with model checkers: A survey COMPETENCE NETWORK SOFTNET AUSTRIA Testing with model checkers: A survey SNA-TR-2007-P2-04 Gordon Fraser, Franz Wotawa, Paul E. Ammann SNA TECHNICAL REPORT NOVEMBER 2007 Competence Network Softnet Austria,

More information

Models for Efficient Timed Verification

Models for Efficient Timed Verification Models for Efficient Timed Verification François Laroussinie LSV / ENS de Cachan CNRS UMR 8643 Monterey Workshop - Composition of embedded systems Model checking System Properties Formalizing step? ϕ Model

More information

Overview. Discrete Event Systems Verification of Finite Automata. What can finite automata be used for? What can finite automata be used for?

Overview. Discrete Event Systems Verification of Finite Automata. What can finite automata be used for? What can finite automata be used for? Computer Engineering and Networks Overview Discrete Event Systems Verification of Finite Automata Lothar Thiele Introduction Binary Decision Diagrams Representation of Boolean Functions Comparing two circuits

More information

The Planning Spectrum One, Two, Three, Infinity

The Planning Spectrum One, Two, Three, Infinity Journal of Artificial Intelligence Research 30 (2007) 101-132 Submitted 10/05; published 9/07 The Planning Spectrum One, Two, Three, Infinity Marco Pistore Department of Information and Communication Technology

More information

Sanjit A. Seshia EECS, UC Berkeley

Sanjit A. Seshia EECS, UC Berkeley EECS 219C: Computer-Aided Verification Explicit-State Model Checking: Additional Material Sanjit A. Seshia EECS, UC Berkeley Acknowledgments: G. Holzmann Checking if M satisfies : Steps 1. Compute Buchi

More information

a Hebrew University b Weizmann Institute c Rice University

a Hebrew University b Weizmann Institute c Rice University Once and For All Orna Kupferman a, Amir Pnueli b,1, Moshe Y. Vardi c a Hebrew University b Weizmann Institute c Rice University Abstract It has long been known that past-time operators add no expressive

More information

Model Checking for the -calculus. Paolo Zuliani , Spring 2011

Model Checking for the -calculus. Paolo Zuliani , Spring 2011 Model Checking for the -calculus Paolo Zuliani 15-817, Spring 2011 Outline What is the -calculus? Semantics Model Checking algorithms [Other fixpoint theorems] The -calculus A language for describing properties

More information

Synthesis of Designs from Property Specifications

Synthesis of Designs from Property Specifications Synthesis of Designs from Property Specifications Amir Pnueli New York University and Weizmann Institute of Sciences FMCAD 06 San Jose, November, 2006 Joint work with Nir Piterman, Yaniv Sa ar, Research

More information

Introduction. Büchi Automata and Model Checking. Outline. Büchi Automata. The simplest computation model for infinite behaviors is the

Introduction. Büchi Automata and Model Checking. Outline. Büchi Automata. The simplest computation model for infinite behaviors is the Introduction Büchi Automata and Model Checking Yih-Kuen Tsay Department of Information Management National Taiwan University FLOLAC 2009 The simplest computation model for finite behaviors is the finite

More information

Chapter 5: Linear Temporal Logic

Chapter 5: Linear Temporal Logic Chapter 5: Linear Temporal Logic Prof. Ali Movaghar Verification of Reactive Systems Spring 94 Outline We introduce linear temporal logic (LTL), a logical formalism that is suited for specifying LT properties.

More information

A Symbolic Approach to Safety LTL Synthesis

A Symbolic Approach to Safety LTL Synthesis A Symbolic Approach to Safety LTL Synthesis Shufang Zhu 1 Lucas M. Tabajara 2 Jianwen Li Geguang Pu 1 Moshe Y. Vardi 2 1 East China Normal University 2 Rice Lucas M. Tabajara (Rice University) 2 University

More information

Automata-Theoretic LTL Model-Checking

Automata-Theoretic LTL Model-Checking Automata-Theoretic LTL Model-Checking Arie Gurfinkel arie@cmu.edu SEI/CMU Automata-Theoretic LTL Model-Checking p.1 LTL - Linear Time Logic (Pn 77) Determines Patterns on Infinite Traces Atomic Propositions

More information

A Hierarchy for Accellera s Property Specification Language

A Hierarchy for Accellera s Property Specification Language A Hierarchy for Accellera s Property Specification Language Thomas Türk May 1st, 2005 Diploma Thesis University of Kaiserslautern Supervisor: Prof. Dr. Klaus Schneider Vorliegende Diplomarbeit wurde von

More information

ESE601: Hybrid Systems. Introduction to verification

ESE601: Hybrid Systems. Introduction to verification ESE601: Hybrid Systems Introduction to verification Spring 2006 Suggested reading material Papers (R14) - (R16) on the website. The book Model checking by Clarke, Grumberg and Peled. What is verification?

More information

Verification Using Temporal Logic

Verification Using Temporal Logic CMSC 630 February 25, 2015 1 Verification Using Temporal Logic Sources: E.M. Clarke, O. Grumberg and D. Peled. Model Checking. MIT Press, Cambridge, 2000. E.A. Emerson. Temporal and Modal Logic. Chapter

More information

A tableau-based decision procedure for a branching-time interval temporal logic

A tableau-based decision procedure for a branching-time interval temporal logic A tableau-based decision procedure for a branching-time interval temporal logic Davide Bresolin Angelo Montanari Dipartimento di Matematica e Informatica Università degli Studi di Udine {bresolin, montana}@dimi.uniud.it

More information

Scenario Graphs and Attack Graphs

Scenario Graphs and Attack Graphs Scenario Graphs and Attack Graphs Oleg Mikhail Sheyner CMU-CS-04-122 April 14, 2004 School of Computer Science Computer Science Department Carnegie Mellon University Pittsburgh, PA Thesis Committee: Jeannette

More information

Modal and Temporal Logics

Modal and Temporal Logics Modal and Temporal Logics Colin Stirling School of Informatics University of Edinburgh July 23, 2003 Why modal and temporal logics? 1 Computational System Modal and temporal logics Operational semantics

More information

Abstractions and Decision Procedures for Effective Software Model Checking

Abstractions and Decision Procedures for Effective Software Model Checking Abstractions and Decision Procedures for Effective Software Model Checking Prof. Natasha Sharygina The University of Lugano, Carnegie Mellon University Microsoft Summer School, Moscow, July 2011 Lecture

More information

Topics in Verification AZADEH FARZAN FALL 2017

Topics in Verification AZADEH FARZAN FALL 2017 Topics in Verification AZADEH FARZAN FALL 2017 Last time LTL Syntax ϕ ::= true a ϕ 1 ϕ 2 ϕ ϕ ϕ 1 U ϕ 2 a AP. ϕ def = trueu ϕ ϕ def = ϕ g intuitive meaning of and is obt Limitations of LTL pay pay τ τ soda

More information

2. Elements of the Theory of Computation, Lewis and Papadimitrou,

2. Elements of the Theory of Computation, Lewis and Papadimitrou, Introduction Finite Automata DFA, regular languages Nondeterminism, NFA, subset construction Regular Epressions Synta, Semantics Relationship to regular languages Properties of regular languages Pumping

More information

LTL Model Checking. Wishnu Prasetya.

LTL Model Checking. Wishnu Prasetya. LTL Model Checking Wishnu Prasetya wishnu@cs.uu.nl www.cs.uu.nl/docs/vakken/pv Overview This pack : Abstract model of programs Temporal properties Verification (via model checking) algorithm Concurrency

More information

Models. Lecture 25: Model Checking. Example. Semantics. Meanings with respect to model and path through future...

Models. Lecture 25: Model Checking. Example. Semantics. Meanings with respect to model and path through future... Models Lecture 25: Model Checking CSCI 81 Spring, 2012 Kim Bruce Meanings with respect to model and path through future... M = (S,, L) is a transition system if S is a set of states is a transition relation

More information

Lecture Notes on Model Checking

Lecture Notes on Model Checking Lecture Notes on Model Checking 15-816: Modal Logic André Platzer Lecture 18 March 30, 2010 1 Introduction to This Lecture In this course, we have seen several modal logics and proof calculi to justify

More information

Timo Latvala. March 7, 2004

Timo Latvala. March 7, 2004 Reactive Systems: Safety, Liveness, and Fairness Timo Latvala March 7, 2004 Reactive Systems: Safety, Liveness, and Fairness 14-1 Safety Safety properties are a very useful subclass of specifications.

More information

CDS 270 (Fall 09) - Lecture Notes for Assignment 8.

CDS 270 (Fall 09) - Lecture Notes for Assignment 8. CDS 270 (Fall 09) - Lecture Notes for Assignment 8. ecause this part of the course has no slides or textbook, we will provide lecture supplements that include, hopefully, enough discussion to complete

More information

method. In model checking [CES86, LP85, VW86], we check that a system meets a desired requirement by checking that a mathematical model of the system

method. In model checking [CES86, LP85, VW86], we check that a system meets a desired requirement by checking that a mathematical model of the system From Linear Time to Branching Time Orna Kupferman y Hebrew University Moshe Y. Vardi z Rice University September 12, 2002 Abstract Model checking is a method for the verication of systems with respect

More information

An On-the-fly Tableau Construction for a Real-Time Temporal Logic

An On-the-fly Tableau Construction for a Real-Time Temporal Logic #! & F $ F ' F " F % An On-the-fly Tableau Construction for a Real-Time Temporal Logic Marc Geilen and Dennis Dams Faculty of Electrical Engineering, Eindhoven University of Technology P.O.Box 513, 5600

More information

Model Checking & Program Analysis

Model Checking & Program Analysis Model Checking & Program Analysis Markus Müller-Olm Dortmund University Overview Introduction Model Checking Flow Analysis Some Links between MC and FA Conclusion Apology for not giving proper credit to

More information

MODEL CHECKING TIMED SAFETY INSTRUMENTED SYSTEMS

MODEL CHECKING TIMED SAFETY INSTRUMENTED SYSTEMS TKK Reports in Information and Computer Science Espoo 2008 TKK-ICS-R3 MODEL CHECKING TIMED SAFETY INSTRUMENTED SYSTEMS Jussi Lahtinen ABTEKNILLINEN KORKEAKOULU TEKNISKA HÖGSKOLAN HELSINKI UNIVERSITY OF

More information

Bounded Model Checking with SAT/SMT. Edmund M. Clarke School of Computer Science Carnegie Mellon University 1/39

Bounded Model Checking with SAT/SMT. Edmund M. Clarke School of Computer Science Carnegie Mellon University 1/39 Bounded Model Checking with SAT/SMT Edmund M. Clarke School of Computer Science Carnegie Mellon University 1/39 Recap: Symbolic Model Checking with BDDs Method used by most industrial strength model checkers:

More information