Alternating Time Temporal Logics*

Size: px
Start display at page:

Download "Alternating Time Temporal Logics*"

Transcription

1 Alternating Time Temporal Logics* Sophie Pinchinat Visiting Research Fellow at RSISE Marie Curie Outgoing International Fellowship title={alternating-time Temporal Logic}, author={alur, R. and Henzinger, T.A. and Kupferman, O.}, journal={journal of the ACM}, volume={49}, number={5}, pages={ }, year={2002} } S. Pinchinat 1

2 Outline Introduction Concurrent Games Structures The Logics ATL and ATL Model-Checking Complete Axiomatization of ATL and Satisfiability [GvD2006] S. Pinchinat 2

3 Main Ideas Set of agents (players, system components) taking actions simultaneously or in turns on a common set of states Thus effecting transitions between those states Agent pursue certain goals - can form coalitions Develop logic-based formalisms For reasoning about coalitions Abilities of agents to achive specified outcomes S. Pinchinat 3

4 Logics for reasoning about Actions Linear-time Temporal Logic (LTL) [Pnueli 77] Reasoning about computations ϕ ϕ is true somtime in the future Branching-time Temporal Logic (CTL, CTL ) [Clarke-Emerson 81, Emerson-Halpern 86] Allow quantification over paths E ϕ There is a path along which ϕ is eventuallty true Alternating-time Temporal Logic (ATL, ATL ) [Alur-Henzinger-Kupferman 97] Selective quantification over paths A ϕ The coalition A has a joint strategy to ensure ϕ is true at the next moment S. Pinchinat 4

5 Logics for reasoning about Actions Propositional Dynamic Logic (PDL) [Pratt 76] Reason about programs explicitly α ϕ After executing program α, ϕ is true Game Logic (GL) [Parikh 85] Reasoning about games γ ϕ Agent I has a strategy to bring about ϕ in game γ Coalition Logic (CL,ECL) [Pauly 00] Reasoning about group power [C]ϕ Coalition C has a joint strategy to bring about ϕ S. Pinchinat 5

6 Computational models vs. Behavioural models Kripke Structures vs. Computation Trees Quantification over paths in the tree One process a and a boolean variable x: x = x x = x x s x ss x ss x s x s x x x x x x sss sss x ss x s ss x s x S. Pinchinat 6 x but x

7 Alternating Transition Systems/Concurrent Game Structures Kripke Structures One single agent that controls the transition system Quantifications over Paths and What if there is more than one agent? 2 processes, a and b 2 boolean variables x and y S. Pinchinat 7

8 A First Example First a and b are made independent Agent a: { x x = x x = x (2 possible moves) q x x = x (1 possible move) { Agent b: x y y = y (mv 1) y = y (2 possible moves) q x q y y y y = y (1 possible move) d a (q) = d a (q y ) = 2 d a (q x ) = d a (q xy ) = 1 d b (q) = d b (q x ) = 2 d b (q y ) = d b (q xy ) = 1 q xy x, y S. Pinchinat 8

9 A First Example First a and b are made independent { Agent a: x x = x x = x (2 possible moves) x x = x (1 possible move) { Agent b: y y = y y = y (2 possible moves) y y = y (1 possible move) d a (q) = d a (q y ) = 2 d a (q x ) = d a (q xy ) = 1 d b (q) = d b (q x ) = 2 d b (q y ) = d b (q xy ) = 1 x q x q q xy x, y q y y S. Pinchinat 9

10 A First Example The Transition Function δ(q, i, j ) with i (resp. j) a possible move for player a (resp. b) in q i,j 1, 1 1, 2 2, 1 2, 2 δ(q, i,j ) q q x q y q xy i,j 1, 1 1, 2 q δ(q x, i,j ) q x q xy i,j 1, 1 2, 1 δ(q y, i,j ) q y q xy i,j 1, 1 δ(q xy, i,j ) q xy [q, q,q x,q x,q ω xy], [q,q y,q y,q ω xy], and [q,q ω xy] x q x q xy x, y q y y S. Pinchinat 10

11 Variant of the Structure S xy In S xy, b can change y from false to true only when x is already true. In state q, only one move for player b: leave y unchanged d a(q) = d a(q y ) = 2 d a(q x ) = d a(q xy ) = 1 d b (q) = 1, d b (q x) = 2 d b (q y) = d b (q xy) = 1 [q, q y, q y, q ω xy] and [q, q ω xy] are no more computations In S xy, b can change y from false to true either when x is already true, or when simultaneously x is set to true. In q, move 2 for player b has other meaning: change y if player a simultaneously changes x, otherwise leave y unchanged i,j 1, 1 1, 2 2, 1 2, 2 δ(q, i,j ) q q q y q xy [q, q ω xy] is now allowed S. Pinchinat 11

12 Concurrent Games Structures S = (k,s, Π, π,d, δ) k 1, set of players [k] = 1,...,k. A finite set S of states A finite set Π of propositions - π : S P(Π) is the labelling function Moves d p (s) 1 (p [k], s S) Move Function D(s) = [d 1 (s)]... [d k (s)] set of move vectors. Moves Vectors in s j 1, j 2,...,j k j p [d p (s)] (p [k]). Transition Function δ(s, j 1, j 2,...,j k ) S S. Pinchinat 12

13 Size of the structure S Number of States n = S as usual Number of Transitions m = Σ s S d 1 (s) d k (s) For a fixed set Π the size of S is O(m) NOT BOUNDED BY S 2 S. Pinchinat 13

14 Particular Concurrent Game Structures Turn-based synchonous game structures: In each step, only one player has a choice of moves, and she is determined by the current state for each s S, there is a s [k] s.t. d b (s) = 1 for b a s Kripke Structures and m = O(n 2 ) Moore synchonous game structures: The state is partitioned according to to the players, and in each step, every player updates its own component of the state independently of the other players S = S 1 S 2... S k and δ(s, j 1,...,j k ) = (δ 1 (s, j 1 ),...,δ k (s, j k )) Equational data flow languages (Signal, Lustre) Symbolic Models Turn-based asynchonous game structures (number of players 2): In each step, only one player has a choice of moves, and that player is chosen by a fair scheduler S. Pinchinat 14

15 Computations and Strategies s-computation (s S) An infinite sequence λ = (s =)s 0 s 1... with s i+1 = δ(s i,j 1,...j k ) for some move vector (j 1,...,j k ) D(s) Standard notations λ[i], λ[0, i], and λ[i, ] Strategy for p [k] A function f p : S + [d p (s)] f p (λ) is the move of player p after history λ S. Pinchinat 15

16 Strategies A-move in s (s S and A [k]) is σ A = (σ a ) a A (1 σ a d a (s)) D A (s) set of A-moves in s. s is consistent with σ A D A (s) whenever s = δ(s, j 1,...,j k ) and j a = σ a (for all a A) out(σ A ) set of states consistent with σ A A-strategies (A [k]) is F A : S + {D A (s) s S} for all λ S and for all s S, F A (Λ.s) D A (s) λ out(s, F A ) s-computation λ is consistent with F A s i+1 out(f A (λ[0, i])) S. Pinchinat 16

17 Alternating-time Temporal Logics Syntax of ATL (ATL syntactic restriction like CTL CTL ) p Π, φ, φ 1 φ 2, A φ, A φ, A φ 1 U φ 2 are formulas where A [k] and φ, φ 1, φ 2 are formulas. Semantics s = A φ iff there exists a A-strategy F A s.t. for all λ out(s, F A ), λ[1] = φ s = A φ iff there exists a A-strategy F A s.t. for all λ out(s, F A ), for all i 0, we have λ[i] = φ s = A φ 1 U φ 2 iff there exists a A-strategy F A s.t. for all λ out(s, F A ), i 0, λ[i] = φ 2, and 0 j < i, λ[j] = φ 1. S. Pinchinat 17

18 An Example Two agents a and b must choose between two outcomes p and q, but with a mechanism with the following restriction 1. An outcome must result: (p q) 2. The agents are able to collectively choose an outcome: {a,b} p {a, b} q 3. The agents can bring about both outcomes simultaneously: {a,b} (p q) 4. The agents have equal power: for each x {a,b} x p x q S. Pinchinat 18

19 Expressiveness CTL ATL and CTL ATL [k] and Coalition Logic ATL [C]ϕ C ϕ Can define AMC, a mu-calculus with the modalities A ATL < ATL < AMC AMC and Game Logic are incomparable Parikh, R.: 1985, The Logic of Games and its Applications, Annals of Discrete Math. 24, S. Pinchinat 19

20 AT L Symbolic Model-Checking Same as for CTL: (Fixed Point-based) Computation of Sat(ϕ) S according to Sat(φ 1 φ 2 ) = Sat(φ 1 ) Sat(φ 2 ) Sat( A φ) = Pre(A,Sat(φ)) Sat( A φ 1 U φ 2 ) = Intuition with Boolean Symbolic Systems A system T( X, X ), and for each A [k], X = X A X Ā Given a predicate P( X) Pre(A, P)( X) ( X A X Ā [T( X, X ) P( X )])[ X / X ] S. Pinchinat 20

21 AT L Model-Checking Complexity The model-checking problem for AT L is PTIME-complete, and can be solved in time O(m.l) for a game structure with m transitions and an ATL formula of length l. The problem is PTIME-hard even for a fixed formula, and even in the special case of turned based synchronous games structures. Structure Complexity is PTIME-hard, as we can express AND-OR graph reachability [Imm81] in a turn-based game structure. More difficult than CTL, only NLOGSPACE [KVW00] as graph reachability S. Pinchinat 21

22 ATL Model-Checking The model-checking problem for ATL is 2EXPTIME-complete, even in the special case of turn-based synchronous game structures. For ATL formulas of bounded size, the model-checking problem is PTIME-complete. Double exponential price to pay, CTL 2EXPTIME-hard from the realizability problem for LTL by [Pnueli-Rosner89] S. Pinchinat 22

23 s = A ϕ? with ϕ LTL is in 2EXPTIME 1. Build A ϕ that accepts the trees satisfying ϕ CTL 2. Build A S,s,A a tree automaton that accepts the out(s, F A ) for some A-strategy F A seen as a tree. 3. Compute A ϕ A S,s,A accepts trees that outcome from some A- strategy and which satisfy ϕ. if nonempty then s = A ϕ A ϕ is Rabin with (2 2O(l) ) states and 2 O(l) pairs [Emerson-Sistla84] A S,s,A has the same size as S and is Büchi (all states of S) A ϕ A S,s,A is Rabin with (m.2 2O(l), 2 O(l) ) NonEmpPb Rabin automaton in time O(n.r) 3r [Emerson-Jutla84]. S. Pinchinat 23

24 Complete Axiomatization of ATL [Goranko-vanDrimmelen06] (Write Σ for the full set of agents) Axioms: (TAUT) ( ) A false ( ) A true ([k]) φ Σ φ (S) A 1 φ 1 A 2 φ 2 A 1 A 2 (φ 1 φ 2 ) for disjoint A 1 and A 2 (FP ) A φ φ A A φ (GFP ) (θ (φ A θ)) (θ A φ) (FP U )... (LFP U )... S. Pinchinat 24

25 Complete Axiomatization of ATL [Goranko-vanDrimmelen06] Rules of Inference: (ModusPonens) ( A M onotonicity) ( Necessitation) φ 1,φ 1 φ 2 φ 2 φ 1 φ 2 A φ 1 A φ 2 φ φ S. Pinchinat 25

26 Proof for Complete Axiomatization of ATL 3 steps based on infinite trees Local constructions Eventuality Realization Final Model Construction Finite Model Theorem Any satisfiable formula ϕ is true in a regular tree of branching degree ( ϕ + 1) Σ. a tree automata-theoretic decision procedure Corollary The decision problem for ATL is EXPTIME-complete S. Pinchinat 26

Alternating-Time Temporal Logic

Alternating-Time Temporal Logic Alternating-Time Temporal Logic R.Alur, T.Henzinger, O.Kupferman Rafael H. Bordini School of Informatics PUCRS R.Bordini@pucrs.br Logic Club 5th of September, 2013 ATL All the material in this presentation

More information

Valentin Goranko Stockholm University. ESSLLI 2018 August 6-10, of 33

Valentin Goranko Stockholm University. ESSLLI 2018 August 6-10, of 33 ESSLLI 2018 course Logics for Epistemic and Strategic Reasoning in Multi-Agent Systems Lecture 4: Logics for temporal strategic reasoning with complete information Valentin Goranko Stockholm University

More information

From Liveness to Promptness

From Liveness to Promptness From Liveness to Promptness Orna Kupferman Hebrew University Nir Piterman EPFL Moshe Y. Vardi Rice University Abstract Liveness temporal properties state that something good eventually happens, e.g., every

More information

Logics of Rational Agency Lecture 3

Logics of Rational Agency Lecture 3 Logics of Rational Agency Lecture 3 Eric Pacuit Tilburg Institute for Logic and Philosophy of Science Tilburg Univeristy ai.stanford.edu/~epacuit July 29, 2009 Eric Pacuit: LORI, Lecture 3 1 Plan for the

More information

Reasoning about Strategies: From module checking to strategy logic

Reasoning about Strategies: From module checking to strategy logic Reasoning about Strategies: From module checking to strategy logic based on joint works with Fabio Mogavero, Giuseppe Perelli, Luigi Sauro, and Moshe Y. Vardi Luxembourg September 23, 2013 Reasoning about

More information

Temporal Logic Model Checking

Temporal Logic Model Checking 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 1 Temporal Logic Model Checking Thomas Wahl Computing Laboratory, Oxford University 18 Feb, 2009 Thomas Wahl, Oxford University

More information

Temporal Logic. Stavros Tripakis University of California, Berkeley. We have designed a system. We want to check that it is correct.

Temporal Logic. Stavros Tripakis University of California, Berkeley. We have designed a system. We want to check that it is correct. EE 244: Fundamental Algorithms for System Modeling, Analysis, and Optimization Fall 2016 Temporal logic Stavros Tripakis University of California, Berkeley Stavros Tripakis (UC Berkeley) EE 244, Fall 2016

More information

Lecture 16: Computation Tree Logic (CTL)

Lecture 16: Computation Tree Logic (CTL) Lecture 16: Computation Tree Logic (CTL) 1 Programme for the upcoming lectures Introducing CTL Basic Algorithms for CTL CTL and Fairness; computing strongly connected components Basic Decision Diagrams

More information

From Liveness to Promptness

From Liveness to Promptness From Liveness to Promptness Orna Kupferman 1, Nir Piterman 2, and Moshe Y. Vardi 3 1 Hebrew University 2 Ecole Polytechnique Fédéral de Lausanne (EPFL) 3 Rice University Abstract. Liveness temporal properties

More information

Automata-based Verification - III

Automata-based Verification - III COMP30172: Advanced Algorithms Automata-based Verification - III Howard Barringer Room KB2.20: email: howard.barringer@manchester.ac.uk March 2009 Third Topic Infinite Word Automata Motivation Büchi Automata

More information

Temporal & Modal Logic. Acronyms. Contents. Temporal Logic Overview Classification PLTL Syntax Semantics Identities. Concurrency Model Checking

Temporal & Modal Logic. Acronyms. Contents. Temporal Logic Overview Classification PLTL Syntax Semantics Identities. Concurrency Model Checking Temporal & Modal Logic E. Allen Emerson Presenter: Aly Farahat 2/12/2009 CS5090 1 Acronyms TL: Temporal Logic BTL: Branching-time Logic LTL: Linear-Time Logic CTL: Computation Tree Logic PLTL: Propositional

More information

Some Remarks on Alternating Temporal Epistemic Logic

Some Remarks on Alternating Temporal Epistemic Logic Some Remarks on Alternating Temporal Epistemic Logic Corrected version: July 2003 Wojciech Jamroga Parlevink Group, University of Twente, Netherlands Institute of Mathematics, University of Gdansk, Poland

More information

Neighborhood Semantics for Modal Logic Lecture 5

Neighborhood Semantics for Modal Logic Lecture 5 Neighborhood Semantics for Modal Logic Lecture 5 Eric Pacuit ILLC, Universiteit van Amsterdam staff.science.uva.nl/ epacuit August 17, 2007 Eric Pacuit: Neighborhood Semantics, Lecture 5 1 Plan for the

More information

Linear Temporal Logic and Büchi Automata

Linear Temporal Logic and Büchi Automata Linear Temporal Logic and Büchi Automata Yih-Kuen Tsay Department of Information Management National Taiwan University FLOLAC 2009 Yih-Kuen Tsay (SVVRL @ IM.NTU) Linear Temporal Logic and Büchi Automata

More information

Strategy Logic. 1 Introduction. Krishnendu Chatterjee 1, Thomas A. Henzinger 1,2, and Nir Piterman 2

Strategy Logic. 1 Introduction. Krishnendu Chatterjee 1, Thomas A. Henzinger 1,2, and Nir Piterman 2 Strategy Logic Krishnendu Chatterjee 1, Thomas A. Henzinger 1,2, and Nir Piterman 2 1 University of California, Berkeley, USA 2 EPFL, Switzerland c krish@eecs.berkeley.edu, {tah,nir.piterman}@epfl.ch Abstract.

More information

Temporal logics and explicit-state model checking. Pierre Wolper Université de Liège

Temporal logics and explicit-state model checking. Pierre Wolper Université de Liège Temporal logics and explicit-state model checking Pierre Wolper Université de Liège 1 Topics to be covered Introducing explicit-state model checking Finite automata on infinite words Temporal Logics and

More information

Models for Efficient Timed Verification

Models for Efficient Timed Verification Models for Efficient Timed Verification François Laroussinie LSV / ENS de Cachan CNRS UMR 8643 Monterey Workshop - Composition of embedded systems Model checking System Properties Formalizing step? ϕ Model

More information

Resource-bounded alternating-time temporal logic

Resource-bounded alternating-time temporal logic Resource-bounded alternating-time temporal logic Natasha Alechina University of Nottingham Nottingham, UK nza@cs.nott.ac.uk Brian Logan University of Nottingham Nottingham, UK bsl@cs.nott.ac.uk Abdur Rakib

More information

Synthesis of Asynchronous Systems

Synthesis of Asynchronous Systems Synthesis of Asynchronous Systems Sven Schewe and Bernd Finkbeiner Universität des Saarlandes, 66123 Saarbrücken, Germany {schewe finkbeiner}@cs.uni-sb.de Abstract. This paper addresses the problem of

More information

Alternating-time Temporal Logics with Irrevocable Strategies

Alternating-time Temporal Logics with Irrevocable Strategies Alternating-time Temporal Logics with Irrevocable Strategies Thomas Ågotnes Dept. of Computer Engineering Bergen University College, Bergen, Norway tag@hib.no Valentin Goranko School of Mathematics Univ.

More information

Timo Latvala. February 4, 2004

Timo Latvala. February 4, 2004 Reactive Systems: Temporal Logic LT L Timo Latvala February 4, 2004 Reactive Systems: Temporal Logic LT L 8-1 Temporal Logics Temporal logics are currently the most widely used specification formalism

More information

Reasoning about Equilibria in Game-Like Concurrent Systems

Reasoning about Equilibria in Game-Like Concurrent Systems Proceedings of the Fourteenth International Conference on Principles of Knowledge Representation and Reasoning Reasoning about Equilibria in Game-Like Concurrent Systems Julian Gutierrez and Paul Harrenstein

More information

Computation Tree Logic

Computation Tree Logic Chapter 6 Computation Tree Logic Pnueli [88] has introduced linear temporal logic to the computer science community for the specification and verification of reactive systems. In Chapter 3 we have treated

More information

Automata-based Verification - III

Automata-based Verification - III CS3172: Advanced Algorithms Automata-based Verification - III Howard Barringer Room KB2.20/22: email: howard.barringer@manchester.ac.uk March 2005 Third Topic Infinite Word Automata Motivation Büchi Automata

More information

of concurrent and reactive systems is now well developed [2] as well as a deductive methodology for proving their properties [3]. Part of the reason f

of concurrent and reactive systems is now well developed [2] as well as a deductive methodology for proving their properties [3]. Part of the reason f A New Decidability Proof for Full Branching Time Logic CPL N.V. Shilov Research On Program Analysis System (ROPAS) Department of Computer Science Korean Advanced Institute of Science and Technology (KAIST)

More information

Revisiting Synthesis of GR(1) Specifications

Revisiting Synthesis of GR(1) Specifications Revisiting Synthesis of GR(1) Specifications Uri Klein & Amir Pnueli Courant Institute of Mathematical Sciences, NYU Haifa Verification Conference, October 2010 What Is Synthesis? Rather than implement

More information

T Reactive Systems: Temporal Logic LTL

T Reactive Systems: Temporal Logic LTL Tik-79.186 Reactive Systems 1 T-79.186 Reactive Systems: Temporal Logic LTL Spring 2005, Lecture 4 January 31, 2005 Tik-79.186 Reactive Systems 2 Temporal Logics Temporal logics are currently the most

More information

On the Expressiveness and Complexity of ATL

On the Expressiveness and Complexity of ATL On the Expressiveness and Complexity of ATL François Laroussinie, Nicolas Markey, Ghassan Oreiby LSV, CNRS & ENS-Cachan Recherches en vérification automatique March 14, 2006 Overview of CTL CTL A Kripke

More information

Generalized Parity Games

Generalized Parity Games Generalized Parity Games Krishnendu Chatterjee 1, Thomas A. Henzinger 1,2, and Nir Piterman 2 1 University of California, Berkeley, USA 2 EPFL, Switzerland c krish@eecs.berkeley.edu, {tah,nir.piterman}@epfl.ch

More information

Reasoning about Equilibria in Game-like Concurrent Systems

Reasoning about Equilibria in Game-like Concurrent Systems Reasoning about Equilibria in Game-like Concurrent Systems Julian Gutierrez, Paul Harrenstein, Michael Wooldridge Department of Computer Science University of Oxford Abstract In this paper we study techniques

More information

An Introduction to Temporal Logics

An Introduction to Temporal Logics An Introduction to Temporal Logics c 2001,2004 M. Lawford Outline Motivation: Dining Philosophers Safety, Liveness, Fairness & Justice Kripke structures, LTS, SELTS, and Paths Linear Temporal Logic Branching

More information

Computation Tree Logic (CTL) & Basic Model Checking Algorithms

Computation Tree Logic (CTL) & Basic Model Checking Algorithms Computation Tree Logic (CTL) & Basic Model Checking Algorithms Martin Fränzle Carl von Ossietzky Universität Dpt. of Computing Science Res. Grp. Hybride Systeme Oldenburg, Germany 02917: CTL & Model Checking

More information

Decision Procedures for CTL

Decision Procedures for CTL Decision Procedures for CTL Oliver Friedmann 1 Markus Latte 1 1 Dept. of Computer Science, Ludwig-Maximilians-University, Munich, Germany CLoDeM Edinburgh, 15 July 2010 Introduction to CTL Origin: Emerson

More information

Computer-Aided Program Design

Computer-Aided Program Design Computer-Aided Program Design Spring 2015, Rice University Unit 3 Swarat Chaudhuri February 5, 2015 Temporal logic Propositional logic is a good language for describing properties of program states. However,

More information

Overview. overview / 357

Overview. overview / 357 Overview overview6.1 Introduction Modelling parallel systems Linear Time Properties Regular Properties Linear Temporal Logic (LTL) Computation Tree Logic syntax and semantics of CTL expressiveness of CTL

More information

arxiv: v2 [cs.lo] 3 Sep 2018

arxiv: v2 [cs.lo] 3 Sep 2018 Reasoning about Knowledge and Strategies under Hierarchical Information Bastien Maubert and Aniello Murano Università degli Studi di Napoli Federico II arxiv:1806.00028v2 [cs.lo] 3 Sep 2018 Abstract Two

More information

Semi-Automatic Distributed Synthesis

Semi-Automatic Distributed Synthesis Semi-Automatic Distributed Synthesis Bernd Finkbeiner and Sven Schewe Universität des Saarlandes, 66123 Saarbrücken, Germany {finkbeiner schewe}@cs.uni-sb.de Abstract. We propose a sound and complete compositional

More information

CS357: CTL Model Checking (two lectures worth) David Dill

CS357: CTL Model Checking (two lectures worth) David Dill CS357: CTL Model Checking (two lectures worth) David Dill 1 CTL CTL = Computation Tree Logic It is a propositional temporal logic temporal logic extended to properties of events over time. CTL is a branching

More information

Chapter 6: Computation Tree Logic

Chapter 6: Computation Tree Logic Chapter 6: Computation Tree Logic Prof. Ali Movaghar Verification of Reactive Systems Outline We introduce Computation Tree Logic (CTL), a branching temporal logic for specifying system properties. A comparison

More information

Chapter 4: Computation tree logic

Chapter 4: Computation tree logic INFOF412 Formal verification of computer systems Chapter 4: Computation tree logic Mickael Randour Formal Methods and Verification group Computer Science Department, ULB March 2017 1 CTL: a specification

More information

Automata, Logic and Games: Theory and Application

Automata, Logic and Games: Theory and Application Automata, Logic and Games: Theory and Application 1. Büchi Automata and S1S Luke Ong University of Oxford TACL Summer School University of Salerno, 14-19 June 2015 Luke Ong Büchi Automata & S1S 14-19 June

More information

Optimal Decision Procedures for Satisfiability in Fragments of Alternating-time Temporal Logics

Optimal Decision Procedures for Satisfiability in Fragments of Alternating-time Temporal Logics Optimal Decision Procedures for Satisfiability in Fragments of Alternating-time Temporal Logics Valentin Goranko a,b Steen Vester a 1 a Department of Applied Mathematics and Computer Science Technical

More information

Linear-time Temporal Logic

Linear-time Temporal Logic Linear-time Temporal Logic Pedro Cabalar Department of Computer Science University of Corunna, SPAIN cabalar@udc.es 2015/2016 P. Cabalar ( Department Linear oftemporal Computer Logic Science University

More information

Alternating-time Temporal Logic on Finite Traces

Alternating-time Temporal Logic on Finite Traces Alternating-time Temporal Logic on Finite Traces Francesco Belardinelli 1, Alessio Lomuscio 2, Aniello Murano 3 and Sasha Rubin 3 1 Laboratoire IBISC, UEVE, France 2 Department of Computing, Imperial College

More information

Decision Procedures for CTL

Decision Procedures for CTL Decision Procedures for CTL Oliver Friedmann and Markus Latte Dept. of Computer Science, University of Munich, Germany Abstract. We give an overview over three serious attempts to devise an effective decision

More information

Alternating nonzero automata

Alternating nonzero automata Alternating nonzero automata Application to the satisfiability of CTL [,, P >0, P =1 ] Hugo Gimbert, joint work with Paulin Fournier LaBRI, Université de Bordeaux ANR Stoch-MC 06/07/2017 Control and verification

More information

Logic Model Checking

Logic Model Checking Logic Model Checking Lecture Notes 10:18 Caltech 101b.2 January-March 2004 Course Text: The Spin Model Checker: Primer and Reference Manual Addison-Wesley 2003, ISBN 0-321-22862-6, 608 pgs. the assignment

More information

Lecture 8: Introduction to Game Logic

Lecture 8: Introduction to Game Logic Lecture 8: Introduction to Game Logic Eric Pacuit ILLC, University of Amsterdam staff.science.uva.nl/ epacuit epacuit@science.uva.nl Lecture Date: April 6, 2006 Caput Logic, Language and Information: Social

More information

On the Expressiveness and Complexity of ATL

On the Expressiveness and Complexity of ATL On the Expressiveness and Complexity of ATL François Laroussinie, Nicolas Markey, and Ghassan Oreiby LSV, CNRS & ENS Cachan, France Abstract. ATL is a temporal logic geared towards the specification and

More information

PSPACE-completeness of LTL/CTL model checking

PSPACE-completeness of LTL/CTL model checking PSPACE-completeness of LTL/CTL model checking Peter Lohmann April 10, 2007 Abstract This paper will give a proof for the PSPACE-completeness of LTLsatisfiability and for the PSPACE-completeness of the

More information

a Hebrew University b Weizmann Institute c Rice University

a Hebrew University b Weizmann Institute c Rice University Once and For All Orna Kupferman a, Amir Pnueli b,1, Moshe Y. Vardi c a Hebrew University b Weizmann Institute c Rice University Abstract It has long been known that past-time operators add no expressive

More information

Verification Using Temporal Logic

Verification Using Temporal Logic CMSC 630 February 25, 2015 1 Verification Using Temporal Logic Sources: E.M. Clarke, O. Grumberg and D. Peled. Model Checking. MIT Press, Cambridge, 2000. E.A. Emerson. Temporal and Modal Logic. Chapter

More information

Games and Synthesis. Nir Piterman University of Leicester Telč, July-Autugst 2014

Games and Synthesis. Nir Piterman University of Leicester Telč, July-Autugst 2014 Games and Synthesis Nir Piterman University of Leicester Telč, July-Autugst 2014 Games and Synthesis, EATCS Young Researchers School, Telč, Summer 2014 Games and Synthesis, EATCS Young Researchers School,

More information

Complexity Bounds for Regular Games (Extended Abstract)

Complexity Bounds for Regular Games (Extended Abstract) Complexity Bounds for Regular Games (Extended Abstract) Paul Hunter and Anuj Dawar University of Cambridge Computer Laboratory, Cambridge CB3 0FD, UK. paul.hunter@cl.cam.ac.uk, anuj.dawar@cl.cam.ac.uk

More information

Formal Verification Techniques. Riccardo Sisto, Politecnico di Torino

Formal Verification Techniques. Riccardo Sisto, Politecnico di Torino Formal Verification Techniques Riccardo Sisto, Politecnico di Torino State exploration State Exploration and Theorem Proving Exhaustive exploration => result is certain (correctness or noncorrectness proof)

More information

Coalition Games and Alternating Temporal Logics (Corrected version: September 7, 2001)

Coalition Games and Alternating Temporal Logics (Corrected version: September 7, 2001) Coalition Games and Alternating Temporal Logics (Corrected version: September 7, 2001) Valentin Goranko Department of Mathematics, Rand Afrikaans University PO Box 524, Auckland Park 2006, Johannesburg,

More information

The Planning Spectrum One, Two, Three, Infinity

The Planning Spectrum One, Two, Three, Infinity Journal of Artificial Intelligence Research 30 (2007) 101-132 Submitted 10/05; published 9/07 The Planning Spectrum One, Two, Three, Infinity Marco Pistore Department of Information and Communication Technology

More information

Graded Computation Tree Logic

Graded Computation Tree Logic Graded Computation Tree Logic Alessandro Bianco Fabio Mogavero Aniello Murano Universitá degli Studi di Napoli "Federico II", 80126 Napoli, Italy. {alessandrobianco, mogavero, murano}@na.infn.it http://people.na.infn.it/

More information

A brief history of model checking. Ken McMillan Cadence Berkeley Labs

A brief history of model checking. Ken McMillan Cadence Berkeley Labs A brief history of model checking Ken McMillan Cadence Berkeley Labs mcmillan@cadence.com Outline Part I -- Introduction to model checking Automatic formal verification of finite-state systems Applications

More information

Automata, Logic and Games. C.-H. L. Ong

Automata, Logic and Games. C.-H. L. Ong Automata, Logic and Games C.-H. L. Ong June 12, 2015 2 Contents 0 Automata, Logic and Games 1 0.1 Aims and Prerequisites............................... 1 0.2 Motivation.....................................

More information

Model Checking of Safety Properties

Model Checking of Safety Properties Model Checking of Safety Properties Orna Kupferman Hebrew University Moshe Y. Vardi Rice University October 15, 2010 Abstract Of special interest in formal verification are safety properties, which assert

More information

Automata, Logic and Games. C.-H. L. Ong

Automata, Logic and Games. C.-H. L. Ong Automata, Logic and Games C.-H. L. Ong March 6, 2013 2 Contents 0 Automata, Logic and Games 1 0.1 Aims and Prerequisites............................... 1 0.2 Motivation.....................................

More information

Logic and Artificial Intelligence Lecture 21

Logic and Artificial Intelligence Lecture 21 Logic and Artificial Intelligence Lecture 21 Eric Pacuit Currently Visiting the Center for Formal Epistemology, CMU Center for Logic and Philosophy of Science Tilburg University ai.stanford.edu/ epacuit

More information

Subsumption of concepts in FL 0 for (cyclic) terminologies with respect to descriptive semantics is PSPACE-complete.

Subsumption of concepts in FL 0 for (cyclic) terminologies with respect to descriptive semantics is PSPACE-complete. Subsumption of concepts in FL 0 for (cyclic) terminologies with respect to descriptive semantics is PSPACE-complete. Yevgeny Kazakov and Hans de Nivelle MPI für Informatik, Saarbrücken, Germany E-mail:

More information

Model-Checking Games: from CTL to ATL

Model-Checking Games: from CTL to ATL Model-Checking Games: from CTL to ATL Sophie Pinchinat May 4, 2007 Introduction - Outline Model checking of CTL is PSPACE-complete Presentation of Martin Lange and Colin Stirling Model Checking Games

More information

Computation Tree Logic

Computation Tree Logic Computation Tree Logic Hao Zheng Department of Computer Science and Engineering University of South Florida Tampa, FL 33620 Email: zheng@cse.usf.edu Phone: (813)974-4757 Fax: (813)974-5456 Hao Zheng (CSE,

More information

New Complexity Results for Some Linear Counting Problems Using Minimal Solutions to Linear Diophantine Equations

New Complexity Results for Some Linear Counting Problems Using Minimal Solutions to Linear Diophantine Equations New Complexity Results for Some Linear Counting Problems Using Minimal Solutions to Linear Diophantine Equations (Extended Abstract) Gaoyan Xie, Cheng Li and Zhe Dang School of Electrical Engineering and

More information

Tableau-based decision procedures for logics of strategic ability in multiagent systems

Tableau-based decision procedures for logics of strategic ability in multiagent systems Tableau-based decision procedures for logics of strategic ability in multiagent systems VALENTIN GORANKO University of the Witwatersrand DMITRY SHKATOV University of the Witwatersrand We develop an incremental

More information

Chapter 5: Linear Temporal Logic

Chapter 5: Linear Temporal Logic Chapter 5: Linear Temporal Logic Prof. Ali Movaghar Verification of Reactive Systems Spring 94 Outline We introduce linear temporal logic (LTL), a logical formalism that is suited for specifying LT properties.

More information

Optimal Bounds in Parametric LTL Games

Optimal Bounds in Parametric LTL Games Optimal Bounds in Parametric LTL Games Martin Zimmermann 1 Institute of Informatics University of Warsaw Warsaw, Poland Abstract Parameterized linear temporal logics are extensions of Linear Temporal Logic

More information

The Element of Surprise in Timed Games

The Element of Surprise in Timed Games In Proc. of CONCUR 2003: 14th International Conference on Concurrency Theory, Lectures Notes in Computer Science, Springer-Verlag, 2003. The Element of Surprise in Timed Games Luca de Alfaro 1, Marco Faella

More information

Alan Bundy. Automated Reasoning LTL Model Checking

Alan Bundy. Automated Reasoning LTL Model Checking Automated Reasoning LTL Model Checking Alan Bundy Lecture 9, page 1 Introduction So far we have looked at theorem proving Powerful, especially where good sets of rewrite rules or decision procedures have

More information

Reasoning About Strategies

Reasoning About Strategies Reasoning About Strategies Fabio Mogavero 1, Aniello Murano 1, and Moshe Y. Vardi 2 1 Universitá degli Studi di Napoli "Federico II", I-80126 Napoli, Italy. {mogavero, murano}@na.infn.it 2 Rice University,

More information

Büchi Automata and Linear Temporal Logic

Büchi Automata and Linear Temporal Logic Büchi Automata and Linear Temporal Logic Joshua D. Guttman Worcester Polytechnic Institute 18 February 2010 Guttman ( WPI ) Büchi & LTL 18 Feb 10 1 / 10 Büchi Automata Definition A Büchi automaton is a

More information

Introduction. Büchi Automata and Model Checking. Outline. Büchi Automata. The simplest computation model for infinite behaviors is the

Introduction. Büchi Automata and Model Checking. Outline. Büchi Automata. The simplest computation model for infinite behaviors is the Introduction Büchi Automata and Model Checking Yih-Kuen Tsay Department of Information Management National Taiwan University FLOLAC 2009 The simplest computation model for finite behaviors is the finite

More information

Introduction to Temporal Logic. The purpose of temporal logics is to specify properties of dynamic systems. These can be either

Introduction to Temporal Logic. The purpose of temporal logics is to specify properties of dynamic systems. These can be either Introduction to Temporal Logic The purpose of temporal logics is to specify properties of dynamic systems. These can be either Desired properites. Often liveness properties like In every infinite run action

More information

Value Iteration. 1 Introduction. Krishnendu Chatterjee 1 and Thomas A. Henzinger 1,2

Value Iteration. 1 Introduction. Krishnendu Chatterjee 1 and Thomas A. Henzinger 1,2 Value Iteration Krishnendu Chatterjee 1 and Thomas A. Henzinger 1,2 1 University of California, Berkeley 2 EPFL, Switzerland Abstract. We survey value iteration algorithms on graphs. Such algorithms can

More information

A Symbolic Approach to Safety LTL Synthesis

A Symbolic Approach to Safety LTL Synthesis A Symbolic Approach to Safety LTL Synthesis Shufang Zhu 1 Lucas M. Tabajara 2 Jianwen Li Geguang Pu 1 Moshe Y. Vardi 2 1 East China Normal University 2 Rice Lucas M. Tabajara (Rice University) 2 University

More information

Bounded Synthesis. Sven Schewe and Bernd Finkbeiner. Universität des Saarlandes, Saarbrücken, Germany

Bounded Synthesis. Sven Schewe and Bernd Finkbeiner. Universität des Saarlandes, Saarbrücken, Germany Bounded Synthesis Sven Schewe and Bernd Finkbeiner Universität des Saarlandes, 66123 Saarbrücken, Germany Abstract. The bounded synthesis problem is to construct an implementation that satisfies a given

More information

Comparing Semantics of Logics for Multi-agent Systems

Comparing Semantics of Logics for Multi-agent Systems Comparing Semantics of Logics for Multi-agent Systems Valentin Goranko Department of Mathematics, Rand Afrikaans University e-mail: vfg@na.rau.ac.za Wojciech Jamroga Parlevink Group, University of Twente,

More information

Finitary Winning in ω-regular Games

Finitary Winning in ω-regular Games Finitary Winning in ω-regular Games Krishnendu Chatterjee 1 and Thomas A. Henzinger 1,2 1 University of California, Berkeley, USA 2 EPFL, Switzerland {c krish,tah}@eecs.berkeley.edu Abstract. Games on

More information

Expressiveness and decidability of ATL with strategy contexts

Expressiveness and decidability of ATL with strategy contexts Expressiveness and decidability of ATL with strategy contexts Arnaud Da Costa, François Laroussinie, Nicolas Markey July 2010 Research report LSV-10-14 Laboratoire Spécification & Vérification École Normale

More information

CS256/Spring 2008 Lecture #11 Zohar Manna. Beyond Temporal Logics

CS256/Spring 2008 Lecture #11 Zohar Manna. Beyond Temporal Logics CS256/Spring 2008 Lecture #11 Zohar Manna Beyond Temporal Logics Temporal logic expresses properties of infinite sequences of states, but there are interesting properties that cannot be expressed, e.g.,

More information

Alternating Automata: Checking Truth and Validity for Temporal Logics

Alternating Automata: Checking Truth and Validity for Temporal Logics Alternating Automata: Checking Truth and Validity for Temporal Logics Moshe Y. Vardi? Rice University Department of Computer Science Houston, TX 77005-1892, U.S.A. Email: vardi@cs.rice.edu URL: http://www.cs.rice.edu/

More information

Complexity Bounds for Muller Games 1

Complexity Bounds for Muller Games 1 Complexity Bounds for Muller Games 1 Paul Hunter a, Anuj Dawar b a Oxford University Computing Laboratory, UK b University of Cambridge Computer Laboratory, UK Abstract We consider the complexity of infinite

More information

Temporal Logic. M φ. Outline. Why not standard logic? What is temporal logic? LTL CTL* CTL Fairness. Ralf Huuck. Kripke Structure

Temporal Logic. M φ. Outline. Why not standard logic? What is temporal logic? LTL CTL* CTL Fairness. Ralf Huuck. Kripke Structure Outline Temporal Logic Ralf Huuck Why not standard logic? What is temporal logic? LTL CTL* CTL Fairness Model Checking Problem model, program? M φ satisfies, Implements, refines property, specification

More information

Topics in Verification AZADEH FARZAN FALL 2017

Topics in Verification AZADEH FARZAN FALL 2017 Topics in Verification AZADEH FARZAN FALL 2017 Last time LTL Syntax ϕ ::= true a ϕ 1 ϕ 2 ϕ ϕ ϕ 1 U ϕ 2 a AP. ϕ def = trueu ϕ ϕ def = ϕ g intuitive meaning of and is obt Limitations of LTL pay pay τ τ soda

More information

Model Checking. Temporal Logic. Fifth International Symposium in Programming, volume. of concurrent systems in CESAR. In Proceedings of the

Model Checking. Temporal Logic. Fifth International Symposium in Programming, volume. of concurrent systems in CESAR. In Proceedings of the Sérgio Campos, Edmund Why? Advantages: No proofs Fast Counter-examples No problem with partial specifications can easily express many concurrency properties Main Disadvantage: State Explosion Problem Too

More information

Automata-Theoretic Verification

Automata-Theoretic Verification Automata-Theoretic Verification Javier Esparza TU München Orna Kupferman The Hebrew University Moshe Y. Vardi Rice University 1 Introduction This chapter describes the automata-theoretic approach to the

More information

Software Verification using Predicate Abstraction and Iterative Refinement: Part 1

Software Verification using Predicate Abstraction and Iterative Refinement: Part 1 using Predicate Abstraction and Iterative Refinement: Part 1 15-414 Bug Catching: Automated Program Verification and Testing Sagar Chaki November 28, 2011 Outline Overview of Model Checking Creating Models

More information

Automata-Theoretic Model Checking of Reactive Systems

Automata-Theoretic Model Checking of Reactive Systems Automata-Theoretic Model Checking of Reactive Systems Radu Iosif Verimag/CNRS (Grenoble, France) Thanks to Tom Henzinger (IST, Austria), Barbara Jobstmann (CNRS, Grenoble) and Doron Peled (Bar-Ilan University,

More information

Bridging the Gap between Reactive Synthesis and Supervisory Control

Bridging the Gap between Reactive Synthesis and Supervisory Control Bridging the Gap between Reactive Synthesis and Supervisory Control Stavros Tripakis University of California, Berkeley Joint work with Ruediger Ehlers (Berkeley, Cornell), Stéphane Lafortune (Michigan)

More information

Tree Automata and Rewriting

Tree Automata and Rewriting and Rewriting Ralf Treinen Université Paris Diderot UFR Informatique Laboratoire Preuves, Programmes et Systèmes treinen@pps.jussieu.fr July 23, 2010 What are? Definition Tree Automaton A tree automaton

More information

Generalized Parity Games

Generalized Parity Games Generalized Parity Games Krishnendu Chatterjee Thomas A. Henzinger Nir Piterman Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2006-144

More information

Reasoning about Finite-State Switched Systems

Reasoning about Finite-State Switched Systems Reasoning about Finite-State Switched Systems Dana Fisman 1,2 and Orna Kupferman 1 1 School of Computer Science and Engineering, Hebrew University, Jerusalem 91904, Israel. 2 IBM Haifa Research Lab, Haifa

More information

Weak Alternating Automata and Tree Automata Emptiness

Weak Alternating Automata and Tree Automata Emptiness Weak Alternating Automata and Tree Automata Emptiness Orna Kupferman UC Berkeley Moshe Y. Vardi Rice University Abstract Automata on infinite words and trees are used for specification and verification

More information

PSL Model Checking and Run-time Verification via Testers

PSL Model Checking and Run-time Verification via Testers PSL Model Checking and Run-time Verification via Testers Formal Methods 2006 Aleksandr Zaks and Amir Pnueli New York University Introduction Motivation (Why PSL?) A new property specification language,

More information

Chapter 5: Linear Temporal Logic

Chapter 5: Linear Temporal Logic Chapter 5: Linear Temporal Logic Prof. Ali Movaghar Verification of Reactive Systems Spring 91 Outline We introduce linear temporal logic (LTL), a logical formalism that is suited for specifying LT properties.

More information

An n! Lower Bound On Formula Size

An n! Lower Bound On Formula Size An n! Lower Bound On Formula Size Micah Adler Computer Science Dept. UMass, Amherst, USA http://www.cs.umass.edu/ micah Neil Immerman Computer Science Dept. UMass, Amherst, USA http://www.cs.umass.edu/

More information

Solving Partial-Information Stochastic Parity Games

Solving Partial-Information Stochastic Parity Games Solving Partial-Information Stochastic Parity ames Sumit Nain and Moshe Y. Vardi Department of Computer Science, Rice University, Houston, Texas, 77005 Email: {nain,vardi}@cs.rice.edu Abstract We study

More information