Temporal Logic. M φ. Outline. Why not standard logic? What is temporal logic? LTL CTL* CTL Fairness. Ralf Huuck. Kripke Structure

Size: px
Start display at page:

Download "Temporal Logic. M φ. Outline. Why not standard logic? What is temporal logic? LTL CTL* CTL Fairness. Ralf Huuck. Kripke Structure"

Transcription

1 Outline Temporal Logic Ralf Huuck Why not standard logic? What is temporal logic? LTL CTL* CTL Fairness Model Checking Problem model, program? M φ satisfies, Implements, refines property, specification How to formalize the different components? for this lecture we assume is M given as a Kripke structure, what about and φ? Kripke Structure Given a set of atomic propositions AP. Kripke structure M=(S,,, μ) is defined by S set of states initial state S S transition relation (total) μ:s 2 AP labeling function Any infinite run is accepting, i.e., like Buchi automaton where every state is a final state. Product as for NFA. 1

2 Example How to define properties formally? Kripke structure automata ω regular expression logics Logic can provide succinct notation, close to natural language. Propositional Logic Propositional Logic Syntax φ ::= p φ φ 1 φ 2 Other connectivities (,,, ) can be derived (see next slide) Semantics Given a state s in a Kipke structure M we define M,s φ inductively by: M,s p p μ(s) M,s φ not M,s φ M,s φ 1 φ 2 M,s φ 1 or M,s φ 2 (,,, true,false ) Propositional logic is good at describing static situations. 2

3 Example Example M, a b M, a M, a How to describe: eventually b will happen? a will happen always again? Propositional logic is good for describing static situations. Propositional logic is unsuitable for describing dynamic behavior. Dynamic Behavior Mutual Exclusion Important for reactive systems security protocols hardware operating systems embedded systems process1 ncs cs ncs process2 ncs cs ncs always only one process in cs eventually process1 in cs always eventually process2 in cs cs = critical section ncs = none critical section 3

4 Temporal Logics LTL originate from philosophy how to express statements including time? what is an appropriate model? real-time vs discrete time linear time vs branching time (deterministic vs non-deterministic) (P)LTL LTL Syntax Propositional Linear time Temporal Logic discrete time linear (deterministic) progression on on on on on on on on PLTL formula are inductively defined by: φ ::= p φ φ 1 φ 2 Xφ Fφ Gφ φ 1 Uφ 2 p denotes atomic proposition X denotes next-state operator F denotes eventually/finally G denotes always/globally U denotes until 4

5 LTL semantics Paths in Kripke Structures LTL formula φ interpreted over infinite paths of states π= we define LTL wrt Kripke structure M M,π²φ denotes φ holds in a path π of Kripke structure M. M²φ iff all paths of M satisfy φ, i.e., for all π in M we have M,π²φ remember transition relation is total Semantics of LTL Operators Example let π k denote suffix s k s k+1 s k+2... where k 0 M,π² p iff ² p, i.e., p μ( ) M,π² φ iff not M,π²φ M,π²φ 1 φ 2 iff M,π²φ 1 or M,π²φ 2 M,π² Xφ iff M,π 1 ²φ, i.e., s k s k+1 s k+2... satisfies φ M,π² Fφ iff k 0 s.t. M,π k ²φ M,π² Gφ iff k 0 M,π k ²φ M,π² φ 1 Uφ 2 iff 0 s.t. M,π k ² φ 2 and 0 j<k we have M,π j ² φ 1 path π satisfies: M,π² a M,π² b M,π² Xb M,π² Fa M,π² FG(a b) M,π² F(bUa) M,π² FG(aUb) what else? 5

6 Exercise M²φ Which temporal operators can be expressed through one or more of the others? M²φ iff M,π²φ for all paths π Which cannot? Which properties satisfy this Kripke structure? CTL* CTL* Computational Tree Logic (star) discrete time branching (non-deterministic) progression describes properties of computation trees more powerful than LTL 6

7 Computation Trees Unwinding Kripke Structure Kripke structure computation tree on on on on on on on on on on on Operators in CTL* CTL* Formulae temporal operators same as LTL, describe properties of paths path quantifiers A: for all paths ( )... E: there exists a path ( )... more formally... propositional logic as underlying static logic two different types of formulae state formula: properties of a state path formulas: property of a path all LTL formulae are path formulae state formulae static propositional formulae 7

8 State Formulae Path Quantifiers in State Formulae φ s ::= p φ s φ s1 φ s2 Aφ π Eφ π φ s denotes state formula φ π path formula p atomic proposition Aφ π and Eφ π are state formulas set of all state formulae = set of all legal CTL* formulae Aand Eare path quantifiers denote universal and existential quantification over paths starting in a certain state Aφ π holds in a state s iff for all paths starting in s, φ π holds Eφ π holds in a state s iff there exisits a path starting in s, s.t. φ π holds Path Formulae Semantics of CTL* φ π ::= φ s φ π φ π1 φ π2 Xφ π Fφ π Gφ π φ π1 Uφ π2 every LTL formula is path formula all state formulae are also path formulae define semantics w.r.t. Kripke structure M M,s²φ denotes state formula φ holds in a state s of M M,π²φ denotes path formula φ holds for path π in M ² defined inductively, as before nesting: A(GF(A a b)) (example tree?) 8

9 Semantics of CTL* State Formulae Semantics of CTL* Path Formulae M,s² piffp μ(s) M,s² φ iff not M,s²φ M,s²φ 1 φ 2 iff M,s²φ 1 and M,s²φ 2 M,s² Aφ iff for all paths π starting in s, M,π²φ M,s² Eφ iff there exists a paths π starting in s, such that M,π²φ M,π²φ s iff ² φ s M,π² φ iff not M,π²φ M,π²φ 1 φ 2 iff M,π²φ 1 or M,π²φ 2 M,π² Xφ iff M,π 1 ²φ, i.e., s k s k+1 s k+2... satisfies φ M,π² Fφ iff k 0 s.t. M,π k ²φ M,π² Gφ iff k 0 M,π k ²φ M,π² φ 1 Uφ 2 iff k 0 s.t. M,π k ² φ 2 and 0 j<k we have M,π j ² φ 1 basically, same as before LTL vs. CTL* Examples φ LTL implies Aφ CTL* root state s o satisfies: M, ² Aa computation tree EFφ CTL* but not expressible in LTL (other examples?) M, ² A( b) M, ² AXb LTL strictly less expressive than CTL* M, ² EFa M, ² EFAa what else? 9

10 M²φ M²φ (φ CTL*) iff M, ²φ for initial state CTL a fragment of CTL* Which properties satisfies this Kripke structure? CTL CTL Syntax CTL is restricted version of CTL* temporal operators as in CTL* path quantifier as in CTL* However, no unrestricted nesting and Boolean combinations of path formulae (next slide) φ::= p φ φ 1 φ 2 AXφ EXφ AFφ EFφ AGφ EGφ A(φ 1 Uφ 2 ) E(φ 1 U φ2) no arbitrary nesting path qualifiers and temporal operators alternate no Boolean combinations of path formulae Not allowed: a Fq, E(A(F(a b)),..., what else? 10

11 Example LTL vs. CTL vs. CTL* Which CTL properties hold for this Kripke structure? LTL sublogic of CTL* (EF φ CTL*, not expressible in LTL) CTL sublogic of CTL* (FGφ CTL*, not expressible in CTL) LTL and CTL not comparable FGφ LTL, not expressible in CTL EFφ CTL, not expressible in LTL LTL vs. CTL vs. CTL* Safety and Liveness CTL* safety: never something bad will happen AG (in1 in2) LTL CTL liveness: eventually something good will happen EF safe rule of thumb: liveness properties iff counter example requires an infinite trace/infinite deep tree 11

12 Fairness Weak/Strong Fairness Often liveness properties cannot be proven without certain assumptions, i.e., fairness. weak fairness if an event is continuously enabled, it will occur infinitely often in LTL: GF ( enabled occurs) strong fairness if a event is infinitely often enabled it will occur infinitely often in LTL: GF enabled GF occurs {c} {c} M²Fb? M²Fc? Weak/Strong Fairness {c} weak fairness if an event is continuously enabled, it will occur infinitely often in LTL: GF ( enabled occurs) strong fairness if a event is infinitely often enabled it will occur infinitely often in LTL: GF enabled GF occurs {c} Fairness and Model Checking Weak/strong fairness can be expressed in LTL, however, not in CTL in LTL model checking fairness can be added directly as an assumption in CTL model checking fairness has to be build into the model checking algorithm under weak fairness: M²Fb under strong fairness: M²Fc 12

13 This Lecture Summary temporal logic to specify behavior over time LTL: linear structure (for all paths) CTL(*): branching structure (selective paths) LTL, CTL sublogics of CTL* CTL, LTL not comparable different classes of properties (safety/liveness, fairness) Next Lecture CTL model checking how does it work 13

Temporal Logic. Stavros Tripakis University of California, Berkeley. We have designed a system. We want to check that it is correct.

Temporal Logic. Stavros Tripakis University of California, Berkeley. We have designed a system. We want to check that it is correct. EE 244: Fundamental Algorithms for System Modeling, Analysis, and Optimization Fall 2016 Temporal logic Stavros Tripakis University of California, Berkeley Stavros Tripakis (UC Berkeley) EE 244, Fall 2016

More information

Model for reactive systems/software

Model for reactive systems/software Temporal Logics CS 5219 Abhik Roychoudhury National University of Singapore The big picture Software/ Sys. to be built (Dream) Properties to Satisfy (caution) Today s lecture System Model (Rough Idea)

More information

Computation Tree Logic

Computation Tree Logic Computation Tree Logic Computation tree logic (CTL) is a branching-time logic that includes the propositional connectives as well as temporal connectives AX, EX, AU, EU, AG, EG, AF, and EF. The syntax

More information

Overview. overview / 357

Overview. overview / 357 Overview overview6.1 Introduction Modelling parallel systems Linear Time Properties Regular Properties Linear Temporal Logic (LTL) Computation Tree Logic syntax and semantics of CTL expressiveness of CTL

More information

An Introduction to Temporal Logics

An Introduction to Temporal Logics An Introduction to Temporal Logics c 2001,2004 M. Lawford Outline Motivation: Dining Philosophers Safety, Liveness, Fairness & Justice Kripke structures, LTS, SELTS, and Paths Linear Temporal Logic Branching

More information

LTL and CTL. Lecture Notes by Dhananjay Raju

LTL and CTL. Lecture Notes by Dhananjay Raju LTL and CTL Lecture Notes by Dhananjay Raju draju@cs.utexas.edu 1 Linear Temporal Logic: LTL Temporal logics are a convenient way to formalise and verify properties of reactive systems. LTL is an infinite

More information

T Reactive Systems: Temporal Logic LTL

T Reactive Systems: Temporal Logic LTL Tik-79.186 Reactive Systems 1 T-79.186 Reactive Systems: Temporal Logic LTL Spring 2005, Lecture 4 January 31, 2005 Tik-79.186 Reactive Systems 2 Temporal Logics Temporal logics are currently the most

More information

Lecture 16: Computation Tree Logic (CTL)

Lecture 16: Computation Tree Logic (CTL) Lecture 16: Computation Tree Logic (CTL) 1 Programme for the upcoming lectures Introducing CTL Basic Algorithms for CTL CTL and Fairness; computing strongly connected components Basic Decision Diagrams

More information

Models. Lecture 25: Model Checking. Example. Semantics. Meanings with respect to model and path through future...

Models. Lecture 25: Model Checking. Example. Semantics. Meanings with respect to model and path through future... Models Lecture 25: Model Checking CSCI 81 Spring, 2012 Kim Bruce Meanings with respect to model and path through future... M = (S,, L) is a transition system if S is a set of states is a transition relation

More information

Verification Using Temporal Logic

Verification Using Temporal Logic CMSC 630 February 25, 2015 1 Verification Using Temporal Logic Sources: E.M. Clarke, O. Grumberg and D. Peled. Model Checking. MIT Press, Cambridge, 2000. E.A. Emerson. Temporal and Modal Logic. Chapter

More information

Timo Latvala. February 4, 2004

Timo Latvala. February 4, 2004 Reactive Systems: Temporal Logic LT L Timo Latvala February 4, 2004 Reactive Systems: Temporal Logic LT L 8-1 Temporal Logics Temporal logics are currently the most widely used specification formalism

More information

Computation Tree Logic (CTL) & Basic Model Checking Algorithms

Computation Tree Logic (CTL) & Basic Model Checking Algorithms Computation Tree Logic (CTL) & Basic Model Checking Algorithms Martin Fränzle Carl von Ossietzky Universität Dpt. of Computing Science Res. Grp. Hybride Systeme Oldenburg, Germany 02917: CTL & Model Checking

More information

NPTEL Phase-II Video course on. Design Verification and Test of. Dr. Santosh Biswas Dr. Jatindra Kumar Deka IIT Guwahati

NPTEL Phase-II Video course on. Design Verification and Test of. Dr. Santosh Biswas Dr. Jatindra Kumar Deka IIT Guwahati NPTEL Phase-II Video course on Design Verification and Test of Digital VLSI Designs Dr. Santosh Biswas Dr. Jatindra Kumar Deka IIT Guwahati Module IV: Temporal Logic Lecture I: Introduction to formal methods

More information

Summary. Computation Tree logic Vs. LTL. CTL at a glance. KM,s =! iff for every path " starting at s KM," =! COMPUTATION TREE LOGIC (CTL)

Summary. Computation Tree logic Vs. LTL. CTL at a glance. KM,s =! iff for every path  starting at s KM, =! COMPUTATION TREE LOGIC (CTL) Summary COMPUTATION TREE LOGIC (CTL) Slides by Alessandro Artale http://www.inf.unibz.it/ artale/ Some material (text, figures) displayed in these slides is courtesy of: M. Benerecetti, A. Cimatti, M.

More information

FAIRNESS FOR INFINITE STATE SYSTEMS

FAIRNESS FOR INFINITE STATE SYSTEMS FAIRNESS FOR INFINITE STATE SYSTEMS Heidy Khlaaf University College London 1 FORMAL VERIFICATION Formal verification is the process of establishing whether a system satisfies some requirements (properties),

More information

FORMAL METHODS LECTURE IV: COMPUTATION TREE LOGIC (CTL)

FORMAL METHODS LECTURE IV: COMPUTATION TREE LOGIC (CTL) Alessandro Artale (FM First Semester 2007/2008) p. 1/37 FORMAL METHODS LECTURE IV: COMPUTATION TREE LOGIC (CTL) Alessandro Artale Faculty of Computer Science Free University of Bolzano artale@inf.unibz.it

More information

Model Checking. Temporal Logic. Fifth International Symposium in Programming, volume. of concurrent systems in CESAR. In Proceedings of the

Model Checking. Temporal Logic. Fifth International Symposium in Programming, volume. of concurrent systems in CESAR. In Proceedings of the Sérgio Campos, Edmund Why? Advantages: No proofs Fast Counter-examples No problem with partial specifications can easily express many concurrency properties Main Disadvantage: State Explosion Problem Too

More information

Computation Tree Logic (CTL)

Computation Tree Logic (CTL) Computation Tree Logic (CTL) Fazle Rabbi University of Oslo, Oslo, Norway Bergen University College, Bergen, Norway fazlr@student.matnat.uio.no, Fazle.Rabbi@hib.no May 30, 2015 Fazle Rabbi et al. (UiO,

More information

Temporal logics and explicit-state model checking. Pierre Wolper Université de Liège

Temporal logics and explicit-state model checking. Pierre Wolper Université de Liège Temporal logics and explicit-state model checking Pierre Wolper Université de Liège 1 Topics to be covered Introducing explicit-state model checking Finite automata on infinite words Temporal Logics and

More information

Finite-State Model Checking

Finite-State Model Checking EECS 219C: Computer-Aided Verification Intro. to Model Checking: Models and Properties Sanjit A. Seshia EECS, UC Berkeley Finite-State Model Checking G(p X q) Temporal logic q p FSM Model Checker Yes,

More information

Temporal Logics for Specification and Verification

Temporal Logics for Specification and Verification Temporal Logics for Specification and Verification Valentin Goranko DTU Informatics FIRST Autumn School on Modal Logic November 11, 2009 Transition systems (Labelled) transition system (TS): T = S, {R

More information

Automata-Theoretic Model Checking of Reactive Systems

Automata-Theoretic Model Checking of Reactive Systems Automata-Theoretic Model Checking of Reactive Systems Radu Iosif Verimag/CNRS (Grenoble, France) Thanks to Tom Henzinger (IST, Austria), Barbara Jobstmann (CNRS, Grenoble) and Doron Peled (Bar-Ilan University,

More information

Temporal Logic Model Checking

Temporal Logic Model Checking 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 1 Temporal Logic Model Checking Thomas Wahl Computing Laboratory, Oxford University 18 Feb, 2009 Thomas Wahl, Oxford University

More information

Probabilistic Model Checking Michaelmas Term Dr. Dave Parker. Department of Computer Science University of Oxford

Probabilistic Model Checking Michaelmas Term Dr. Dave Parker. Department of Computer Science University of Oxford Probabilistic Model Checking Michaelmas Term 2011 Dr. Dave Parker Department of Computer Science University of Oxford Overview Temporal logic Non-probabilistic temporal logic CTL Probabilistic temporal

More information

Chapter 4: Computation tree logic

Chapter 4: Computation tree logic INFOF412 Formal verification of computer systems Chapter 4: Computation tree logic Mickael Randour Formal Methods and Verification group Computer Science Department, ULB March 2017 1 CTL: a specification

More information

Model Checking Algorithms

Model Checking Algorithms Model Checking Algorithms Bow-Yaw Wang Institute of Information Science Academia Sinica, Taiwan November 14, 2018 Bow-Yaw Wang (Academia Sinica) Model Checking Algorithms November 14, 2018 1 / 56 Outline

More information

Alan Bundy. Automated Reasoning LTL Model Checking

Alan Bundy. Automated Reasoning LTL Model Checking Automated Reasoning LTL Model Checking Alan Bundy Lecture 9, page 1 Introduction So far we have looked at theorem proving Powerful, especially where good sets of rewrite rules or decision procedures have

More information

Computer-Aided Program Design

Computer-Aided Program Design Computer-Aided Program Design Spring 2015, Rice University Unit 3 Swarat Chaudhuri February 5, 2015 Temporal logic Propositional logic is a good language for describing properties of program states. However,

More information

Automata-Theoretic Verification

Automata-Theoretic Verification Automata-Theoretic Verification Javier Esparza TU München Orna Kupferman The Hebrew University Moshe Y. Vardi Rice University 1 Introduction This chapter describes the automata-theoretic approach to the

More information

Model Checking with CTL. Presented by Jason Simas

Model Checking with CTL. Presented by Jason Simas Model Checking with CTL Presented by Jason Simas Model Checking with CTL Based Upon: Logic in Computer Science. Huth and Ryan. 2000. (148-215) Model Checking. Clarke, Grumberg and Peled. 1999. (1-26) Content

More information

Chapter 3: Linear temporal logic

Chapter 3: Linear temporal logic INFOF412 Formal verification of computer systems Chapter 3: Linear temporal logic Mickael Randour Formal Methods and Verification group Computer Science Department, ULB March 2017 1 LTL: a specification

More information

Introduction to Temporal Logic. The purpose of temporal logics is to specify properties of dynamic systems. These can be either

Introduction to Temporal Logic. The purpose of temporal logics is to specify properties of dynamic systems. These can be either Introduction to Temporal Logic The purpose of temporal logics is to specify properties of dynamic systems. These can be either Desired properites. Often liveness properties like In every infinite run action

More information

PSL Model Checking and Run-time Verification via Testers

PSL Model Checking and Run-time Verification via Testers PSL Model Checking and Run-time Verification via Testers Formal Methods 2006 Aleksandr Zaks and Amir Pnueli New York University Introduction Motivation (Why PSL?) A new property specification language,

More information

Modal and Temporal Logics

Modal and Temporal Logics Modal and Temporal Logics Colin Stirling School of Informatics University of Edinburgh July 23, 2003 Why modal and temporal logics? 1 Computational System Modal and temporal logics Operational semantics

More information

Model checking (III)

Model checking (III) Theory and Algorithms Model checking (III) Alternatives andextensions Rafael Ramirez rafael@iua.upf.es Trimester1, Oct2003 Slide 9.1 Logics for reactive systems The are many specification languages for

More information

Introduction to Model Checking. Debdeep Mukhopadhyay IIT Madras

Introduction to Model Checking. Debdeep Mukhopadhyay IIT Madras Introduction to Model Checking Debdeep Mukhopadhyay IIT Madras How good can you fight bugs? Comprising of three parts Formal Verification techniques consist of three parts: 1. A framework for modeling

More information

Automata on Infinite words and LTL Model Checking

Automata on Infinite words and LTL Model Checking Automata on Infinite words and LTL Model Checking Rodica Condurache Lecture 4 Lecture 4 Automata on Infinite words and LTL Model Checking 1 / 35 Labeled Transition Systems Let AP be the (finite) set of

More information

CS256/Spring 2008 Lecture #11 Zohar Manna. Beyond Temporal Logics

CS256/Spring 2008 Lecture #11 Zohar Manna. Beyond Temporal Logics CS256/Spring 2008 Lecture #11 Zohar Manna Beyond Temporal Logics Temporal logic expresses properties of infinite sequences of states, but there are interesting properties that cannot be expressed, e.g.,

More information

Temporal & Modal Logic. Acronyms. Contents. Temporal Logic Overview Classification PLTL Syntax Semantics Identities. Concurrency Model Checking

Temporal & Modal Logic. Acronyms. Contents. Temporal Logic Overview Classification PLTL Syntax Semantics Identities. Concurrency Model Checking Temporal & Modal Logic E. Allen Emerson Presenter: Aly Farahat 2/12/2009 CS5090 1 Acronyms TL: Temporal Logic BTL: Branching-time Logic LTL: Linear-Time Logic CTL: Computation Tree Logic PLTL: Propositional

More information

Computation Tree Logic

Computation Tree Logic Chapter 6 Computation Tree Logic Pnueli [88] has introduced linear temporal logic to the computer science community for the specification and verification of reactive systems. In Chapter 3 we have treated

More information

What is Temporal Logic? The Basic Paradigm. The Idea of Temporal Logic. Formulas

What is Temporal Logic? The Basic Paradigm. The Idea of Temporal Logic. Formulas What is Temporal Logic? A logical formalism to describe sequences of any kind. We use it to describe state sequences. An automaton describes the actions of a system, a temporal logic formula describes

More information

The Safety Simple Subset

The Safety Simple Subset The Safety Simple Subset Shoham Ben-David 1 Dana Fisman 2,3 Sitvanit Ruah 3 1 University of Waterloo 2 Weizmann Institute of Science 3 IBM Haifa Research Lab Abstract. Regular-LTL (RLTL), extends LTL with

More information

A Hierarchy for Accellera s Property Specification Language

A Hierarchy for Accellera s Property Specification Language A Hierarchy for Accellera s Property Specification Language Thomas Türk May 1st, 2005 Diploma Thesis University of Kaiserslautern Supervisor: Prof. Dr. Klaus Schneider Vorliegende Diplomarbeit wurde von

More information

Automata and Reactive Systems

Automata and Reactive Systems Automata and Reactive Systems Lecture WS 2002/2003 Prof. Dr. W. Thomas RWTH Aachen Preliminary version (Last change March 20, 2003) Translated and revised by S. N. Cho and S. Wöhrle German version by M.

More information

Chapter 6: Computation Tree Logic

Chapter 6: Computation Tree Logic Chapter 6: Computation Tree Logic Prof. Ali Movaghar Verification of Reactive Systems Outline We introduce Computation Tree Logic (CTL), a branching temporal logic for specifying system properties. A comparison

More information

LTL with Arithmetic and its Applications in Reasoning about Hierarchical Systems

LTL with Arithmetic and its Applications in Reasoning about Hierarchical Systems This space is reserved for the EPiC Series header, do not use it LTL with Arithmetic and its Applications in Reasoning about Hierarchical Systems Rachel Faran and Orna Kupferman The Hebrew University,

More information

Reasoning about Strategies: From module checking to strategy logic

Reasoning about Strategies: From module checking to strategy logic Reasoning about Strategies: From module checking to strategy logic based on joint works with Fabio Mogavero, Giuseppe Perelli, Luigi Sauro, and Moshe Y. Vardi Luxembourg September 23, 2013 Reasoning about

More information

From Liveness to Promptness

From Liveness to Promptness From Liveness to Promptness Orna Kupferman Hebrew University Nir Piterman EPFL Moshe Y. Vardi Rice University Abstract Liveness temporal properties state that something good eventually happens, e.g., every

More information

Reasoning about Time and Reliability

Reasoning about Time and Reliability Reasoning about Time and Reliability Probabilistic CTL model checking Daniel Bruns Institut für theoretische Informatik Universität Karlsruhe 13. Juli 2007 Seminar Theorie und Anwendung von Model Checking

More information

Symbolic Model Checking Property Specification Language*

Symbolic Model Checking Property Specification Language* Symbolic Model Checking Property Specification Language* Ji Wang National Laboratory for Parallel and Distributed Processing National University of Defense Technology *Joint Work with Wanwei Liu, Huowang

More information

Model Checking I. What are LTL and CTL? dack. and. dreq. and. q0bar

Model Checking I. What are LTL and CTL? dack. and. dreq. and. q0bar Model Checking I What are LTL and CTL? q0 or and dack dreq q0bar and 1 View circuit as a transition system (dreq, q0, dack) (dreq, q0, dack ) q0 = dreq and dack = dreq & (q0 + ( q0 & dack)) q0 or and D

More information

CDS 270 (Fall 09) - Lecture Notes for Assignment 8.

CDS 270 (Fall 09) - Lecture Notes for Assignment 8. CDS 270 (Fall 09) - Lecture Notes for Assignment 8. ecause this part of the course has no slides or textbook, we will provide lecture supplements that include, hopefully, enough discussion to complete

More information

An Introduction to Multi Valued Model Checking

An Introduction to Multi Valued Model Checking An Introduction to Multi Valued Model Checking Georgios E. Fainekos Department of Computer and Information Science University of Pennsylvania, Philadelphia, PA 19104, USA E-mail: fainekos (at) grasp.cis.upenn.edu

More information

Verification. Lecture 9. Bernd Finkbeiner Peter Faymonville Michael Gerke

Verification. Lecture 9. Bernd Finkbeiner Peter Faymonville Michael Gerke Verification Lecture 9 Bernd Finkbeiner Peter Faymonville Michael Gerke REVIEW: Overview of LTL model checking System Negation of property Model of system LTL-formula φ model checker GeneralisedBüchiautomatonG

More information

A brief history of model checking. Ken McMillan Cadence Berkeley Labs

A brief history of model checking. Ken McMillan Cadence Berkeley Labs A brief history of model checking Ken McMillan Cadence Berkeley Labs mcmillan@cadence.com Outline Part I -- Introduction to model checking Automatic formal verification of finite-state systems Applications

More information

LTL is Closed Under Topological Closure

LTL is Closed Under Topological Closure LTL is Closed Under Topological Closure Grgur Petric Maretić, Mohammad Torabi Dashti, David Basin Department of Computer Science, ETH Universitätstrasse 6 Zürich, Switzerland Abstract We constructively

More information

Linear Temporal Logic and Büchi Automata

Linear Temporal Logic and Büchi Automata Linear Temporal Logic and Büchi Automata Yih-Kuen Tsay Department of Information Management National Taiwan University FLOLAC 2009 Yih-Kuen Tsay (SVVRL @ IM.NTU) Linear Temporal Logic and Büchi Automata

More information

PSPACE-completeness of LTL/CTL model checking

PSPACE-completeness of LTL/CTL model checking PSPACE-completeness of LTL/CTL model checking Peter Lohmann April 10, 2007 Abstract This paper will give a proof for the PSPACE-completeness of LTLsatisfiability and for the PSPACE-completeness of the

More information

MODEL CHECKING TIMED SAFETY INSTRUMENTED SYSTEMS

MODEL CHECKING TIMED SAFETY INSTRUMENTED SYSTEMS TKK Reports in Information and Computer Science Espoo 2008 TKK-ICS-R3 MODEL CHECKING TIMED SAFETY INSTRUMENTED SYSTEMS Jussi Lahtinen ABTEKNILLINEN KORKEAKOULU TEKNISKA HÖGSKOLAN HELSINKI UNIVERSITY OF

More information

Verification. Arijit Mondal. Dept. of Computer Science & Engineering Indian Institute of Technology Patna

Verification. Arijit Mondal. Dept. of Computer Science & Engineering Indian Institute of Technology Patna IIT Patna 1 Verification Arijit Mondal Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in Introduction The goal of verification To ensure 100% correct in functionality

More information

Lecture Notes on Emptiness Checking, LTL Büchi Automata

Lecture Notes on Emptiness Checking, LTL Büchi Automata 15-414: Bug Catching: Automated Program Verification Lecture Notes on Emptiness Checking, LTL Büchi Automata Matt Fredrikson André Platzer Carnegie Mellon University Lecture 18 1 Introduction We ve seen

More information

Formal Verification. Lecture 1: Introduction to Model Checking and Temporal Logic¹

Formal Verification. Lecture 1: Introduction to Model Checking and Temporal Logic¹ Formal Verification Lecture 1: Introduction to Model Checking and Temporal Logic¹ Jacques Fleuriot jdf@inf.ed.ac.uk ¹Acknowledgement: Adapted from original material by Paul Jackson, including some additions

More information

Systems Verification. Alessandro Abate. Day 1 January 25, 2016

Systems Verification. Alessandro Abate. Day 1 January 25, 2016 Systems Verification Alessandro Abate Day 1 January 25, 2016 Outline Course setup Intro to formal verification Models - labelled transition systems Properties as specifications - modal logics Model checking

More information

Topics in Verification AZADEH FARZAN FALL 2017

Topics in Verification AZADEH FARZAN FALL 2017 Topics in Verification AZADEH FARZAN FALL 2017 Last time LTL Syntax ϕ ::= true a ϕ 1 ϕ 2 ϕ ϕ ϕ 1 U ϕ 2 a AP. ϕ def = trueu ϕ ϕ def = ϕ g intuitive meaning of and is obt Limitations of LTL pay pay τ τ soda

More information

A Symbolic Approach to Safety LTL Synthesis

A Symbolic Approach to Safety LTL Synthesis A Symbolic Approach to Safety LTL Synthesis Shufang Zhu 1 Lucas M. Tabajara 2 Jianwen Li Geguang Pu 1 Moshe Y. Vardi 2 1 East China Normal University 2 Rice Lucas M. Tabajara (Rice University) 2 University

More information

On simulations and bisimulations of general flow systems

On simulations and bisimulations of general flow systems On simulations and bisimulations of general flow systems Jen Davoren Department of Electrical & Electronic Engineering The University of Melbourne, AUSTRALIA and Paulo Tabuada Department of Electrical

More information

Guest lecturer: Prof. Mark Reynolds, The University of Western Australia

Guest lecturer: Prof. Mark Reynolds, The University of Western Australia Università degli studi di Udine Corso per il dottorato di ricerca: Temporal Logics: Satisfiability Checking, Model Checking, and Synthesis January 2017 Lecture 01, Part 02: Temporal Logics Guest lecturer:

More information

Model Checking. Boris Feigin March 9, University College London

Model Checking. Boris Feigin March 9, University College London b.feigin@cs.ucl.ac.uk University College London March 9, 2005 Outline 1 2 Techniques Symbolic 3 Software 4 Vs. Deductive Verification Summary Further Reading In a nutshell... Model checking is a collection

More information

Monodic fragments of first-order temporal logics

Monodic fragments of first-order temporal logics Outline of talk Most propositional temporal logics are decidable. But the decision problem in predicate (first-order) temporal logics has seemed near-hopeless. Monodic fragments of first-order temporal

More information

Symmetry Reductions. A. Prasad Sistla University Of Illinois at Chicago

Symmetry Reductions. A. Prasad Sistla University Of Illinois at Chicago Symmetry Reductions. A. Prasad Sistla University Of Illinois at Chicago Model-Checking Concurrent PGM Temporal SPEC Model Checker Yes/No Counter Example Approach Build the global state graph Algorithm

More information

Chapter 5: Linear Temporal Logic

Chapter 5: Linear Temporal Logic Chapter 5: Linear Temporal Logic Prof. Ali Movaghar Verification of Reactive Systems Spring 94 Outline We introduce linear temporal logic (LTL), a logical formalism that is suited for specifying LT properties.

More information

Deterministic ω-automata for LTL: A safraless, compositional, and mechanically verified construction

Deterministic ω-automata for LTL: A safraless, compositional, and mechanically verified construction Deterministic ω-automata for LTL: A safraless, compositional, and mechanically verified construction Javier Esparza 1 Jan Křetínský 2 Salomon Sickert 1 1 Fakultät für Informatik, Technische Universität

More information

Lecture 11 Safety, Liveness, and Regular Expression Logics

Lecture 11 Safety, Liveness, and Regular Expression Logics Lecture 11 Safety, Liveness, and Regular Expression Logics Safety and Liveness Regular Expressions w-regular Expressions Programs, Computations, and Properties Guarantee, Response, and Persistance Properties.

More information

Languages, logics and automata

Languages, logics and automata Languages, logics and automata Anca Muscholl LaBRI, Bordeaux, France EWM summer school, Leiden 2011 1 / 89 Before all that.. Sonia Kowalewskaya Emmy Noether Julia Robinson All this attention has been gratifying

More information

Automata-based Verification - III

Automata-based Verification - III CS3172: Advanced Algorithms Automata-based Verification - III Howard Barringer Room KB2.20/22: email: howard.barringer@manchester.ac.uk March 2005 Third Topic Infinite Word Automata Motivation Büchi Automata

More information

Algorithmic verification

Algorithmic verification Algorithmic verification Ahmed Rezine IDA, Linköpings Universitet Hösttermin 2018 Outline Overview Model checking Symbolic execution Outline Overview Model checking Symbolic execution Program verification

More information

a Hebrew University b Weizmann Institute c Rice University

a Hebrew University b Weizmann Institute c Rice University Once and For All Orna Kupferman a, Amir Pnueli b,1, Moshe Y. Vardi c a Hebrew University b Weizmann Institute c Rice University Abstract It has long been known that past-time operators add no expressive

More information

Introduction. Büchi Automata and Model Checking. Outline. Büchi Automata. The simplest computation model for infinite behaviors is the

Introduction. Büchi Automata and Model Checking. Outline. Büchi Automata. The simplest computation model for infinite behaviors is the Introduction Büchi Automata and Model Checking Yih-Kuen Tsay Department of Information Management National Taiwan University FLOLAC 2009 The simplest computation model for finite behaviors is the finite

More information

CTL Model checking. 1. finite number of processes, each having a finite number of finite-valued variables. Model-Checking

CTL Model checking. 1. finite number of processes, each having a finite number of finite-valued variables. Model-Checking CTL Model checking Assumptions:. finite number of processes, each having a finite number of finite-valued variables.. finite length of CTL formula Problem:Determine whether formula f 0 is true in a finite

More information

Course Runtime Verification

Course Runtime Verification Course Martin Leucker (ISP) Volker Stolz (Høgskolen i Bergen, NO) INF5140 / V17 Chapters of the Course Chapter 1 Recall in More Depth Chapter 2 Specification Languages on Words Chapter 3 LTL on Finite

More information

MODEL-CHECKING IN DENSE REAL-TIME SHANT HARUTUNIAN

MODEL-CHECKING IN DENSE REAL-TIME SHANT HARUTUNIAN MODEL-CHECKING IN DENSE REAL-TIME SHANT HARUTUNIAN 1. Introduction These slides are for a talk based on the paper Model-Checking in Dense Real- Time, by Rajeev Alur, Costas Courcoubetis, and David Dill.

More information

FORMAL METHODS LECTURE III: LINEAR TEMPORAL LOGIC

FORMAL METHODS LECTURE III: LINEAR TEMPORAL LOGIC Alessandro Artale (FM First Semester 2007/2008) p. 1/39 FORMAL METHODS LECTURE III: LINEAR TEMPORAL LOGIC Alessandro Artale Faculty of Computer Science Free University of Bolzano artale@inf.unibz.it http://www.inf.unibz.it/

More information

SMV the Symbolic Model Verifier. Example: the alternating bit protocol. LTL Linear Time temporal Logic

SMV the Symbolic Model Verifier. Example: the alternating bit protocol. LTL Linear Time temporal Logic Model Checking (I) SMV the Symbolic Model Verifier Example: the alternating bit protocol LTL Linear Time temporal Logic CTL Fixed Points Correctness Slide 1 SMV - Symbolic Model Verifier SMV - Symbolic

More information

Characterizing Fault-Tolerant Systems by Means of Simulation Relations

Characterizing Fault-Tolerant Systems by Means of Simulation Relations Characterizing Fault-Tolerant Systems by Means of Simulation Relations TECHNICAL REPORT Ramiro Demasi 1, Pablo F. Castro 2,3, Thomas S.E. Maibaum 1, and Nazareno Aguirre 2,3 1 Department of Computing and

More information

3-Valued Abstraction-Refinement

3-Valued Abstraction-Refinement 3-Valued Abstraction-Refinement Sharon Shoham Academic College of Tel-Aviv Yaffo 1 Model Checking An efficient procedure that receives: A finite-state model describing a system A temporal logic formula

More information

THEORY OF SYSTEMS MODELING AND ANALYSIS. Henny Sipma Stanford University. Master class Washington University at St Louis November 16, 2006

THEORY OF SYSTEMS MODELING AND ANALYSIS. Henny Sipma Stanford University. Master class Washington University at St Louis November 16, 2006 THEORY OF SYSTEMS MODELING AND ANALYSIS Henny Sipma Stanford University Master class Washington University at St Louis November 16, 2006 1 1 COURSE OUTLINE 8:37-10:00 Introduction -- Computational model

More information

Timo Latvala. March 7, 2004

Timo Latvala. March 7, 2004 Reactive Systems: Safety, Liveness, and Fairness Timo Latvala March 7, 2004 Reactive Systems: Safety, Liveness, and Fairness 14-1 Safety Safety properties are a very useful subclass of specifications.

More information

Abstractions and Decision Procedures for Effective Software Model Checking

Abstractions and Decision Procedures for Effective Software Model Checking Abstractions and Decision Procedures for Effective Software Model Checking Prof. Natasha Sharygina The University of Lugano, Carnegie Mellon University Microsoft Summer School, Moscow, July 2011 Lecture

More information

ESE601: Hybrid Systems. Introduction to verification

ESE601: Hybrid Systems. Introduction to verification ESE601: Hybrid Systems Introduction to verification Spring 2006 Suggested reading material Papers (R14) - (R16) on the website. The book Model checking by Clarke, Grumberg and Peled. What is verification?

More information

Lecture 2 Automata Theory

Lecture 2 Automata Theory Lecture 2 Automata Theory Ufuk Topcu Nok Wongpiromsarn Richard M. Murray Outline: Transition systems Linear-time properties Regular propereties EECI, 14 May 2012 This short-course is on this picture applied

More information

Büchi Automata and Linear Temporal Logic

Büchi Automata and Linear Temporal Logic Büchi Automata and Linear Temporal Logic Joshua D. Guttman Worcester Polytechnic Institute 18 February 2010 Guttman ( WPI ) Büchi & LTL 18 Feb 10 1 / 10 Büchi Automata Definition A Büchi automaton is a

More information

Computation Tree Logic

Computation Tree Logic Computation Tree Logic Hao Zheng Department of Computer Science and Engineering University of South Florida Tampa, FL 33620 Email: zheng@cse.usf.edu Phone: (813)974-4757 Fax: (813)974-5456 Hao Zheng (CSE,

More information

Overview. Discrete Event Systems Verification of Finite Automata. What can finite automata be used for? What can finite automata be used for?

Overview. Discrete Event Systems Verification of Finite Automata. What can finite automata be used for? What can finite automata be used for? Computer Engineering and Networks Overview Discrete Event Systems Verification of Finite Automata Lothar Thiele Introduction Binary Decision Diagrams Representation of Boolean Functions Comparing two circuits

More information

Double Header. Model Checking. Model Checking. Overarching Plan. Take-Home Message. Spoiler Space. Topic: (Generic) Model Checking

Double Header. Model Checking. Model Checking. Overarching Plan. Take-Home Message. Spoiler Space. Topic: (Generic) Model Checking Double Header Model Checking #1 Two Lectures Model Checking SoftwareModel Checking SLAM and BLAST Flying Boxes It is traditional to describe this stuff (especially SLAM and BLAST) with high-gloss animation

More information

Model Checking: An Introduction

Model Checking: An Introduction Model Checking: An Introduction Meeting 3, CSCI 5535, Spring 2013 Announcements Homework 0 ( Preliminaries ) out, due Friday Saturday This Week Dive into research motivating CSCI 5535 Next Week Begin foundations

More information

Counterexample-Driven Model Checking

Counterexample-Driven Model Checking Counterexample-Driven Model Checking (Extended Abstract) Natarajan Shankar and Maria Sorea SRI International Computer Science Laboratory 333 Ravenswood Avenue Menlo Park, CA 94025, USA {shankar, sorea}@csl.sri.com

More information

The theory of regular cost functions.

The theory of regular cost functions. The theory of regular cost functions. Denis Kuperberg PhD under supervision of Thomas Colcombet Hebrew University of Jerusalem ERC Workshop on Quantitative Formal Methods Jerusalem, 10-05-2013 1 / 30 Introduction

More information

Automata-based Verification - III

Automata-based Verification - III COMP30172: Advanced Algorithms Automata-based Verification - III Howard Barringer Room KB2.20: email: howard.barringer@manchester.ac.uk March 2009 Third Topic Infinite Word Automata Motivation Büchi Automata

More information

CS357: CTL Model Checking (two lectures worth) David Dill

CS357: CTL Model Checking (two lectures worth) David Dill CS357: CTL Model Checking (two lectures worth) David Dill 1 CTL CTL = Computation Tree Logic It is a propositional temporal logic temporal logic extended to properties of events over time. CTL is a branching

More information

Linear-Time Logic. Hao Zheng

Linear-Time Logic. Hao Zheng Linear-Time Logic Hao Zheng Department of Computer Science and Engineering University of South Florida Tampa, FL 33620 Email: zheng@cse.usf.edu Phone: (813)974-4757 Fax: (813)974-5456 Hao Zheng (CSE, USF)

More information