Model Checking. Temporal Logic. Fifth International Symposium in Programming, volume. of concurrent systems in CESAR. In Proceedings of the

Size: px
Start display at page:

Download "Model Checking. Temporal Logic. Fifth International Symposium in Programming, volume. of concurrent systems in CESAR. In Proceedings of the"

Transcription

1 Sérgio Campos, Edmund Why? Advantages: No proofs Fast Counter-examples No problem with partial specifications can easily express many concurrency properties Main Disadvantage: State Explosion Problem Too many processes Data Paths Much progress has been made on this problem recently Tree Problem 1 / 34 Tree Problem 3 / 34 Specification Language: A propositional temporal logic called CTL. Verification Procedure: Exhaustive search of the state space of the concurrent system to determine if the specification is true or not. E. M. and E. A. Emerson. Synthesis of synchronization skeletons for branching time temporal logic. In Logic of programs: workshop Yorktown Heights NY May 1981, volume 131 of Lecture Notes in Computer Science. Springer-Verlag, J.P. Quielle and J. Sifakis. Specification and verification of concurrent systems in CESAR. In Proceedings of the Fifth International Symposium in Programming, volume 137 of Lecture Notes in Computer Science. Springer-Verlag, Finite-state systems are modeled by labeled state-transition graphs, called Kripke Structures. If some state is designated as the initial state, the structure can be unwound into an infinite tree with that state as the root. We will refer to the infinite tree obtained in this manner as the computation tree of the system. Paths in the tree represent possible computations or behaviors of the program. Tree Problem 2 / 34 Tree Problem 4 / 34

2 Cont.) State Transition Graph or Kripke Model b c c b c c c c Infinite Tree (Unwind State Graph to obtain Infinite Tree) Tree Temporal logics may differ according to how they handle branching in the underlying computation tree. In a linear temporal logic, operators are provided for describing events along a single computation path. In ranching-time logic the temporal operators quantify over the paths that are possible from a given state. Tree Problem 5 / 34 Tree Problem 7 / 34 Cont.) Formally, a Kripke structure is a triple M = S R L, where S is the set of states, R S S is the transition relation, and L : S (AP) gives the set of atomic propositions true in each state. We assume that R is total (i.e., for all states s S there exists a state s S such that (s s ) R). A path in M is an infinite sequence of states, π = s0 s1... such that for i 0, (s s1) R. We write π to denote the suffix of π starting at s. Unless otherwise stated, all of our results apply only to finite Kripke structures. The computation tree logic CTL combines both branching-time and linear-time operators. In this logic a path quantifier can prefix an assertion composed of arbitrary combinations of the usual linear-time operators. 1. Path quantifier: for every path E there exists a path 2. Linear-time operators: Xp p holds next time. Fp p holds sometime in the future Gp p holds globally in the future puq p holds until q holds Tree Problem 6 / 34 Tree Problem 8 / 34

3 Path Formulas and State Formulas The syntax of state formulas is given by the following rules: If p AP, then p is a state formula. If f and g are state formulas, then f and f g are state formulas. If f is a path formula, then E(f ) is a state formula. Two additional rules are needed to specify the syntax of path formulas: If f is a state formula, then f is also a path formula. If f and g are path formulas, then f, f g, X f, and U fg are path formulas. Path Formulas If f is a path formula, M π = f means that f holds along path π in Kripke structure M. Assume g1 and g2 are path formulas and f is a state formula. The relation M π = f is defined inductively as follows: 1. π = f s is the first state of π and s = f. 2. π = g1 π = g1. 3. π = g1 g2 π = g1 or π = g2. 4. π = X g1 π 1 = g1. 5. π = U g1g2 there exists a k 0 such that π k = g2 and for 0 j < k, π j = g1. Tree Problem 9 / 34 Tree Problem 11 / 34 State Formulas If f is a state formula, the notation M s = f means that f holds at state s in the Kripke structure M. Assume f1 and f2 are state formulas and g is a path formula. The relation M s = f is defined inductively as follows: 1. s = p p L(s). 2. s = f1 s = f1. 3. s = f1 f2 s = f1 or s = f2. 4. s = E(g) there exists a path π starting with s such that π = g. Standard Abbreviations The customary abbreviations will be used for the connectives of propositional logic. In addition, we will use the following abbreviations in writing temporal operators: (f ) E( f ) F f U truef G f F f Tree Problem 10 / 34 Tree Problem 12 / 34

4 CTL is a restricted subset of CTL that permits only branching-time operators each of the linear-time operators G, F, X, and U must be immediately preceded by a path quantifier. More precisely, CTL is the subset of CTL that is obtained if the following two rules are used to specify the syntax of path formulas. If f and g are state formulas, then X f and U fg are path formulas. If f is a path formula, then so is f. Example: G(EF p) Expressive Power It can be shown that the three logics discussed in this section have different expressive powers. For example, there is no CTL formula that is equivalent to the LTL formula (FG p). Likewise, there is no LTL formula that is equivalent to the CTL formula G(EF p). The disjunction (FG p) G(EF p) is a CTL formula that is not expressible in either CTL or LTL. Tree Problem 13 / 34 Tree Problem 15 / 34 Linear temporal logic (LTL), on the other hand, will consist of formulas that have the form f where f is a path formula in which the only state subformulas permitted are atomic propositions. More precisely, a path formula is either: If p AP, then p is a path formula. If f and g are path formulas, then f, f g, X f, and U fg are path formulas. Example: (FG p) There are eight basic CTL operators: X and EX, G and EG, F and EF, U and EU Each of these can be expressed in terms of EX, EG, and EU: X f = EX( f ) G f = EF( f ) F f = EG( f ) EF f = E[true U f ] [f U g] E[ g U f g] EG g Tree Problem 14 / 34 Tree Problem 16 / 34

5 Cont.) The four most widely used CTL operators are illustrated below. Each computation tree has the state s0 as its root. M s0 = EF g M s0 = F g M s0 = EG g M s0 = G g True or Counterexample Tree Problem 17 / 34 Tree Problem 19 / 34 The Problem Let M be the state transition graph obtained from the concurrent system. Let f be the specification expressed in temporal logic. Find all states s of M such that M s = f. There exist very efficient model checking algorithms for the logic CTL. E. M., E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Trans. Programming Languages and Systems, 8(2):pages , Basic M s0 = EF p? Tree Problem 18 / 34 Tree Problem 20 / 34

6 Basic M s0 = EF p? U1 = p EX U0 Basic M s0 = EF p? U3 = p EX U2 Tree Problem 21 / 34 Tree Problem 23 / 34 Basic M s0 = EF p? U2 = p EX U1 Basic M s0 = EF p? U4 = p EX U3 Tree Problem 22 / 34 Tree Problem 24 / 34

7 Basic M s0 = EG a F b? M s0 = F a F b? ~ Basic M s0 = EG a F b? M s0 = F a F b? ~ AF ~a Tree Problem 25 / 34 Tree Problem 27 / 34 Basic M s0 = EG a F b? M s0 = F a F b? ~ AF ~a Basic M s0 = EG a F b? M s0 = F a F b? ~ AF ~a Tree Problem 26 / 34 Tree Problem 28 / 34

8 Basic M s0 = EG a F b? M s0 = F a F b? ~AF ~a ~ AF ~a ~AF ~a Mutual Exclusion Example ~AF ~a Tree Problem 29 / 34 Tree Problem 31 / 34 Mutual Exclusion Example n t c t c Mutual Exclusion Example t n t n Tree Problem 30 / 34 Tree Problem 32 / 34

9 Mutual Exclusion Example Tree Problem 33 / 34 The Kyoto University Verifier Vectorized version of EMC algorithm on Fujitsu FACOM VP400E using an explicit representation of the state transition graph. State Machine size: 131,072 states 67,108,864 transitions 512 transitions from each state on the average. CTL formula: 113 different subformulas. Time for model checking: 225 seconds Tree Problem 34 / 34

Finite-State Model Checking

Finite-State Model Checking EECS 219C: Computer-Aided Verification Intro. to Model Checking: Models and Properties Sanjit A. Seshia EECS, UC Berkeley Finite-State Model Checking G(p X q) Temporal logic q p FSM Model Checker Yes,

More information

Computation Tree Logic (CTL)

Computation Tree Logic (CTL) Computation Tree Logic (CTL) Fazle Rabbi University of Oslo, Oslo, Norway Bergen University College, Bergen, Norway fazlr@student.matnat.uio.no, Fazle.Rabbi@hib.no May 30, 2015 Fazle Rabbi et al. (UiO,

More information

PSPACE-completeness of LTL/CTL model checking

PSPACE-completeness of LTL/CTL model checking PSPACE-completeness of LTL/CTL model checking Peter Lohmann April 10, 2007 Abstract This paper will give a proof for the PSPACE-completeness of LTLsatisfiability and for the PSPACE-completeness of the

More information

Model Checking: An Introduction

Model Checking: An Introduction Model Checking: An Introduction Meeting 3, CSCI 5535, Spring 2013 Announcements Homework 0 ( Preliminaries ) out, due Friday Saturday This Week Dive into research motivating CSCI 5535 Next Week Begin foundations

More information

Model Checking I. What are LTL and CTL? dack. and. dreq. and. q0bar

Model Checking I. What are LTL and CTL? dack. and. dreq. and. q0bar Model Checking I What are LTL and CTL? q0 or and dack dreq q0bar and 1 View circuit as a transition system (dreq, q0, dack) (dreq, q0, dack ) q0 = dreq and dack = dreq & (q0 + ( q0 & dack)) q0 or and D

More information

Model Checking I. What are LTL and CTL? dack. and. dreq. and. q0bar

Model Checking I. What are LTL and CTL? dack. and. dreq. and. q0bar Model Checking I What are LTL and CTL? and dack q0 or D dreq D q0bar and 1 View circuit as a transition system (dreq, q0, dack) (dreq, q0, dack ) q0 = dreq dack = dreq and (q0 or (not q0 and dack)) q0

More information

Temporal Logic. Stavros Tripakis University of California, Berkeley. We have designed a system. We want to check that it is correct.

Temporal Logic. Stavros Tripakis University of California, Berkeley. We have designed a system. We want to check that it is correct. EE 244: Fundamental Algorithms for System Modeling, Analysis, and Optimization Fall 2016 Temporal logic Stavros Tripakis University of California, Berkeley Stavros Tripakis (UC Berkeley) EE 244, Fall 2016

More information

Computation Tree Logic

Computation Tree Logic Computation Tree Logic Computation tree logic (CTL) is a branching-time logic that includes the propositional connectives as well as temporal connectives AX, EX, AU, EU, AG, EG, AF, and EF. The syntax

More information

An Introduction to Temporal Logics

An Introduction to Temporal Logics An Introduction to Temporal Logics c 2001,2004 M. Lawford Outline Motivation: Dining Philosophers Safety, Liveness, Fairness & Justice Kripke structures, LTS, SELTS, and Paths Linear Temporal Logic Branching

More information

Probabilistic Model Checking Michaelmas Term Dr. Dave Parker. Department of Computer Science University of Oxford

Probabilistic Model Checking Michaelmas Term Dr. Dave Parker. Department of Computer Science University of Oxford Probabilistic Model Checking Michaelmas Term 2011 Dr. Dave Parker Department of Computer Science University of Oxford Overview Temporal logic Non-probabilistic temporal logic CTL Probabilistic temporal

More information

Model checking the basic modalities of CTL with Description Logic

Model checking the basic modalities of CTL with Description Logic Model checking the basic modalities of CTL with Description Logic Shoham Ben-David Richard Trefler Grant Weddell David R. Cheriton School of Computer Science University of Waterloo Abstract. Model checking

More information

Temporal Logic. M φ. Outline. Why not standard logic? What is temporal logic? LTL CTL* CTL Fairness. Ralf Huuck. Kripke Structure

Temporal Logic. M φ. Outline. Why not standard logic? What is temporal logic? LTL CTL* CTL Fairness. Ralf Huuck. Kripke Structure Outline Temporal Logic Ralf Huuck Why not standard logic? What is temporal logic? LTL CTL* CTL Fairness Model Checking Problem model, program? M φ satisfies, Implements, refines property, specification

More information

Guest lecturer: Prof. Mark Reynolds, The University of Western Australia

Guest lecturer: Prof. Mark Reynolds, The University of Western Australia Università degli studi di Udine Corso per il dottorato di ricerca: Temporal Logics: Satisfiability Checking, Model Checking, and Synthesis January 2017 Lecture 01, Part 02: Temporal Logics Guest lecturer:

More information

Lecture 16: Computation Tree Logic (CTL)

Lecture 16: Computation Tree Logic (CTL) Lecture 16: Computation Tree Logic (CTL) 1 Programme for the upcoming lectures Introducing CTL Basic Algorithms for CTL CTL and Fairness; computing strongly connected components Basic Decision Diagrams

More information

Verification. Arijit Mondal. Dept. of Computer Science & Engineering Indian Institute of Technology Patna

Verification. Arijit Mondal. Dept. of Computer Science & Engineering Indian Institute of Technology Patna IIT Patna 1 Verification Arijit Mondal Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in Introduction The goal of verification To ensure 100% correct in functionality

More information

CS357: CTL Model Checking (two lectures worth) David Dill

CS357: CTL Model Checking (two lectures worth) David Dill CS357: CTL Model Checking (two lectures worth) David Dill 1 CTL CTL = Computation Tree Logic It is a propositional temporal logic temporal logic extended to properties of events over time. CTL is a branching

More information

Model for reactive systems/software

Model for reactive systems/software Temporal Logics CS 5219 Abhik Roychoudhury National University of Singapore The big picture Software/ Sys. to be built (Dream) Properties to Satisfy (caution) Today s lecture System Model (Rough Idea)

More information

Temporal & Modal Logic. Acronyms. Contents. Temporal Logic Overview Classification PLTL Syntax Semantics Identities. Concurrency Model Checking

Temporal & Modal Logic. Acronyms. Contents. Temporal Logic Overview Classification PLTL Syntax Semantics Identities. Concurrency Model Checking Temporal & Modal Logic E. Allen Emerson Presenter: Aly Farahat 2/12/2009 CS5090 1 Acronyms TL: Temporal Logic BTL: Branching-time Logic LTL: Linear-Time Logic CTL: Computation Tree Logic PLTL: Propositional

More information

MODEL-CHECKING IN DENSE REAL-TIME SHANT HARUTUNIAN

MODEL-CHECKING IN DENSE REAL-TIME SHANT HARUTUNIAN MODEL-CHECKING IN DENSE REAL-TIME SHANT HARUTUNIAN 1. Introduction These slides are for a talk based on the paper Model-Checking in Dense Real- Time, by Rajeev Alur, Costas Courcoubetis, and David Dill.

More information

Formal Verification of Mobile Network Protocols

Formal Verification of Mobile Network Protocols Dipartimento di Informatica, Università di Pisa, Italy milazzo@di.unipi.it Pisa April 26, 2005 Introduction Modelling Systems Specifications Examples Algorithms Introduction Design validation ensuring

More information

Computation Tree Logic (CTL) & Basic Model Checking Algorithms

Computation Tree Logic (CTL) & Basic Model Checking Algorithms Computation Tree Logic (CTL) & Basic Model Checking Algorithms Martin Fränzle Carl von Ossietzky Universität Dpt. of Computing Science Res. Grp. Hybride Systeme Oldenburg, Germany 02917: CTL & Model Checking

More information

Lecture Notes on Model Checking

Lecture Notes on Model Checking Lecture Notes on Model Checking 15-816: Modal Logic André Platzer Lecture 18 March 30, 2010 1 Introduction to This Lecture In this course, we have seen several modal logics and proof calculi to justify

More information

Model Checking. Boris Feigin March 9, University College London

Model Checking. Boris Feigin March 9, University College London b.feigin@cs.ucl.ac.uk University College London March 9, 2005 Outline 1 2 Techniques Symbolic 3 Software 4 Vs. Deductive Verification Summary Further Reading In a nutshell... Model checking is a collection

More information

Double Header. Model Checking. Model Checking. Overarching Plan. Take-Home Message. Spoiler Space. Topic: (Generic) Model Checking

Double Header. Model Checking. Model Checking. Overarching Plan. Take-Home Message. Spoiler Space. Topic: (Generic) Model Checking Double Header Model Checking #1 Two Lectures Model Checking SoftwareModel Checking SLAM and BLAST Flying Boxes It is traditional to describe this stuff (especially SLAM and BLAST) with high-gloss animation

More information

Introduction to Model Checking. Debdeep Mukhopadhyay IIT Madras

Introduction to Model Checking. Debdeep Mukhopadhyay IIT Madras Introduction to Model Checking Debdeep Mukhopadhyay IIT Madras How good can you fight bugs? Comprising of three parts Formal Verification techniques consist of three parts: 1. A framework for modeling

More information

Abstractions and Decision Procedures for Effective Software Model Checking

Abstractions and Decision Procedures for Effective Software Model Checking Abstractions and Decision Procedures for Effective Software Model Checking Prof. Natasha Sharygina The University of Lugano, Carnegie Mellon University Microsoft Summer School, Moscow, July 2011 Lecture

More information

MODEL CHECKING. Arie Gurfinkel

MODEL CHECKING. Arie Gurfinkel 1 MODEL CHECKING Arie Gurfinkel 2 Overview Kripke structures as models of computation CTL, LTL and property patterns CTL model-checking and counterexample generation State of the Art Model-Checkers 3 SW/HW

More information

Model Checking with CTL. Presented by Jason Simas

Model Checking with CTL. Presented by Jason Simas Model Checking with CTL Presented by Jason Simas Model Checking with CTL Based Upon: Logic in Computer Science. Huth and Ryan. 2000. (148-215) Model Checking. Clarke, Grumberg and Peled. 1999. (1-26) Content

More information

Algorithmic verification

Algorithmic verification Algorithmic verification Ahmed Rezine IDA, Linköpings Universitet Hösttermin 2018 Outline Overview Model checking Symbolic execution Outline Overview Model checking Symbolic execution Program verification

More information

Verification Using Temporal Logic

Verification Using Temporal Logic CMSC 630 February 25, 2015 1 Verification Using Temporal Logic Sources: E.M. Clarke, O. Grumberg and D. Peled. Model Checking. MIT Press, Cambridge, 2000. E.A. Emerson. Temporal and Modal Logic. Chapter

More information

First-order resolution for CTL

First-order resolution for CTL First-order resolution for Lan Zhang, Ullrich Hustadt and Clare Dixon Department of Computer Science, University of Liverpool Liverpool, L69 3BX, UK {Lan.Zhang, U.Hustadt, CLDixon}@liverpool.ac.uk Abstract

More information

Introduction to Temporal Logic. The purpose of temporal logics is to specify properties of dynamic systems. These can be either

Introduction to Temporal Logic. The purpose of temporal logics is to specify properties of dynamic systems. These can be either Introduction to Temporal Logic The purpose of temporal logics is to specify properties of dynamic systems. These can be either Desired properites. Often liveness properties like In every infinite run action

More information

A Brief Introduction to Model Checking

A Brief Introduction to Model Checking A Brief Introduction to Model Checking Jan. 18, LIX Page 1 Model Checking A technique for verifying finite state concurrent systems; a benefit on this restriction: largely automatic; a problem to fight:

More information

Computer Science Department Carnegie Mellon University Pittsburgh, PA 15213

Computer Science Department Carnegie Mellon University Pittsburgh, PA 15213 Computer Science Department Carnegie Mellon University Pittsburgh, PA 15213 Abstract We investigate the expressive power of linear-time and branching-time tempora1logics as fragments of the logic CfL*.

More information

Summary. Computation Tree logic Vs. LTL. CTL at a glance. KM,s =! iff for every path " starting at s KM," =! COMPUTATION TREE LOGIC (CTL)

Summary. Computation Tree logic Vs. LTL. CTL at a glance. KM,s =! iff for every path  starting at s KM, =! COMPUTATION TREE LOGIC (CTL) Summary COMPUTATION TREE LOGIC (CTL) Slides by Alessandro Artale http://www.inf.unibz.it/ artale/ Some material (text, figures) displayed in these slides is courtesy of: M. Benerecetti, A. Cimatti, M.

More information

ESE601: Hybrid Systems. Introduction to verification

ESE601: Hybrid Systems. Introduction to verification ESE601: Hybrid Systems Introduction to verification Spring 2006 Suggested reading material Papers (R14) - (R16) on the website. The book Model checking by Clarke, Grumberg and Peled. What is verification?

More information

Software Verification using Predicate Abstraction and Iterative Refinement: Part 1

Software Verification using Predicate Abstraction and Iterative Refinement: Part 1 using Predicate Abstraction and Iterative Refinement: Part 1 15-414 Bug Catching: Automated Program Verification and Testing Sagar Chaki November 28, 2011 Outline Overview of Model Checking Creating Models

More information

Linear Temporal Logic and Büchi Automata

Linear Temporal Logic and Büchi Automata Linear Temporal Logic and Büchi Automata Yih-Kuen Tsay Department of Information Management National Taiwan University FLOLAC 2009 Yih-Kuen Tsay (SVVRL @ IM.NTU) Linear Temporal Logic and Büchi Automata

More information

Automata-based Verification - III

Automata-based Verification - III COMP30172: Advanced Algorithms Automata-based Verification - III Howard Barringer Room KB2.20: email: howard.barringer@manchester.ac.uk March 2009 Third Topic Infinite Word Automata Motivation Büchi Automata

More information

T Reactive Systems: Temporal Logic LTL

T Reactive Systems: Temporal Logic LTL Tik-79.186 Reactive Systems 1 T-79.186 Reactive Systems: Temporal Logic LTL Spring 2005, Lecture 4 January 31, 2005 Tik-79.186 Reactive Systems 2 Temporal Logics Temporal logics are currently the most

More information

Alan Bundy. Automated Reasoning LTL Model Checking

Alan Bundy. Automated Reasoning LTL Model Checking Automated Reasoning LTL Model Checking Alan Bundy Lecture 9, page 1 Introduction So far we have looked at theorem proving Powerful, especially where good sets of rewrite rules or decision procedures have

More information

3-Valued Abstraction-Refinement

3-Valued Abstraction-Refinement 3-Valued Abstraction-Refinement Sharon Shoham Academic College of Tel-Aviv Yaffo 1 Model Checking An efficient procedure that receives: A finite-state model describing a system A temporal logic formula

More information

Syntax of propositional logic. Syntax tree of a formula. Semantics of propositional logic (I) Subformulas

Syntax of propositional logic. Syntax tree of a formula. Semantics of propositional logic (I) Subformulas Syntax of propositional logic Syntax tree of a formula An atomic formula has the form A i where i =, 2, 3,.... Formulas are defined by the following inductive process: Every formula can be represented

More information

Model checking (III)

Model checking (III) Theory and Algorithms Model checking (III) Alternatives andextensions Rafael Ramirez rafael@iua.upf.es Trimester1, Oct2003 Slide 9.1 Logics for reactive systems The are many specification languages for

More information

Reasoning about Strategies: From module checking to strategy logic

Reasoning about Strategies: From module checking to strategy logic Reasoning about Strategies: From module checking to strategy logic based on joint works with Fabio Mogavero, Giuseppe Perelli, Luigi Sauro, and Moshe Y. Vardi Luxembourg September 23, 2013 Reasoning about

More information

Temporal Logic Model Checking

Temporal Logic Model Checking 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 1 Temporal Logic Model Checking Thomas Wahl Computing Laboratory, Oxford University 18 Feb, 2009 Thomas Wahl, Oxford University

More information

State-Space Exploration. Stavros Tripakis University of California, Berkeley

State-Space Exploration. Stavros Tripakis University of California, Berkeley EE 144/244: Fundamental Algorithms for System Modeling, Analysis, and Optimization Fall 2014 State-Space Exploration Stavros Tripakis University of California, Berkeley Stavros Tripakis (UC Berkeley) EE

More information

Models. Lecture 25: Model Checking. Example. Semantics. Meanings with respect to model and path through future...

Models. Lecture 25: Model Checking. Example. Semantics. Meanings with respect to model and path through future... Models Lecture 25: Model Checking CSCI 81 Spring, 2012 Kim Bruce Meanings with respect to model and path through future... M = (S,, L) is a transition system if S is a set of states is a transition relation

More information

Relating Counterexamples to Test Cases in CTL Model Checking Specifications

Relating Counterexamples to Test Cases in CTL Model Checking Specifications Relating Counterexamples to Test Cases in CTL Model Checking Specifications ABSTRACT Duminda Wijesekera dwijesek@gmu.edu Department of Information and Software Engineering, MS 4A4 George Mason University

More information

Alternating-Time Temporal Logic

Alternating-Time Temporal Logic Alternating-Time Temporal Logic R.Alur, T.Henzinger, O.Kupferman Rafael H. Bordini School of Informatics PUCRS R.Bordini@pucrs.br Logic Club 5th of September, 2013 ATL All the material in this presentation

More information

Temporal logics and explicit-state model checking. Pierre Wolper Université de Liège

Temporal logics and explicit-state model checking. Pierre Wolper Université de Liège Temporal logics and explicit-state model checking Pierre Wolper Université de Liège 1 Topics to be covered Introducing explicit-state model checking Finite automata on infinite words Temporal Logics and

More information

Automata-based Verification - III

Automata-based Verification - III CS3172: Advanced Algorithms Automata-based Verification - III Howard Barringer Room KB2.20/22: email: howard.barringer@manchester.ac.uk March 2005 Third Topic Infinite Word Automata Motivation Büchi Automata

More information

Principles. Model (System Requirements) Answer: Model Checker. Specification (System Property) Yes, if the model satisfies the specification

Principles. Model (System Requirements) Answer: Model Checker. Specification (System Property) Yes, if the model satisfies the specification Model Checking Princiles Model (System Requirements) Secification (System Proerty) Model Checker Answer: Yes, if the model satisfies the secification Counterexamle, otherwise Krike Model Krike Structure

More information

SMV the Symbolic Model Verifier. Example: the alternating bit protocol. LTL Linear Time temporal Logic

SMV the Symbolic Model Verifier. Example: the alternating bit protocol. LTL Linear Time temporal Logic Model Checking (I) SMV the Symbolic Model Verifier Example: the alternating bit protocol LTL Linear Time temporal Logic CTL Fixed Points Correctness Slide 1 SMV - Symbolic Model Verifier SMV - Symbolic

More information

Automata-Theoretic Model Checking of Reactive Systems

Automata-Theoretic Model Checking of Reactive Systems Automata-Theoretic Model Checking of Reactive Systems Radu Iosif Verimag/CNRS (Grenoble, France) Thanks to Tom Henzinger (IST, Austria), Barbara Jobstmann (CNRS, Grenoble) and Doron Peled (Bar-Ilan University,

More information

A brief history of model checking. Ken McMillan Cadence Berkeley Labs

A brief history of model checking. Ken McMillan Cadence Berkeley Labs A brief history of model checking Ken McMillan Cadence Berkeley Labs mcmillan@cadence.com Outline Part I -- Introduction to model checking Automatic formal verification of finite-state systems Applications

More information

3. Temporal Logics and Model Checking

3. Temporal Logics and Model Checking 3. Temporal Logics and Model Checking Page Temporal Logics 3.2 Linear Temporal Logic (PLTL) 3.4 Branching Time Temporal Logic (BTTL) 3.8 Computation Tree Logic (CTL) 3.9 Linear vs. Branching Time TL 3.16

More information

Overview. overview / 357

Overview. overview / 357 Overview overview6.1 Introduction Modelling parallel systems Linear Time Properties Regular Properties Linear Temporal Logic (LTL) Computation Tree Logic syntax and semantics of CTL expressiveness of CTL

More information

Chapter 4: Computation tree logic

Chapter 4: Computation tree logic INFOF412 Formal verification of computer systems Chapter 4: Computation tree logic Mickael Randour Formal Methods and Verification group Computer Science Department, ULB March 2017 1 CTL: a specification

More information

Chapter 6: Computation Tree Logic

Chapter 6: Computation Tree Logic Chapter 6: Computation Tree Logic Prof. Ali Movaghar Verification of Reactive Systems Outline We introduce Computation Tree Logic (CTL), a branching temporal logic for specifying system properties. A comparison

More information

NPTEL Phase-II Video course on. Design Verification and Test of. Dr. Santosh Biswas Dr. Jatindra Kumar Deka IIT Guwahati

NPTEL Phase-II Video course on. Design Verification and Test of. Dr. Santosh Biswas Dr. Jatindra Kumar Deka IIT Guwahati NPTEL Phase-II Video course on Design Verification and Test of Digital VLSI Designs Dr. Santosh Biswas Dr. Jatindra Kumar Deka IIT Guwahati Module IV: Temporal Logic Lecture I: Introduction to formal methods

More information

Timo Latvala. February 4, 2004

Timo Latvala. February 4, 2004 Reactive Systems: Temporal Logic LT L Timo Latvala February 4, 2004 Reactive Systems: Temporal Logic LT L 8-1 Temporal Logics Temporal logics are currently the most widely used specification formalism

More information

CTL Model checking. 1. finite number of processes, each having a finite number of finite-valued variables. Model-Checking

CTL Model checking. 1. finite number of processes, each having a finite number of finite-valued variables. Model-Checking CTL Model checking Assumptions:. finite number of processes, each having a finite number of finite-valued variables.. finite length of CTL formula Problem:Determine whether formula f 0 is true in a finite

More information

Model Checking Algorithms

Model Checking Algorithms Model Checking Algorithms Bow-Yaw Wang Institute of Information Science Academia Sinica, Taiwan November 14, 2018 Bow-Yaw Wang (Academia Sinica) Model Checking Algorithms November 14, 2018 1 / 56 Outline

More information

CS256/Spring 2008 Lecture #11 Zohar Manna. Beyond Temporal Logics

CS256/Spring 2008 Lecture #11 Zohar Manna. Beyond Temporal Logics CS256/Spring 2008 Lecture #11 Zohar Manna Beyond Temporal Logics Temporal logic expresses properties of infinite sequences of states, but there are interesting properties that cannot be expressed, e.g.,

More information

Computation Tree Logic

Computation Tree Logic Computation Tree Logic Hao Zheng Department of Computer Science and Engineering University of South Florida Tampa, FL 33620 Email: zheng@cse.usf.edu Phone: (813)974-4757 Fax: (813)974-5456 Hao Zheng (CSE,

More information

Computer-Aided Program Design

Computer-Aided Program Design Computer-Aided Program Design Spring 2015, Rice University Unit 3 Swarat Chaudhuri February 5, 2015 Temporal logic Propositional logic is a good language for describing properties of program states. However,

More information

Learning to Verify Branching Time Properties

Learning to Verify Branching Time Properties Learning to Verify Branching Time Properties Abhay Vardhan and Mahesh Viswanathan Dept. of Computer Science, Univ. of Illinois at Urbana-Champaign, USA Abstract. We present a new model checking algorithm

More information

Linear Temporal Logic (LTL)

Linear Temporal Logic (LTL) Chapter 9 Linear Temporal Logic (LTL) This chapter introduces the Linear Temporal Logic (LTL) to reason about state properties of Labelled Transition Systems defined in the previous chapter. We will first

More information

CDS 270 (Fall 09) - Lecture Notes for Assignment 8.

CDS 270 (Fall 09) - Lecture Notes for Assignment 8. CDS 270 (Fall 09) - Lecture Notes for Assignment 8. ecause this part of the course has no slides or textbook, we will provide lecture supplements that include, hopefully, enough discussion to complete

More information

Lecture 2: Symbolic Model Checking With SAT

Lecture 2: Symbolic Model Checking With SAT Lecture 2: Symbolic Model Checking With SAT Edmund M. Clarke, Jr. School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 (Joint work over several years with: A. Biere, A. Cimatti, Y.

More information

Symbolic Trajectory Evaluation (STE): Orna Grumberg Technion, Israel

Symbolic Trajectory Evaluation (STE): Orna Grumberg Technion, Israel Symbolic Trajectory Evaluation (STE): Automatic Refinement and Vacuity Detection Orna Grumberg Technion, Israel Marktoberdort 2007 1 Agenda Model checking Symbolic Trajectory Evaluation Basic Concepts

More information

Logic-Based Modeling in Systems Biology

Logic-Based Modeling in Systems Biology Logic-Based Modeling in Systems Biology Alexander Bockmayr LPNMR 09, Potsdam, 16 September 2009 DFG Research Center Matheon Mathematics for key technologies Outline A.Bockmayr, FU Berlin/Matheon 2 I. Systems

More information

FORMAL METHODS LECTURE IV: COMPUTATION TREE LOGIC (CTL)

FORMAL METHODS LECTURE IV: COMPUTATION TREE LOGIC (CTL) Alessandro Artale (FM First Semester 2007/2008) p. 1/37 FORMAL METHODS LECTURE IV: COMPUTATION TREE LOGIC (CTL) Alessandro Artale Faculty of Computer Science Free University of Bolzano artale@inf.unibz.it

More information

FORMAL METHODS LECTURE V: CTL MODEL CHECKING

FORMAL METHODS LECTURE V: CTL MODEL CHECKING FORMAL METHODS LECTURE V: CTL MODEL CHECKING Alessandro Artale Faculty of Computer Science Free University of Bolzano Room 2.03 artale@inf.unibz.it http://www.inf.unibz.it/ artale/ Some material (text,

More information

Synthesis weakness of standard approach. Rational Synthesis

Synthesis weakness of standard approach. Rational Synthesis 1 Synthesis weakness of standard approach Rational Synthesis 3 Overview Introduction to formal verification Reactive systems Verification Synthesis Introduction to Formal Verification of Reactive Systems

More information

LTL and CTL. Lecture Notes by Dhananjay Raju

LTL and CTL. Lecture Notes by Dhananjay Raju LTL and CTL Lecture Notes by Dhananjay Raju draju@cs.utexas.edu 1 Linear Temporal Logic: LTL Temporal logics are a convenient way to formalise and verify properties of reactive systems. LTL is an infinite

More information

Revising Specifications with CTL Properties using Bounded Model Checking

Revising Specifications with CTL Properties using Bounded Model Checking Revising Specifications with CTL Properties using Bounded Model Checking No Author Given No Institute Given Abstract. During the process of software development, it is very common that inconsistencies

More information

Sanjit A. Seshia EECS, UC Berkeley

Sanjit A. Seshia EECS, UC Berkeley EECS 219C: Computer-Aided Verification Explicit-State Model Checking: Additional Material Sanjit A. Seshia EECS, UC Berkeley Acknowledgments: G. Holzmann Checking if M satisfies : Steps 1. Compute Buchi

More information

Computer Aided Verification

Computer Aided Verification Computer Aided Verification For Designing correct systems Hao Zheng zheng@cse.usf.edu Dept. of Computer Science & Eng. University South Florida Outlines Basic concepts of verification Challenges to verification

More information

Guest lecturer: Mark Reynolds, The University of Western Australia

Guest lecturer: Mark Reynolds, The University of Western Australia Università degli studi di Udine Laurea Magistrale: Informatica Lectures for April/May 2014 La verifica del software: temporal logic Lecture 05 CTL Satisfiability via tableau Guest lecturer: Mark Reynolds,

More information

Computation Tree Logic

Computation Tree Logic Chapter 6 Computation Tree Logic Pnueli [88] has introduced linear temporal logic to the computer science community for the specification and verification of reactive systems. In Chapter 3 we have treated

More information

Models for Efficient Timed Verification

Models for Efficient Timed Verification Models for Efficient Timed Verification François Laroussinie LSV / ENS de Cachan CNRS UMR 8643 Monterey Workshop - Composition of embedded systems Model checking System Properties Formalizing step? ϕ Model

More information

Symbolic Model Checking Property Specification Language*

Symbolic Model Checking Property Specification Language* Symbolic Model Checking Property Specification Language* Ji Wang National Laboratory for Parallel and Distributed Processing National University of Defense Technology *Joint Work with Wanwei Liu, Huowang

More information

Circular Compositional Reasoning about Liveness

Circular Compositional Reasoning about Liveness Circular Compositional Reasoning about Liveness K. L. McMillan Cadence Berkeley Labs Abstract. Compositional proofs about systems of many components often involve apparently circular arguments. That is,

More information

An Informal introduction to Formal Verification

An Informal introduction to Formal Verification An Informal introduction to Formal Verification Osman Hasan National University of Sciences and Technology (NUST), Islamabad, Pakistan O. Hasan Formal Verification 2 Agenda q Formal Verification Methods,

More information

Lecture Notes on Emptiness Checking, LTL Büchi Automata

Lecture Notes on Emptiness Checking, LTL Büchi Automata 15-414: Bug Catching: Automated Program Verification Lecture Notes on Emptiness Checking, LTL Büchi Automata Matt Fredrikson André Platzer Carnegie Mellon University Lecture 18 1 Introduction We ve seen

More information

Formula-Dependent Equivalence for Compositional CTL Model Checking

Formula-Dependent Equivalence for Compositional CTL Model Checking Formula-Dependent Equivalence for Compositional CTL Model Checking Adnan Aziz Thomas R. Shiple Vigyan Singhal Alberto L. Sangiovanni-Vincentelli Emaih {adrian, shiple, vigyan, alberto}@ic, eecs. berkeley,

More information

Testing with model checkers: A survey

Testing with model checkers: A survey COMPETENCE NETWORK SOFTNET AUSTRIA Testing with model checkers: A survey SNA-TR-2007-P2-04 Gordon Fraser, Franz Wotawa, Paul E. Ammann SNA TECHNICAL REPORT NOVEMBER 2007 Competence Network Softnet Austria,

More information

Symmetry Reductions. A. Prasad Sistla University Of Illinois at Chicago

Symmetry Reductions. A. Prasad Sistla University Of Illinois at Chicago Symmetry Reductions. A. Prasad Sistla University Of Illinois at Chicago Model-Checking Concurrent PGM Temporal SPEC Model Checker Yes/No Counter Example Approach Build the global state graph Algorithm

More information

Crash course Verification of Finite Automata CTL model-checking

Crash course Verification of Finite Automata CTL model-checking Crash course Verification of Finite Automata CTL model-checking Exercise session - 07.12.2016 Xiaoxi He 1 Reminders Big picture Objective Verify properties over DES models Formal method Absolute guarantee!

More information

Reasoning about Time and Reliability

Reasoning about Time and Reliability Reasoning about Time and Reliability Probabilistic CTL model checking Daniel Bruns Institut für theoretische Informatik Universität Karlsruhe 13. Juli 2007 Seminar Theorie und Anwendung von Model Checking

More information

Semi-Automatic Distributed Synthesis

Semi-Automatic Distributed Synthesis Semi-Automatic Distributed Synthesis Bernd Finkbeiner and Sven Schewe Universität des Saarlandes, 66123 Saarbrücken, Germany {finkbeiner schewe}@cs.uni-sb.de Abstract. We propose a sound and complete compositional

More information

Parameter Synthesis for Timed Kripke Structures

Parameter Synthesis for Timed Kripke Structures Parameter Synthesis for Timed Kripke Structures Extended Abstract Micha l Knapik 1 and Wojciech Penczek 1,2 1 Institute of Computer Science, PAS, Warsaw, Poland 2 University of Natural Sciences and Humanities,

More information

Topics in Verification AZADEH FARZAN FALL 2017

Topics in Verification AZADEH FARZAN FALL 2017 Topics in Verification AZADEH FARZAN FALL 2017 Last time LTL Syntax ϕ ::= true a ϕ 1 ϕ 2 ϕ ϕ ϕ 1 U ϕ 2 a AP. ϕ def = trueu ϕ ϕ def = ϕ g intuitive meaning of and is obt Limitations of LTL pay pay τ τ soda

More information

Design of Distributed Systems Melinda Tóth, Zoltán Horváth

Design of Distributed Systems Melinda Tóth, Zoltán Horváth Design of Distributed Systems Melinda Tóth, Zoltán Horváth Design of Distributed Systems Melinda Tóth, Zoltán Horváth Publication date 2014 Copyright 2014 Melinda Tóth, Zoltán Horváth Supported by TÁMOP-412A/1-11/1-2011-0052

More information

Property Checking of Safety- Critical Systems Mathematical Foundations and Concrete Algorithms

Property Checking of Safety- Critical Systems Mathematical Foundations and Concrete Algorithms Property Checking of Safety- Critical Systems Mathematical Foundations and Concrete Algorithms Wen-ling Huang and Jan Peleska University of Bremen {huang,jp}@cs.uni-bremen.de MBT-Paradigm Model Is a partial

More information

The State Explosion Problem

The State Explosion Problem The State Explosion Problem Martin Kot August 16, 2003 1 Introduction One from main approaches to checking correctness of a concurrent system are state space methods. They are suitable for automatic analysis

More information

Decision Procedures for CTL

Decision Procedures for CTL Decision Procedures for CTL Oliver Friedmann 1 Markus Latte 1 1 Dept. of Computer Science, Ludwig-Maximilians-University, Munich, Germany CLoDeM Edinburgh, 15 July 2010 Introduction to CTL Origin: Emerson

More information

An On-the-fly Tableau Construction for a Real-Time Temporal Logic

An On-the-fly Tableau Construction for a Real-Time Temporal Logic #! & F $ F ' F " F % An On-the-fly Tableau Construction for a Real-Time Temporal Logic Marc Geilen and Dennis Dams Faculty of Electrical Engineering, Eindhoven University of Technology P.O.Box 513, 5600

More information