Alternating-Time Temporal Logic

Size: px
Start display at page:

Download "Alternating-Time Temporal Logic"

Transcription

1 Alternating-Time Temporal Logic R.Alur, T.Henzinger, O.Kupferman Rafael H. Bordini School of Informatics PUCRS Logic Club 5th of September, 2013

2 ATL All the material in this presentation is taken almost as-is from [Alur et al., 1997], though much summarised It s all about trends... But also really cool!

3 Syntax The syntax of ATL is defined with respect to a finite set Π of propositions and a finite set Σ = {1,..., k} of players (i.e., agents) The well-formed ATL formulæ ϕ are defined by the following grammar: ϕ ::= p ϕ ϕ 1 ϕ 2 A ϕ A ϕ A ϕ 1 U ϕ 2 where p Π, and A Σ

4 Intuition The operator is a path quantifier All other operators are as usual in temporal logics Note also that other operators such as are introduced as the usual abbreviations The ATL logic is similar to CTL except that path quantifiers are parameterised by sets of players Intuitively, A ψ means that players in A can cooperate to make ψ true (i.e., they can enforce ψ)

5 Semantics (I) The semantics of ATL is given in terms of a concurrent game structure S = k, Q, Π, π, d, δ where: k 1 is a natural number stating the number of players (players are identified with the numbers 1,..., k); Q is a finite set of states; Π is as above (propositions are also called observables); π is a labelling (or observation) function such that for each state q Q, it defines the set of propositions π(q) Π which are true at q; and d and δ are defined as follows.

6 Semantics (II) Move and Transition Functions For each player a {1,..., k} and each state q Q, the natural number d a (q) 1 is the number of different moves available at state q to player a; For each state q Q, a move vector at q is a tuple j1,..., j k such that 1 j a d a (q) for each player a; Given a state q Q, we write D(q) for the set {1,..., d 1 (q)}... {1,..., d k (q)} of move vectors; Function D is called the move function; For each state q Q and each move vector j 1,..., j k D(q), the state δ(q, j 1,..., j k ) Q is the one that results from state q if every player a {1,..., k} chooses move j a ; Function δ is called the transition function.

7 Semantics (III) Computations For two states q and q, we say that q is a successor of q if there is a move vector j 1,..., j k D(q) such that q = δ(q, j 1,..., j k ) Thus, q is a successor of q iff whenever the game is in state q, the players can possibly choose moves so that q is the next state A computation of S is an infinite sequence λ = q0, q 1, q 2,... of states such that for all positions i 0, state q i+1 is a successor of the state q i A computation starting at state q is called a q-computation For a computation λ and a position i 0, notation: λ[i] denotes the ith state of λ; λ[0, i] denotes the finite prefix q 0, q 1,..., q i of λ; and λ[i, ] denotes the infinite suffix q i, q i+1,... of λ.

8 Semantics (IV) Formulæ in ATL are interpreted over states of a concurrent game structure S that has the same propositions and players In order to define the semantics of ATL formally, the notion of strategy needs to be introduced first Strategies Considering a game structure S, a strategy for player a Σ is a function f a that maps every nonempty finite state sequence λ Q + to a natural number such that if the last state of λ is q, then f a (λ) d a (q) (i.e., it determines, for a prefix of a computation, the player s next move) Each strategy fa for a player a induces a set of computations that player a can enforce

9 Semantics (V) Outcomes Given a state q Q, a set A {1,..., k} of players, and a set F A = {f a a A} of strategies, one for each player in A, we define the outcomes of F A from q to be the set out(q, F A ) of q-computations that the players in A enforce when they follow the strategies in F A That is, a computation λ = q0, q 1, q 2,... is in out(q, F A ) if q 0 = q and for all positions i 0, there is a move vector j 1,..., j k D(q i ) such that: (i) j a = f a(λ[0, i]) for all players a A, and (ii) δ(q i, j 1,..., j k ) = q i+1 Formal semantics is then given to ATL by the definition of a satisfaction relation; S, q = ϕ indicates that state q in structure S satisfies the formula ϕ; when S is clear from the context it can be omitted and we write q = ϕ instead

10 Semantics (VI) Definition (Semantics of ATL) The satisfaction relation = is defined inductively, for all states q of S, as follows: q = p, for propositions p Π, iff p π(q); q = ϕ iff q = ϕ; q = ϕ 1 ϕ 2 iff q = ϕ 1 or q = ϕ 2 ; q = A ϕ iff there exists a set F A of strategies, one for each player in A, such that for all computations λ out(q, F A ), we have λ[1] = ϕ; q = A ϕ iff there exists a set F A of strategies, one for each player in A, such that for all computations λ out(q, F A ) and all positions i 0, we have λ[i] = ϕ; q = A ϕ 1 U ϕ 2 iff there exists a set F A of strategies, one for each player in A, such that for all computations λ out(q, F A ), there is a position i 0 such that λ[i] = ϕ 2 and for all positions 0 j < i, we have λ[j] = ϕ 1.

11 Model Checking Definition. (Model-Checking Problem for ATL) The model-checking problem for ATL asks, given a game structure S =< k, Q, Π, π, d, δ > and an ATL formula ϕ, for the states in Q that satisfy ϕ. That set of states is denoted by [ϕ] S or simply [ϕ] when the game structure S is implicitly understood. Next we will look at the symbolic model checking algorithm for ATL, which manipulates state sets of S, as given in [Alur et al., 2002]

12 Primitive Operations Used in the Algorithm Function Sub, when given an ATL formula ϕ, returns a queue of syntactic subformulæ of ϕ such that if ϕ 1 is a subformula of ϕ and ϕ 2 is a subformula of ϕ 1, then ϕ 2 precedes ϕ 1 in the queue Sub(ϕ) Function Reg, when given a proposition p Π, returns the set of states in Q that satisfy p Function Pre, when given a set A Σ of players and a set ρ Q of states, returns the set of states q such that from q, the players in A can cooperate and enforce the next state to lie in ρ. Formally, Pre(A, ρ) contains state q Q if for every play6er a A, there exists a move j a {1,..., d a (q)} such that for all players b Σ \ A and moves j b 1,..., d b (q), we have δ(q, j 1,..., j k ) ρ Union, intersection, difference, and inclusion test for state sets. Note also that we write [true] for the set Q of all states, and [false] for the empty set of states.

13 Symbolic Model Checking Algorithm for ATL foreach ϕ in Sub(ϕ) do case ϕ = p : [ϕ ] := Reg(p) case ϕ = θ : [ϕ ] := [true] \ [θ] case ϕ = θ 1 θ 2 : [ϕ ] := [θ 1] [θ 2] case ϕ = A θ : [ϕ ] := Pre(A, [θ]) case ϕ = A θ : ρ := [true] τ := [θ] while ρ τ do ρ := τ τ := Pre(A, ρ) [θ] [ϕ ] := ρ case ϕ = A θ 1 U θ 2 : ρ := [false] τ := [θ 2] while τ ρ do ρ := ρ τ τ := Pre(A, ρ) [θ 1] [ϕ ] := ρ end return [ϕ]

14 Some Results Theorem (Correctness) The symbolic model checking algorithm for ATL is correct. Proof (Sketch). Partial correctness of the algorithm can be proved by induction on the structure of the input formula ϕ. Termination is guaranteed because the state space Q is finite. Theorem (Complexity) The model checking problem for ATL is PTIME-Complete and can be solved in time O(m l) for a game structure with m transitions and an ATL formula of length l. The problem is PTIME-hard even for a fixed formula, and even in the special case of turn-based synchronous game structures. Proof (Sketch). graphs. By reduction to reachability in AND-OR

15 References Alur, R., Henzinger, T. A., and Kupferman, O. (1997). Alternating-time temporal logic. In 38th Annual Symposium on Foundations of Computer Science (FOCS 97), Miami Beach, Florida, USA, October 19-22, pages IEEE Computer Society. Alur, R., Henzinger, T. A., and Kupferman, O. (2002). Alternating-time temporal logic. Journal of the ACM, 49(5):

Alternating Time Temporal Logics*

Alternating Time Temporal Logics* Alternating Time Temporal Logics* Sophie Pinchinat Visiting Research Fellow at RSISE Marie Curie Outgoing International Fellowship * @article{alur2002, title={alternating-time Temporal Logic}, author={alur,

More information

Some Remarks on Alternating Temporal Epistemic Logic

Some Remarks on Alternating Temporal Epistemic Logic Some Remarks on Alternating Temporal Epistemic Logic Corrected version: July 2003 Wojciech Jamroga Parlevink Group, University of Twente, Netherlands Institute of Mathematics, University of Gdansk, Poland

More information

Reasoning about Strategies: From module checking to strategy logic

Reasoning about Strategies: From module checking to strategy logic Reasoning about Strategies: From module checking to strategy logic based on joint works with Fabio Mogavero, Giuseppe Perelli, Luigi Sauro, and Moshe Y. Vardi Luxembourg September 23, 2013 Reasoning about

More information

Resource-bounded alternating-time temporal logic

Resource-bounded alternating-time temporal logic Resource-bounded alternating-time temporal logic Natasha Alechina University of Nottingham Nottingham, UK nza@cs.nott.ac.uk Brian Logan University of Nottingham Nottingham, UK bsl@cs.nott.ac.uk Abdur Rakib

More information

From Liveness to Promptness

From Liveness to Promptness From Liveness to Promptness Orna Kupferman Hebrew University Nir Piterman EPFL Moshe Y. Vardi Rice University Abstract Liveness temporal properties state that something good eventually happens, e.g., every

More information

On the Expressiveness and Complexity of ATL

On the Expressiveness and Complexity of ATL On the Expressiveness and Complexity of ATL François Laroussinie, Nicolas Markey, Ghassan Oreiby LSV, CNRS & ENS-Cachan Recherches en vérification automatique March 14, 2006 Overview of CTL CTL A Kripke

More information

Deciding Safety and Liveness in TPTL

Deciding Safety and Liveness in TPTL Deciding Safety and Liveness in TPTL David Basin a, Carlos Cotrini Jiménez a,, Felix Klaedtke b,1, Eugen Zălinescu a a Institute of Information Security, ETH Zurich, Switzerland b NEC Europe Ltd., Heidelberg,

More information

Chapter 6: Computation Tree Logic

Chapter 6: Computation Tree Logic Chapter 6: Computation Tree Logic Prof. Ali Movaghar Verification of Reactive Systems Outline We introduce Computation Tree Logic (CTL), a branching temporal logic for specifying system properties. A comparison

More information

Alternating-time Temporal Logics with Irrevocable Strategies

Alternating-time Temporal Logics with Irrevocable Strategies Alternating-time Temporal Logics with Irrevocable Strategies Thomas Ågotnes Dept. of Computer Engineering Bergen University College, Bergen, Norway tag@hib.no Valentin Goranko School of Mathematics Univ.

More information

Temporal logics and explicit-state model checking. Pierre Wolper Université de Liège

Temporal logics and explicit-state model checking. Pierre Wolper Université de Liège Temporal logics and explicit-state model checking Pierre Wolper Université de Liège 1 Topics to be covered Introducing explicit-state model checking Finite automata on infinite words Temporal Logics and

More information

Chapter 4: Computation tree logic

Chapter 4: Computation tree logic INFOF412 Formal verification of computer systems Chapter 4: Computation tree logic Mickael Randour Formal Methods and Verification group Computer Science Department, ULB March 2017 1 CTL: a specification

More information

Model checking the basic modalities of CTL with Description Logic

Model checking the basic modalities of CTL with Description Logic Model checking the basic modalities of CTL with Description Logic Shoham Ben-David Richard Trefler Grant Weddell David R. Cheriton School of Computer Science University of Waterloo Abstract. Model checking

More information

Strategy Logic. 1 Introduction. Krishnendu Chatterjee 1, Thomas A. Henzinger 1,2, and Nir Piterman 2

Strategy Logic. 1 Introduction. Krishnendu Chatterjee 1, Thomas A. Henzinger 1,2, and Nir Piterman 2 Strategy Logic Krishnendu Chatterjee 1, Thomas A. Henzinger 1,2, and Nir Piterman 2 1 University of California, Berkeley, USA 2 EPFL, Switzerland c krish@eecs.berkeley.edu, {tah,nir.piterman}@epfl.ch Abstract.

More information

Model Checking. Temporal Logic. Fifth International Symposium in Programming, volume. of concurrent systems in CESAR. In Proceedings of the

Model Checking. Temporal Logic. Fifth International Symposium in Programming, volume. of concurrent systems in CESAR. In Proceedings of the Sérgio Campos, Edmund Why? Advantages: No proofs Fast Counter-examples No problem with partial specifications can easily express many concurrency properties Main Disadvantage: State Explosion Problem Too

More information

arxiv: v2 [cs.lo] 3 Sep 2018

arxiv: v2 [cs.lo] 3 Sep 2018 Reasoning about Knowledge and Strategies under Hierarchical Information Bastien Maubert and Aniello Murano Università degli Studi di Napoli Federico II arxiv:1806.00028v2 [cs.lo] 3 Sep 2018 Abstract Two

More information

Reasoning about Equilibria in Game-like Concurrent Systems

Reasoning about Equilibria in Game-like Concurrent Systems Reasoning about Equilibria in Game-like Concurrent Systems Julian Gutierrez, Paul Harrenstein, Michael Wooldridge Department of Computer Science University of Oxford Abstract In this paper we study techniques

More information

Reasoning about Time and Reliability

Reasoning about Time and Reliability Reasoning about Time and Reliability Probabilistic CTL model checking Daniel Bruns Institut für theoretische Informatik Universität Karlsruhe 13. Juli 2007 Seminar Theorie und Anwendung von Model Checking

More information

T Reactive Systems: Temporal Logic LTL

T Reactive Systems: Temporal Logic LTL Tik-79.186 Reactive Systems 1 T-79.186 Reactive Systems: Temporal Logic LTL Spring 2005, Lecture 4 January 31, 2005 Tik-79.186 Reactive Systems 2 Temporal Logics Temporal logics are currently the most

More information

Optimal Decision Procedures for Satisfiability in Fragments of Alternating-time Temporal Logics

Optimal Decision Procedures for Satisfiability in Fragments of Alternating-time Temporal Logics Optimal Decision Procedures for Satisfiability in Fragments of Alternating-time Temporal Logics Valentin Goranko a,b Steen Vester a 1 a Department of Applied Mathematics and Computer Science Technical

More information

Timo Latvala. February 4, 2004

Timo Latvala. February 4, 2004 Reactive Systems: Temporal Logic LT L Timo Latvala February 4, 2004 Reactive Systems: Temporal Logic LT L 8-1 Temporal Logics Temporal logics are currently the most widely used specification formalism

More information

A Propositional Dynamic Logic for Instantial Neighborhood Semantics

A Propositional Dynamic Logic for Instantial Neighborhood Semantics A Propositional Dynamic Logic for Instantial Neighborhood Semantics Johan van Benthem, Nick Bezhanishvili, Sebastian Enqvist Abstract We propose a new perspective on logics of computation by combining

More information

From Liveness to Promptness

From Liveness to Promptness From Liveness to Promptness Orna Kupferman 1, Nir Piterman 2, and Moshe Y. Vardi 3 1 Hebrew University 2 Ecole Polytechnique Fédéral de Lausanne (EPFL) 3 Rice University Abstract. Liveness temporal properties

More information

On the Expressiveness and Complexity of ATL

On the Expressiveness and Complexity of ATL On the Expressiveness and Complexity of ATL François Laroussinie, Nicolas Markey, and Ghassan Oreiby LSV, CNRS & ENS Cachan, France Abstract. ATL is a temporal logic geared towards the specification and

More information

Strategy Logic with Imperfect Information

Strategy Logic with Imperfect Information Strategy Logic with Imperfect Information Raphaël Berthon, Bastien Maubert, Aniello Murano, Sasha Rubin and Moshe Y. Vardi École Normale Supérieure de Rennes, Rennes, France Università degli Studi di Napoli

More information

Lecture Notes on Emptiness Checking, LTL Büchi Automata

Lecture Notes on Emptiness Checking, LTL Büchi Automata 15-414: Bug Catching: Automated Program Verification Lecture Notes on Emptiness Checking, LTL Büchi Automata Matt Fredrikson André Platzer Carnegie Mellon University Lecture 18 1 Introduction We ve seen

More information

Valentin Goranko Stockholm University. ESSLLI 2018 August 6-10, of 33

Valentin Goranko Stockholm University. ESSLLI 2018 August 6-10, of 33 ESSLLI 2018 course Logics for Epistemic and Strategic Reasoning in Multi-Agent Systems Lecture 4: Logics for temporal strategic reasoning with complete information Valentin Goranko Stockholm University

More information

Models for Efficient Timed Verification

Models for Efficient Timed Verification Models for Efficient Timed Verification François Laroussinie LSV / ENS de Cachan CNRS UMR 8643 Monterey Workshop - Composition of embedded systems Model checking System Properties Formalizing step? ϕ Model

More information

Temporal Logic. Stavros Tripakis University of California, Berkeley. We have designed a system. We want to check that it is correct.

Temporal Logic. Stavros Tripakis University of California, Berkeley. We have designed a system. We want to check that it is correct. EE 244: Fundamental Algorithms for System Modeling, Analysis, and Optimization Fall 2016 Temporal logic Stavros Tripakis University of California, Berkeley Stavros Tripakis (UC Berkeley) EE 244, Fall 2016

More information

PLEASE DO NOT REMOVE THIS PAGE

PLEASE DO NOT REMOVE THIS PAGE Thank you for downloading this document from the RMIT ResearchR Repository Citation: Yadav, N and Sardina, S 2012, 'Reasoning about agent programs using ATL-like logics', Lecture Notes in Computer Science,

More information

Coalition Games and Alternating Temporal Logics (Corrected version: September 7, 2001)

Coalition Games and Alternating Temporal Logics (Corrected version: September 7, 2001) Coalition Games and Alternating Temporal Logics (Corrected version: September 7, 2001) Valentin Goranko Department of Mathematics, Rand Afrikaans University PO Box 524, Auckland Park 2006, Johannesburg,

More information

An On-the-fly Tableau Construction for a Real-Time Temporal Logic

An On-the-fly Tableau Construction for a Real-Time Temporal Logic #! & F $ F ' F " F % An On-the-fly Tableau Construction for a Real-Time Temporal Logic Marc Geilen and Dennis Dams Faculty of Electrical Engineering, Eindhoven University of Technology P.O.Box 513, 5600

More information

Comparing Semantics of Logics for Multi-agent Systems

Comparing Semantics of Logics for Multi-agent Systems Comparing Semantics of Logics for Multi-agent Systems Valentin Goranko Department of Mathematics, Rand Afrikaans University e-mail: vfg@na.rau.ac.za Wojciech Jamroga Parlevink Group, University of Twente,

More information

Computation Tree Logic

Computation Tree Logic Computation Tree Logic Hao Zheng Department of Computer Science and Engineering University of South Florida Tampa, FL 33620 Email: zheng@cse.usf.edu Phone: (813)974-4757 Fax: (813)974-5456 Hao Zheng (CSE,

More information

Computation Tree Logic (CTL)

Computation Tree Logic (CTL) Computation Tree Logic (CTL) Fazle Rabbi University of Oslo, Oslo, Norway Bergen University College, Bergen, Norway fazlr@student.matnat.uio.no, Fazle.Rabbi@hib.no May 30, 2015 Fazle Rabbi et al. (UiO,

More information

Computer-Aided Program Design

Computer-Aided Program Design Computer-Aided Program Design Spring 2015, Rice University Unit 3 Swarat Chaudhuri February 5, 2015 Temporal logic Propositional logic is a good language for describing properties of program states. However,

More information

Introduction. Büchi Automata and Model Checking. Outline. Büchi Automata. The simplest computation model for infinite behaviors is the

Introduction. Büchi Automata and Model Checking. Outline. Büchi Automata. The simplest computation model for infinite behaviors is the Introduction Büchi Automata and Model Checking Yih-Kuen Tsay Department of Information Management National Taiwan University FLOLAC 2009 The simplest computation model for finite behaviors is the finite

More information

Theoretical Foundations of the UML

Theoretical Foundations of the UML Theoretical Foundations of the UML Lecture 17+18: A Logic for MSCs Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group moves.rwth-aachen.de/teaching/ws-1718/fuml/ 5.

More information

Partial model checking via abstract interpretation

Partial model checking via abstract interpretation Partial model checking via abstract interpretation N. De Francesco, G. Lettieri, L. Martini, G. Vaglini Università di Pisa, Dipartimento di Ingegneria dell Informazione, sez. Informatica, Via Diotisalvi

More information

Optimal Bounds in Parametric LTL Games

Optimal Bounds in Parametric LTL Games Optimal Bounds in Parametric LTL Games Martin Zimmermann 1 Institute of Informatics University of Warsaw Warsaw, Poland Abstract Parameterized linear temporal logics are extensions of Linear Temporal Logic

More information

Notes. Corneliu Popeea. May 3, 2013

Notes. Corneliu Popeea. May 3, 2013 Notes Corneliu Popeea May 3, 2013 1 Propositional logic Syntax We rely on a set of atomic propositions, AP, containing atoms like p, q. A propositional logic formula φ Formula is then defined by the following

More information

Reasoning about Equilibria in Game-Like Concurrent Systems

Reasoning about Equilibria in Game-Like Concurrent Systems Proceedings of the Fourteenth International Conference on Principles of Knowledge Representation and Reasoning Reasoning about Equilibria in Game-Like Concurrent Systems Julian Gutierrez and Paul Harrenstein

More information

Introduction to Temporal Logic. The purpose of temporal logics is to specify properties of dynamic systems. These can be either

Introduction to Temporal Logic. The purpose of temporal logics is to specify properties of dynamic systems. These can be either Introduction to Temporal Logic The purpose of temporal logics is to specify properties of dynamic systems. These can be either Desired properites. Often liveness properties like In every infinite run action

More information

Lecture 3: Semantics of Propositional Logic

Lecture 3: Semantics of Propositional Logic Lecture 3: Semantics of Propositional Logic 1 Semantics of Propositional Logic Every language has two aspects: syntax and semantics. While syntax deals with the form or structure of the language, it is

More information

Logics of Rational Agency Lecture 3

Logics of Rational Agency Lecture 3 Logics of Rational Agency Lecture 3 Eric Pacuit Tilburg Institute for Logic and Philosophy of Science Tilburg Univeristy ai.stanford.edu/~epacuit July 29, 2009 Eric Pacuit: LORI, Lecture 3 1 Plan for the

More information

Agents that Know How to Play

Agents that Know How to Play Fundamenta Informaticae 62 (2004) 1 35 1 IOS Press Agents that Know How to Play Wojciech Jamroga Parlevink Group, University of Twente, Netherlands Institute of Mathematics, University of Gdansk, Poland

More information

Specification and Verification of Multi-Agent Systems ESSLLI 2010 CPH

Specification and Verification of Multi-Agent Systems ESSLLI 2010 CPH Specification and Verification of Multi-Agent Systems Wojciech Jamroga 1 and Wojciech Penczek 2 1 Computer Science and Communication, University of Luxembourg wojtek.jamroga@uni.lu 2 Institute of Computer

More information

CDS 270 (Fall 09) - Lecture Notes for Assignment 8.

CDS 270 (Fall 09) - Lecture Notes for Assignment 8. CDS 270 (Fall 09) - Lecture Notes for Assignment 8. ecause this part of the course has no slides or textbook, we will provide lecture supplements that include, hopefully, enough discussion to complete

More information

CTL with Finitely Bounded Semantics

CTL with Finitely Bounded Semantics CTL with Finitely Bounded Semantics Valentin Goranko 1, Antti Kuusisto 2, and Raine Rönnholm 3 1 Stockholm University, Stockholm, Sweden; and University of Johannesburg, Johannesburg, South Africa valentin.goranko@philosophy.su.se

More information

Chapter 3: Linear temporal logic

Chapter 3: Linear temporal logic INFOF412 Formal verification of computer systems Chapter 3: Linear temporal logic Mickael Randour Formal Methods and Verification group Computer Science Department, ULB March 2017 1 LTL: a specification

More information

THE LANGUAGE OF FIRST-ORDER LOGIC (FOL) Sec2 Sec1(1-16)

THE LANGUAGE OF FIRST-ORDER LOGIC (FOL) Sec2 Sec1(1-16) THE LANGUAGE OF FIRST-ORDER LOGIC (FOL) Sec2 Sec1(1-16) FOL: A language to formulate knowledge Logic is the study of entailment relationslanguages, truth conditions and rules of inference. FOL or Predicate

More information

Model Checking with CTL. Presented by Jason Simas

Model Checking with CTL. Presented by Jason Simas Model Checking with CTL Presented by Jason Simas Model Checking with CTL Based Upon: Logic in Computer Science. Huth and Ryan. 2000. (148-215) Model Checking. Clarke, Grumberg and Peled. 1999. (1-26) Content

More information

Description Logics. Foundations of Propositional Logic. franconi. Enrico Franconi

Description Logics. Foundations of Propositional Logic.   franconi. Enrico Franconi (1/27) Description Logics Foundations of Propositional Logic Enrico Franconi franconi@cs.man.ac.uk http://www.cs.man.ac.uk/ franconi Department of Computer Science, University of Manchester (2/27) Knowledge

More information

Automata on Infinite words and LTL Model Checking

Automata on Infinite words and LTL Model Checking Automata on Infinite words and LTL Model Checking Rodica Condurache Lecture 4 Lecture 4 Automata on Infinite words and LTL Model Checking 1 / 35 Labeled Transition Systems Let AP be the (finite) set of

More information

First-Order Predicate Logic. Basics

First-Order Predicate Logic. Basics First-Order Predicate Logic Basics 1 Syntax of predicate logic: terms A variable is a symbol of the form x i where i = 1, 2, 3.... A function symbol is of the form fi k where i = 1, 2, 3... und k = 0,

More information

Logic: Propositional Logic (Part I)

Logic: Propositional Logic (Part I) Logic: Propositional Logic (Part I) Alessandro Artale Free University of Bozen-Bolzano Faculty of Computer Science http://www.inf.unibz.it/ artale Descrete Mathematics and Logic BSc course Thanks to Prof.

More information

IFI TECHNICAL REPORTS. Institute of Computer Science, Clausthal University of Technology. IfI-05-10

IFI TECHNICAL REPORTS. Institute of Computer Science, Clausthal University of Technology. IfI-05-10 IFI TECHNICAL REPORTS Institute of Computer Science, Clausthal University of Technology IfI-05-10 Clausthal-Zellerfeld 2005 Constructive Knowledge: What Agents Can Achieve under Incomplete Information

More information

Modal Dependence Logic

Modal Dependence Logic Modal Dependence Logic Jouko Väänänen Institute for Logic, Language and Computation Universiteit van Amsterdam Plantage Muidergracht 24 1018 TV Amsterdam, The Netherlands J.A.Vaananen@uva.nl Abstract We

More information

The Planning Spectrum One, Two, Three, Infinity

The Planning Spectrum One, Two, Three, Infinity Journal of Artificial Intelligence Research 30 (2007) 101-132 Submitted 10/05; published 9/07 The Planning Spectrum One, Two, Three, Infinity Marco Pistore Department of Information and Communication Technology

More information

LTL with Arithmetic and its Applications in Reasoning about Hierarchical Systems

LTL with Arithmetic and its Applications in Reasoning about Hierarchical Systems This space is reserved for the EPiC Series header, do not use it LTL with Arithmetic and its Applications in Reasoning about Hierarchical Systems Rachel Faran and Orna Kupferman The Hebrew University,

More information

arxiv: v1 [cs.lo] 8 Sep 2014

arxiv: v1 [cs.lo] 8 Sep 2014 An Epistemic Strategy Logic Xiaowei Huang Ron van der Meyden arxiv:1409.2193v1 [cs.lo] 8 Sep 2014 The University of New South Wales Abstract The paper presents an extension of temporal epistemic logic

More information

MODEL-CHECKING IN DENSE REAL-TIME SHANT HARUTUNIAN

MODEL-CHECKING IN DENSE REAL-TIME SHANT HARUTUNIAN MODEL-CHECKING IN DENSE REAL-TIME SHANT HARUTUNIAN 1. Introduction These slides are for a talk based on the paper Model-Checking in Dense Real- Time, by Rajeev Alur, Costas Courcoubetis, and David Dill.

More information

Lecture Notes on Model Checking

Lecture Notes on Model Checking Lecture Notes on Model Checking 15-816: Modal Logic André Platzer Lecture 18 March 30, 2010 1 Introduction to This Lecture In this course, we have seen several modal logics and proof calculi to justify

More information

Parameter Synthesis for Timed Kripke Structures

Parameter Synthesis for Timed Kripke Structures Parameter Synthesis for Timed Kripke Structures Extended Abstract Micha l Knapik 1 and Wojciech Penczek 1,2 1 Institute of Computer Science, PAS, Warsaw, Poland 2 University of Natural Sciences and Humanities,

More information

Adding Modal Operators to the Action Language A

Adding Modal Operators to the Action Language A Adding Modal Operators to the Action Language A Aaron Hunter Simon Fraser University Burnaby, B.C. Canada V5A 1S6 amhunter@cs.sfu.ca Abstract The action language A is a simple high-level language for describing

More information

CS411 Notes 3 Induction and Recursion

CS411 Notes 3 Induction and Recursion CS411 Notes 3 Induction and Recursion A. Demers 5 Feb 2001 These notes present inductive techniques for defining sets and subsets, for defining functions over sets, and for proving that a property holds

More information

Computation Tree Logic (CTL) & Basic Model Checking Algorithms

Computation Tree Logic (CTL) & Basic Model Checking Algorithms Computation Tree Logic (CTL) & Basic Model Checking Algorithms Martin Fränzle Carl von Ossietzky Universität Dpt. of Computing Science Res. Grp. Hybride Systeme Oldenburg, Germany 02917: CTL & Model Checking

More information

Modal and Temporal Logics

Modal and Temporal Logics Modal and Temporal Logics Colin Stirling School of Informatics University of Edinburgh July 26, 2003 Computational Properties 1 Satisfiability Problem: Given a modal µ-calculus formula Φ, is Φ satisfiable?

More information

An Introduction to Modal Logic III

An Introduction to Modal Logic III An Introduction to Modal Logic III Soundness of Normal Modal Logics Marco Cerami Palacký University in Olomouc Department of Computer Science Olomouc, Czech Republic Olomouc, October 24 th 2013 Marco Cerami

More information

On obligations and normative ability: Towards a logical analysis of the social contract!

On obligations and normative ability: Towards a logical analysis of the social contract! Journal of Applied Logic 3 (2005) 396 420 www.elsevier.com/locate/jal On obligations and normative ability: Towards a logical analysis of the social contract! Michael Wooldridge, Wiebe van der Hoek Department

More information

Linear Temporal Logic and Büchi Automata

Linear Temporal Logic and Büchi Automata Linear Temporal Logic and Büchi Automata Yih-Kuen Tsay Department of Information Management National Taiwan University FLOLAC 2009 Yih-Kuen Tsay (SVVRL @ IM.NTU) Linear Temporal Logic and Büchi Automata

More information

Automata-based Verification - III

Automata-based Verification - III COMP30172: Advanced Algorithms Automata-based Verification - III Howard Barringer Room KB2.20: email: howard.barringer@manchester.ac.uk March 2009 Third Topic Infinite Word Automata Motivation Büchi Automata

More information

ESE601: Hybrid Systems. Introduction to verification

ESE601: Hybrid Systems. Introduction to verification ESE601: Hybrid Systems Introduction to verification Spring 2006 Suggested reading material Papers (R14) - (R16) on the website. The book Model checking by Clarke, Grumberg and Peled. What is verification?

More information

Fixpoint Extensions of Temporal Description Logics

Fixpoint Extensions of Temporal Description Logics Fixpoint Extensions of Temporal Description Logics Enrico Franconi Faculty of Computer Science Free University of Bozen-Bolzano, Italy franconi@inf.unibz.it David Toman School of Computer Science University

More information

Helsinki University of Technology Laboratory for Theoretical Computer Science Research Reports 66

Helsinki University of Technology Laboratory for Theoretical Computer Science Research Reports 66 Helsinki University of Technology Laboratory for Theoretical Computer Science Research Reports 66 Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 66 Espoo 2000 HUT-TCS-A66

More information

Applied Logic. Lecture 1 - Propositional logic. Marcin Szczuka. Institute of Informatics, The University of Warsaw

Applied Logic. Lecture 1 - Propositional logic. Marcin Szczuka. Institute of Informatics, The University of Warsaw Applied Logic Lecture 1 - Propositional logic Marcin Szczuka Institute of Informatics, The University of Warsaw Monographic lecture, Spring semester 2017/2018 Marcin Szczuka (MIMUW) Applied Logic 2018

More information

Temporal & Modal Logic. Acronyms. Contents. Temporal Logic Overview Classification PLTL Syntax Semantics Identities. Concurrency Model Checking

Temporal & Modal Logic. Acronyms. Contents. Temporal Logic Overview Classification PLTL Syntax Semantics Identities. Concurrency Model Checking Temporal & Modal Logic E. Allen Emerson Presenter: Aly Farahat 2/12/2009 CS5090 1 Acronyms TL: Temporal Logic BTL: Branching-time Logic LTL: Linear-Time Logic CTL: Computation Tree Logic PLTL: Propositional

More information

First-order resolution for CTL

First-order resolution for CTL First-order resolution for Lan Zhang, Ullrich Hustadt and Clare Dixon Department of Computer Science, University of Liverpool Liverpool, L69 3BX, UK {Lan.Zhang, U.Hustadt, CLDixon}@liverpool.ac.uk Abstract

More information

Overview. overview / 357

Overview. overview / 357 Overview overview6.1 Introduction Modelling parallel systems Linear Time Properties Regular Properties Linear Temporal Logic (LTL) Computation Tree Logic syntax and semantics of CTL expressiveness of CTL

More information

On Real-time Monitoring with Imprecise Timestamps

On Real-time Monitoring with Imprecise Timestamps On Real-time Monitoring with Imprecise Timestamps David Basin 1, Felix Klaedtke 2, Srdjan Marinovic 1, and Eugen Zălinescu 1 1 Institute of Information Security, ETH Zurich, Switzerland 2 NEC Europe Ltd.,

More information

A Logic for Cooperation, Actions and Preferences

A Logic for Cooperation, Actions and Preferences A Logic for Cooperation, Actions and Preferences Lena Kurzen Universiteit van Amsterdam L.M.Kurzen@uva.nl Abstract In this paper, a logic for reasoning about cooperation, actions and preferences of agents

More information

On the Boundary of Behavioral Strategies

On the Boundary of Behavioral Strategies On the Boundary of Behavioral Strategies Fabio Mogavero, Aniello Murano, and Luigi Sauro Università degli Studi di Napoli Federico II, Napoli, Italy. fm@fabiomogavero.com murano@na.infn.it luigi.sauro74@gmail.com

More information

3. Only sequences that were formed by using finitely many applications of rules 1 and 2, are propositional formulas.

3. Only sequences that were formed by using finitely many applications of rules 1 and 2, are propositional formulas. 1 Chapter 1 Propositional Logic Mathematical logic studies correct thinking, correct deductions of statements from other statements. Let us make it more precise. A fundamental property of a statement is

More information

5. Peano arithmetic and Gödel s incompleteness theorem

5. Peano arithmetic and Gödel s incompleteness theorem 5. Peano arithmetic and Gödel s incompleteness theorem In this chapter we give the proof of Gödel s incompleteness theorem, modulo technical details treated in subsequent chapters. The incompleteness theorem

More information

Topics in Verification AZADEH FARZAN FALL 2017

Topics in Verification AZADEH FARZAN FALL 2017 Topics in Verification AZADEH FARZAN FALL 2017 Last time LTL Syntax ϕ ::= true a ϕ 1 ϕ 2 ϕ ϕ ϕ 1 U ϕ 2 a AP. ϕ def = trueu ϕ ϕ def = ϕ g intuitive meaning of and is obt Limitations of LTL pay pay τ τ soda

More information

Chapter 3 Deterministic planning

Chapter 3 Deterministic planning Chapter 3 Deterministic planning In this chapter we describe a number of algorithms for solving the historically most important and most basic type of planning problem. Two rather strong simplifying assumptions

More information

Lecture 16: Computation Tree Logic (CTL)

Lecture 16: Computation Tree Logic (CTL) Lecture 16: Computation Tree Logic (CTL) 1 Programme for the upcoming lectures Introducing CTL Basic Algorithms for CTL CTL and Fairness; computing strongly connected components Basic Decision Diagrams

More information

CTL, the branching-time temporal logic

CTL, the branching-time temporal logic CTL, the branching-time temoral logic Cătălin Dima Université Paris-Est Créteil Cătălin Dima (UPEC) CTL 1 / 29 Temoral roerties CNIL Safety, termination, mutual exclusion LTL. Liveness, reactiveness, resonsiveness,

More information

Automata Theory for Presburger Arithmetic Logic

Automata Theory for Presburger Arithmetic Logic Automata Theory for Presburger Arithmetic Logic References from Introduction to Automata Theory, Languages & Computation and Constraints in Computational Logic Theory & Application Presented by Masood

More information

Note on winning positions on pushdown games with omega-regular winning conditions

Note on winning positions on pushdown games with omega-regular winning conditions Note on winning positions on pushdown games with omega-regular winning conditions Olivier Serre To cite this version: Olivier Serre. Note on winning positions on pushdown games with omega-regular winning

More information

PSL Model Checking and Run-time Verification via Testers

PSL Model Checking and Run-time Verification via Testers PSL Model Checking and Run-time Verification via Testers Formal Methods 2006 Aleksandr Zaks and Amir Pnueli New York University Introduction Motivation (Why PSL?) A new property specification language,

More information

Completeness Results for Memory Logics

Completeness Results for Memory Logics Completeness Results for Memory Logics Carlos Areces Santiago Figueira Sergio Mera Abstract Memory logics are a family of modal logics in which standard relational structures are augmented with data structures

More information

Automata theory. An algorithmic approach. Lecture Notes. Javier Esparza

Automata theory. An algorithmic approach. Lecture Notes. Javier Esparza Automata theory An algorithmic approach Lecture Notes Javier Esparza July 2 22 2 Chapter 9 Automata and Logic A regular expression can be seen as a set of instructions ( a recipe ) for generating the words

More information

Classical First-Order Logic

Classical First-Order Logic Classical First-Order Logic Software Formal Verification Maria João Frade Departmento de Informática Universidade do Minho 2008/2009 Maria João Frade (DI-UM) First-Order Logic (Classical) MFES 2008/09

More information

FORMAL METHODS LECTURE IV: COMPUTATION TREE LOGIC (CTL)

FORMAL METHODS LECTURE IV: COMPUTATION TREE LOGIC (CTL) Alessandro Artale (FM First Semester 2007/2008) p. 1/37 FORMAL METHODS LECTURE IV: COMPUTATION TREE LOGIC (CTL) Alessandro Artale Faculty of Computer Science Free University of Bolzano artale@inf.unibz.it

More information

Reasoning about Memoryless Strategies under Partial Observability and Unconditional Fairness Constraints

Reasoning about Memoryless Strategies under Partial Observability and Unconditional Fairness Constraints Reasoning about Memoryless Strategies under Partial Observability and Unconditional Fairness Constraints Simon Busard a,1, Charles Pecheur a, Hongyang Qu b,2, Franco Raimondi c a ICTEAM Institute, Université

More information

Temporal Logic Model Checking

Temporal Logic Model Checking 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 1 Temporal Logic Model Checking Thomas Wahl Computing Laboratory, Oxford University 18 Feb, 2009 Thomas Wahl, Oxford University

More information

Chapter 5: Linear Temporal Logic

Chapter 5: Linear Temporal Logic Chapter 5: Linear Temporal Logic Prof. Ali Movaghar Verification of Reactive Systems Spring 91 Outline We introduce linear temporal logic (LTL), a logical formalism that is suited for specifying LT properties.

More information

Advanced Topics in LP and FP

Advanced Topics in LP and FP Lecture 1: Prolog and Summary of this lecture 1 Introduction to Prolog 2 3 Truth value evaluation 4 Prolog Logic programming language Introduction to Prolog Introduced in the 1970s Program = collection

More information

Tableau-based decision procedures for logics of strategic ability in multiagent systems

Tableau-based decision procedures for logics of strategic ability in multiagent systems Tableau-based decision procedures for logics of strategic ability in multiagent systems VALENTIN GORANKO University of the Witwatersrand DMITRY SHKATOV University of the Witwatersrand We develop an incremental

More information