Column Generation for Extended Formulations

Size: px
Start display at page:

Download "Column Generation for Extended Formulations"

Transcription

1 1 / 28 Column Generation for Extended Formulations Ruslan Sadykov 1 François Vanderbeck 2,1 1 INRIA Bordeaux Sud-Ouest, France 2 University Bordeaux I, France ISMP 2012 Berlin, August 23

2 2 / 28 Contents Motivation Methodology Interest of the approach Numerical results and conclusions

3 3 / 28 Extended formulations Reformulation involving extra variables tighter relations between variables Ways to obtain Variable Splitting (binary or unary expansion) Network Flow (Multi-Commodity) Dynamic Programming Solver [Martin et al] Union of Polyhedra [Balas] Polyhedral Branching Systems [Kaibel, Loos]...

4 4 / 28 Ways to exploit extended formulations 1. Use a direct MIP-solver approach: size is an issue. 2. Use projection tools: Benders cuts. dynamic outer approximation of the formulation 3. Use of an approximation [Van Vyve & Wolsey MP06] Drop some of the constraints Aggregate commodities Partial reformulation static outer approximation of the formulation 4. Use (delayed) column generation. dynamic inner approximation of the formulation

5 5 / 28 Column-and-row generation It is a generalization of the standard column generation (based on the Dantzig-Wolfe reformulation). Our contributions Reviewing of the methodology of the column-and-row generation and presenting it as a generic approach Analysis of the interest of the column-and-row generation approach: its good performance is explained by a stabilization effect New computational results

6 6 / 28 Contents Motivation Methodology Interest of the approach Numerical results and conclusions

7 Extended formulation for a subsystem Original formulation { [F] min c x A x a B x b x Z n + } Subsystem { P B x b x R n + X = P Z n } Main assumption There exists a polyhedron Q = { Hz h, z R e } + and transformation T s.t. Q defines an extended formulation for X: { } conv(x) = proj x Q = x = Tz : Hz h, z R e + 7 / 28

8 8 / 28 Extended reformulation Original formulation { [F] min c x A x a B x b x Z n + } Extended reformulation { [R] min c T z A T z a H z h z Z e + } Special case: Dantzig-Wolfe reformulation { [M] min c x g λ g g G A x g λ g a g G λ g = 1 g G λ {0, 1} G } x 1 x 2 x 4 x 3

9 9 / 28 Column-and-row generation: a hybrid approach Alternative to direct resolution by a MIP solver Dynamic generation of the variables of [R]: generated in bunch by optimizing over X. Adding rows that become active. Alternative to the standard column generation Perform the column generation for [M] Project the master program in [R] (we split generated columns into individual variables)

10 10 / 28 Example: machine scheduling with a sum criterion S 3 3 S 2 2 S { [R] min c jt z jt jt T p j t=0 z jt = 1 j J z j0 = 1 j J z jt z j,t pj = 0 t 1 j J j J } z jt {0, 1} j, t t { min c(s j ) j S j + p j S } i (i, j) or S i + p i S j { [M] min c g λ g g G T p j g G t=0 z g jt λ g = 1 j J λ g = 1 g G } λ g {0, 1} g G

11 Machine scheduling: column-and-row generation 1. Solve the restricted extended formulation [R LP ] (start from a feasible one) and update dual prices. 2. Solve the pricing subproblem (obtain a pseudo schedule) t 3. Disaggregate the subproblem solution in arc variables z. z 30 z23 z If some of these variables z are not in [R LP ], add them to it along with the associated flow conservation constraints, then go to step Otherwise stop (the current solution of [R LP ] is optimal for [R]). 11 / 28

12 12 / 28 Restricted reformulations Z = {z s } s S a set of integer solutions of Q, S S z restriction of z to the components of s S supp(zs ) G = G(S) = {g G : x g = T z s, s S} { [R LP ] min c T z Proposition A T z a H z h z R e + } { [M LP ] min c x g λ g g G A x g λ g a g G v [M LP] = v [R LP] v [R LP] v [M LP]. λ g = 1 g G } λ R G +

13 Column-and-row generation procedure Step 0: Initialize the dual bound, β :=, and a subset S so that [R LP ] is feasible. Step 1: Solve [R LP ] and collect its dual solution π associated to constraints A T z a. Step 2: Obtain a solution z of the pricing problem: min{(c πa)t z : z Z } = min{(c πa)x : x X}. Step 3: Compute the Lagrangian dual bound: L(π) π a + (c πa) T z, and update β max{β, L(π)}. If v [R LP] β, STOP. Step 4: Update the current bundle S by adding solution z and update [R LP ]. Go to Step 1. Proposition Either v [R LP] β (stopping condition), or some of the components of z have negative reduced cost in [R LP ]. 13 / 28

14 14 / 28 Example: multi-item multi-echelon lot sizing yet k xet k setup for item k at echelon e in period t production for item k at echelon e in period t [F] { min (cet k xet k + fet k yet) k : ket yet k 1 k t xeτ k τ=1 t τ=1 e, t x k e+1,τ t xeτ k D1t k k, t τ=1 xet k DtT k yet k k, e, t xet k 0 k, e, t } yet k {0, 1} k, e, t k, e < E, t

15 Multi-echelon lot sizing: extended formulation Dominance property There exists an optimal solution in which x et s et = 0 k, e, t production plan for every item k is a directed tree: e = 1 e = 2 e = 3 t Dynamic programming State (e, t, a, b) corresponds to accumulating at echelon e in period t a production covering exactly the demand of periods a,..., b. Extended formulation follows from [Martin et al]. 15 / 28

16 16 / 28 A generalization Relaxed assumption There exists a polyhedron Q = { Hz h, z R e } + and transformation T s.t. Q defines a tighter formulation for X: { } conv(x) proj x Q = x = Tz : Hz h, z R e + P Consequences Column-and-row procedure is still valid However, in general, the dual bound is not as tight as v [M LP].

17 17 / 28 Contents Motivation Methodology Interest of the approach Numerical results and conclusions

18 18 / 28 Column-and-row generation vs. column generation Proposition reminder v [M LP] = v [R LP] v [R LP] v [M LP]. Remark Column-and-row generation can converge faster than the standard column generation. But when (and why) this happens? Recombination property Given S, subproblem solutions z 1,..., z k Z (S) can be recombined in a new solution ẑ [R LP ] such that ẑ conv(z (S)).

19 19 / 28 Machine scheduling: recombination property Z (S) = {z 1, z 2 }, ẑ [R LP ] z z ẑ 5 2 t

20 20 / 28 Machine scheduling: example of convergence Column generation for [M] Column-and-row generation for [R] Initial solution Iteration Subproblem solution Subproblem solution Final solution

21 21 / 28 Multi-echelon lot-sizing: recombination property Z (S) = {z 1, z 2 }, ẑ [R LP ] z 1 z 2 e = 1 e = 2 e = 3 e = 1 e = 2 e = 3 ẑ e = 1 e = 2 e = 3

22 22 / 28 Contents Motivation Methodology Interest of the approach Numerical results and conclusions

23 Machine Scheduling: numerical results Generated similarly to the instances from the OR-library Averages for 25 instances are given Processing times are in [1,..., 100]. Cplex 12.1 Colomn gen. Column-and-row for [R LP ] for [M LP ] generation for [R LP ] m n cpu #it cpu #it vars cpu % % % % % % % % >2h % 39.4 #it number of column generation iterations vars percentage of variables z generated cpu solution time, in seconds 23 / 28

24 Machine Scheduling: results with smoothing Both column and column-and-row generation are stabilized with smoothing: pricing problem is solved for the vector of dual values which is a linear combination of current dual solution and the stability center (smoothing parameter α is the best possible). Colomn gen. Column-and-row gen. for [M LP ], α = 0.9 for [R LP ], α = 0.5 m n #it cpu #it vars cpu % % % % % % % % % / 28

25 25 / 28 Multi-echelon lot sizing: results with smoothing Averages for 10 instances are given Colomn gen. Column-and-row for [M LP ], α = 0.85 gen. for [R LP ], α = 0.4 E K T #it cpu #it vars cpu % % % % % % % % % % % % 386.1

26 26 / 28 Conclusions 1. Column generation for an extended formulation is to be considered when: The extended formulation is obtained using a decomposition. SP solutions can be recombined into alternative ones. 2. The approach can be interpreted as a stabilization method for column generation: disaggregation helps, related to the use of exchange vectors, combined effect with other stabilization techniques (e.g. smoothing). 3. Computational results (ours and in the literature) show that this can be a competitive approach.

27 27 / 28 Bin Packing: results with smoothing Bin capacity is 4000 Item sizes are generated uniformly in intervals [1000, 3000] ( a2 ), [1000, 1500] ( a3 ), and [800, 1300] ( a4 ) Averages for 5 instances are given Cplex 12.1 Col. gen. Col-and-row gen. for [F] for [M], α = 0.85 for [R], α = 0.85 class n gap %gap cpu #it cpu #it cpu vars a a a

28 28 / 28 Generalized Assignment: results with smoothing Instances from the OR-Library (class D) Cplex 12.1 Col. gen. Col-and-row gen for [F LP ] for [M LP ], α = 0.85 for [R LP ], α = 0.5 m n %gap cpu #it %gap cpu #it %gap cpu vars

Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications

Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications François Vanderbeck University of Bordeaux INRIA Bordeaux-Sud-Ouest part : Defining Extended Formulations

More information

Stabilization in Column Generation: numerical study

Stabilization in Column Generation: numerical study 1 / 26 Stabilization in Column Generation: numerical study Artur Pessoa 3 Ruslan Sadykov 1,2 Eduardo Uchoa 3 François Vanderbeck 2,1 1 INRIA Bordeaux, France 2 Univ. Bordeaux I, France 3 Universidade Federal

More information

Column generation for extended formulations

Column generation for extended formulations EURO J Comput Optim (2013) 1:81 115 DOI 10.1007/s13675-013-0009-9 ORIGINAL PAPER Column generation for extended formulations Ruslan Sadykov François Vanderbeck Received: 5 May 2012 / Accepted: 21 December

More information

Reformulation and Decomposition of Integer Programs

Reformulation and Decomposition of Integer Programs Reformulation and Decomposition of Integer Programs François Vanderbeck 1 and Laurence A. Wolsey 2 (Reference: CORE DP 2009/16) (1) Université Bordeaux 1 & INRIA-Bordeaux (2) Université de Louvain, CORE.

More information

Feasibility Pump Heuristics for Column Generation Approaches

Feasibility Pump Heuristics for Column Generation Approaches 1 / 29 Feasibility Pump Heuristics for Column Generation Approaches Ruslan Sadykov 2 Pierre Pesneau 1,2 Francois Vanderbeck 1,2 1 University Bordeaux I 2 INRIA Bordeaux Sud-Ouest SEA 2012 Bordeaux, France,

More information

Integer Programming Reformulations: Dantzig-Wolfe & Benders Decomposition the Coluna Software Platform

Integer Programming Reformulations: Dantzig-Wolfe & Benders Decomposition the Coluna Software Platform Integer Programming Reformulations: Dantzig-Wolfe & Benders Decomposition the Coluna Software Platform François Vanderbeck B. Detienne, F. Clautiaux, R. Griset, T. Leite, G. Marques, V. Nesello, A. Pessoa,

More information

Lecture 9: Dantzig-Wolfe Decomposition

Lecture 9: Dantzig-Wolfe Decomposition Lecture 9: Dantzig-Wolfe Decomposition (3 units) Outline Dantzig-Wolfe decomposition Column generation algorithm Relation to Lagrangian dual Branch-and-price method Generated assignment problem and multi-commodity

More information

A generic view of Dantzig Wolfe decomposition in mixed integer programming

A generic view of Dantzig Wolfe decomposition in mixed integer programming Operations Research Letters 34 (2006) 296 306 Operations Research Letters www.elsevier.com/locate/orl A generic view of Dantzig Wolfe decomposition in mixed integer programming François Vanderbeck a,,

More information

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING 1. Lagrangian Relaxation Lecture 12 Single Machine Models, Column Generation 2. Dantzig-Wolfe Decomposition Dantzig-Wolfe Decomposition Delayed Column

More information

Integer Programming ISE 418. Lecture 16. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 16. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 16 Dr. Ted Ralphs ISE 418 Lecture 16 1 Reading for This Lecture Wolsey, Chapters 10 and 11 Nemhauser and Wolsey Sections II.3.1, II.3.6, II.3.7, II.5.4 CCZ Chapter 8

More information

Column Generation. ORLAB - Operations Research Laboratory. Stefano Gualandi. June 14, Politecnico di Milano, Italy

Column Generation. ORLAB - Operations Research Laboratory. Stefano Gualandi. June 14, Politecnico di Milano, Italy ORLAB - Operations Research Laboratory Politecnico di Milano, Italy June 14, 2011 Cutting Stock Problem (from wikipedia) Imagine that you work in a paper mill and you have a number of rolls of paper of

More information

Lagrangian Relaxation in MIP

Lagrangian Relaxation in MIP Lagrangian Relaxation in MIP Bernard Gendron May 28, 2016 Master Class on Decomposition, CPAIOR2016, Banff, Canada CIRRELT and Département d informatique et de recherche opérationnelle, Université de Montréal,

More information

On the exact solution of a large class of parallel machine scheduling problems

On the exact solution of a large class of parallel machine scheduling problems 1 / 23 On the exact solution of a large class of parallel machine scheduling problems Teobaldo Bulhões 2 Ruslan Sadykov 1 Eduardo Uchoa 2 Anand Subramanian 3 1 Inria Bordeaux and Univ. Bordeaux, France

More information

Branching in Branch-and-Price: a Generic Scheme

Branching in Branch-and-Price: a Generic Scheme Branching in Branch-and-Price: a Generic Scheme François Vanderbeck To cite this version: François Vanderbeck. Branching in Branch-and-Price: a Generic Scheme. Mathematical Programming, Series A, Springer,

More information

Classification of Dantzig-Wolfe Reformulations for MIP s

Classification of Dantzig-Wolfe Reformulations for MIP s Classification of Dantzig-Wolfe Reformulations for MIP s Raf Jans Rotterdam School of Management HEC Montreal Workshop on Column Generation Aussois, June 2008 Outline and Motivation Dantzig-Wolfe reformulation

More information

An Adaptive Partition-based Approach for Solving Two-stage Stochastic Programs with Fixed Recourse

An Adaptive Partition-based Approach for Solving Two-stage Stochastic Programs with Fixed Recourse An Adaptive Partition-based Approach for Solving Two-stage Stochastic Programs with Fixed Recourse Yongjia Song, James Luedtke Virginia Commonwealth University, Richmond, VA, ysong3@vcu.edu University

More information

Decomposition and Reformulation in Integer Programming

Decomposition and Reformulation in Integer Programming and Reformulation in Integer Programming Laurence A. WOLSEY 7/1/2008 / Aussois and Reformulation in Integer Programming Outline 1 Resource 2 and Reformulation in Integer Programming Outline Resource 1

More information

A column generation approach to the discrete lot sizing and scheduling problem on parallel machines

A column generation approach to the discrete lot sizing and scheduling problem on parallel machines A column generation approach to the discrete lot sizing and scheduling problem on parallel machines António J.S.T. Duarte and J.M.V. Valério de Carvalho Abstract In this work, we study the discrete lot

More information

1 Solution of a Large-Scale Traveling-Salesman Problem... 7 George B. Dantzig, Delbert R. Fulkerson, and Selmer M. Johnson

1 Solution of a Large-Scale Traveling-Salesman Problem... 7 George B. Dantzig, Delbert R. Fulkerson, and Selmer M. Johnson Part I The Early Years 1 Solution of a Large-Scale Traveling-Salesman Problem............ 7 George B. Dantzig, Delbert R. Fulkerson, and Selmer M. Johnson 2 The Hungarian Method for the Assignment Problem..............

More information

A Column Generation Based Heuristic for the Dial-A-Ride Problem

A Column Generation Based Heuristic for the Dial-A-Ride Problem A Column Generation Based Heuristic for the Dial-A-Ride Problem Nastaran Rahmani 1, Boris Detienne 2,3, Ruslan Sadykov 3,2, François Vanderbeck 2,3 1 Kedge Business School, 680 Cours de la Libération,

More information

Discrete lot sizing and scheduling on parallel machines: description of a column generation approach

Discrete lot sizing and scheduling on parallel machines: description of a column generation approach 126 IO 2013 XVI Congresso da Associação Portuguesa de Investigação Operacional Discrete lot sizing and scheduling on parallel machines: description of a column generation approach António J.S.T. Duarte,

More information

Strengthened Benders Cuts for Stochastic Integer Programs with Continuous Recourse

Strengthened Benders Cuts for Stochastic Integer Programs with Continuous Recourse Strengthened Benders Cuts for Stochastic Integer Programs with Continuous Recourse Merve Bodur 1, Sanjeeb Dash 2, Otay Günlü 2, and James Luedte 3 1 Department of Mechanical and Industrial Engineering,

More information

A Hub Location Problem with Fully Interconnected Backbone and Access Networks

A Hub Location Problem with Fully Interconnected Backbone and Access Networks A Hub Location Problem with Fully Interconnected Backbone and Access Networks Tommy Thomadsen Informatics and Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby Denmark tt@imm.dtu.dk

More information

Column Generation. MTech Seminar Report. Soumitra Pal Roll No: under the guidance of

Column Generation. MTech Seminar Report. Soumitra Pal Roll No: under the guidance of Column Generation MTech Seminar Report by Soumitra Pal Roll No: 05305015 under the guidance of Prof. A. G. Ranade Computer Science and Engineering IIT-Bombay a Department of Computer Science and Engineering

More information

An Integer Cutting-Plane Procedure for the Dantzig-Wolfe Decomposition: Theory

An Integer Cutting-Plane Procedure for the Dantzig-Wolfe Decomposition: Theory An Integer Cutting-Plane Procedure for the Dantzig-Wolfe Decomposition: Theory by Troels Martin Range Discussion Papers on Business and Economics No. 10/2006 FURTHER INFORMATION Department of Business

More information

Interior-Point versus Simplex methods for Integer Programming Branch-and-Bound

Interior-Point versus Simplex methods for Integer Programming Branch-and-Bound Interior-Point versus Simplex methods for Integer Programming Branch-and-Bound Samir Elhedhli elhedhli@uwaterloo.ca Department of Management Sciences, University of Waterloo, Canada Page of 4 McMaster

More information

KNAPSACK PROBLEMS WITH SETUPS

KNAPSACK PROBLEMS WITH SETUPS 7 e Conférence Francophone de MOdélisation et SIMulation - MOSIM 08 - du 31 mars au 2 avril 2008 - Paris - France Modélisation, Optimisation et Simulation des Systèmes : Communication, Coopération et Coordination

More information

Development of the new MINLP Solver Decogo using SCIP - Status Report

Development of the new MINLP Solver Decogo using SCIP - Status Report Development of the new MINLP Solver Decogo using SCIP - Status Report Pavlo Muts with Norman Breitfeld, Vitali Gintner, Ivo Nowak SCIP Workshop 2018, Aachen Table of contents 1. Introduction 2. Automatic

More information

Cutting Planes in SCIP

Cutting Planes in SCIP Cutting Planes in SCIP Kati Wolter Zuse-Institute Berlin Department Optimization Berlin, 6th June 2007 Outline 1 Cutting Planes in SCIP 2 Cutting Planes for the 0-1 Knapsack Problem 2.1 Cover Cuts 2.2

More information

Decomposition methods in optimization

Decomposition methods in optimization Decomposition methods in optimization I Approach I: I Partition problem constraints into two groups: explicit and implicit I Approach II: I Partition decision variables into two groups: primary and secondary

More information

Benders Decomposition for the Uncapacitated Multicommodity Network Design Problem

Benders Decomposition for the Uncapacitated Multicommodity Network Design Problem Benders Decomposition for the Uncapacitated Multicommodity Network Design Problem 1 Carlos Armando Zetina, 1 Ivan Contreras, 2 Jean-François Cordeau 1 Concordia University and CIRRELT, Montréal, Canada

More information

A Benders Algorithm for Two-Stage Stochastic Optimization Problems With Mixed Integer Recourse

A Benders Algorithm for Two-Stage Stochastic Optimization Problems With Mixed Integer Recourse A Benders Algorithm for Two-Stage Stochastic Optimization Problems With Mixed Integer Recourse Ted Ralphs 1 Joint work with Menal Güzelsoy 2 and Anahita Hassanzadeh 1 1 COR@L Lab, Department of Industrial

More information

Notes on Dantzig-Wolfe decomposition and column generation

Notes on Dantzig-Wolfe decomposition and column generation Notes on Dantzig-Wolfe decomposition and column generation Mette Gamst November 11, 2010 1 Introduction This note introduces an exact solution method for mathematical programming problems. The method is

More information

Introduction to Bin Packing Problems

Introduction to Bin Packing Problems Introduction to Bin Packing Problems Fabio Furini March 13, 2015 Outline Origins and applications Applications: Definition: Bin Packing Problem (BPP) Solution techniques for the BPP Heuristic Algorithms

More information

Logic-based Benders Decomposition

Logic-based Benders Decomposition Logic-based Benders Decomposition A short Introduction Martin Riedler AC Retreat Contents 1 Introduction 2 Motivation 3 Further Notes MR Logic-based Benders Decomposition June 29 July 1 2 / 15 Basic idea

More information

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini In the name of God Network Flows 6. Lagrangian Relaxation 6.3 Lagrangian Relaxation and Integer Programming Fall 2010 Instructor: Dr. Masoud Yaghini Integer Programming Outline Branch-and-Bound Technique

More information

18 hours nodes, first feasible 3.7% gap Time: 92 days!! LP relaxation at root node: Branch and bound

18 hours nodes, first feasible 3.7% gap Time: 92 days!! LP relaxation at root node: Branch and bound The MIP Landscape 1 Example 1: LP still can be HARD SGM: Schedule Generation Model Example 157323 1: LP rows, still can 182812 be HARD columns, 6348437 nzs LP relaxation at root node: 18 hours Branch and

More information

On the Equivalence of Strong Formulations for Capacitated Multi-level Lot Sizing Problems with Setup Times

On the Equivalence of Strong Formulations for Capacitated Multi-level Lot Sizing Problems with Setup Times On the Equivalence of Strong Formulations for Capacitated Multi-level Lot Sizing Problems with Setup Times Tao Wu 1, Leyuan Shi 1, Joseph Geunes 2, Kerem Akartunalı 3 1 Department of Industrial and Systems

More information

The Fixed Charge Transportation Problem: A Strong Formulation Based On Lagrangian Decomposition and Column Generation

The Fixed Charge Transportation Problem: A Strong Formulation Based On Lagrangian Decomposition and Column Generation The Fixed Charge Transportation Problem: A Strong Formulation Based On Lagrangian Decomposition and Column Generation Yixin Zhao, Torbjörn Larsson and Department of Mathematics, Linköping University, Sweden

More information

Disconnecting Networks via Node Deletions

Disconnecting Networks via Node Deletions 1 / 27 Disconnecting Networks via Node Deletions Exact Interdiction Models and Algorithms Siqian Shen 1 J. Cole Smith 2 R. Goli 2 1 IOE, University of Michigan 2 ISE, University of Florida 2012 INFORMS

More information

Decomposition Methods for Integer Programming

Decomposition Methods for Integer Programming Decomposition Methods for Integer Programming J.M. Valério de Carvalho vc@dps.uminho.pt Departamento de Produção e Sistemas Escola de Engenharia, Universidade do Minho Portugal PhD Course Programa Doutoral

More information

Fixed-charge transportation problems on trees

Fixed-charge transportation problems on trees Fixed-charge transportation problems on trees Gustavo Angulo * Mathieu Van Vyve * gustavo.angulo@uclouvain.be mathieu.vanvyve@uclouvain.be November 23, 2015 Abstract We consider a class of fixed-charge

More information

Generation and Representation of Piecewise Polyhedral Value Functions

Generation and Representation of Piecewise Polyhedral Value Functions Generation and Representation of Piecewise Polyhedral Value Functions Ted Ralphs 1 Joint work with Menal Güzelsoy 2 and Anahita Hassanzadeh 1 1 COR@L Lab, Department of Industrial and Systems Engineering,

More information

Large-scale optimization and decomposition methods: outline. Column Generation and Cutting Plane methods: a unified view

Large-scale optimization and decomposition methods: outline. Column Generation and Cutting Plane methods: a unified view Large-scale optimization and decomposition methods: outline I Solution approaches for large-scaled problems: I Delayed column generation I Cutting plane methods (delayed constraint generation) 7 I Problems

More information

Decomposition Techniques in Mathematical Programming

Decomposition Techniques in Mathematical Programming Antonio J. Conejo Enrique Castillo Roberto Minguez Raquel Garcia-Bertrand Decomposition Techniques in Mathematical Programming Engineering and Science Applications Springer Contents Part I Motivation and

More information

On the Polyhedral Structure of a Multi Item Production Planning Model with Setup Times

On the Polyhedral Structure of a Multi Item Production Planning Model with Setup Times CORE DISCUSSION PAPER 2000/52 On the Polyhedral Structure of a Multi Item Production Planning Model with Setup Times Andrew J. Miller 1, George L. Nemhauser 2, and Martin W.P. Savelsbergh 2 November 2000

More information

ON MIXING SETS ARISING IN CHANCE-CONSTRAINED PROGRAMMING

ON MIXING SETS ARISING IN CHANCE-CONSTRAINED PROGRAMMING ON MIXING SETS ARISING IN CHANCE-CONSTRAINED PROGRAMMING Abstract. The mixing set with a knapsack constraint arises in deterministic equivalent of chance-constrained programming problems with finite discrete

More information

CAPACITATED LOT-SIZING PROBLEM WITH SETUP TIMES, STOCK AND DEMAND SHORTAGES

CAPACITATED LOT-SIZING PROBLEM WITH SETUP TIMES, STOCK AND DEMAND SHORTAGES CAPACITATED LOT-SIZING PROBLEM WITH SETUP TIMES, STOCK AND DEMAND SHORTAGES Nabil Absi,1 Safia Kedad-Sidhoum Laboratoire d Informatique d Avignon, 339 chemin des Meinajariès, 84911 Avignon Cedex 09, France

More information

The two-dimensional bin-packing problem is the problem of orthogonally packing a given set of rectangles

The two-dimensional bin-packing problem is the problem of orthogonally packing a given set of rectangles INFORMS Journal on Computing Vol. 19, No. 1, Winter 2007, pp. 36 51 issn 1091-9856 eissn 1526-5528 07 1901 0036 informs doi 10.1287/ijoc.1060.0181 2007 INFORMS Using Decomposition Techniques and Constraint

More information

Linear Programming Inverse Projection Theory Chapter 3

Linear Programming Inverse Projection Theory Chapter 3 1 Linear Programming Inverse Projection Theory Chapter 3 University of Chicago Booth School of Business Kipp Martin September 26, 2017 2 Where We Are Headed We want to solve problems with special structure!

More information

Cutting Plane Separators in SCIP

Cutting Plane Separators in SCIP Cutting Plane Separators in SCIP Kati Wolter Zuse Institute Berlin DFG Research Center MATHEON Mathematics for key technologies 1 / 36 General Cutting Plane Method MIP min{c T x : x X MIP }, X MIP := {x

More information

Integer program reformulation for robust branch-and-cut-and-price

Integer program reformulation for robust branch-and-cut-and-price Integer program reformulation for robust branch-and-cut-and-price Marcus Poggi de Aragão Informática PUC-Rio Eduardo Uchoa Engenharia de Produção Universidade Federal Fluminense Outline of the talk Robust

More information

Benders Decomposition

Benders Decomposition Benders Decomposition Yuping Huang, Dr. Qipeng Phil Zheng Department of Industrial and Management Systems Engineering West Virginia University IENG 593G Nonlinear Programg, Spring 2012 Yuping Huang (IMSE@WVU)

More information

Computational Integer Programming. Lecture 2: Modeling and Formulation. Dr. Ted Ralphs

Computational Integer Programming. Lecture 2: Modeling and Formulation. Dr. Ted Ralphs Computational Integer Programming Lecture 2: Modeling and Formulation Dr. Ted Ralphs Computational MILP Lecture 2 1 Reading for This Lecture N&W Sections I.1.1-I.1.6 Wolsey Chapter 1 CCZ Chapter 2 Computational

More information

Acceleration and Stabilization Techniques for Column Generation

Acceleration and Stabilization Techniques for Column Generation Acceleration and Stabilization Techniques for Column Generation Zhouchun Huang Qipeng Phil Zheng Department of Industrial Engineering & Management Systems University of Central Florida Sep 26, 2014 Outline

More information

A Node-Flow Model for 1D Stock Cutting: Robust Branch-Cut-and-Price

A Node-Flow Model for 1D Stock Cutting: Robust Branch-Cut-and-Price A Node-Flow Model for 1D Stock Cutting: Robust Branch-Cut-and-Price Gleb Belov University of Dresden Adam N. Letchford Lancaster University Eduardo Uchoa Universidade Federal Fluminense August 4, 2011

More information

0-1 Reformulations of the Network Loading Problem

0-1 Reformulations of the Network Loading Problem 0-1 Reformulations of the Network Loading Problem Antonio Frangioni 1 frangio@di.unipi.it Bernard Gendron 2 bernard@crt.umontreal.ca 1 Dipartimento di Informatica Università di Pisa Via Buonarroti, 2 56127

More information

The two-machine flowshop total completion time problem: A branch-and-bound based on network-flow formulation

The two-machine flowshop total completion time problem: A branch-and-bound based on network-flow formulation The two-machine flowshop total completion time problem: A branch-and-bound based on network-flow formulation Boris Detienne 1, Ruslan Sadykov 1, Shunji Tanaka 2 1 : Team Inria RealOpt, University of Bordeaux,

More information

A Horizon Decomposition approach for the Capacitated Lot-Sizing Problem with Setup Times

A Horizon Decomposition approach for the Capacitated Lot-Sizing Problem with Setup Times Submitted to INFORMS Journal on Computing manuscript (Please, provide the mansucript number!) A Horizon Decomposition approach for the Capacitated Lot-Sizing Problem with Setup Times Fragkos Ioannis Rotterdam

More information

An Integrated Column Generation and Lagrangian Relaxation for Flowshop Scheduling Problems

An Integrated Column Generation and Lagrangian Relaxation for Flowshop Scheduling Problems Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics San Antonio, TX, USA - October 2009 An Integrated Column Generation and Lagrangian Relaxation for Flowshop Scheduling

More information

Generic Branch-Price-and-Cut

Generic Branch-Price-and-Cut Generic Branch-Price-and-Cut A Status Report Column Generation Bromont June 12, 2012 can you spot the difference? T-Shirts Status Quo: On the Positive Side many exciting developments in branch-and-price

More information

On Counting Lattice Points and Chvátal-Gomory Cutting Planes

On Counting Lattice Points and Chvátal-Gomory Cutting Planes On Counting Lattice Points and Chvátal-Gomory Cutting Planes Andrea Lodi 1, Gilles Pesant 2, and Louis-Martin Rousseau 2 1 DEIS, Università di Bologna - andrea.lodi@unibo.it 2 CIRRELT, École Polytechnique

More information

Scenario Grouping and Decomposition Algorithms for Chance-constrained Programs

Scenario Grouping and Decomposition Algorithms for Chance-constrained Programs Scenario Grouping and Decomposition Algorithms for Chance-constrained Programs Siqian Shen Dept. of Industrial and Operations Engineering University of Michigan Joint work with Yan Deng (UMich, Google)

More information

Column Generation in Integer Programming with Applications in Multicriteria Optimization

Column Generation in Integer Programming with Applications in Multicriteria Optimization Column Generation in Integer Programming with Applications in Multicriteria Optimization Matthias Ehrgott Department of Engineering Science The University of Auckland, New Zealand email: m.ehrgott@auckland.ac.nz

More information

Time Aggregation for Network Design to Meet Time-Constrained Demand

Time Aggregation for Network Design to Meet Time-Constrained Demand 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1 6 December 2013 www.mssanz.org.au/modsim2013 Time Aggregation for Network Design to Meet Time-Constrained Demand N. Boland

More information

On the Approximate Linear Programming Approach for Network Revenue Management Problems

On the Approximate Linear Programming Approach for Network Revenue Management Problems On the Approximate Linear Programming Approach for Network Revenue Management Problems Chaoxu Tong School of Operations Research and Information Engineering, Cornell University, Ithaca, New York 14853,

More information

Pedro Munari - COA 2017, February 10th, University of Edinburgh, Scotland, UK 2

Pedro Munari - COA 2017, February 10th, University of Edinburgh, Scotland, UK 2 Pedro Munari [munari@dep.ufscar.br] - COA 2017, February 10th, University of Edinburgh, Scotland, UK 2 Outline Vehicle routing problem; How interior point methods can help; Interior point branch-price-and-cut:

More information

Stochastic Integer Programming

Stochastic Integer Programming IE 495 Lecture 20 Stochastic Integer Programming Prof. Jeff Linderoth April 14, 2003 April 14, 2002 Stochastic Programming Lecture 20 Slide 1 Outline Stochastic Integer Programming Integer LShaped Method

More information

Recoverable Robust Knapsacks: Γ -Scenarios

Recoverable Robust Knapsacks: Γ -Scenarios Recoverable Robust Knapsacks: Γ -Scenarios Christina Büsing, Arie M. C. A. Koster, and Manuel Kutschka Abstract In this paper, we investigate the recoverable robust knapsack problem, where the uncertainty

More information

SOME RESOURCE ALLOCATION PROBLEMS

SOME RESOURCE ALLOCATION PROBLEMS SOME RESOURCE ALLOCATION PROBLEMS A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

More information

Orbital Shrinking: A New Tool for Hybrid MIP/CP Methods

Orbital Shrinking: A New Tool for Hybrid MIP/CP Methods Orbital Shrinking: A New Tool for Hybrid MIP/CP Methods Domenico Salvagnin DEI, University of Padova salvagni@dei.unipd.it Abstract. Orbital shrinking is a newly developed technique in the MIP community

More information

Partial Path Column Generation for the Vehicle Routing Problem with Time Windows

Partial Path Column Generation for the Vehicle Routing Problem with Time Windows Partial Path Column Generation for the Vehicle Routing Problem with Time Windows Bjørn Petersen & Mads Kehlet Jepsen } DIKU Department of Computer Science, University of Copenhagen Universitetsparken 1,

More information

On the knapsack closure of 0-1 Integer Linear Programs. Matteo Fischetti University of Padova, Italy

On the knapsack closure of 0-1 Integer Linear Programs. Matteo Fischetti University of Padova, Italy On the knapsack closure of 0-1 Integer Linear Programs Matteo Fischetti University of Padova, Italy matteo.fischetti@unipd.it Andrea Lodi University of Bologna, Italy alodi@deis.unibo.it Aussois, January

More information

Local Cuts and Two-Period Convex Hull Closures for Big-Bucket Lot-Sizing Problems

Local Cuts and Two-Period Convex Hull Closures for Big-Bucket Lot-Sizing Problems Local Cuts and Two-Period Convex Hull Closures for Big-Bucket Lot-Sizing Problems Kerem Akartunalı Dept. of Management Science, University of Strathclyde, Glasgow, G1 1QE, UK, kerem.akartunali@strath.ac.uk

More information

An Optimization Framework for Solving Capacitated Multi-level Lot-sizing Problems with Backlogging

An Optimization Framework for Solving Capacitated Multi-level Lot-sizing Problems with Backlogging Submitted to manuscript (Please, provide the mansucript number!) An Optimization Framework for Solving Capacitated Multi-level Lot-sizing Problems with Backlogging Tao Wu, Leyuan Shi, Joseph Geunes, Kerem

More information

Computational Integer Programming Universidad de los Andes. Lecture 1. Dr. Ted Ralphs

Computational Integer Programming Universidad de los Andes. Lecture 1. Dr. Ted Ralphs Computational Integer Programming Universidad de los Andes Lecture 1 Dr. Ted Ralphs MIP Lecture 1 1 Quick Introduction Bio Course web site Course structure http://coral.ie.lehigh.edu/ ted/teaching/mip

More information

From structures to heuristics to global solvers

From structures to heuristics to global solvers From structures to heuristics to global solvers Timo Berthold Zuse Institute Berlin DFG Research Center MATHEON Mathematics for key technologies OR2013, 04/Sep/13, Rotterdam Outline From structures to

More information

A Computational Analysis of Lower Bounds for Big Bucket Production Planning Problems

A Computational Analysis of Lower Bounds for Big Bucket Production Planning Problems Noname manuscript No. (will be inserted by the editor) A Computational Analysis of Lower Bounds for Big Bucket Production Planning Problems Kerem Akartunalı Andrew J. Miller the date of receipt and acceptance

More information

A Branch-and-Cut Algorithm for the Stochastic Uncapacitated Lot-Sizing Problem

A Branch-and-Cut Algorithm for the Stochastic Uncapacitated Lot-Sizing Problem Yongpei Guan 1 Shabbir Ahmed 1 George L. Nemhauser 1 Andrew J. Miller 2 A Branch-and-Cut Algorithm for the Stochastic Uncapacitated Lot-Sizing Problem December 12, 2004 Abstract. This paper addresses a

More information

Integer programming (part 2) Lecturer: Javier Peña Convex Optimization /36-725

Integer programming (part 2) Lecturer: Javier Peña Convex Optimization /36-725 Integer programming (part 2) Lecturer: Javier Peña Convex Optimization 10-725/36-725 Last time: integer programming Consider the problem min x subject to f(x) x C x j Z, j J where f : R n R, C R n are

More information

Introduction to Integer Linear Programming

Introduction to Integer Linear Programming Lecture 7/12/2006 p. 1/30 Introduction to Integer Linear Programming Leo Liberti, Ruslan Sadykov LIX, École Polytechnique liberti@lix.polytechnique.fr sadykov@lix.polytechnique.fr Lecture 7/12/2006 p.

More information

Decomposition Branching for Mixed Integer Programming

Decomposition Branching for Mixed Integer Programming Decomposition Branching for Mixed Integer Programming Baris Yildiz 1, Natashia Boland 2, and Martin Savelsbergh 2 1 Department of Industrial Engineering, Koc University, Istanbul, Turkey 2 H. Milton Stewart

More information

Practical Tips for Modelling Lot-Sizing and Scheduling Problems. Waldemar Kaczmarczyk

Practical Tips for Modelling Lot-Sizing and Scheduling Problems. Waldemar Kaczmarczyk Decision Making in Manufacturing and Services Vol. 3 2009 No. 1 2 pp. 37 48 Practical Tips for Modelling Lot-Sizing and Scheduling Problems Waldemar Kaczmarczyk Abstract. This paper presents some important

More information

Proper Security Criteria Determination in a Power System with High Penetration of Renewable Resources

Proper Security Criteria Determination in a Power System with High Penetration of Renewable Resources Proper Security Criteria Determination in a Power System with High Penetration of Renewable Resources Mojgan Hedayati, Kory Hedman, and Junshan Zhang School of Electrical, Computer, and Energy Engineering

More information

MEDIUM-TERM HYDROPOWER SCHEDULING BY STOCHASTIC DUAL DYNAMIC INTEGER PROGRAMMING: A CASE STUDY

MEDIUM-TERM HYDROPOWER SCHEDULING BY STOCHASTIC DUAL DYNAMIC INTEGER PROGRAMMING: A CASE STUDY MEDIUM-TERM HYDROPOWER SCHEDULING BY STOCHASTIC DUAL DYNAMIC INTEGER PROGRAMMING: A CASE STUDY Martin Hjelmeland NTNU Norwegian University of Science and Technology, Trondheim, Norway. martin.hjelmeland@ntnu.no

More information

Submodular Inequalities for the Path Structures of the Capacitated Fixed-Charge Network Flow Problems. Birce Tezel

Submodular Inequalities for the Path Structures of the Capacitated Fixed-Charge Network Flow Problems. Birce Tezel Submodular Inequalities for the Path Structures of the Capacitated Fixed-Charge Network Flow Problems By Birce Tezel A dissertation submitted in partial satisfaction of the requirements for the degree

More information

A branch-and-price algorithm for parallel machine scheduling using ZDDs and generic branching

A branch-and-price algorithm for parallel machine scheduling using ZDDs and generic branching A branch-and-price algorithm for parallel machine scheduling using ZDDs and generic branching Kowalczyk D, Leus R. KBI_1631 A branch-and-price algorithm for parallel machine scheduling using ZDDs and generic

More information

An Exact Algorithm for the Steiner Tree Problem with Delays

An Exact Algorithm for the Steiner Tree Problem with Delays Electronic Notes in Discrete Mathematics 36 (2010) 223 230 www.elsevier.com/locate/endm An Exact Algorithm for the Steiner Tree Problem with Delays Valeria Leggieri 1 Dipartimento di Matematica, Università

More information

Computational testing of exact separation for mixed-integer knapsack problems

Computational testing of exact separation for mixed-integer knapsack problems Computational testing of exact separation for mixed-integer knapsack problems Pasquale Avella (joint work with Maurizio Boccia and Igor Vasiliev ) DING - Università del Sannio Russian Academy of Sciences

More information

Disjunctive Decomposition for Two-Stage Stochastic Mixed-Binary Programs with Random Recourse

Disjunctive Decomposition for Two-Stage Stochastic Mixed-Binary Programs with Random Recourse Disjunctive Decomposition for Two-Stage Stochastic Mixed-Binary Programs with Random Recourse Lewis Ntaimo Department of Industrial and Systems Engineering, Texas A&M University, 3131 TAMU, College Station,

More information

Multicommodity Flows and Column Generation

Multicommodity Flows and Column Generation Lecture Notes Multicommodity Flows and Column Generation Marc Pfetsch Zuse Institute Berlin pfetsch@zib.de last change: 2/8/2006 Technische Universität Berlin Fakultät II, Institut für Mathematik WS 2006/07

More information

A branch-and-cut algorithm for the single commodity uncapacitated fixed charge network flow problem

A branch-and-cut algorithm for the single commodity uncapacitated fixed charge network flow problem A branch-and-cut algorithm for the single commodity uncapacitated fixed charge network flow problem Francisco Ortega and Laurence Wolsey CORE and INMA Université Catholique de Louvain September 28, 2000

More information

Part 4. Decomposition Algorithms

Part 4. Decomposition Algorithms In the name of God Part 4. 4.4. Column Generation for the Constrained Shortest Path Problem Spring 2010 Instructor: Dr. Masoud Yaghini Constrained Shortest Path Problem Constrained Shortest Path Problem

More information

Lecture 8: Column Generation

Lecture 8: Column Generation Lecture 8: Column Generation (3 units) Outline Cutting stock problem Classical IP formulation Set covering formulation Column generation A dual perspective Vehicle routing problem 1 / 33 Cutting stock

More information

Accelerating the Convergence of Stochastic Unit Commitment Problems by Using Tight and Compact MIP Formulations

Accelerating the Convergence of Stochastic Unit Commitment Problems by Using Tight and Compact MIP Formulations Accelerating the Convergence of Stochastic Unit Commitment Problems by Using Tight and Compact MIP Formulations Germán Morales-España, and Andrés Ramos Delft University of Technology, Delft, The Netherlands

More information

Branch-and-Price-and-Cut Approach to the Robust Network Design Problem without Flow Bifurcations

Branch-and-Price-and-Cut Approach to the Robust Network Design Problem without Flow Bifurcations Submitted to Operations Research manuscript (Please, provide the mansucript number!) Branch-and-Price-and-Cut Approach to the Robust Network Design Problem without Flow Bifurcations Chungmok Lee Department

More information

Integer Programming Chapter 15

Integer Programming Chapter 15 Integer Programming Chapter 15 University of Chicago Booth School of Business Kipp Martin November 9, 2016 1 / 101 Outline Key Concepts Problem Formulation Quality Solver Options Epsilon Optimality Preprocessing

More information

A Capacity Scaling Procedure for the Multi-Commodity Capacitated Network Design Problem. Ryutsu Keizai University Naoto KATAYAMA

A Capacity Scaling Procedure for the Multi-Commodity Capacitated Network Design Problem. Ryutsu Keizai University Naoto KATAYAMA A Capacity Scaling Procedure for the Multi-Commodity Capacitated Network Design Problem Ryutsu Keizai University Naoto KATAYAMA Problems 2006 1 Multi-Commodity Network Design Problem The basic model for

More information

Capacitated network design using general flow-cutset inequalities

Capacitated network design using general flow-cutset inequalities Capacitated network design using general flow-cutset inequalities Christian Raack Arie M.C.A. Koster Sebastian Orlowski Roland Wessäly Abstract This paper deals with directed, bidirected, and undirected

More information

Integer Programming ISE 418. Lecture 13. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 13. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 13 Dr. Ted Ralphs ISE 418 Lecture 13 1 Reading for This Lecture Nemhauser and Wolsey Sections II.1.1-II.1.3, II.1.6 Wolsey Chapter 8 CCZ Chapters 5 and 6 Valid Inequalities

More information