Integer program reformulation for robust branch-and-cut-and-price

Size: px
Start display at page:

Download "Integer program reformulation for robust branch-and-cut-and-price"

Transcription

1 Integer program reformulation for robust branch-and-cut-and-price Marcus Poggi de Aragão Informática PUC-Rio Eduardo Uchoa Engenharia de Produção Universidade Federal Fluminense

2 Outline of the talk Robust branch-and-cut-and-price Dantzig-Wolfe master X Explicit master Tackling symmetries in the original formulation Computational Results Capacitated Vehicle Routing Problem Capacitated Minimum Spanning Tree Problem Generalized Assignment Problem Perspectives

3 What is a robust branch-and-cut-and-price? A branch-and-bound algorithm where: each node solves a linear program with an exponential number of both variables and constraints, neither branching nor separation (cutting) ever change the structure of the pricing subproblem.

4 Robust branch-and-cut-and-price Since cut and column generation were established as two of the most important techniques in IP, one looks for ways of combining them. Big (partially open) question: How to perform cutting without changing the structure of the pricing subproblem?

5 Robust branch-and-cut-and-price First (non-robust) BCP: Nemhauser and Park (1991), edge-coloring problem. In a non-robust BCP, the pricing subproblem eventually needs to be solved by general IP techniques. This only works for small instances. An exception: Belov and Scheithauer ( ), on a number of generalized cutting stock problems where column generation gives very tight bounds. Mixed-integer Gomory cuts may be enough to close the gaps in the root node.

6 Robust branch-and-cut-and-price A number of researchers noted that cuts expressed in terms of variables from an original formulation do not disturb the pricing: Vanderbeck (1998), lot-sizing. Kim, Barnhart, Ware and Reinhardt (1999), a service network design problem. Kohl, Desrosiers, Madsen, Solomon and Soumis (1999), VRPTW. Felici, Gentile and Rinaldi (2000), a supply-chain problem. Barnhart, Hane and Vance (2001), integer multiflow.

7 Robust branch-and-cut-and-price This approach has a fundamental drawback as a general IP technique: on many important problems the original formulation sufers from variable symmetries. Cuts over those variables are ineffective. Implementing an efficient robust BCP raises many new practical questions. Up to now, robust BCP was only performed on problems where BP alone already performs well. We feel that the applicability of this technique goes far beyond that class of problems.

8 IP Reformulation Let (O) be the following IP with n variables: (O) min s. t cx Ax Dx = b d x N n { } P = x N Dx d n and suppose is a finite set with elements x 1, x 2,...x p.

9 IP Reformulation Let Q be a n X p matrix where each column corresponds to one element of P There is a one-to-one correspondence between elements of P and the solutions of: s. t x = Qλ 1λ = 1 λ { 0,1} p

10 IP Reformulation The traditional IP reformulation (Gilmore and Gomory, 1961) consists of replacing x by its equivalent expression in (O), a transformation similar to the Dantzig-Wolfe reformulation for LP: Z IP s. t = min ( cq) λ ( AQ) λ = b 1λ = 1 λ { 0,1} p

11 Dantzig-Wolfe Master ( DWM ) ZDWM = min ( cq) λ s. t ( AQ) λ = b 1λ = 1 λ 0 Solving the DWM is equivalent to solving Z DWM s. t Ax = b = min cx { n } x Conv x N Dx d

12 Dantzig-Wolfe Master Columns on DWM are generated by solving the following IP: V ( µ, ν ) = min( c µ A) x ν s. t Dx d x N n, where µ and ν are the associated dual variables.

13 Cutting on the Dantzig-Wolfe Master Let λ be a fractional solution of DWM. On the original formulation, this corresponds i to solution x = Qλ. A cut a x bi violated by x can be added to DWM in order to cut λ. min ( cq) λ s. t ( AQ) λ = b i ( a Q) λ 1λ = λ 0 i Incorporating the new row a to A and the new dual variable µ i to µ, the pricing subproblem remains unchanged. b i 1

14 Alternative IP Reformulation Rewrite (O) by adding variables x : (O') min cx s. t. x ' x = 0 Ax Dx ' x ' x = b d N N n n

15 Alternative IP Reformulation Replacing x by its equivalent expression, we obtain another reformulation: x Q s. t 1 1 0,1 p min cx s. t. Qλ x Ax = = 0 b 1λ λ = 1 0 x N n

16 Explicit Master (EM ) min cx s. t. Qλ x = 0 Ax = b 1λ λ x = 1 0 0

17 Explicit Master Columns on EM are generated by solving the following IP: V ( π, ν ) = min( π x) ν s. t Dx d x N n, Dual variables µ associated to Ax = b do not appear in the subproblem.

18 Cutting on the Explicit Master (EM ) Additional cut min cx s. t. Qλ x = 0 1λ λ Ax = b = 1 i a x 0 x 0 New dual variable µ clearly do = not change the pricing. i b i

19 Dantzig-Wolfe X Explicit Master Lower bound L Lemma: Z DWM = Z EM Sketch of the Proof: Let λ and ( µ, ν ) be optimal primal and dual solutions of DWM. Then ( λ, x = Qλ ) and ( π = ( µ A c), µ, ν ) are optimal primal and dual solutions of EM.

20 Dantzig-Wolfe X Explicit Master LP size L Let Q Q be the current n p submatrix of priced columns and let m be the current number of rows in A. Rows Cols Non-zeros DWM m + 1 p nz( AQ ) + p EM m + n + 1 p + n nz( A) + nz( Q ) + p + n DWM usually leads to smaller LPs. However, upper bounds on x variables have to be represented as rows in DWM.

21 Dantzig-Wolfe X Explicit Master Column generation convergence L As usually n > m, there are more dual variables to handle in EM. This may lead to slower convergence. It can be counterbalanced by proper stabilization.

22 Is there any advantage on working on the Explicit Master? L BCP easier to code. (Not a really good argument... ) EM allows cheap fixing of x variables by reduced costs. EM allows better multiple column generation.

23 0 j Fixing variables on DWM After solving DWM, choose a variable x j from the original formulation and solve: V ( µ, ν ) = min( c µ A) x + ν s. t Dx d m x N, x 1 Z + V µ ν Z x j 0 If DWM j (, ) INC, then j can be fixed to 0. (This technique is known as fixing by Lagrangean bound). L Depending on the subproblem structure, each attempt to fix a variable can be quite expensive.

24 Fixing variables on EM After solving EM, just check if Z + c j Z. EM INC L The diference between EM and DWM is better understood by having a look at the dual of EM. Max ν + µ b πq + ν1 π + µ A 0 c

25 Fixing variables on EM The dual of EM is equivalent to Max ν + µ b πq + ν1 0 π + µ A + c = c c 0 L By solving DWM one always gets a solution of form ( π = ( µ A c), µ, ν ). This implies c = 0, no variable is ever fixed. In other words, solving DWM is equivalent to solving EM with the dual space restricted by c = 0 constraints.

26 Fixing variables on EM The fixing can much improved by perturbing the dual of EM Max ν + µ b + cε π Q + ν1 0 π + µ A + c = c c 0 This is equivalent to min cx s. t. Qλ x = 0 Ax = b 1λ λ = 1 0 x ε L

27 Multiple Column Generation Let (O) be the following IP with n variables: Min cx Ax (O) Dx Fx x = b d f N n { } n and suppose P1 = x N Dx d and are finite sets. { n } P = x N Fx f 2

28 Multiple Column Generation Min cx S.t. Q λ x = λ λ 1 1 Q λ 2 2 1λ λ 2 2 x Ax = = = = b x Min S.t. cx Ax = b { m } { m } x Conv x N Dx d x Conv x N Fx f EM allows multiple sets of constraints to be convexified independently. On DWM this would be cumbersome.

29 Dantzig-Wolfe X Explicit Master Implementing a BCP over the EM is interesting when: L Fixing of variables is important and the subproblem is too hard for effective Lagrangean fixing. Multiple column generation is performed.

30 The symmetry problem On many important problems where BP is applied, the corresponding original formulation is highly symmetric. Some examples are: L bin packing cutting stock problems graph coloring clustering problems scheduling with some identical machines

31 The symmetry problem Most of those problems share the same characteristic: They search for an optimal feasible assignment of n elements to m sets, and some of those sets are undistinguishable. The original formulation corresponding to their usual k column generation reformulation have variables like x i, meaning that element i is assigned to set k. Cutting (and even branching) over those variables is not effective. L

32 How to construct a robust BCP for those problems? We do not have a full answer to this, just an approach that seems reasonable. L Ryan and Foster (1981) proposed a branch rule widely used on BPs for those problems. In one branch, elements i and j must be in the same set; on the other branch they must be in different sets. Valério de Carvalho (2001) suggested solving binpacking by BP considering it as a particular case of the VRPTW.

33 How to construct a robust BCP for those problems? L Those ideas inspire a general approach: 1. Formulate the original problem over variables meaning that elements i and j are assigned to the same set. Apply IP reformulation. 2. Is the resulting pricing problem still tractable? Go ahead. 3. Find additional families of valid inequalities over the original formulation. x ij

34 Example: vertex coloring problem BP algorithm (Mehotra and Trick, 1996) Pricing problem: maximum weight independent set over G. Branch rule: Ryan and Foster. Corresponding original formulation: variables, vertex i is colored k. Not good for BCP. Set-partition with a row for each vertex and colunms are independent sets. Z EM =2.5 7 k x i L 6 4 3

35 Example: vertex coloring problem Possible BCP algorithm Pricing problem: maximum edge weight clique over. Branch rule: over any constraints on variables. Cuts: Odd holes, anti-odd holes, etc. Set-partition with a row for each vertex and colunms are vertex-sets corresponding to cliques in G, ZEM =2.5. Adding odd-hole cut x + x + x + x + x Z EM = x ij 3 G 2 L

36 Computational Results We are implementing robust BCPs for several classical problems. We already have results on the following problems: L CVRP CMST GAP

37 Capacitated Vehicle Routing Problem BP is known to be effective on tightly constrained VRP problems, like VRPTW (Desrosiers, Soumis and Desrochers, 1984). L BP does not work well on CVRP. Best exact algorithms are sophisticated BCs. They can solve instances with up to vertices.

38 Capacitated Vehicle Routing Problem Our BCP (Fukasawa, Poggi de Aragão, Reis, Uchoa) Dantzig-Wolfe Master. Columns correspond to q-routes without 2-cycles (Christofides, Mingozzi, Toth, 1981). Pricing is cheap (O(n 2 C)). Only capacity cuts. Consistently solves instances with up to 100 vertices, including almost all open instances from the literature. Better results are expected soon by adding several other cuts used by current BC codes.

39 Capacitated Minimum Spanning Tree Problem Two kinds of instances: unitary and non-unitary capacities. L Best exact algorithms: Unitary case: BC over large hop formulations. Non-unitary case: BC and Lagrangean relaxation. OR-Lib instances with only 50 vertices can not be solved.

40 Capacitated Minimum Spanning Tree Problem Our BCP (Fukasawa, Poggi de Aragão, Porto, Uchoa) Explicit Master. Columns correspond to connected components from the root. Pricing is expensive (O(n 2 C 2 )). Capacity and root cutset cuts. Results are good on the unitary case and very good on the non-unitary case: all open instances with 50 vertices and some with 100 vertices solved.

41 Generalized Assignment Problem Most instances from the OR-Lib are now considered to be easy and can be solved by commercial MIP packages. Only the D series remains challenging. L Best exact algorithms: Lagrangean relaxation, BP and BC.

42 Generalized Assignment Problem Our BCP (Pigatti, Poggi de Aragão, Uchoa) Dantzig-Wolfe Master. Pricing is cheap, knapsack problems. Fischetti-Lodi cuts. Good results. Could solve 3 out of 5 open instances from D series. The use of other cuts from the literature is being studied. Real world instances with symmetry are being considered.

43 Perspectives The implementation of robust BCP algorithms today is still quite restricted to the column generation community. The good results that are being obtained indicate that this situation may soon change. This certainly raises a number of interesting research topics.

44 Perspectives Obtaining high performance from a BC or from a BP may require experience to choose among several possible strategies. On a BCP the number of possibilities increases and little experience is currently available to make decisions. For example: Should I price to optimality before cutting? Or cutting should be done along with (or even before) pricing?

45 Perspectives For obvious reasons, polyhedral research concentrates on problems where BC works. BCP gives motivation to studying other polytopes. For example: What are the families of facets of the bin-packing polytope over the variables? x ij In a similar way, robust BCP motivates to devise new column generation schemes on problems where BP alone would not work.

Integer Program Reformulation for Robust. Branch-and-Cut-and-Price Algorithms

Integer Program Reformulation for Robust. Branch-and-Cut-and-Price Algorithms Integer Program Reformulation for Robust Branch-and-Cut-and-Price Algorithms Marcus Poggi de Aragão 1, Eduardo Uchoa 2 1 Departamento de Informática, PUC-Rio, poggi@inf.puc-rio.br 2 Dep. de Engenharia

More information

A Node-Flow Model for 1D Stock Cutting: Robust Branch-Cut-and-Price

A Node-Flow Model for 1D Stock Cutting: Robust Branch-Cut-and-Price A Node-Flow Model for 1D Stock Cutting: Robust Branch-Cut-and-Price Gleb Belov University of Dresden Adam N. Letchford Lancaster University Eduardo Uchoa Universidade Federal Fluminense August 4, 2011

More information

Stabilized Branch-and-cut-and-price for the Generalized Assignment Problem

Stabilized Branch-and-cut-and-price for the Generalized Assignment Problem Stabilized Branch-and-cut-and-price for the Generalized Assignment Problem Alexandre Pigatti, Marcus Poggi de Aragão Departamento de Informática, PUC do Rio de Janeiro {apigatti, poggi}@inf.puc-rio.br

More information

Notes on Dantzig-Wolfe decomposition and column generation

Notes on Dantzig-Wolfe decomposition and column generation Notes on Dantzig-Wolfe decomposition and column generation Mette Gamst November 11, 2010 1 Introduction This note introduces an exact solution method for mathematical programming problems. The method is

More information

Cut and Column Generation

Cut and Column Generation F A C U L T Y O F S C I E N C E U N I V E R S I T Y O F C O P E N H A G E N PhD thesis Simon Spoorendonk Cut and Column Generation Academic advisor: David Pisinger Submitted: 31/10/08 Preface This Ph.D.

More information

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING 1. Lagrangian Relaxation Lecture 12 Single Machine Models, Column Generation 2. Dantzig-Wolfe Decomposition Dantzig-Wolfe Decomposition Delayed Column

More information

Column Generation. MTech Seminar Report. Soumitra Pal Roll No: under the guidance of

Column Generation. MTech Seminar Report. Soumitra Pal Roll No: under the guidance of Column Generation MTech Seminar Report by Soumitra Pal Roll No: 05305015 under the guidance of Prof. A. G. Ranade Computer Science and Engineering IIT-Bombay a Department of Computer Science and Engineering

More information

Vehicle Routing and MIP

Vehicle Routing and MIP CORE, Université Catholique de Louvain 5th Porto Meeting on Mathematics for Industry, 11th April 2014 Contents: The Capacitated Vehicle Routing Problem Subproblems: Trees and the TSP CVRP Cutting Planes

More information

An Integer Cutting-Plane Procedure for the Dantzig-Wolfe Decomposition: Theory

An Integer Cutting-Plane Procedure for the Dantzig-Wolfe Decomposition: Theory An Integer Cutting-Plane Procedure for the Dantzig-Wolfe Decomposition: Theory by Troels Martin Range Discussion Papers on Business and Economics No. 10/2006 FURTHER INFORMATION Department of Business

More information

Robust Branch-and-Cut-and-Price for the Capacitated Vehicle Routing Problem

Robust Branch-and-Cut-and-Price for the Capacitated Vehicle Routing Problem Robust Branch-and-Cut-and-Price for the Capacitated Vehicle Routing Problem Ricardo Fukasawa, Marcus Poggi de Aragão, Marcelo Reis, Eduardo Uchoa Relatórios de Pesquisa em Engenharia de Produção RPEP Vol.3

More information

Lecture 9: Dantzig-Wolfe Decomposition

Lecture 9: Dantzig-Wolfe Decomposition Lecture 9: Dantzig-Wolfe Decomposition (3 units) Outline Dantzig-Wolfe decomposition Column generation algorithm Relation to Lagrangian dual Branch-and-price method Generated assignment problem and multi-commodity

More information

Decomposition Methods for Integer Programming

Decomposition Methods for Integer Programming Decomposition Methods for Integer Programming J.M. Valério de Carvalho vc@dps.uminho.pt Departamento de Produção e Sistemas Escola de Engenharia, Universidade do Minho Portugal PhD Course Programa Doutoral

More information

Robust branch-cut-and-price for the Capacitated Minimum Spanning Tree problem over a large extended formulation

Robust branch-cut-and-price for the Capacitated Minimum Spanning Tree problem over a large extended formulation Math. Program., Ser. A DOI 10.1007/s10107-006-0043-y FULL LENGTH PAPER Robust branch-cut-and-price for the Capacitated Minimum Spanning Tree problem over a large extended formulation Eduardo Uchoa Ricardo

More information

On the exact solution of a large class of parallel machine scheduling problems

On the exact solution of a large class of parallel machine scheduling problems 1 / 23 On the exact solution of a large class of parallel machine scheduling problems Teobaldo Bulhões 2 Ruslan Sadykov 1 Eduardo Uchoa 2 Anand Subramanian 3 1 Inria Bordeaux and Univ. Bordeaux, France

More information

Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications

Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications François Vanderbeck University of Bordeaux INRIA Bordeaux-Sud-Ouest part : Defining Extended Formulations

More information

Stabilization in Column Generation: numerical study

Stabilization in Column Generation: numerical study 1 / 26 Stabilization in Column Generation: numerical study Artur Pessoa 3 Ruslan Sadykov 1,2 Eduardo Uchoa 3 François Vanderbeck 2,1 1 INRIA Bordeaux, France 2 Univ. Bordeaux I, France 3 Universidade Federal

More information

Integer Programming ISE 418. Lecture 16. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 16. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 16 Dr. Ted Ralphs ISE 418 Lecture 16 1 Reading for This Lecture Wolsey, Chapters 10 and 11 Nemhauser and Wolsey Sections II.3.1, II.3.6, II.3.7, II.5.4 CCZ Chapter 8

More information

Partial Path Column Generation for the Vehicle Routing Problem with Time Windows

Partial Path Column Generation for the Vehicle Routing Problem with Time Windows Partial Path Column Generation for the Vehicle Routing Problem with Time Windows Bjørn Petersen & Mads Kehlet Jepsen } DIKU Department of Computer Science, University of Copenhagen Universitetsparken 1,

More information

Column Generation. ORLAB - Operations Research Laboratory. Stefano Gualandi. June 14, Politecnico di Milano, Italy

Column Generation. ORLAB - Operations Research Laboratory. Stefano Gualandi. June 14, Politecnico di Milano, Italy ORLAB - Operations Research Laboratory Politecnico di Milano, Italy June 14, 2011 Cutting Stock Problem (from wikipedia) Imagine that you work in a paper mill and you have a number of rolls of paper of

More information

Improved BCP for Capacitated Vehicle Routing

Improved BCP for Capacitated Vehicle Routing Improved Branch-Cut-and-Price for Capacitated Vehicle Routing Diego Pecin Artur Pessoa Marcus Poggi Eduardo Uchoa PUC - Rio de Janeiro Universidade Federal Fluminense January, 0 Aussois-0 Pecin, Pessoa,

More information

Partial Path Column Generation for the Vehicle Routing Problem

Partial Path Column Generation for the Vehicle Routing Problem Partial Path Column Generation for the Vehicle Routing Problem Report 12.2009 DTU Management Engineering Mads Kehlet Jepsen Bjørn Petersen November 2009 Partial Path Column Generation for the Vehicle Routing

More information

The Fixed Charge Transportation Problem: A Strong Formulation Based On Lagrangian Decomposition and Column Generation

The Fixed Charge Transportation Problem: A Strong Formulation Based On Lagrangian Decomposition and Column Generation The Fixed Charge Transportation Problem: A Strong Formulation Based On Lagrangian Decomposition and Column Generation Yixin Zhao, Torbjörn Larsson and Department of Mathematics, Linköping University, Sweden

More information

Introduction to Bin Packing Problems

Introduction to Bin Packing Problems Introduction to Bin Packing Problems Fabio Furini March 13, 2015 Outline Origins and applications Applications: Definition: Bin Packing Problem (BPP) Solution techniques for the BPP Heuristic Algorithms

More information

A generalized formulation for vehicle routing problems

A generalized formulation for vehicle routing problems Working paper A generalized formulation for vehicle routing problems Pedro Munari a, Twan Dollevoet b, Remy Spliet b a Production Engineering Department, Federal University of São Carlos, Brazil b Econometric

More information

A Hub Location Problem with Fully Interconnected Backbone and Access Networks

A Hub Location Problem with Fully Interconnected Backbone and Access Networks A Hub Location Problem with Fully Interconnected Backbone and Access Networks Tommy Thomadsen Informatics and Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby Denmark tt@imm.dtu.dk

More information

Improving Branch-And-Price Algorithms For Solving One Dimensional Cutting Stock Problem

Improving Branch-And-Price Algorithms For Solving One Dimensional Cutting Stock Problem Improving Branch-And-Price Algorithms For Solving One Dimensional Cutting Stock Problem M. Tech. Dissertation Submitted in partial fulfillment of the requirements for the degree of Master of Technology

More information

Exact algorithm over an arc-time-indexed formulation for parallel machine scheduling problems

Exact algorithm over an arc-time-indexed formulation for parallel machine scheduling problems Math. Prog. Comp. (2010) 2:259 290 DOI 10.1007/s12532-010-0019-z FULL LENGTH PAPER Exact algorithm over an arc-time-indexed formulation for parallel machine scheduling problems Artur Pessoa Eduardo Uchoa

More information

Lecture 8: Column Generation

Lecture 8: Column Generation Lecture 8: Column Generation (3 units) Outline Cutting stock problem Classical IP formulation Set covering formulation Column generation A dual perspective Vehicle routing problem 1 / 33 Cutting stock

More information

Integer Programming ISE 418. Lecture 12. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 12. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 12 Dr. Ted Ralphs ISE 418 Lecture 12 1 Reading for This Lecture Nemhauser and Wolsey Sections II.2.1 Wolsey Chapter 9 ISE 418 Lecture 12 2 Generating Stronger Valid

More information

Feasibility Pump Heuristics for Column Generation Approaches

Feasibility Pump Heuristics for Column Generation Approaches 1 / 29 Feasibility Pump Heuristics for Column Generation Approaches Ruslan Sadykov 2 Pierre Pesneau 1,2 Francois Vanderbeck 1,2 1 University Bordeaux I 2 INRIA Bordeaux Sud-Ouest SEA 2012 Bordeaux, France,

More information

Decomposition and Reformulation in Integer Programming

Decomposition and Reformulation in Integer Programming and Reformulation in Integer Programming Laurence A. WOLSEY 7/1/2008 / Aussois and Reformulation in Integer Programming Outline 1 Resource 2 and Reformulation in Integer Programming Outline Resource 1

More information

Generic Branch-Price-and-Cut

Generic Branch-Price-and-Cut Generic Branch-Price-and-Cut A Status Report Column Generation Bromont June 12, 2012 can you spot the difference? T-Shirts Status Quo: On the Positive Side many exciting developments in branch-and-price

More information

MEP123: Master Equality Polyhedron with one, two or three rows

MEP123: Master Equality Polyhedron with one, two or three rows 1/17 MEP123: Master Equality Polyhedron with one, two or three rows Oktay Günlük Mathematical Sciences Department IBM Research January, 29 joint work with Sanjeeb Dash and Ricardo Fukasawa 2/17 Master

More information

3.10 Column generation method

3.10 Column generation method 3.10 Column generation method Many relevant decision-making (discrete optimization) problems can be formulated as ILP problems with a very large (exponential) number of variables. Examples: cutting stock,

More information

Decomposition-based Methods for Large-scale Discrete Optimization p.1

Decomposition-based Methods for Large-scale Discrete Optimization p.1 Decomposition-based Methods for Large-scale Discrete Optimization Matthew V Galati Ted K Ralphs Department of Industrial and Systems Engineering Lehigh University, Bethlehem, PA, USA Départment de Mathématiques

More information

Integer Programming Reformulations: Dantzig-Wolfe & Benders Decomposition the Coluna Software Platform

Integer Programming Reformulations: Dantzig-Wolfe & Benders Decomposition the Coluna Software Platform Integer Programming Reformulations: Dantzig-Wolfe & Benders Decomposition the Coluna Software Platform François Vanderbeck B. Detienne, F. Clautiaux, R. Griset, T. Leite, G. Marques, V. Nesello, A. Pessoa,

More information

Stronger Multi-Commodity Flow Formulations of the Capacitated Vehicle Routing Problem

Stronger Multi-Commodity Flow Formulations of the Capacitated Vehicle Routing Problem Stronger Multi-Commodity Flow Formulations of the Capacitated Vehicle Routing Problem Adam N. Letchford Juan-José Salazar-González June 2014 Abstract The Capacitated Vehicle Routing Problem is a much-studied

More information

Introduction to optimization and operations research

Introduction to optimization and operations research Introduction to optimization and operations research David Pisinger, Fall 2002 1 Smoked ham (Chvatal 1.6, adapted from Greene et al. (1957)) A meat packing plant produces 480 hams, 400 pork bellies, and

More information

Computational Integer Programming. Lecture 2: Modeling and Formulation. Dr. Ted Ralphs

Computational Integer Programming. Lecture 2: Modeling and Formulation. Dr. Ted Ralphs Computational Integer Programming Lecture 2: Modeling and Formulation Dr. Ted Ralphs Computational MILP Lecture 2 1 Reading for This Lecture N&W Sections I.1.1-I.1.6 Wolsey Chapter 1 CCZ Chapter 2 Computational

More information

Lagrangian Relaxation in MIP

Lagrangian Relaxation in MIP Lagrangian Relaxation in MIP Bernard Gendron May 28, 2016 Master Class on Decomposition, CPAIOR2016, Banff, Canada CIRRELT and Département d informatique et de recherche opérationnelle, Université de Montréal,

More information

Outline. Outline. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Scheduling CPM/PERT Resource Constrained Project Scheduling Model

Outline. Outline. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Scheduling CPM/PERT Resource Constrained Project Scheduling Model Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING Lecture 3 and Mixed Integer Programg Marco Chiarandini 1. Resource Constrained Project Model 2. Mathematical Programg 2 Outline Outline 1. Resource Constrained

More information

On Compact Formulations for Integer Programs Solved by Column Generation

On Compact Formulations for Integer Programs Solved by Column Generation Annals of Operations Research 139, 375 388, 2005 c 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands. On Compact Formulations for Integer Programs Solved by Column Generation

More information

Partial Path Column Generation for the Elementary Shortest Path Problem with Resource Constraints

Partial Path Column Generation for the Elementary Shortest Path Problem with Resource Constraints Partial Path Column Generation for the Elementary Shortest Path Problem with Resource Constraints Mads Kehlet Jepsen & Bjørn Petersen Department of Computer Science, University of Copenhagen Universitetsparken

More information

3.10 Column generation method

3.10 Column generation method 3.10 Column generation method Many relevant decision-making problems can be formulated as ILP problems with a very large (exponential) number of variables. Examples: cutting stock, crew scheduling, vehicle

More information

Reformulation and Decomposition of Integer Programs

Reformulation and Decomposition of Integer Programs Reformulation and Decomposition of Integer Programs François Vanderbeck 1 and Laurence A. Wolsey 2 (Reference: CORE DP 2009/16) (1) Université Bordeaux 1 & INRIA-Bordeaux (2) Université de Louvain, CORE.

More information

A Branch-and-Cut-and-Price Algorithm for One-Dimensional Stock Cutting and Two-Dimensional Two-Stage Cutting

A Branch-and-Cut-and-Price Algorithm for One-Dimensional Stock Cutting and Two-Dimensional Two-Stage Cutting A Branch-and-Cut-and-Price Algorithm for One-Dimensional Stock Cutting and Two-Dimensional Two-Stage Cutting G. Belov,1 G. Scheithauer University of Dresden, Institute of Numerical Mathematics, Mommsenstr.

More information

Integer Programming ISE 418. Lecture 8. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 8. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 8 Dr. Ted Ralphs ISE 418 Lecture 8 1 Reading for This Lecture Wolsey Chapter 2 Nemhauser and Wolsey Sections II.3.1, II.3.6, II.4.1, II.4.2, II.5.4 Duality for Mixed-Integer

More information

ADVANCES IN SHORTEST PATH BASED COLUMN GENERATION FOR INTEGER PROGRAMMING

ADVANCES IN SHORTEST PATH BASED COLUMN GENERATION FOR INTEGER PROGRAMMING ADVANCES IN SHORTEST PATH BASED COLUMN GENERATION FOR INTEGER PROGRAMMING A Thesis Presented to The Academic Faculty by Faramroze Godrej Engineer In Partial Fulfillment of the Requirements for the Degree

More information

1 Solution of a Large-Scale Traveling-Salesman Problem... 7 George B. Dantzig, Delbert R. Fulkerson, and Selmer M. Johnson

1 Solution of a Large-Scale Traveling-Salesman Problem... 7 George B. Dantzig, Delbert R. Fulkerson, and Selmer M. Johnson Part I The Early Years 1 Solution of a Large-Scale Traveling-Salesman Problem............ 7 George B. Dantzig, Delbert R. Fulkerson, and Selmer M. Johnson 2 The Hungarian Method for the Assignment Problem..............

More information

Column Generation for Extended Formulations

Column Generation for Extended Formulations 1 / 28 Column Generation for Extended Formulations Ruslan Sadykov 1 François Vanderbeck 2,1 1 INRIA Bordeaux Sud-Ouest, France 2 University Bordeaux I, France ISMP 2012 Berlin, August 23 2 / 28 Contents

More information

Interior-Point versus Simplex methods for Integer Programming Branch-and-Bound

Interior-Point versus Simplex methods for Integer Programming Branch-and-Bound Interior-Point versus Simplex methods for Integer Programming Branch-and-Bound Samir Elhedhli elhedhli@uwaterloo.ca Department of Management Sciences, University of Waterloo, Canada Page of 4 McMaster

More information

Column Generation in Integer Programming with Applications in Multicriteria Optimization

Column Generation in Integer Programming with Applications in Multicriteria Optimization Column Generation in Integer Programming with Applications in Multicriteria Optimization Matthias Ehrgott Department of Engineering Science The University of Auckland, New Zealand email: m.ehrgott@auckland.ac.nz

More information

Cutting Planes in SCIP

Cutting Planes in SCIP Cutting Planes in SCIP Kati Wolter Zuse-Institute Berlin Department Optimization Berlin, 6th June 2007 Outline 1 Cutting Planes in SCIP 2 Cutting Planes for the 0-1 Knapsack Problem 2.1 Cover Cuts 2.2

More information

Branch-and-cut (and-price) for the chance constrained vehicle routing problem

Branch-and-cut (and-price) for the chance constrained vehicle routing problem Branch-and-cut (and-price) for the chance constrained vehicle routing problem Ricardo Fukasawa Department of Combinatorics & Optimization University of Waterloo May 25th, 2016 ColGen 2016 joint work with

More information

Resource Constrained Project Scheduling Linear and Integer Programming (1)

Resource Constrained Project Scheduling Linear and Integer Programming (1) DM204, 2010 SCHEDULING, TIMETABLING AND ROUTING Lecture 3 Resource Constrained Project Linear and Integer Programming (1) Marco Chiarandini Department of Mathematics & Computer Science University of Southern

More information

Classification of Dantzig-Wolfe Reformulations for MIP s

Classification of Dantzig-Wolfe Reformulations for MIP s Classification of Dantzig-Wolfe Reformulations for MIP s Raf Jans Rotterdam School of Management HEC Montreal Workshop on Column Generation Aussois, June 2008 Outline and Motivation Dantzig-Wolfe reformulation

More information

Branch and Price for the Vehicle Routing Problem with Discrete Split Deliveries and Time Windows

Branch and Price for the Vehicle Routing Problem with Discrete Split Deliveries and Time Windows Branch and Price for the Vehicle Routing Problem with Discrete Split Deliveries and Time Windows Matteo Salani Ilaria Vacca December 24, 2009 Report TRANSP-OR 091224 Transport and Mobility Laboratory Ecole

More information

Cutting Plane Separators in SCIP

Cutting Plane Separators in SCIP Cutting Plane Separators in SCIP Kati Wolter Zuse Institute Berlin DFG Research Center MATHEON Mathematics for key technologies 1 / 36 General Cutting Plane Method MIP min{c T x : x X MIP }, X MIP := {x

More information

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini In the name of God Network Flows 6. Lagrangian Relaxation 6.3 Lagrangian Relaxation and Integer Programming Fall 2010 Instructor: Dr. Masoud Yaghini Integer Programming Outline Branch-and-Bound Technique

More information

Branching in Branch-and-Price: a Generic Scheme

Branching in Branch-and-Price: a Generic Scheme Branching in Branch-and-Price: a Generic Scheme François Vanderbeck To cite this version: François Vanderbeck. Branching in Branch-and-Price: a Generic Scheme. Mathematical Programming, Series A, Springer,

More information

On the knapsack closure of 0-1 Integer Linear Programs. Matteo Fischetti University of Padova, Italy

On the knapsack closure of 0-1 Integer Linear Programs. Matteo Fischetti University of Padova, Italy On the knapsack closure of 0-1 Integer Linear Programs Matteo Fischetti University of Padova, Italy matteo.fischetti@unipd.it Andrea Lodi University of Bologna, Italy alodi@deis.unibo.it Aussois, January

More information

Dual Inequalities for Stabilized Column Generation Revisited

Dual Inequalities for Stabilized Column Generation Revisited Gutenberg School of Management and Economics & Research Unit Interdisciplinary Public Policy Discussion Paper Series Dual Inequalities for Stabilized Column Generation Revisited Timo Gschwind, Stefan Irnich

More information

Orbitopes. Marc Pfetsch. joint work with Volker Kaibel. Zuse Institute Berlin

Orbitopes. Marc Pfetsch. joint work with Volker Kaibel. Zuse Institute Berlin Orbitopes Marc Pfetsch joint work with Volker Kaibel Zuse Institute Berlin What this talk is about We introduce orbitopes. A polyhedral way to break symmetries in integer programs. Introduction 2 Orbitopes

More information

18 hours nodes, first feasible 3.7% gap Time: 92 days!! LP relaxation at root node: Branch and bound

18 hours nodes, first feasible 3.7% gap Time: 92 days!! LP relaxation at root node: Branch and bound The MIP Landscape 1 Example 1: LP still can be HARD SGM: Schedule Generation Model Example 157323 1: LP rows, still can 182812 be HARD columns, 6348437 nzs LP relaxation at root node: 18 hours Branch and

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Instructor: Farid Alizadeh Scribe: Anton Riabov 10/08/2001 1 Overview We continue studying the maximum eigenvalue SDP, and generalize

More information

Combinatorial Optimization

Combinatorial Optimization Combinatorial Optimization Lecture notes, WS 2010/11, TU Munich Prof. Dr. Raymond Hemmecke Version of February 9, 2011 Contents 1 The knapsack problem 1 1.1 Complete enumeration..................................

More information

Section Notes 8. Integer Programming II. Applied Math 121. Week of April 5, expand your knowledge of big M s and logical constraints.

Section Notes 8. Integer Programming II. Applied Math 121. Week of April 5, expand your knowledge of big M s and logical constraints. Section Notes 8 Integer Programming II Applied Math 121 Week of April 5, 2010 Goals for the week understand IP relaxations be able to determine the relative strength of formulations understand the branch

More information

Branch-and-Price-and-Cut for the Split Delivery Vehicle Routing Problem with Time Windows

Branch-and-Price-and-Cut for the Split Delivery Vehicle Routing Problem with Time Windows Branch-and-Price-and-Cut for the Split Delivery Vehicle Routing Problem with Time Windows Guy Desaulniers École Polytechnique de Montréal and GERAD Column Generation 2008 Aussois, France Outline Introduction

More information

Orbital Shrinking: A New Tool for Hybrid MIP/CP Methods

Orbital Shrinking: A New Tool for Hybrid MIP/CP Methods Orbital Shrinking: A New Tool for Hybrid MIP/CP Methods Domenico Salvagnin DEI, University of Padova salvagni@dei.unipd.it Abstract. Orbital shrinking is a newly developed technique in the MIP community

More information

Formulations and Algorithms for Minimum Connected Dominating Set Problems

Formulations and Algorithms for Minimum Connected Dominating Set Problems Formulations and Algorithms for Minimum Connected Dominating Set Problems Abilio Lucena 1 Alexandre Salles da Cunha 2 Luidi G. Simonetti 3 1 Universidade Federal do Rio de Janeiro 2 Universidade Federal

More information

SEQUENTIAL AND SIMULTANEOUS LIFTING IN THE NODE PACKING POLYHEDRON JEFFREY WILLIAM PAVELKA. B.S., Kansas State University, 2011

SEQUENTIAL AND SIMULTANEOUS LIFTING IN THE NODE PACKING POLYHEDRON JEFFREY WILLIAM PAVELKA. B.S., Kansas State University, 2011 SEQUENTIAL AND SIMULTANEOUS LIFTING IN THE NODE PACKING POLYHEDRON by JEFFREY WILLIAM PAVELKA B.S., Kansas State University, 2011 A THESIS Submitted in partial fulfillment of the requirements for the degree

More information

A generic view of Dantzig Wolfe decomposition in mixed integer programming

A generic view of Dantzig Wolfe decomposition in mixed integer programming Operations Research Letters 34 (2006) 296 306 Operations Research Letters www.elsevier.com/locate/orl A generic view of Dantzig Wolfe decomposition in mixed integer programming François Vanderbeck a,,

More information

A Mixed-Integer Linear Program for the Traveling Salesman Problem with Structured Time Windows

A Mixed-Integer Linear Program for the Traveling Salesman Problem with Structured Time Windows A Mixed-Integer Linear Program for the Traveling Salesman Problem with Structured Time Windows Philipp Hungerländer Christian Truden 5th January 2017 Abstract In this extended abstract we introduce the

More information

Large-scale optimization and decomposition methods: outline. Column Generation and Cutting Plane methods: a unified view

Large-scale optimization and decomposition methods: outline. Column Generation and Cutting Plane methods: a unified view Large-scale optimization and decomposition methods: outline I Solution approaches for large-scaled problems: I Delayed column generation I Cutting plane methods (delayed constraint generation) 7 I Problems

More information

Column Generation. i = 1,, 255;

Column Generation. i = 1,, 255; Column Generation The idea of the column generation can be motivated by the trim-loss problem: We receive an order to cut 50 pieces of.5-meter (pipe) segments, 250 pieces of 2-meter segments, and 200 pieces

More information

Operations Research Lecture 6: Integer Programming

Operations Research Lecture 6: Integer Programming Operations Research Lecture 6: Integer Programming Notes taken by Kaiquan Xu@Business School, Nanjing University May 12th 2016 1 Integer programming (IP) formulations The integer programming (IP) is the

More information

Branch-and-cut and Branch-and-Cut-and-Price Algorithms for Solving Vehicle Routing Problems

Branch-and-cut and Branch-and-Cut-and-Price Algorithms for Solving Vehicle Routing Problems Downloaded from orbit.dtu.dk on: Oct 31, 2018 Branch-and-cut and Branch-and-Cut-and-Price Algorithms for Solving Vehicle Routing Problems Jepsen, Mads Kehlet; Pisinger, David Publication date: 2011 Document

More information

The two-dimensional bin-packing problem is the problem of orthogonally packing a given set of rectangles

The two-dimensional bin-packing problem is the problem of orthogonally packing a given set of rectangles INFORMS Journal on Computing Vol. 19, No. 1, Winter 2007, pp. 36 51 issn 1091-9856 eissn 1526-5528 07 1901 0036 informs doi 10.1287/ijoc.1060.0181 2007 INFORMS Using Decomposition Techniques and Constraint

More information

A New Facet Generating Procedure for the Stable Set Polytope

A New Facet Generating Procedure for the Stable Set Polytope 1 / 22 A New Facet Generating Procedure for the Stable Set Polytope Álinson S. Xavier a Manoel Campêlo b a Mestrado e Doutorado em Ciência da Computação Universidade Federal do Ceará Fortaleza, Brazil

More information

Alternative Methods for Obtaining. Optimization Bounds. AFOSR Program Review, April Carnegie Mellon University. Grant FA

Alternative Methods for Obtaining. Optimization Bounds. AFOSR Program Review, April Carnegie Mellon University. Grant FA Alternative Methods for Obtaining Optimization Bounds J. N. Hooker Carnegie Mellon University AFOSR Program Review, April 2012 Grant FA9550-11-1-0180 Integrating OR and CP/AI Early support by AFOSR First

More information

Mixed Integer Programming Solvers: from Where to Where. Andrea Lodi University of Bologna, Italy

Mixed Integer Programming Solvers: from Where to Where. Andrea Lodi University of Bologna, Italy Mixed Integer Programming Solvers: from Where to Where Andrea Lodi University of Bologna, Italy andrea.lodi@unibo.it November 30, 2011 @ Explanatory Workshop on Locational Analysis, Sevilla A. Lodi, MIP

More information

Operations Research Methods in Constraint Programming

Operations Research Methods in Constraint Programming Operations Research Methods in Constraint Programming John Hooker Carnegie Mellon University Prepared for Lloret de Mar, Spain June 2007 2007 Slide 1 CP and OR Have Complementary Strengths CP: Inference

More information

Part 4. Decomposition Algorithms

Part 4. Decomposition Algorithms In the name of God Part 4. 4.4. Column Generation for the Constrained Shortest Path Problem Spring 2010 Instructor: Dr. Masoud Yaghini Constrained Shortest Path Problem Constrained Shortest Path Problem

More information

Section Notes 9. Midterm 2 Review. Applied Math / Engineering Sciences 121. Week of December 3, 2018

Section Notes 9. Midterm 2 Review. Applied Math / Engineering Sciences 121. Week of December 3, 2018 Section Notes 9 Midterm 2 Review Applied Math / Engineering Sciences 121 Week of December 3, 2018 The following list of topics is an overview of the material that was covered in the lectures and sections

More information

NEW FORMULATIONS AND A COLUMN GENERATION-BASED HEURISTIC FOR A PROBLEM OF PETROLEUM TRANSPORTATION

NEW FORMULATIONS AND A COLUMN GENERATION-BASED HEURISTIC FOR A PROBLEM OF PETROLEUM TRANSPORTATION NEW FORMULATIONS AND A COLUMN GENERATION-BASED HEURISTIC FOR A PROBLEM OF PETROLEUM TRANSPORTATION Luiz Aizemberg, Hugo Harry Kramer, Artur Alves Pessoa, Eduardo Uchoa Departamento de Engenharia de Produção

More information

Lecture 8: Column Generation

Lecture 8: Column Generation Lecture 8: Column Generation (3 units) Outline Cutting stock problem Classical IP formulation Set covering formulation Column generation A dual perspective 1 / 24 Cutting stock problem 2 / 24 Problem description

More information

Integer Linear Programming Modeling

Integer Linear Programming Modeling DM554/DM545 Linear and Lecture 9 Integer Linear Programming Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. Assignment Problem Knapsack Problem

More information

MIP reformulations of some chance-constrained mathematical programs

MIP reformulations of some chance-constrained mathematical programs MIP reformulations of some chance-constrained mathematical programs Ricardo Fukasawa Department of Combinatorics & Optimization University of Waterloo December 4th, 2012 FIELDS Industrial Optimization

More information

Matteo Fischetti, DEI, University of Padova. COFIN Matheon workshop, Villa Vigoni (Como), May 2006

Matteo Fischetti, DEI, University of Padova. COFIN Matheon workshop, Villa Vigoni (Como), May 2006 Matteo Fischetti, DEI, University of Padova COFIN Matheon workshop, Villa Vigoni (Como), May 2006 1 MIP solvers for hard optimization problems Mixed-integer linear programming (MIP) plays a central role

More information

Pedro Munari - COA 2017, February 10th, University of Edinburgh, Scotland, UK 2

Pedro Munari - COA 2017, February 10th, University of Edinburgh, Scotland, UK 2 Pedro Munari [munari@dep.ufscar.br] - COA 2017, February 10th, University of Edinburgh, Scotland, UK 2 Outline Vehicle routing problem; How interior point methods can help; Interior point branch-price-and-cut:

More information

A Column Generation Based Heuristic for the Dial-A-Ride Problem

A Column Generation Based Heuristic for the Dial-A-Ride Problem A Column Generation Based Heuristic for the Dial-A-Ride Problem Nastaran Rahmani 1, Boris Detienne 2,3, Ruslan Sadykov 3,2, François Vanderbeck 2,3 1 Kedge Business School, 680 Cours de la Libération,

More information

Week Cuts, Branch & Bound, and Lagrangean Relaxation

Week Cuts, Branch & Bound, and Lagrangean Relaxation Week 11 1 Integer Linear Programming This week we will discuss solution methods for solving integer linear programming problems. I will skip the part on complexity theory, Section 11.8, although this is

More information

1 Column Generation and the Cutting Stock Problem

1 Column Generation and the Cutting Stock Problem 1 Column Generation and the Cutting Stock Problem In the linear programming approach to the traveling salesman problem we used the cutting plane approach. The cutting plane approach is appropriate when

More information

Pricing Routines for Vehicle Routing with Time Windows on Road Networks

Pricing Routines for Vehicle Routing with Time Windows on Road Networks Pricing Routines for Vehicle Routing with Time Windows on Road Networks Adam N. Letchford Saeideh D. Nasiri Amar Oukil Published in Computers & Operations Research, July 2014 Abstract Several very effective

More information

Solving Elementary Shortest-Path Problems as Mixed-Integer Programs

Solving Elementary Shortest-Path Problems as Mixed-Integer Programs Gutenberg School of Management and Economics Discussion Paper Series Solving Elementary Shortest-Path Problems as Mixed-Integer Programs Michael Drexl and Stefan Irnich Januar 2012 Discussion paper number

More information

Integer Programming: Cutting Planes

Integer Programming: Cutting Planes OptIntro 1 / 39 Integer Programming: Cutting Planes Eduardo Camponogara Department of Automation and Systems Engineering Federal University of Santa Catarina October 2016 OptIntro 2 / 39 Summary Introduction

More information

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 17: Combinatorial Problems as Linear Programs III. Instructor: Shaddin Dughmi

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 17: Combinatorial Problems as Linear Programs III. Instructor: Shaddin Dughmi CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 17: Combinatorial Problems as Linear Programs III Instructor: Shaddin Dughmi Announcements Today: Spanning Trees and Flows Flexibility awarded

More information

Multicommodity Flows and Column Generation

Multicommodity Flows and Column Generation Lecture Notes Multicommodity Flows and Column Generation Marc Pfetsch Zuse Institute Berlin pfetsch@zib.de last change: 2/8/2006 Technische Universität Berlin Fakultät II, Institut für Mathematik WS 2006/07

More information

The traveling salesman problem

The traveling salesman problem Chapter 58 The traveling salesman problem The traveling salesman problem (TSP) asks for a shortest Hamiltonian circuit in a graph. It belongs to the most seductive problems in combinatorial optimization,

More information

Discrete (and Continuous) Optimization Solutions of Exercises 2 WI4 131

Discrete (and Continuous) Optimization Solutions of Exercises 2 WI4 131 Discrete (and Continuous) Optimization Solutions of Exercises 2 WI4 131 Kees Roos Technische Universiteit Delft Faculteit Electrotechniek, Wiskunde en Informatica Afdeling Informatie, Systemen en Algoritmiek

More information