Feasibility Pump Heuristics for Column Generation Approaches

Size: px
Start display at page:

Download "Feasibility Pump Heuristics for Column Generation Approaches"

Transcription

1 1 / 29 Feasibility Pump Heuristics for Column Generation Approaches Ruslan Sadykov 2 Pierre Pesneau 1,2 Francois Vanderbeck 1,2 1 University Bordeaux I 2 INRIA Bordeaux Sud-Ouest SEA 2012 Bordeaux, France, June 9, 2012

2 2 / 29 Outline Generic Primal Heuristics Generic Primal Heuristics for Branch-and-Price Column Generation based Feasibility Pump heuristic Numerical tests Conclusion

3 3 / 29 Generic Primal Heuristics for MIPs good feasible solutions using the tools of exact optimization

4 4 / 29 Generic Primal Heuristics for MIPs good feasible solutions using the tools of exact optimization Truncating an exact method Building from the relaxation used for the exact approach Defining a target based on the relaxation Using dual information to price choices in greedy heuristics Exact approach used to explore a neighborhood

5 5 / 29 Generic Primal Heuristics for MIPs good feasible solutions using the tools of exact optimization Truncating an exact method Building from the relaxation used for the exact approach Defining a target based on the relaxation Using dual information to price choices in greedy heuristics Exact approach used to explore a neighborhood Examples: [Berthold 06] 1. Large Scale Neighborhood Search [Ahuja al 02] 2. Relaxation Induced Neighborhood Search [Dana al 05] 3. Local Branching [Fischetti al 03] 4. Feasibility Pump [Fischetti al 05]

6 6 / 29 Generic LP based heuristics min{ j c jx j : j a ijx j b i i, l j x j u j j}

7 7 / 29 Generic LP based heuristics min{ j c jx j : j a ijx j b i i, l j x j u j j} Rounding: Iteratively select a var x j and bound/fix it least fractional: argmin j {min{x j x j, x j x j }} guided search: argmin j { x j x inc j }

8 8 / 29 Generic LP based heuristics min{ j c jx j : j a ijx j b i i, l j x j u j j} Rounding: Iteratively select a var x j and bound/fix it least fractional: argmin j {min{x j x j, x j x j }} guided search: argmin j { x j x inc j } Diving: rounding + LP resolve + reiterate heuristic depth search in branch-and-bound tree branching rule that of exact branch-and-bound

9 9 / 29 Generic LP based heuristics min{ j c jx j : j a ijx j b i i, l j x j u j j} Rounding: Iteratively select a var x j and bound/fix it least fractional: argmin j {min{x j x j, x j x j }} guided search: argmin j { x j x inc j } Diving: rounding + LP resolve + reiterate heuristic depth search in branch-and-bound tree branching rule that of exact branch-and-bound sub-miping: rounding/diving + MIP sol of the residual prob.

10 10 / 29 Heuristic search in branch-and-bound tree Diving sub-miping

11 11 / 29 Feasibility Pump heuristic Target solution x is obtained by rounding LP solution x LP to the closest integer solution. If x is not feasible, the problem is modified: 0 1 integer program { ( min c x +ɛ x j + j: x j =0 j: x j =1 general integer program (l j x j u j ) { ( min c x + ɛ (x j l j ) + j: x j =l j ) (1 x j ) : A x a, x [0, 1] n} j: x j =u j (u j x j ) + j:l j < x j <u j d j ) : A x a, d j x j x j d j + x j j, x R n}

12 12 / 29 The Branch-and-Price Approach min c 1 x 1 + c 2 x c K x K D x 1 + D x D x K d B x 1 b B x 2 b B x K x 1 N n, x 2 N n,... x K N n. b

13 13 / 29 The Branch-and-Price Approach min c 1 x 1 + c 2 x c K x K D x 1 + D x D x K d B x 1 b B x 2 b B x K x 1 N n, x 2 N n,... x K N n. Relax Dx d = decomposition: subproblem {B x b, x N n } and a reformulation solved by Branch-and-Price: b min g G cx g λ g g G Dx g λ g d g G λg = K λ N G Solve Master LP Pricing Problem Solve Master LP Pricing Problem Solve Master LP Pricing Problem

14 14 / 29 The Branch-and-Price Approach min c 1 x 1 + c 2 x c K x K D x 1 + D x D x K d B x 1 b B x 2 b B x K x 1 N n, x 2 N n,... x K N n. Relax Dx d = decomposition: subproblem {B x b, x N n } and a reformulation solved by Branch-and-Price: b min g G cx g λ g g G Dx g λ g d g G λg = K λ N G Solve Master LP Pricing Problem y := k x k = g G x g λ g Solve Master LP Solve Master LP Pricing Problem Pricing Problem

15 15 / 29 Difficulties in a B-a-P context for generic heuristics Heuristic paradigm in original space or the reformulation?

16 Difficulties in a B-a-P context for generic heuristics Heuristic paradigm in original space or the reformulation? On master variables: λ (aggregated decisions) Cannot fix bounds (as in rounding) Cannot modify costs (as in feasibility pump) 16 / 29

17 Difficulties in a B-a-P context for generic heuristics Heuristic paradigm in original space or the reformulation? On master variables: λ (aggregated decisions) Cannot fix bounds (as in rounding) Cannot modify costs (as in feasibility pump) On original variables: x (disaggregated decisions) Cannot grasp individual SP var. after aggregation in the common case of identical SPs Cannot modify the SP structure required by the oracle 17 / 29

18 Difficulties in a B-a-P context for generic heuristics Heuristic paradigm in original space or the reformulation? On master variables: λ (aggregated decisions) Cannot fix bounds (as in rounding) Cannot modify costs (as in feasibility pump) On original variables: x (disaggregated decisions) Cannot grasp individual SP var. after aggregation in the common case of identical SPs Cannot modify the SP structure required by the oracle Differences Acting on master λ variables results in a more macroscopic decision. Faster progress to an integer solution, but you can quickly paint yourself in a corner 18 / 29

19 19 / 29 Generic modifications of the master Setting a lower bound of a column: λ g l g Decreasing cost c g of a column λ g

20 20 / 29 Generic modifications of the master Setting a lower bound of a column: λ g l g Decreasing cost c g of a column λ g In both cases, pricing oracle overestimates the reduced cost of column λ g already included in the master.

21 21 / 29 Generic modifications of the master Setting a lower bound of a column: λ g l g Decreasing cost c g of a column λ g In both cases, pricing oracle overestimates the reduced cost of column λ g already included in the master. Preprocessing Lower bound setting is done by fixing a partial ( rounded-down ) solution After that, the residual master problem is defined by preprocessing: updating RHS of the master; updating bounds for subproblem variables.

22 22 / 29 Pure Diving Heuristic Depth-First Search select least fractional col: λ s λ s update master and SP apply preprocessing

23 23 / 29 Generic Feasibility Pump algorithm I Solution λ is defined by rounding the LP solution λ LP. If λ is feasible, stop. Otherwise, we use λ as a target point. We decrease the cost of rounded-up columns and increase the cost of rounded-down ones (but not beyond the original cost).

24 24 / 29 Generic Feasibility Pump algorithm I Solution λ is defined by rounding the LP solution λ LP. If λ is feasible, stop. Otherwise, we use λ as a target point. We decrease the cost of rounded-up columns and increase the cost of rounded-down ones (but not beyond the original cost). Cost modification factor functions f 1 (λ, α) f 2 (λ, α) α 1 λ α 1 λ f 1 (λ, α) = { 0.1 λ α 0.1 (1 λ) (1 α) if λ α if λ > α f 2 (λ, α) = { 0.1 (1 λ α ) 0.1 (λ α) (1 α) if λ α if λ > α

25 25 / 29 Embedding Feasibility Pump in a Diving heuristic At iteration t, the modified master becomes { min cgλ t g : (Ax g )λ g a t ; λ g = K t ; λ g N g G t g G t g G t g G Before defining target solution λ t, the rounded-down integer part of λ t LP is fixed and removed: λt g λ t g λ t g (this way the residual master is close to a 0 1 problem). Cycling can occur if no columns are rounded up in λ t. In this case, we decrease fractionality threshold parameter α (initially α 0.5).

26 26 / 29 Cutting Stock Problem n = 50, 100 d i [1, 50] W = w i [500, 2500] 50 instances for each n n function found opt gap time 50 Pure Div. 50/50 43/ f 1 50/50 45/ f 2 50/50 41/ Pure Div. 50/50 35/ f 1 50/50 43/ f 2 50/50 40/

27 Generalized Assignment Tasks assignment Machines cost cost cost cost cost Instances from OR-Library (type D) 50 instances for each (n, m) m n function found gap time Pur Div. 34/ % f 1 36/ % f 2 48/ % Pur Div. 35/ % f 1 36/ % f 2 42/ % / 29

28 28 / 29 Conclusions Summary Feasibility Pump heuristic can be extended to the column generation context The key is to restrict problem modifications to setting lower bound and cost reduction. Compared with the generic diving heuristic, feasibility pump heuristic produced more feasible primal solutions without loosing on the quality.

29 Conclusions Summary Feasibility Pump heuristic can be extended to the column generation context The key is to restrict problem modifications to setting lower bound and cost reduction. Compared with the generic diving heuristic, feasibility pump heuristic produced more feasible primal solutions without loosing on the quality. Future work Adaptation of diversification mechanisms for the Feasibility Pump heuristic Numerical tests on a larger scope of applications Compare Feasibility Pump heuristic on aggregated variables λ versus Feasibility Pump in the space of original variables x. 29 / 29

Column Generation for Extended Formulations

Column Generation for Extended Formulations 1 / 28 Column Generation for Extended Formulations Ruslan Sadykov 1 François Vanderbeck 2,1 1 INRIA Bordeaux Sud-Ouest, France 2 University Bordeaux I, France ISMP 2012 Berlin, August 23 2 / 28 Contents

More information

Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications

Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications François Vanderbeck University of Bordeaux INRIA Bordeaux-Sud-Ouest part : Defining Extended Formulations

More information

Stabilization in Column Generation: numerical study

Stabilization in Column Generation: numerical study 1 / 26 Stabilization in Column Generation: numerical study Artur Pessoa 3 Ruslan Sadykov 1,2 Eduardo Uchoa 3 François Vanderbeck 2,1 1 INRIA Bordeaux, France 2 Univ. Bordeaux I, France 3 Universidade Federal

More information

Integer Programming. Wolfram Wiesemann. December 6, 2007

Integer Programming. Wolfram Wiesemann. December 6, 2007 Integer Programming Wolfram Wiesemann December 6, 2007 Contents of this Lecture Revision: Mixed Integer Programming Problems Branch & Bound Algorithms: The Big Picture Solving MIP s: Complete Enumeration

More information

Integer Programming Reformulations: Dantzig-Wolfe & Benders Decomposition the Coluna Software Platform

Integer Programming Reformulations: Dantzig-Wolfe & Benders Decomposition the Coluna Software Platform Integer Programming Reformulations: Dantzig-Wolfe & Benders Decomposition the Coluna Software Platform François Vanderbeck B. Detienne, F. Clautiaux, R. Griset, T. Leite, G. Marques, V. Nesello, A. Pessoa,

More information

Reformulation and Decomposition of Integer Programs

Reformulation and Decomposition of Integer Programs Reformulation and Decomposition of Integer Programs François Vanderbeck 1 and Laurence A. Wolsey 2 (Reference: CORE DP 2009/16) (1) Université Bordeaux 1 & INRIA-Bordeaux (2) Université de Louvain, CORE.

More information

From structures to heuristics to global solvers

From structures to heuristics to global solvers From structures to heuristics to global solvers Timo Berthold Zuse Institute Berlin DFG Research Center MATHEON Mathematics for key technologies OR2013, 04/Sep/13, Rotterdam Outline From structures to

More information

Large-scale optimization and decomposition methods: outline. Column Generation and Cutting Plane methods: a unified view

Large-scale optimization and decomposition methods: outline. Column Generation and Cutting Plane methods: a unified view Large-scale optimization and decomposition methods: outline I Solution approaches for large-scaled problems: I Delayed column generation I Cutting plane methods (delayed constraint generation) 7 I Problems

More information

Column Generation. MTech Seminar Report. Soumitra Pal Roll No: under the guidance of

Column Generation. MTech Seminar Report. Soumitra Pal Roll No: under the guidance of Column Generation MTech Seminar Report by Soumitra Pal Roll No: 05305015 under the guidance of Prof. A. G. Ranade Computer Science and Engineering IIT-Bombay a Department of Computer Science and Engineering

More information

maxz = 3x 1 +4x 2 2x 1 +x 2 6 2x 1 +3x 2 9 x 1,x 2

maxz = 3x 1 +4x 2 2x 1 +x 2 6 2x 1 +3x 2 9 x 1,x 2 ex-5.-5. Foundations of Operations Research Prof. E. Amaldi 5. Branch-and-Bound Given the integer linear program maxz = x +x x +x 6 x +x 9 x,x integer solve it via the Branch-and-Bound method (solving

More information

A Column Generation Based Heuristic for the Dial-A-Ride Problem

A Column Generation Based Heuristic for the Dial-A-Ride Problem A Column Generation Based Heuristic for the Dial-A-Ride Problem Nastaran Rahmani 1, Boris Detienne 2,3, Ruslan Sadykov 3,2, François Vanderbeck 2,3 1 Kedge Business School, 680 Cours de la Libération,

More information

Lecture 9: Dantzig-Wolfe Decomposition

Lecture 9: Dantzig-Wolfe Decomposition Lecture 9: Dantzig-Wolfe Decomposition (3 units) Outline Dantzig-Wolfe decomposition Column generation algorithm Relation to Lagrangian dual Branch-and-price method Generated assignment problem and multi-commodity

More information

Decomposition methods in optimization

Decomposition methods in optimization Decomposition methods in optimization I Approach I: I Partition problem constraints into two groups: explicit and implicit I Approach II: I Partition decision variables into two groups: primary and secondary

More information

Stabilized Branch-and-cut-and-price for the Generalized Assignment Problem

Stabilized Branch-and-cut-and-price for the Generalized Assignment Problem Stabilized Branch-and-cut-and-price for the Generalized Assignment Problem Alexandre Pigatti, Marcus Poggi de Aragão Departamento de Informática, PUC do Rio de Janeiro {apigatti, poggi}@inf.puc-rio.br

More information

Lecture 8: Column Generation

Lecture 8: Column Generation Lecture 8: Column Generation (3 units) Outline Cutting stock problem Classical IP formulation Set covering formulation Column generation A dual perspective 1 / 24 Cutting stock problem 2 / 24 Problem description

More information

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini In the name of God Network Flows 6. Lagrangian Relaxation 6.3 Lagrangian Relaxation and Integer Programming Fall 2010 Instructor: Dr. Masoud Yaghini Integer Programming Outline Branch-and-Bound Technique

More information

Lecture 8: Column Generation

Lecture 8: Column Generation Lecture 8: Column Generation (3 units) Outline Cutting stock problem Classical IP formulation Set covering formulation Column generation A dual perspective Vehicle routing problem 1 / 33 Cutting stock

More information

Overview of course. Introduction to Optimization, DIKU Monday 12 November David Pisinger

Overview of course. Introduction to Optimization, DIKU Monday 12 November David Pisinger Introduction to Optimization, DIKU 007-08 Monday November David Pisinger Lecture What is OR, linear models, standard form, slack form, simplex repetition, graphical interpretation, extreme points, basic

More information

Lagrangian Relaxation in MIP

Lagrangian Relaxation in MIP Lagrangian Relaxation in MIP Bernard Gendron May 28, 2016 Master Class on Decomposition, CPAIOR2016, Banff, Canada CIRRELT and Département d informatique et de recherche opérationnelle, Université de Montréal,

More information

Column generation for extended formulations

Column generation for extended formulations EURO J Comput Optim (2013) 1:81 115 DOI 10.1007/s13675-013-0009-9 ORIGINAL PAPER Column generation for extended formulations Ruslan Sadykov François Vanderbeck Received: 5 May 2012 / Accepted: 21 December

More information

On the exact solution of a large class of parallel machine scheduling problems

On the exact solution of a large class of parallel machine scheduling problems 1 / 23 On the exact solution of a large class of parallel machine scheduling problems Teobaldo Bulhões 2 Ruslan Sadykov 1 Eduardo Uchoa 2 Anand Subramanian 3 1 Inria Bordeaux and Univ. Bordeaux, France

More information

Integer program reformulation for robust branch-and-cut-and-price

Integer program reformulation for robust branch-and-cut-and-price Integer program reformulation for robust branch-and-cut-and-price Marcus Poggi de Aragão Informática PUC-Rio Eduardo Uchoa Engenharia de Produção Universidade Federal Fluminense Outline of the talk Robust

More information

Notes on Dantzig-Wolfe decomposition and column generation

Notes on Dantzig-Wolfe decomposition and column generation Notes on Dantzig-Wolfe decomposition and column generation Mette Gamst November 11, 2010 1 Introduction This note introduces an exact solution method for mathematical programming problems. The method is

More information

Solving Mixed-Integer Nonlinear Programs

Solving Mixed-Integer Nonlinear Programs Solving Mixed-Integer Nonlinear Programs (with SCIP) Ambros M. Gleixner Zuse Institute Berlin MATHEON Berlin Mathematical School 5th Porto Meeting on Mathematics for Industry, April 10 11, 2014, Porto

More information

3.10 Column generation method

3.10 Column generation method 3.10 Column generation method Many relevant decision-making (discrete optimization) problems can be formulated as ILP problems with a very large (exponential) number of variables. Examples: cutting stock,

More information

Branching in Branch-and-Price: a Generic Scheme

Branching in Branch-and-Price: a Generic Scheme Branching in Branch-and-Price: a Generic Scheme François Vanderbeck To cite this version: François Vanderbeck. Branching in Branch-and-Price: a Generic Scheme. Mathematical Programming, Series A, Springer,

More information

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING 1. Lagrangian Relaxation Lecture 12 Single Machine Models, Column Generation 2. Dantzig-Wolfe Decomposition Dantzig-Wolfe Decomposition Delayed Column

More information

min3x 1 + 4x 2 + 5x 3 2x 1 + 2x 2 + x 3 6 x 1 + 2x 2 + 3x 3 5 x 1, x 2, x 3 0.

min3x 1 + 4x 2 + 5x 3 2x 1 + 2x 2 + x 3 6 x 1 + 2x 2 + 3x 3 5 x 1, x 2, x 3 0. ex-.-. Foundations of Operations Research Prof. E. Amaldi. Dual simplex algorithm Given the linear program minx + x + x x + x + x 6 x + x + x x, x, x. solve it via the dual simplex algorithm. Describe

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 8 Discrete optimization: theory and algorithms

MVE165/MMG631 Linear and integer optimization with applications Lecture 8 Discrete optimization: theory and algorithms MVE165/MMG631 Linear and integer optimization with applications Lecture 8 Discrete optimization: theory and algorithms Ann-Brith Strömberg 2017 04 07 Lecture 8 Linear and integer optimization with applications

More information

KNAPSACK PROBLEMS WITH SETUPS

KNAPSACK PROBLEMS WITH SETUPS 7 e Conférence Francophone de MOdélisation et SIMulation - MOSIM 08 - du 31 mars au 2 avril 2008 - Paris - France Modélisation, Optimisation et Simulation des Systèmes : Communication, Coopération et Coordination

More information

3.10 Column generation method

3.10 Column generation method 3.10 Column generation method Many relevant decision-making problems can be formulated as ILP problems with a very large (exponential) number of variables. Examples: cutting stock, crew scheduling, vehicle

More information

SOLVING INTEGER LINEAR PROGRAMS. 1. Solving the LP relaxation. 2. How to deal with fractional solutions?

SOLVING INTEGER LINEAR PROGRAMS. 1. Solving the LP relaxation. 2. How to deal with fractional solutions? SOLVING INTEGER LINEAR PROGRAMS 1. Solving the LP relaxation. 2. How to deal with fractional solutions? Integer Linear Program: Example max x 1 2x 2 0.5x 3 0.2x 4 x 5 +0.6x 6 s.t. x 1 +2x 2 1 x 1 + x 2

More information

3.4 Relaxations and bounds

3.4 Relaxations and bounds 3.4 Relaxations and bounds Consider a generic Discrete Optimization problem z = min{c(x) : x X} with an optimal solution x X. In general, the algorithms generate not only a decreasing sequence of upper

More information

The CPLEX Library: Mixed Integer Programming

The CPLEX Library: Mixed Integer Programming The CPLEX Library: Mixed Programming Ed Rothberg, ILOG, Inc. 1 The Diet Problem Revisited Nutritional values Bob considered the following foods: Food Serving Size Energy (kcal) Protein (g) Calcium (mg)

More information

Pedro Munari - COA 2017, February 10th, University of Edinburgh, Scotland, UK 2

Pedro Munari - COA 2017, February 10th, University of Edinburgh, Scotland, UK 2 Pedro Munari [munari@dep.ufscar.br] - COA 2017, February 10th, University of Edinburgh, Scotland, UK 2 Outline Vehicle routing problem; How interior point methods can help; Interior point branch-price-and-cut:

More information

Section Notes 9. Midterm 2 Review. Applied Math / Engineering Sciences 121. Week of December 3, 2018

Section Notes 9. Midterm 2 Review. Applied Math / Engineering Sciences 121. Week of December 3, 2018 Section Notes 9 Midterm 2 Review Applied Math / Engineering Sciences 121 Week of December 3, 2018 The following list of topics is an overview of the material that was covered in the lectures and sections

More information

to work with) can be solved by solving their LP relaxations with the Simplex method I Cutting plane algorithms, e.g., Gomory s fractional cutting

to work with) can be solved by solving their LP relaxations with the Simplex method I Cutting plane algorithms, e.g., Gomory s fractional cutting Summary so far z =max{c T x : Ax apple b, x 2 Z n +} I Modeling with IP (and MIP, and BIP) problems I Formulation for a discrete set that is a feasible region of an IP I Alternative formulations for the

More information

Disconnecting Networks via Node Deletions

Disconnecting Networks via Node Deletions 1 / 27 Disconnecting Networks via Node Deletions Exact Interdiction Models and Algorithms Siqian Shen 1 J. Cole Smith 2 R. Goli 2 1 IOE, University of Michigan 2 ISE, University of Florida 2012 INFORMS

More information

Benders Decomposition

Benders Decomposition Benders Decomposition Yuping Huang, Dr. Qipeng Phil Zheng Department of Industrial and Management Systems Engineering West Virginia University IENG 593G Nonlinear Programg, Spring 2012 Yuping Huang (IMSE@WVU)

More information

A generic view of Dantzig Wolfe decomposition in mixed integer programming

A generic view of Dantzig Wolfe decomposition in mixed integer programming Operations Research Letters 34 (2006) 296 306 Operations Research Letters www.elsevier.com/locate/orl A generic view of Dantzig Wolfe decomposition in mixed integer programming François Vanderbeck a,,

More information

Generation and Representation of Piecewise Polyhedral Value Functions

Generation and Representation of Piecewise Polyhedral Value Functions Generation and Representation of Piecewise Polyhedral Value Functions Ted Ralphs 1 Joint work with Menal Güzelsoy 2 and Anahita Hassanzadeh 1 1 COR@L Lab, Department of Industrial and Systems Engineering,

More information

Introduction to Integer Linear Programming

Introduction to Integer Linear Programming Lecture 7/12/2006 p. 1/30 Introduction to Integer Linear Programming Leo Liberti, Ruslan Sadykov LIX, École Polytechnique liberti@lix.polytechnique.fr sadykov@lix.polytechnique.fr Lecture 7/12/2006 p.

More information

Improving Branch-And-Price Algorithms For Solving One Dimensional Cutting Stock Problem

Improving Branch-And-Price Algorithms For Solving One Dimensional Cutting Stock Problem Improving Branch-And-Price Algorithms For Solving One Dimensional Cutting Stock Problem M. Tech. Dissertation Submitted in partial fulfillment of the requirements for the degree of Master of Technology

More information

A Hub Location Problem with Fully Interconnected Backbone and Access Networks

A Hub Location Problem with Fully Interconnected Backbone and Access Networks A Hub Location Problem with Fully Interconnected Backbone and Access Networks Tommy Thomadsen Informatics and Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby Denmark tt@imm.dtu.dk

More information

Interior-Point versus Simplex methods for Integer Programming Branch-and-Bound

Interior-Point versus Simplex methods for Integer Programming Branch-and-Bound Interior-Point versus Simplex methods for Integer Programming Branch-and-Bound Samir Elhedhli elhedhli@uwaterloo.ca Department of Management Sciences, University of Waterloo, Canada Page of 4 McMaster

More information

Lessons from MIP Search. John Hooker Carnegie Mellon University November 2009

Lessons from MIP Search. John Hooker Carnegie Mellon University November 2009 Lessons from MIP Search John Hooker Carnegie Mellon University November 2009 Outline MIP search The main ideas Duality and nogoods From MIP to AI (and back) Binary decision diagrams From MIP to constraint

More information

Accelerating Benders Decomposition by Local Branching

Accelerating Benders Decomposition by Local Branching Accelerating Benders Decomposition by Local Branching Walter Rei, Michel Gendreau Département d informatique et de recherche opérationnelle and Centre de recherche sur les transports, Université demontréal,

More information

Benders Decomposition for the Uncapacitated Multicommodity Network Design Problem

Benders Decomposition for the Uncapacitated Multicommodity Network Design Problem Benders Decomposition for the Uncapacitated Multicommodity Network Design Problem 1 Carlos Armando Zetina, 1 Ivan Contreras, 2 Jean-François Cordeau 1 Concordia University and CIRRELT, Montréal, Canada

More information

Column Generation. ORLAB - Operations Research Laboratory. Stefano Gualandi. June 14, Politecnico di Milano, Italy

Column Generation. ORLAB - Operations Research Laboratory. Stefano Gualandi. June 14, Politecnico di Milano, Italy ORLAB - Operations Research Laboratory Politecnico di Milano, Italy June 14, 2011 Cutting Stock Problem (from wikipedia) Imagine that you work in a paper mill and you have a number of rolls of paper of

More information

An Adaptive Partition-based Approach for Solving Two-stage Stochastic Programs with Fixed Recourse

An Adaptive Partition-based Approach for Solving Two-stage Stochastic Programs with Fixed Recourse An Adaptive Partition-based Approach for Solving Two-stage Stochastic Programs with Fixed Recourse Yongjia Song, James Luedtke Virginia Commonwealth University, Richmond, VA, ysong3@vcu.edu University

More information

Lecture 23 Branch-and-Bound Algorithm. November 3, 2009

Lecture 23 Branch-and-Bound Algorithm. November 3, 2009 Branch-and-Bound Algorithm November 3, 2009 Outline Lecture 23 Modeling aspect: Either-Or requirement Special ILPs: Totally unimodular matrices Branch-and-Bound Algorithm Underlying idea Terminology Formal

More information

Column Generation I. Teo Chung-Piaw (NUS)

Column Generation I. Teo Chung-Piaw (NUS) Column Generation I Teo Chung-Piaw (NUS) 21 st February 2002 1 Outline Cutting Stock Problem Slide 1 Classical Integer Programming Formulation Set Covering Formulation Column Generation Approach Connection

More information

Scenario Grouping and Decomposition Algorithms for Chance-constrained Programs

Scenario Grouping and Decomposition Algorithms for Chance-constrained Programs Scenario Grouping and Decomposition Algorithms for Chance-constrained Programs Siqian Shen Dept. of Industrial and Operations Engineering University of Michigan Joint work with Yan Deng (UMich, Google)

More information

IE418 Integer Programming

IE418 Integer Programming IE418: Integer Programming Department of Industrial and Systems Engineering Lehigh University 2nd February 2005 Boring Stuff Extra Linux Class: 8AM 11AM, Wednesday February 9. Room??? Accounts and Passwords

More information

Acceleration and Stabilization Techniques for Column Generation

Acceleration and Stabilization Techniques for Column Generation Acceleration and Stabilization Techniques for Column Generation Zhouchun Huang Qipeng Phil Zheng Department of Industrial Engineering & Management Systems University of Central Florida Sep 26, 2014 Outline

More information

where X is the feasible region, i.e., the set of the feasible solutions.

where X is the feasible region, i.e., the set of the feasible solutions. 3.5 Branch and Bound Consider a generic Discrete Optimization problem (P) z = max{c(x) : x X }, where X is the feasible region, i.e., the set of the feasible solutions. Branch and Bound is a general semi-enumerative

More information

Introduction to Bin Packing Problems

Introduction to Bin Packing Problems Introduction to Bin Packing Problems Fabio Furini March 13, 2015 Outline Origins and applications Applications: Definition: Bin Packing Problem (BPP) Solution techniques for the BPP Heuristic Algorithms

More information

1 Column Generation and the Cutting Stock Problem

1 Column Generation and the Cutting Stock Problem 1 Column Generation and the Cutting Stock Problem In the linear programming approach to the traveling salesman problem we used the cutting plane approach. The cutting plane approach is appropriate when

More information

Integer Programming ISE 418. Lecture 12. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 12. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 12 Dr. Ted Ralphs ISE 418 Lecture 12 1 Reading for This Lecture Nemhauser and Wolsey Sections II.2.1 Wolsey Chapter 9 ISE 418 Lecture 12 2 Generating Stronger Valid

More information

Advanced Linear Programming: The Exercises

Advanced Linear Programming: The Exercises Advanced Linear Programming: The Exercises The answers are sometimes not written out completely. 1.5 a) min c T x + d T y Ax + By b y = x (1) First reformulation, using z smallest number satisfying x z

More information

Branch-and-Price-and-Cut for the Split Delivery Vehicle Routing Problem with Time Windows

Branch-and-Price-and-Cut for the Split Delivery Vehicle Routing Problem with Time Windows Branch-and-Price-and-Cut for the Split Delivery Vehicle Routing Problem with Time Windows Guy Desaulniers École Polytechnique de Montréal and GERAD Column Generation 2008 Aussois, France Outline Introduction

More information

A BRANCH&BOUND ALGORITHM FOR SOLVING ONE-DIMENSIONAL CUTTING STOCK PROBLEMS EXACTLY

A BRANCH&BOUND ALGORITHM FOR SOLVING ONE-DIMENSIONAL CUTTING STOCK PROBLEMS EXACTLY APPLICATIONES MATHEMATICAE 23,2 (1995), pp. 151 167 G. SCHEITHAUER and J. TERNO (Dresden) A BRANCH&BOUND ALGORITHM FOR SOLVING ONE-DIMENSIONAL CUTTING STOCK PROBLEMS EXACTLY Abstract. Many numerical computations

More information

AM 121: Intro to Optimization! Models and Methods! Fall 2018!

AM 121: Intro to Optimization! Models and Methods! Fall 2018! AM 121: Intro to Optimization Models and Methods Fall 2018 Lecture 13: Branch and Bound (I) Yiling Chen SEAS Example: max 5x 1 + 8x 2 s.t. x 1 + x 2 6 5x 1 + 9x 2 45 x 1, x 2 0, integer 1 x 2 6 5 x 1 +x

More information

Convex Optimization and Support Vector Machine

Convex Optimization and Support Vector Machine Convex Optimization and Support Vector Machine Problem 0. Consider a two-class classification problem. The training data is L n = {(x 1, t 1 ),..., (x n, t n )}, where each t i { 1, 1} and x i R p. We

More information

Development of the new MINLP Solver Decogo using SCIP - Status Report

Development of the new MINLP Solver Decogo using SCIP - Status Report Development of the new MINLP Solver Decogo using SCIP - Status Report Pavlo Muts with Norman Breitfeld, Vitali Gintner, Ivo Nowak SCIP Workshop 2018, Aachen Table of contents 1. Introduction 2. Automatic

More information

Improvements to Benders' decomposition: systematic classification and performance comparison in a Transmission Expansion Planning problem

Improvements to Benders' decomposition: systematic classification and performance comparison in a Transmission Expansion Planning problem Improvements to Benders' decomposition: systematic classification and performance comparison in a Transmission Expansion Planning problem Sara Lumbreras & Andrés Ramos July 2013 Agenda Motivation improvement

More information

Using Sparsity to Design Primal Heuristics for MILPs: Two Stories

Using Sparsity to Design Primal Heuristics for MILPs: Two Stories for MILPs: Two Stories Santanu S. Dey Joint work with: Andres Iroume, Marco Molinaro, Domenico Salvagnin, Qianyi Wang MIP Workshop, 2017 Sparsity in real" Integer Programs (IPs) Real" IPs are sparse: The

More information

On the knapsack closure of 0-1 Integer Linear Programs. Matteo Fischetti University of Padova, Italy

On the knapsack closure of 0-1 Integer Linear Programs. Matteo Fischetti University of Padova, Italy On the knapsack closure of 0-1 Integer Linear Programs Matteo Fischetti University of Padova, Italy matteo.fischetti@unipd.it Andrea Lodi University of Bologna, Italy alodi@deis.unibo.it Aussois, January

More information

Cutting Planes in SCIP

Cutting Planes in SCIP Cutting Planes in SCIP Kati Wolter Zuse-Institute Berlin Department Optimization Berlin, 6th June 2007 Outline 1 Cutting Planes in SCIP 2 Cutting Planes for the 0-1 Knapsack Problem 2.1 Cover Cuts 2.2

More information

Analyzing the computational impact of individual MINLP solver components

Analyzing the computational impact of individual MINLP solver components Analyzing the computational impact of individual MINLP solver components Ambros M. Gleixner joint work with Stefan Vigerske Zuse Institute Berlin MATHEON Berlin Mathematical School MINLP 2014, June 4,

More information

Heuristics for nonconvex MINLP

Heuristics for nonconvex MINLP Heuristics for nonconvex MINLP Pietro Belotti, Timo Berthold FICO, Xpress Optimization Team, Birmingham, UK pietrobelotti@fico.com 18th Combinatorial Optimization Workshop, Aussois, 9 Jan 2014 ======This

More information

Cutting Plane Separators in SCIP

Cutting Plane Separators in SCIP Cutting Plane Separators in SCIP Kati Wolter Zuse Institute Berlin DFG Research Center MATHEON Mathematics for key technologies 1 / 36 General Cutting Plane Method MIP min{c T x : x X MIP }, X MIP := {x

More information

Lagrangean relaxation

Lagrangean relaxation Lagrangean relaxation Giovanni Righini Corso di Complementi di Ricerca Operativa Joseph Louis de la Grange (Torino 1736 - Paris 1813) Relaxations Given a problem P, such as: minimize z P (x) s.t. x X P

More information

An Integer Cutting-Plane Procedure for the Dantzig-Wolfe Decomposition: Theory

An Integer Cutting-Plane Procedure for the Dantzig-Wolfe Decomposition: Theory An Integer Cutting-Plane Procedure for the Dantzig-Wolfe Decomposition: Theory by Troels Martin Range Discussion Papers on Business and Economics No. 10/2006 FURTHER INFORMATION Department of Business

More information

Improving the Randomization Step in Feasibility Pump using WalkSAT

Improving the Randomization Step in Feasibility Pump using WalkSAT Improving the Randomization Step in Feasibility Pump using Santanu S. Dey Joint work with: Andres Iroume, Marco Molinaro, Domenico Salvagnin Discrepancy & IP workshop, 2018 Sparsity in real" Integer Programs

More information

Mixed Integer Programming Solvers: from Where to Where. Andrea Lodi University of Bologna, Italy

Mixed Integer Programming Solvers: from Where to Where. Andrea Lodi University of Bologna, Italy Mixed Integer Programming Solvers: from Where to Where Andrea Lodi University of Bologna, Italy andrea.lodi@unibo.it November 30, 2011 @ Explanatory Workshop on Locational Analysis, Sevilla A. Lodi, MIP

More information

Decision Procedures An Algorithmic Point of View

Decision Procedures An Algorithmic Point of View An Algorithmic Point of View ILP References: Integer Programming / Laurence Wolsey Deciding ILPs with Branch & Bound Intro. To mathematical programming / Hillier, Lieberman Daniel Kroening and Ofer Strichman

More information

Thermal Unit Commitment Problem

Thermal Unit Commitment Problem Thermal Unit Commitment Problem Moshe Potsane, Luyanda Ndlovu, Simphiwe Simelane Christiana Obagbuwa, Jesal Kika, Nadine Padayachi, Luke O. Joel Lady Kokela, Michael Olusanya, Martins Arasomwa, Sunday

More information

Decomposition Methods for Integer Programming

Decomposition Methods for Integer Programming Decomposition Methods for Integer Programming J.M. Valério de Carvalho vc@dps.uminho.pt Departamento de Produção e Sistemas Escola de Engenharia, Universidade do Minho Portugal PhD Course Programa Doutoral

More information

Linear Programming. Scheduling problems

Linear Programming. Scheduling problems Linear Programming Scheduling problems Linear programming (LP) ( )., 1, for 0 min 1 1 1 1 1 11 1 1 n i x b x a x a b x a x a x c x c x z i m n mn m n n n n! = + + + + + + = Extreme points x ={x 1,,x n

More information

Lecture 8. Strong Duality Results. September 22, 2008

Lecture 8. Strong Duality Results. September 22, 2008 Strong Duality Results September 22, 2008 Outline Lecture 8 Slater Condition and its Variations Convex Objective with Linear Inequality Constraints Quadratic Objective over Quadratic Constraints Representation

More information

The two-machine flowshop total completion time problem: A branch-and-bound based on network-flow formulation

The two-machine flowshop total completion time problem: A branch-and-bound based on network-flow formulation The two-machine flowshop total completion time problem: A branch-and-bound based on network-flow formulation Boris Detienne 1, Ruslan Sadykov 1, Shunji Tanaka 2 1 : Team Inria RealOpt, University of Bordeaux,

More information

A Benders Algorithm for Two-Stage Stochastic Optimization Problems With Mixed Integer Recourse

A Benders Algorithm for Two-Stage Stochastic Optimization Problems With Mixed Integer Recourse A Benders Algorithm for Two-Stage Stochastic Optimization Problems With Mixed Integer Recourse Ted Ralphs 1 Joint work with Menal Güzelsoy 2 and Anahita Hassanzadeh 1 1 COR@L Lab, Department of Industrial

More information

Section Notes 9. IP: Cutting Planes. Applied Math 121. Week of April 12, 2010

Section Notes 9. IP: Cutting Planes. Applied Math 121. Week of April 12, 2010 Section Notes 9 IP: Cutting Planes Applied Math 121 Week of April 12, 2010 Goals for the week understand what a strong formulations is. be familiar with the cutting planes algorithm and the types of cuts

More information

Strengthened Benders Cuts for Stochastic Integer Programs with Continuous Recourse

Strengthened Benders Cuts for Stochastic Integer Programs with Continuous Recourse Strengthened Benders Cuts for Stochastic Integer Programs with Continuous Recourse Merve Bodur 1, Sanjeeb Dash 2, Otay Günlü 2, and James Luedte 3 1 Department of Mechanical and Industrial Engineering,

More information

i.e., into a monomial, using the Arithmetic-Geometric Mean Inequality, the result will be a posynomial approximation!

i.e., into a monomial, using the Arithmetic-Geometric Mean Inequality, the result will be a posynomial approximation! Dennis L. Bricker Dept of Mechanical & Industrial Engineering The University of Iowa i.e., 1 1 1 Minimize X X X subject to XX 4 X 1 0.5X 1 Minimize X X X X 1X X s.t. 4 1 1 1 1 4X X 1 1 1 1 0.5X X X 1 1

More information

Generic Branch-Price-and-Cut

Generic Branch-Price-and-Cut Generic Branch-Price-and-Cut A Status Report Column Generation Bromont June 12, 2012 can you spot the difference? T-Shirts Status Quo: On the Positive Side many exciting developments in branch-and-price

More information

Using Interior-Point Methods within Mixed-Integer Nonlinear Programming

Using Interior-Point Methods within Mixed-Integer Nonlinear Programming Using Interior-Point Methods within Mixed-Integer Nonlinear Programming. Hande Y. Benson Drexel University IMA - MINLP - p. 1/34 Motivation: Discrete Variables Motivation: Discrete Variables Interior-Point

More information

Part 4. Decomposition Algorithms

Part 4. Decomposition Algorithms In the name of God Part 4. 4.4. Column Generation for the Constrained Shortest Path Problem Spring 2010 Instructor: Dr. Masoud Yaghini Constrained Shortest Path Problem Constrained Shortest Path Problem

More information

Stochastic Integer Programming

Stochastic Integer Programming IE 495 Lecture 20 Stochastic Integer Programming Prof. Jeff Linderoth April 14, 2003 April 14, 2002 Stochastic Programming Lecture 20 Slide 1 Outline Stochastic Integer Programming Integer LShaped Method

More information

minimize x subject to (x 2)(x 4) u,

minimize x subject to (x 2)(x 4) u, Math 6366/6367: Optimization and Variational Methods Sample Preliminary Exam Questions 1. Suppose that f : [, L] R is a C 2 -function with f () on (, L) and that you have explicit formulae for

More information

A Branch-and-Cut-and-Price Algorithm for One-Dimensional Stock Cutting and Two-Dimensional Two-Stage Cutting

A Branch-and-Cut-and-Price Algorithm for One-Dimensional Stock Cutting and Two-Dimensional Two-Stage Cutting A Branch-and-Cut-and-Price Algorithm for One-Dimensional Stock Cutting and Two-Dimensional Two-Stage Cutting G. Belov,1 G. Scheithauer University of Dresden, Institute of Numerical Mathematics, Mommsenstr.

More information

The Modified Integer Round-Up Property of the One-Dimensional Cutting Stock Problem

The Modified Integer Round-Up Property of the One-Dimensional Cutting Stock Problem EJOR 84 (1995) 562 571 The Modified Integer Round-Up Property of the One-Dimensional Cutting Stock Problem Guntram Scheithauer and Johannes Terno Institute of Numerical Mathematics, Dresden University

More information

Solving LP and MIP Models with Piecewise Linear Objective Functions

Solving LP and MIP Models with Piecewise Linear Objective Functions Solving LP and MIP Models with Piecewise Linear Obective Functions Zonghao Gu Gurobi Optimization Inc. Columbus, July 23, 2014 Overview } Introduction } Piecewise linear (PWL) function Convex and convex

More information

Decomposition-based Methods for Large-scale Discrete Optimization p.1

Decomposition-based Methods for Large-scale Discrete Optimization p.1 Decomposition-based Methods for Large-scale Discrete Optimization Matthew V Galati Ted K Ralphs Department of Industrial and Systems Engineering Lehigh University, Bethlehem, PA, USA Départment de Mathématiques

More information

CO759: Algorithmic Game Theory Spring 2015

CO759: Algorithmic Game Theory Spring 2015 CO759: Algorithmic Game Theory Spring 2015 Instructor: Chaitanya Swamy Assignment 1 Due: By Jun 25, 2015 You may use anything proved in class directly. I will maintain a FAQ about the assignment on the

More information

Bilevel Integer Optimization: Theory and Algorithms

Bilevel Integer Optimization: Theory and Algorithms : Theory and Algorithms Ted Ralphs 1 Joint work with Sahar Tahernajad 1, Scott DeNegre 3, Menal Güzelsoy 2, Anahita Hassanzadeh 4 1 COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University

More information

Decomposition and Reformulation in Integer Programming

Decomposition and Reformulation in Integer Programming and Reformulation in Integer Programming Laurence A. WOLSEY 7/1/2008 / Aussois and Reformulation in Integer Programming Outline 1 Resource 2 and Reformulation in Integer Programming Outline Resource 1

More information

Integer Linear Programming

Integer Linear Programming Integer Linear Programming Solution : cutting planes and Branch and Bound Hugues Talbot Laboratoire CVN April 13, 2018 IP Resolution Gomory s cutting planes Solution branch-and-bound General method Resolution

More information

Integer Programming ISE 418. Lecture 16. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 16. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 16 Dr. Ted Ralphs ISE 418 Lecture 16 1 Reading for This Lecture Wolsey, Chapters 10 and 11 Nemhauser and Wolsey Sections II.3.1, II.3.6, II.3.7, II.5.4 CCZ Chapter 8

More information