Lecture 23 Branch-and-Bound Algorithm. November 3, 2009

Size: px
Start display at page:

Download "Lecture 23 Branch-and-Bound Algorithm. November 3, 2009"

Transcription

1 Branch-and-Bound Algorithm November 3, 2009

2 Outline Lecture 23 Modeling aspect: Either-Or requirement Special ILPs: Totally unimodular matrices Branch-and-Bound Algorithm Underlying idea Terminology Formal description Algorithm demonstrated on an example Operations Research Methods 1

3 Either-Or Requirement Modeling Suppose you have two constrains and you can choose only one of them. For example, the constraints may represent two alternative resource consumption relations. Specifically suppose a company wants to introduce two new products 1 and 2, which can be made on two different machines. The machine production times are given by 3x 1 + 2x machine 1 x 1 + 4x machine 2 The company needs to purchase a machine and can afford to buy only one Operations Research Methods 2

4 machine. Thus, the requirement in the problem is either 3x 1 + 2x or x 1 + 4x How can we model this requirement within ILP setting? Operations Research Methods 3

5 One possibility: Lecture 23 Introduce a binary variable y {0, 1} for a decision of selecting machine: y = { 1 if we choose machine 1 0 otherwise Let M > 0 be very large number (e.g., M = 1000) We can model the either-or selection of machines as follows 3x 1 + 2x M(1 y) machine 1 x 1 + 4x My machine 2 A similar idea can be used for selection of k out of m constraints, where k and m are given positive integers with k < m Operations Research Methods 4

6 Solving ILPs Some of the ILPs have a special structure that allows us to ignore integer constraints and solve them as LPs and still obtain integer solutions Such a class of ILP problems is rather small; one such problem that we have seen is Transportation problem with integer supplies and demands Most of the ILP problems do not have the special structure These are solved using Branch-and-Bound (BB) algorithm Operations Research Methods 5

7 Transportation Problem: MG Auto model Denver Miami Supply Los Angeles Detroit New Orleans Demand minimize 80x x x x x x 33 subject to x 11 + x 12 = 1000 LA x 21 + x 22 = 1500 Detroit x 31 + x 32 = 1200 NewOrleans x 11 + x 21 + x 31 = 2300 Denver x 12 + x 22 + x 32 = 1400 Miami x ij 0 for all i, j Operations Research Methods 6

8 Let A be the matrix that captures the linearly independent constraints (the last row is linearly dependent on the first four rows) Ax = b represents the first four constraints What makes the transportation model special is the structure of the matrix A corresponding to the independent equality constraints Ax = b. A = The matrix is totally unimodular. DEF. A matrix A is totally unimodular if every square nonsingular submatrix has determinant +1 or -1. A square matrix is nonsingular if it is invertible. Operations Research Methods 7

9 A condition for an m n matrix A to be totally unimodular is: The matrix A is totally unimodular if it has the following properties (a) Every column of A contains at most two non-zero entries (b) Every entry in A is 0, +1, or -1 (c) The rows of A can be partitioned into two disjoint index sets B and C, such that (1) If two non-zero entries in a column of A have the same sign, then the row of one is in B, and the other is in C; (2) If two non-zero entries in a column of A have opposite signs, then the rows of both are in B, or both in C. A = Operations Research Methods 8

10 For our matrix A, we can see that the conditions are satisfied with B = {1, 2, 3} and C = {4}. Not all ILP problems are with such a nice stricture. To solve the general ILPs, we need a special algorithm that can deal with the integer nature of the variables. Operations Research Methods 9

11 Branch-and-Bound Algorithm Operations Research Methods 10

12 Suppose we are facing the problem maximize 9x 1 + 5x 2 + 6x 3 + 4x 4 subject to 6x 1 + 3x 2 + 5x 3 + 2x 4 10 x 3 + x 4 1 x 1 + x 3 0 x 2 + x 4 0 x j {0, 1} j = 1,..., 4 There are 2 4 possibilities for the variables x j. We can enumerate them all and find the best decision. Operations Research Methods 11

13 One way to represent these options is through the use of a binary tree The places where the decision tree branches are referred as nodes. The nodes at the end of the branching tree are referred as leaf-nodes Our feasible points are at the leaf-nodes of this decision tree. We could build the whole tree and then explore the objective value at leaf-nodes But, this is not efficient. Branch-and-Bound (BB) algorithm is an efficient approach that builds the tree as needed and searches the nodes of the tree efficiently. Operations Research Methods 12

14 BB is an iterative algorithm that at each iteration branches the tree and possibly prunes the tree until the solution if found. Each node in a tree corresponds to a subproblem of the original problem. Each iteration involves the following operations: (a) Branching - deciding on from which node to branch among the active nodes in the tree (b) Bounding - operation that is performed at each created node to decide on which nodes to be fathomed (pruning the branches), It amounts to solving the corresponding subproblem at each node. (c) Fathoming - in essence pruning the tree. Based on some test and the bound values at the active nodes, the algorithm decides on nodes that can be discarded. This step also includes a termination criterion. Operations Research Methods 13

15 Initialization The initial node in the tree corresponds to solving the LP relaxation of the given problem LP relaxation is the problem resulting from the given ILP when we ignore integer constraints of the variables This node is active and it is the most recent. Operations Research Methods 14

16 Typical Iteration for MAXIMIZATION (a) Branching. Among the most recently created nodes that are active select one (braking ties according to the largest bound). Branch from that node by fixing one of the relaxed variables to 0 and 1 (in the node subproblem) (b) Bounding. At each new node, solve the corresponding LP problem and determine the optimal LP value. Round the non-integer value down (to the nearest integer). This is the bound of the subproblem at the node. (c) Fathoming. For each new node (subproblem) apply the following three tests: (1) Integer solution. If one of the new nodes has integer solution, its bound is compared to the bounds of other such nodes. If it does not have the best value - it is fathomed. If it has the best value it is fathomed and it is our current best solution (incumbent). (2) Bound value. If any of the new nodes has a bound smaller than currently the best bound - fathom the node. (3) Infeasibility. If LP at any of the new nodes has no solution (not feasible) - fathom the node. Operations Research Methods 15

17 Termination Stop when there are no more subproblems (no branching). The node with the best value provides the solution. Otherwise perform a new iteration. Operations Research Methods 16

18 Application BB algorithm to solve the following ILP: maximize 9x 1 + 5x 2 + 6x 3 + 4x 4 subject to 6x 1 + 3x 2 + 5x 3 + 2x 4 10 x 3 + x 4 1 x 1 + x 3 0 x 2 + x 4 0 x j {0, 1} j = 1,..., 4 Operations Research Methods 17

19 Initialization At the initial node, we would solve its LP relaxation maximize 9x 1 + 5x 2 + 6x 3 + 4x 4 subject to 6x 1 + 3x 2 + 5x 3 + 2x 4 10 x 3 + x 4 1 x 1 + x 3 0 x 2 + x x j 1 j = 1,..., 4 Using LP algorithm, we find the optimal value (5/6, 1, 0, 1) and the optimal value z = If the solution and the optimal value were integers, we would stop. Since it is not, this value gives us 16 as the best lower bound on the optimal value of the ILP (blb = 16). Operations Research Methods 18

20 The initialization and moving to the first iteration Operations Research Methods 19

21 Iteration 1: We branch from the LP relaxation (ALL node) into two new nodes corresponding to x 1 = 1 and x 1 = 0. At node x 1 = 1 we solve the following LP maximize 9 + 5x 2 + 6x 3 + 4x 4 subject to 3x 2 + 5x 3 + 2x 4 4 x 3 + x 4 1 x 3 1 x 2 + x x j 1 j = 2,..., 4 Operations Research Methods 20

22 At node x 1 = 0 we solve the following LP maximize 5x 2 + 6x 3 + 4x 4 subject to 3x 2 + 5x 3 + 2x 4 10 x 3 + x 4 1 x 3 0 x 2 + x x j 1 j = 2,..., 4 Node to the right is incumbent and fathomed (no branching there ever). Node to the left is the only active node and most recent. Operations Research Methods 21

23 Iteration 2: We branch from the node x 1 = 1 going to nodes x 2 = 1 and x 2 = 0. At node x 2 = 1 (also we have x 1 = 1), we solve the following LP maximize x 3 + 4x 4 subject to 5x 3 + 2x 4 1 x 3 + x 4 1 x 3 1 x x j 1 j = 3, 4 The solution is (1, 1, 0, 1/2) and the optimal value is 16. Operations Research Methods 22

24 At node x 2 = 0 (and x 1 = 1) we solve the following LP maximize 9 + 6x 3 + 4x 4 subject to 5x 3 + 2x 4 4 x 3 + x 4 1 x 3 1 x x j 1 j = 3, 4 The solution is (1, 0, 4/5, 0) and the optimal value is We round this value down to 13. Operations Research Methods 23

25 The node to the right is fathomed since its value 13 is less than currently the best bound 16 Operations Research Methods 24

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini In the name of God Network Flows 6. Lagrangian Relaxation 6.3 Lagrangian Relaxation and Integer Programming Fall 2010 Instructor: Dr. Masoud Yaghini Integer Programming Outline Branch-and-Bound Technique

More information

AM 121: Intro to Optimization! Models and Methods! Fall 2018!

AM 121: Intro to Optimization! Models and Methods! Fall 2018! AM 121: Intro to Optimization Models and Methods Fall 2018 Lecture 13: Branch and Bound (I) Yiling Chen SEAS Example: max 5x 1 + 8x 2 s.t. x 1 + x 2 6 5x 1 + 9x 2 45 x 1, x 2 0, integer 1 x 2 6 5 x 1 +x

More information

Decision Procedures An Algorithmic Point of View

Decision Procedures An Algorithmic Point of View An Algorithmic Point of View ILP References: Integer Programming / Laurence Wolsey Deciding ILPs with Branch & Bound Intro. To mathematical programming / Hillier, Lieberman Daniel Kroening and Ofer Strichman

More information

Lecture 14 Transportation Algorithm. October 9, 2009

Lecture 14 Transportation Algorithm. October 9, 2009 Transportation Algorithm October 9, 2009 Outline Lecture 14 Revisit the transportation problem Simplex algorithm for the balanced problem Basic feasible solutions Selection of the initial basic feasible

More information

Gestion de la production. Book: Linear Programming, Vasek Chvatal, McGill University, W.H. Freeman and Company, New York, USA

Gestion de la production. Book: Linear Programming, Vasek Chvatal, McGill University, W.H. Freeman and Company, New York, USA Gestion de la production Book: Linear Programming, Vasek Chvatal, McGill University, W.H. Freeman and Company, New York, USA 1 Contents 1 Integer Linear Programming 3 1.1 Definitions and notations......................................

More information

is called an integer programming (IP) problem. model is called a mixed integer programming (MIP)

is called an integer programming (IP) problem. model is called a mixed integer programming (MIP) INTEGER PROGRAMMING Integer Programming g In many problems the decision variables must have integer values. Example: assign people, machines, and vehicles to activities in integer quantities. If this is

More information

Math Models of OR: Branch-and-Bound

Math Models of OR: Branch-and-Bound Math Models of OR: Branch-and-Bound John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA November 2018 Mitchell Branch-and-Bound 1 / 15 Branch-and-Bound Outline 1 Branch-and-Bound

More information

Introduction to Integer Linear Programming

Introduction to Integer Linear Programming Lecture 7/12/2006 p. 1/30 Introduction to Integer Linear Programming Leo Liberti, Ruslan Sadykov LIX, École Polytechnique liberti@lix.polytechnique.fr sadykov@lix.polytechnique.fr Lecture 7/12/2006 p.

More information

Introduction to Integer Programming

Introduction to Integer Programming Lecture 3/3/2006 p. /27 Introduction to Integer Programming Leo Liberti LIX, École Polytechnique liberti@lix.polytechnique.fr Lecture 3/3/2006 p. 2/27 Contents IP formulations and examples Total unimodularity

More information

Integer Programming. Wolfram Wiesemann. December 6, 2007

Integer Programming. Wolfram Wiesemann. December 6, 2007 Integer Programming Wolfram Wiesemann December 6, 2007 Contents of this Lecture Revision: Mixed Integer Programming Problems Branch & Bound Algorithms: The Big Picture Solving MIP s: Complete Enumeration

More information

Integer programming: an introduction. Alessandro Astolfi

Integer programming: an introduction. Alessandro Astolfi Integer programming: an introduction Alessandro Astolfi Outline Introduction Examples Methods for solving ILP Optimization on graphs LP problems with integer solutions Summary Introduction Integer programming

More information

Linear and Integer Programming - ideas

Linear and Integer Programming - ideas Linear and Integer Programming - ideas Paweł Zieliński Institute of Mathematics and Computer Science, Wrocław University of Technology, Poland http://www.im.pwr.wroc.pl/ pziel/ Toulouse, France 2012 Literature

More information

where X is the feasible region, i.e., the set of the feasible solutions.

where X is the feasible region, i.e., the set of the feasible solutions. 3.5 Branch and Bound Consider a generic Discrete Optimization problem (P) z = max{c(x) : x X }, where X is the feasible region, i.e., the set of the feasible solutions. Branch and Bound is a general semi-enumerative

More information

Lecture 22 Integer Linear Programming Prototype Examples. November 2, 2009

Lecture 22 Integer Linear Programming Prototype Examples. November 2, 2009 Integer Linear Programming Prototype Examples November 2, 2009 Outline Lecture 22 Examples of ILP problems - modeling aspect Chapter 9.1 of the book Operations Research Methods 1 Example: Project Selection

More information

Section Notes 9. Midterm 2 Review. Applied Math / Engineering Sciences 121. Week of December 3, 2018

Section Notes 9. Midterm 2 Review. Applied Math / Engineering Sciences 121. Week of December 3, 2018 Section Notes 9 Midterm 2 Review Applied Math / Engineering Sciences 121 Week of December 3, 2018 The following list of topics is an overview of the material that was covered in the lectures and sections

More information

Operations Research Lecture 6: Integer Programming

Operations Research Lecture 6: Integer Programming Operations Research Lecture 6: Integer Programming Notes taken by Kaiquan Xu@Business School, Nanjing University May 12th 2016 1 Integer programming (IP) formulations The integer programming (IP) is the

More information

INTEGER PROGRAMMING. In many problems the decision variables must have integer values.

INTEGER PROGRAMMING. In many problems the decision variables must have integer values. INTEGER PROGRAMMING Integer Programming In many problems the decision variables must have integer values. Example:assign people, machines, and vehicles to activities in integer quantities. If this is the

More information

Integer and Combinatorial Optimization: Introduction

Integer and Combinatorial Optimization: Introduction Integer and Combinatorial Optimization: Introduction John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA November 2018 Mitchell Introduction 1 / 18 Integer and Combinatorial Optimization

More information

SOLVING INTEGER LINEAR PROGRAMS. 1. Solving the LP relaxation. 2. How to deal with fractional solutions?

SOLVING INTEGER LINEAR PROGRAMS. 1. Solving the LP relaxation. 2. How to deal with fractional solutions? SOLVING INTEGER LINEAR PROGRAMS 1. Solving the LP relaxation. 2. How to deal with fractional solutions? Integer Linear Program: Example max x 1 2x 2 0.5x 3 0.2x 4 x 5 +0.6x 6 s.t. x 1 +2x 2 1 x 1 + x 2

More information

Integer Programming and Branch and Bound

Integer Programming and Branch and Bound Courtesy of Sommer Gentry. Used with permission. Integer Programming and Branch and Bound Sommer Gentry November 4 th, 003 Adapted from slides by Eric Feron and Brian Williams, 6.40, 00. Integer Programming

More information

5 Integer Linear Programming (ILP) E. Amaldi Foundations of Operations Research Politecnico di Milano 1

5 Integer Linear Programming (ILP) E. Amaldi Foundations of Operations Research Politecnico di Milano 1 5 Integer Linear Programming (ILP) E. Amaldi Foundations of Operations Research Politecnico di Milano 1 Definition: An Integer Linear Programming problem is an optimization problem of the form (ILP) min

More information

Linear integer programming and its application

Linear integer programming and its application Linear integer programming and its application Presented by Dr. Sasthi C. Ghosh Associate Professor Advanced Computing & Microelectronics Unit Indian Statistical Institute Kolkata, India Outline Introduction

More information

to work with) can be solved by solving their LP relaxations with the Simplex method I Cutting plane algorithms, e.g., Gomory s fractional cutting

to work with) can be solved by solving their LP relaxations with the Simplex method I Cutting plane algorithms, e.g., Gomory s fractional cutting Summary so far z =max{c T x : Ax apple b, x 2 Z n +} I Modeling with IP (and MIP, and BIP) problems I Formulation for a discrete set that is a feasible region of an IP I Alternative formulations for the

More information

maxz = 3x 1 +4x 2 2x 1 +x 2 6 2x 1 +3x 2 9 x 1,x 2

maxz = 3x 1 +4x 2 2x 1 +x 2 6 2x 1 +3x 2 9 x 1,x 2 ex-5.-5. Foundations of Operations Research Prof. E. Amaldi 5. Branch-and-Bound Given the integer linear program maxz = x +x x +x 6 x +x 9 x,x integer solve it via the Branch-and-Bound method (solving

More information

Integer Linear Programming (ILP)

Integer Linear Programming (ILP) Integer Linear Programming (ILP) Zdeněk Hanzálek, Přemysl Šůcha hanzalek@fel.cvut.cz CTU in Prague March 8, 2017 Z. Hanzálek (CTU) Integer Linear Programming (ILP) March 8, 2017 1 / 43 Table of contents

More information

Introduction to Mathematical Programming IE406. Lecture 21. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 21. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 21 Dr. Ted Ralphs IE406 Lecture 21 1 Reading for This Lecture Bertsimas Sections 10.2, 10.3, 11.1, 11.2 IE406 Lecture 21 2 Branch and Bound Branch

More information

Travelling Salesman Problem

Travelling Salesman Problem Travelling Salesman Problem Fabio Furini November 10th, 2014 Travelling Salesman Problem 1 Outline 1 Traveling Salesman Problem Separation Travelling Salesman Problem 2 (Asymmetric) Traveling Salesman

More information

Section #2: Linear and Integer Programming

Section #2: Linear and Integer Programming Section #2: Linear and Integer Programming Prof. Dr. Sven Seuken 8.3.2012 (with most slides borrowed from David Parkes) Housekeeping Game Theory homework submitted? HW-00 and HW-01 returned Feedback on

More information

3.3 Easy ILP problems and totally unimodular matrices

3.3 Easy ILP problems and totally unimodular matrices 3.3 Easy ILP problems and totally unimodular matrices Consider a generic ILP problem expressed in standard form where A Z m n with n m, and b Z m. min{c t x : Ax = b, x Z n +} (1) P(b) = {x R n : Ax =

More information

The CPLEX Library: Mixed Integer Programming

The CPLEX Library: Mixed Integer Programming The CPLEX Library: Mixed Programming Ed Rothberg, ILOG, Inc. 1 The Diet Problem Revisited Nutritional values Bob considered the following foods: Food Serving Size Energy (kcal) Protein (g) Calcium (mg)

More information

Integer Programming Part II

Integer Programming Part II Be the first in your neighborhood to master this delightful little algorithm. Integer Programming Part II The Branch and Bound Algorithm learn about fathoming, bounding, branching, pruning, and much more!

More information

Integer Programming. The focus of this chapter is on solution techniques for integer programming models.

Integer Programming. The focus of this chapter is on solution techniques for integer programming models. Integer Programming Introduction The general linear programming model depends on the assumption of divisibility. In other words, the decision variables are allowed to take non-negative integer as well

More information

Part 4. Decomposition Algorithms

Part 4. Decomposition Algorithms In the name of God Part 4. 4.4. Column Generation for the Constrained Shortest Path Problem Spring 2010 Instructor: Dr. Masoud Yaghini Constrained Shortest Path Problem Constrained Shortest Path Problem

More information

Improving Branch-And-Price Algorithms For Solving One Dimensional Cutting Stock Problem

Improving Branch-And-Price Algorithms For Solving One Dimensional Cutting Stock Problem Improving Branch-And-Price Algorithms For Solving One Dimensional Cutting Stock Problem M. Tech. Dissertation Submitted in partial fulfillment of the requirements for the degree of Master of Technology

More information

Disconnecting Networks via Node Deletions

Disconnecting Networks via Node Deletions 1 / 27 Disconnecting Networks via Node Deletions Exact Interdiction Models and Algorithms Siqian Shen 1 J. Cole Smith 2 R. Goli 2 1 IOE, University of Michigan 2 ISE, University of Florida 2012 INFORMS

More information

IS703: Decision Support and Optimization. Week 5: Mathematical Programming. Lau Hoong Chuin School of Information Systems

IS703: Decision Support and Optimization. Week 5: Mathematical Programming. Lau Hoong Chuin School of Information Systems IS703: Decision Support and Optimization Week 5: Mathematical Programming Lau Hoong Chuin School of Information Systems 1 Mathematical Programming - Scope Linear Programming Integer Programming Network

More information

min3x 1 + 4x 2 + 5x 3 2x 1 + 2x 2 + x 3 6 x 1 + 2x 2 + 3x 3 5 x 1, x 2, x 3 0.

min3x 1 + 4x 2 + 5x 3 2x 1 + 2x 2 + x 3 6 x 1 + 2x 2 + 3x 3 5 x 1, x 2, x 3 0. ex-.-. Foundations of Operations Research Prof. E. Amaldi. Dual simplex algorithm Given the linear program minx + x + x x + x + x 6 x + x + x x, x, x. solve it via the dual simplex algorithm. Describe

More information

Relation of Pure Minimum Cost Flow Model to Linear Programming

Relation of Pure Minimum Cost Flow Model to Linear Programming Appendix A Page 1 Relation of Pure Minimum Cost Flow Model to Linear Programming The Network Model The network pure minimum cost flow model has m nodes. The external flows given by the vector b with m

More information

Integer Linear Programming Modeling

Integer Linear Programming Modeling DM554/DM545 Linear and Lecture 9 Integer Linear Programming Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. Assignment Problem Knapsack Problem

More information

Technische Universität München, Zentrum Mathematik Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik. Combinatorial Optimization (MA 4502)

Technische Universität München, Zentrum Mathematik Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik. Combinatorial Optimization (MA 4502) Technische Universität München, Zentrum Mathematik Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik Combinatorial Optimization (MA 4502) Dr. Michael Ritter Problem Sheet 1 Homework Problems Exercise

More information

3.10 Column generation method

3.10 Column generation method 3.10 Column generation method Many relevant decision-making (discrete optimization) problems can be formulated as ILP problems with a very large (exponential) number of variables. Examples: cutting stock,

More information

AM 121: Intro to Optimization Models and Methods

AM 121: Intro to Optimization Models and Methods AM 121: Intro to Optimization Models and Methods Fall 2017 Lecture 2: Intro to LP, Linear algebra review. Yiling Chen SEAS Lecture 2: Lesson Plan What is an LP? Graphical and algebraic correspondence Problems

More information

1 The linear algebra of linear programs (March 15 and 22, 2015)

1 The linear algebra of linear programs (March 15 and 22, 2015) 1 The linear algebra of linear programs (March 15 and 22, 2015) Many optimization problems can be formulated as linear programs. The main features of a linear program are the following: Variables are real

More information

Linear Programming. Scheduling problems

Linear Programming. Scheduling problems Linear Programming Scheduling problems Linear programming (LP) ( )., 1, for 0 min 1 1 1 1 1 11 1 1 n i x b x a x a b x a x a x c x c x z i m n mn m n n n n! = + + + + + + = Extreme points x ={x 1,,x n

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 8 Discrete optimization: theory and algorithms

MVE165/MMG631 Linear and integer optimization with applications Lecture 8 Discrete optimization: theory and algorithms MVE165/MMG631 Linear and integer optimization with applications Lecture 8 Discrete optimization: theory and algorithms Ann-Brith Strömberg 2017 04 07 Lecture 8 Linear and integer optimization with applications

More information

Week Cuts, Branch & Bound, and Lagrangean Relaxation

Week Cuts, Branch & Bound, and Lagrangean Relaxation Week 11 1 Integer Linear Programming This week we will discuss solution methods for solving integer linear programming problems. I will skip the part on complexity theory, Section 11.8, although this is

More information

Overview of course. Introduction to Optimization, DIKU Monday 12 November David Pisinger

Overview of course. Introduction to Optimization, DIKU Monday 12 November David Pisinger Introduction to Optimization, DIKU 007-08 Monday November David Pisinger Lecture What is OR, linear models, standard form, slack form, simplex repetition, graphical interpretation, extreme points, basic

More information

3.10 Column generation method

3.10 Column generation method 3.10 Column generation method Many relevant decision-making problems can be formulated as ILP problems with a very large (exponential) number of variables. Examples: cutting stock, crew scheduling, vehicle

More information

Integer Programming ISE 418. Lecture 8. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 8. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 8 Dr. Ted Ralphs ISE 418 Lecture 8 1 Reading for This Lecture Wolsey Chapter 2 Nemhauser and Wolsey Sections II.3.1, II.3.6, II.4.1, II.4.2, II.5.4 Duality for Mixed-Integer

More information

Discrete Optimization 2010 Lecture 7 Introduction to Integer Programming

Discrete Optimization 2010 Lecture 7 Introduction to Integer Programming Discrete Optimization 2010 Lecture 7 Introduction to Integer Programming Marc Uetz University of Twente m.uetz@utwente.nl Lecture 8: sheet 1 / 32 Marc Uetz Discrete Optimization Outline 1 Intro: The Matching

More information

Section Notes 9. IP: Cutting Planes. Applied Math 121. Week of April 12, 2010

Section Notes 9. IP: Cutting Planes. Applied Math 121. Week of April 12, 2010 Section Notes 9 IP: Cutting Planes Applied Math 121 Week of April 12, 2010 Goals for the week understand what a strong formulations is. be familiar with the cutting planes algorithm and the types of cuts

More information

Recoverable Robustness in Scheduling Problems

Recoverable Robustness in Scheduling Problems Master Thesis Computing Science Recoverable Robustness in Scheduling Problems Author: J.M.J. Stoef (3470997) J.M.J.Stoef@uu.nl Supervisors: dr. J.A. Hoogeveen J.A.Hoogeveen@uu.nl dr. ir. J.M. van den Akker

More information

Hands-on Tutorial on Optimization F. Eberle, R. Hoeksma, and N. Megow September 26, Branch & Bound

Hands-on Tutorial on Optimization F. Eberle, R. Hoeksma, and N. Megow September 26, Branch & Bound Hands-on Tutorial on Optimization F. Eberle, R. Hoeksma, and N. Megow September 6, 8 Branh & Bound Branh & Bound: A General Framework for ILPs Introdued in the 96 s by Land and Doig Based on two priniple

More information

Introduction to integer programming II

Introduction to integer programming II Introduction to integer programming II Martin Branda Charles University in Prague Faculty of Mathematics and Physics Department of Probability and Mathematical Statistics Computational Aspects of Optimization

More information

Zebo Peng Embedded Systems Laboratory IDA, Linköping University

Zebo Peng Embedded Systems Laboratory IDA, Linköping University TDTS 01 Lecture 8 Optimization Heuristics for Synthesis Zebo Peng Embedded Systems Laboratory IDA, Linköping University Lecture 8 Optimization problems Heuristic techniques Simulated annealing Genetic

More information

Linear Programming Duality

Linear Programming Duality Summer 2011 Optimization I Lecture 8 1 Duality recap Linear Programming Duality We motivated the dual of a linear program by thinking about the best possible lower bound on the optimal value we can achieve

More information

MVE165/MMG630, Applied Optimization Lecture 6 Integer linear programming: models and applications; complexity. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 6 Integer linear programming: models and applications; complexity. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming: models and applications; complexity Ann-Brith Strömberg 2011 04 01 Modelling with integer variables (Ch. 13.1) Variables Linear programming (LP) uses continuous

More information

Linear Programming, Lecture 4

Linear Programming, Lecture 4 Linear Programming, Lecture 4 Corbett Redden October 3, 2016 Simplex Form Conventions Examples Simplex Method To run the simplex method, we start from a Linear Program (LP) in the following standard simplex

More information

4/12/2011. Chapter 8. NP and Computational Intractability. Directed Hamiltonian Cycle. Traveling Salesman Problem. Directed Hamiltonian Cycle

4/12/2011. Chapter 8. NP and Computational Intractability. Directed Hamiltonian Cycle. Traveling Salesman Problem. Directed Hamiltonian Cycle Directed Hamiltonian Cycle Chapter 8 NP and Computational Intractability Claim. G has a Hamiltonian cycle iff G' does. Pf. Suppose G has a directed Hamiltonian cycle Γ. Then G' has an undirected Hamiltonian

More information

Discrete (and Continuous) Optimization WI4 131

Discrete (and Continuous) Optimization WI4 131 Discrete (and Continuous) Optimization WI4 131 Kees Roos Technische Universiteit Delft Faculteit Electrotechniek, Wiskunde en Informatica Afdeling Informatie, Systemen en Algoritmiek e-mail: C.Roos@ewi.tudelft.nl

More information

Advanced linear programming

Advanced linear programming Advanced linear programming http://www.staff.science.uu.nl/~akker103/alp/ Chapter 10: Integer linear programming models Marjan van den Akker 1 Intro. Marjan van den Akker Master Mathematics TU/e PhD Mathematics

More information

Column Generation. MTech Seminar Report. Soumitra Pal Roll No: under the guidance of

Column Generation. MTech Seminar Report. Soumitra Pal Roll No: under the guidance of Column Generation MTech Seminar Report by Soumitra Pal Roll No: 05305015 under the guidance of Prof. A. G. Ranade Computer Science and Engineering IIT-Bombay a Department of Computer Science and Engineering

More information

Column Generation. i = 1,, 255;

Column Generation. i = 1,, 255; Column Generation The idea of the column generation can be motivated by the trim-loss problem: We receive an order to cut 50 pieces of.5-meter (pipe) segments, 250 pieces of 2-meter segments, and 200 pieces

More information

Learning to Branch. Ellen Vitercik. Joint work with Nina Balcan, Travis Dick, and Tuomas Sandholm. Published in ICML 2018

Learning to Branch. Ellen Vitercik. Joint work with Nina Balcan, Travis Dick, and Tuomas Sandholm. Published in ICML 2018 Learning to Branch Ellen Vitercik Joint work with Nina Balcan, Travis Dick, and Tuomas Sandholm Published in ICML 2018 1 Integer Programs (IPs) a maximize subject to c x Ax b x {0,1} n 2 Facility location

More information

IE418 Integer Programming

IE418 Integer Programming IE418: Integer Programming Department of Industrial and Systems Engineering Lehigh University 2nd February 2005 Boring Stuff Extra Linux Class: 8AM 11AM, Wednesday February 9. Room??? Accounts and Passwords

More information

Section Notes 8. Integer Programming II. Applied Math 121. Week of April 5, expand your knowledge of big M s and logical constraints.

Section Notes 8. Integer Programming II. Applied Math 121. Week of April 5, expand your knowledge of big M s and logical constraints. Section Notes 8 Integer Programming II Applied Math 121 Week of April 5, 2010 Goals for the week understand IP relaxations be able to determine the relative strength of formulations understand the branch

More information

Discrete Optimization 2010 Lecture 8 Lagrangian Relaxation / P, N P and co-n P

Discrete Optimization 2010 Lecture 8 Lagrangian Relaxation / P, N P and co-n P Discrete Optimization 2010 Lecture 8 Lagrangian Relaxation / P, N P and co-n P Marc Uetz University of Twente m.uetz@utwente.nl Lecture 8: sheet 1 / 32 Marc Uetz Discrete Optimization Outline 1 Lagrangian

More information

Thermal Unit Commitment Problem

Thermal Unit Commitment Problem Thermal Unit Commitment Problem Moshe Potsane, Luyanda Ndlovu, Simphiwe Simelane Christiana Obagbuwa, Jesal Kika, Nadine Padayachi, Luke O. Joel Lady Kokela, Michael Olusanya, Martins Arasomwa, Sunday

More information

On the Tightness of an LP Relaxation for Rational Optimization and its Applications

On the Tightness of an LP Relaxation for Rational Optimization and its Applications OPERATIONS RESEARCH Vol. 00, No. 0, Xxxxx 0000, pp. 000 000 issn 0030-364X eissn 526-5463 00 0000 000 INFORMS doi 0.287/xxxx.0000.0000 c 0000 INFORMS Authors are encouraged to submit new papers to INFORMS

More information

Structured Problems and Algorithms

Structured Problems and Algorithms Integer and quadratic optimization problems Dept. of Engg. and Comp. Sci., Univ. of Cal., Davis Aug. 13, 2010 Table of contents Outline 1 2 3 Benefits of Structured Problems Optimization problems may become

More information

(tree searching technique) (Boolean formulas) satisfying assignment: (X 1, X 2 )

(tree searching technique) (Boolean formulas) satisfying assignment: (X 1, X 2 ) Algorithms Chapter 5: The Tree Searching Strategy - Examples 1 / 11 Chapter 5: The Tree Searching Strategy 1. Ex 5.1Determine the satisfiability of the following Boolean formulas by depth-first search

More information

3.4 Relaxations and bounds

3.4 Relaxations and bounds 3.4 Relaxations and bounds Consider a generic Discrete Optimization problem z = min{c(x) : x X} with an optimal solution x X. In general, the algorithms generate not only a decreasing sequence of upper

More information

Multiobjective Mixed-Integer Stackelberg Games

Multiobjective Mixed-Integer Stackelberg Games Solving the Multiobjective Mixed-Integer SCOTT DENEGRE TED RALPHS ISE Department COR@L Lab Lehigh University tkralphs@lehigh.edu EURO XXI, Reykjavic, Iceland July 3, 2006 Outline Solving the 1 General

More information

Discrete Optimization 23

Discrete Optimization 23 Discrete Optimization 23 2 Total Unimodularity (TU) and Its Applications In this section we will discuss the total unimodularity theory and its applications to flows in networks. 2.1 Total Unimodularity:

More information

23. Cutting planes and branch & bound

23. Cutting planes and branch & bound CS/ECE/ISyE 524 Introduction to Optimization Spring 207 8 23. Cutting planes and branch & bound ˆ Algorithms for solving MIPs ˆ Cutting plane methods ˆ Branch and bound methods Laurent Lessard (www.laurentlessard.com)

More information

16.410/413 Principles of Autonomy and Decision Making

16.410/413 Principles of Autonomy and Decision Making 6.4/43 Principles of Autonomy and Decision Making Lecture 8: (Mixed-Integer) Linear Programming for Vehicle Routing and Motion Planning Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute

More information

Scheduling on Unrelated Parallel Machines. Approximation Algorithms, V. V. Vazirani Book Chapter 17

Scheduling on Unrelated Parallel Machines. Approximation Algorithms, V. V. Vazirani Book Chapter 17 Scheduling on Unrelated Parallel Machines Approximation Algorithms, V. V. Vazirani Book Chapter 17 Nicolas Karakatsanis, 2008 Description of the problem Problem 17.1 (Scheduling on unrelated parallel machines)

More information

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING 1. Lagrangian Relaxation Lecture 12 Single Machine Models, Column Generation 2. Dantzig-Wolfe Decomposition Dantzig-Wolfe Decomposition Delayed Column

More information

1 Column Generation and the Cutting Stock Problem

1 Column Generation and the Cutting Stock Problem 1 Column Generation and the Cutting Stock Problem In the linear programming approach to the traveling salesman problem we used the cutting plane approach. The cutting plane approach is appropriate when

More information

Lectures 6, 7 and part of 8

Lectures 6, 7 and part of 8 Lectures 6, 7 and part of 8 Uriel Feige April 26, May 3, May 10, 2015 1 Linear programming duality 1.1 The diet problem revisited Recall the diet problem from Lecture 1. There are n foods, m nutrients,

More information

Lecture 5 January 16, 2013

Lecture 5 January 16, 2013 UBC CPSC 536N: Sparse Approximations Winter 2013 Prof. Nick Harvey Lecture 5 January 16, 2013 Scribe: Samira Samadi 1 Combinatorial IPs 1.1 Mathematical programs { min c Linear Program (LP): T x s.t. a

More information

Branch-and-Bound. Leo Liberti. LIX, École Polytechnique, France. INF , Lecture p. 1

Branch-and-Bound. Leo Liberti. LIX, École Polytechnique, France. INF , Lecture p. 1 Branch-and-Bound Leo Liberti LIX, École Polytechnique, France INF431 2011, Lecture p. 1 Reminders INF431 2011, Lecture p. 2 Problems Decision problem: a question admitting a YES/NO answer Example HAMILTONIAN

More information

Optimisation and Operations Research

Optimisation and Operations Research Optimisation and Operations Research Lecture 11: Integer Programming Matthew Roughan http://www.maths.adelaide.edu.au/matthew.roughan/ Lecture_notes/OORII/ School of Mathematical

More information

CHAPTER 3: INTEGER PROGRAMMING

CHAPTER 3: INTEGER PROGRAMMING CHAPTER 3: INTEGER PROGRAMMING Overview To this point, we have considered optimization problems with continuous design variables. That is, the design variables can take any value within a continuous feasible

More information

Integer Linear Programming

Integer Linear Programming Integer Linear Programming Solution : cutting planes and Branch and Bound Hugues Talbot Laboratoire CVN April 13, 2018 IP Resolution Gomory s cutting planes Solution branch-and-bound General method Resolution

More information

Stochastic Integer Programming

Stochastic Integer Programming IE 495 Lecture 20 Stochastic Integer Programming Prof. Jeff Linderoth April 14, 2003 April 14, 2002 Stochastic Programming Lecture 20 Slide 1 Outline Stochastic Integer Programming Integer LShaped Method

More information

A primal-simplex based Tardos algorithm

A primal-simplex based Tardos algorithm A primal-simplex based Tardos algorithm Shinji Mizuno a, Noriyoshi Sukegawa a, and Antoine Deza b a Graduate School of Decision Science and Technology, Tokyo Institute of Technology, 2-12-1-W9-58, Oo-Okayama,

More information

Mathematical Programs Linear Program (LP)

Mathematical Programs Linear Program (LP) Mathematical Programs Linear Program (LP) Integer Program (IP) Can be efficiently solved e.g., by Ellipsoid Method Cannot be efficiently solved Cannot be efficiently solved assuming P NP Combinatorial

More information

Highly-scalable branch and bound for maximum monomial agreement

Highly-scalable branch and bound for maximum monomial agreement Highly-scalable branch and bound for maximum monomial agreement Jonathan Eckstein (Rutgers) William Hart Cynthia A. Phillips Sandia National Laboratories Sandia National Laboratories is a multi-program

More information

Large-scale optimization and decomposition methods: outline. Column Generation and Cutting Plane methods: a unified view

Large-scale optimization and decomposition methods: outline. Column Generation and Cutting Plane methods: a unified view Large-scale optimization and decomposition methods: outline I Solution approaches for large-scaled problems: I Delayed column generation I Cutting plane methods (delayed constraint generation) 7 I Problems

More information

TIM 206 Lecture 3: The Simplex Method

TIM 206 Lecture 3: The Simplex Method TIM 206 Lecture 3: The Simplex Method Kevin Ross. Scribe: Shane Brennan (2006) September 29, 2011 1 Basic Feasible Solutions Have equation Ax = b contain more columns (variables) than rows (constraints),

More information

MATHEMATICS FOR COMPUTER VISION WEEK 8 OPTIMISATION PART 2. Dr Fabio Cuzzolin MSc in Computer Vision Oxford Brookes University Year

MATHEMATICS FOR COMPUTER VISION WEEK 8 OPTIMISATION PART 2. Dr Fabio Cuzzolin MSc in Computer Vision Oxford Brookes University Year MATHEMATICS FOR COMPUTER VISION WEEK 8 OPTIMISATION PART 2 1 Dr Fabio Cuzzolin MSc in Computer Vision Oxford Brookes University Year 2013-14 OUTLINE OF WEEK 8 topics: quadratic optimisation, least squares,

More information

Written Exam Linear and Integer Programming (DM545)

Written Exam Linear and Integer Programming (DM545) Written Exam Linear and Integer Programming (DM545) Department of Mathematics and Computer Science University of Southern Denmark Monday, June 22, 2015, 10:00 14:00, Festsalen, Niels Bohr Allé 1 The exam

More information

Optimization Methods in Logic

Optimization Methods in Logic Optimization Methods in Logic John Hooker Carnegie Mellon University February 2003, Revised December 2008 1 Numerical Semantics for Logic Optimization can make at least two contributions to boolean logic.

More information

R u t c o r Research R e p o r t. The Branch and Bound Method

R u t c o r Research R e p o r t. The Branch and Bound Method R u t c o r Research R e p o r t The Branch and Bound Method Béla Vizvári a RRR 26-2010, December 2010 RUTCOR Rutgers Center for Operations Research Rutgers University 640 Bartholomew Road Piscataway,

More information

Representations of All Solutions of Boolean Programming Problems

Representations of All Solutions of Boolean Programming Problems Representations of All Solutions of Boolean Programming Problems Utz-Uwe Haus and Carla Michini Institute for Operations Research Department of Mathematics ETH Zurich Rämistr. 101, 8092 Zürich, Switzerland

More information

15.081J/6.251J Introduction to Mathematical Programming. Lecture 24: Discrete Optimization

15.081J/6.251J Introduction to Mathematical Programming. Lecture 24: Discrete Optimization 15.081J/6.251J Introduction to Mathematical Programming Lecture 24: Discrete Optimization 1 Outline Modeling with integer variables Slide 1 What is a good formulation? Theme: The Power of Formulations

More information

CSC Design and Analysis of Algorithms. LP Shader Electronics Example

CSC Design and Analysis of Algorithms. LP Shader Electronics Example CSC 80- Design and Analysis of Algorithms Lecture (LP) LP Shader Electronics Example The Shader Electronics Company produces two products:.eclipse, a portable touchscreen digital player; it takes hours

More information

Introduction column generation

Introduction column generation Introduction column generation Han Hoogeveen Institute of Information and Computing Sciences University Utrecht The Netherlands May 28, 2018 Contents Shadow prices Reduced cost Column generation Example:

More information

3.7 Cutting plane methods

3.7 Cutting plane methods 3.7 Cutting plane methods Generic ILP problem min{ c t x : x X = {x Z n + : Ax b} } with m n matrix A and n 1 vector b of rationals. According to Meyer s theorem: There exists an ideal formulation: conv(x

More information