Acceleration and Stabilization Techniques for Column Generation

Size: px
Start display at page:

Download "Acceleration and Stabilization Techniques for Column Generation"

Transcription

1 Acceleration and Stabilization Techniques for Column Generation Zhouchun Huang Qipeng Phil Zheng Department of Industrial Engineering & Management Systems University of Central Florida Sep 26, 2014

2 Outline 1 Introduction to Column Generation 2 Motivation 3 Acceleration and Stabilization Techniques Boxstep method Polyhedral penalty du Merle stabilization Bundle method Interior point stabilization 4 Conclusions

3 Outline 1 Introduction to Column Generation 2 Motivation 3 Acceleration and Stabilization Techniques Boxstep method Polyhedral penalty du Merle stabilization Bundle method Interior point stabilization 4 Conclusions

4 Introduction to Column Generation Consider: min cx Ax b x X Dantzig-Wolfe s Decomposition: min Q (cx i )λ i Q (Ax i )λ i b Q λ i = 1 x i, i = 1, 2,..., Q are extreme points of X, which is nonempty and bounded.

5 Introduction to Column Generation With only a subset of columns (EP) included, the D-W reformulation is restricted to RMP: min (cx i )λ i (Ax i )λ i b λ i = 1 The column that is excluded but will enter the basis of master problem is determined by SP or oracle: min (c u k A)x v k x X

6 Column Generation Algorithm Initialize: x 0, UB = +, LB = k 0 1. (λ k ; u k, v k ) optimizer(rmp) 2. ˆx oracle(u k, v k ) 3. if z(sp) 0 λ λ k else x k+1 ˆx; k k + 1 go to 1

7 Successful Applications Cutting stock problems Air crew scheduling Aircraft fleeting and routing Crew rostering Vehicle routing Global shipping Multi-item lot-sizing Optical telecommunications network design Cancer radiation treatment using IMRT

8 Outline 1 Introduction to Column Generation 2 Motivation 3 Acceleration and Stabilization Techniques Boxstep method Polyhedral penalty du Merle stabilization Bundle method Interior point stabilization 4 Conclusions

9 Motivation Why the CG is efficient. D-W decomposition can reformulate a large-scale linear program into a master problem and a set of subproblems to make the problem solvable.. A compact formulation of a MIP may have a weak LP relaxation, while a D-W reformulation with a huge number of variables could give much better LB.. Most variables will be non-basic and only a subset of variables need to be considered. Why the CG is not efficient Multiple dual solutions are associated to each primal solution due to high degeneracy. Dual instability in the behaviror of dual variables are frequent when problems get larger. As a result, oscillations are observed and very slow convergence is often obtained while implementing the CG algorithm.

10 CG seen in the Dual Space Note: The crucial part of CG is choosing dual solutions that drives the algorithm toward convergence. Column Generation Lagrangian Method [RMP] min (cx i )λ i l(u) = ub + min (c ua)x x X (Ax i )λ i b [LD] max ub + v λ i = 1 v (c ua)x i, i = 1, 2,..., Q [SP] min (c u k A)x v k x X [RLD] max ub + v v (c ua)x i, i = 1, 2,..., k UB = z (RMP) LB = z (RMP) + z (SP) UB = z (RLD)= l k (u k ) LB = l(u k )

11 CG seen in the Dual Space l k (u k ) l k+1 (u k+1 ) l(u k ) u k u u k+1

12 Outline 1 Introduction to Column Generation 2 Motivation 3 Acceleration and Stabilization Techniques Boxstep method Polyhedral penalty du Merle stabilization Bundle method Interior point stabilization 4 Conclusions

13 δ u c δ + Acceleration and Stabilization Techniques Boxstep δ u c δ + δ u c δ + Polyhedral penalty u c δ u c δ + u c u c du Merle Stabilization δ Bundle u c δ + u c δ u c δ + δ u c δ + u c

14 Boxstep method Recall: [RLD] max ub + v v (c ua)x i, i = 1, 2,..., k The Boxstep method modeled a local problem which is to maximize the Lagrangian function over a box of [δ, δ + ], so that the distance traveled by the dual variables in the dual space is limited to the box. max ub + v v (c ua)x i, i = 1, 2,..., k δ u δ + min (cx i )λ i δ y + δ +y + (Ax i )λ i y + y + b λ i = 1 Marsten R.E.,Hogan W.W., Blankenship J.W.:The BOXSTEP Method for Large-Scale Optimization. Operations Research, 23, (1975).

15 Boxstep method Trust Regions / Box Step b, 4, 3, 1, 2 small box size: too many steps toward the best dual large box size: weak stabilization, i.e.,hard to get a better dual solution(with better LB) Desrosiers J.,Ben amore H.,Soumis F.,Villeneuve D.:IMA workshop:computational Methods for Large Scale Integer Programs, University of Minnesota, Minneapolis,14-19(2002). Marsten R.E.,Hogan W.W., Blankenship J.W.:The BOXSTEP Method for Large-Scale Optimization. Operations Research, 23, (1975).

16 Polyhedral penalty Polyhedral penalty is applied to linearly penalize the distance between the dual variables and a stability center. Dual max ub + v ε u u c v (c ua)x i, i = 1, 2,..., k max ub + v ε w ε +w + v (c ua)x i, i = 1, 2,..., k u + w u c u w + u c u, w, w + 0 Primal min (cx i )λ i u cy + u cy + (Ax i )λ i y + y + b y ε y + ε + λ i = 1 λ, y, y + 0 Kim S., Chang K.N.,Lee J.Y.:A descent method with linear programming subproblems for nondifferentiable convex optimization. Math. Program.,71(1),17-28(1995).

17 du Merle stabilization du Merle stabilization is a combination of the Boxstep method and polyhedral penalty. Dual Primal max ub + v ε w ε + w + v (c ua)x i, i = 1, 2,..., k (u + w u c ) u + w δ (u w + u c ) u w + δ + u, w, w + 0 min (cx i )λ i δ y + δ + y + (Ax i )λ i y + y + b y ε y + ε + λ i = 1 λ, y, y + 0 du Merle O.,Villeneuve D.,Desrosiers J., Hansen P.: Stabilized column generation. Discrete Math.,194, (1999).

18 du Merle stabilization algorithm Initialize: x 0, δ 0, ε 0 k 0 1. (λ k, y k ; u k, v k ) optimizer(rmp) 2. ˆx oracle(u k, v k ) 3. if z(sp) 0 and y = y + = 0 λ λ k else x k+1 ˆx δ k+1 update δ(k) ε k+1 update ε(k) k k + 1 go to 1 min (cx i )λ i δ y + δ + y + (Ax i )λ i y + y + b y ε y + ε + λ i = 1 λ, y, y + 0

19 Parameters in du Merle stabilization 234 O. du Merle et al./discrete Mathematics 194 (1999) Table 1 Instance of an airline crew pairing problem -- variations on 6 Parameters Main cpu time ratio cpu time (s) (8 _, 6 ) iterations opt ±mizer/oraele Speedup factor (-~, oo) [-50, oe) [0, 100] [50, 100] z (SP) 0 and y = 0 function value. Typically, using stabilized column generation reduces solution time by a factor ranging from 2 to 10. optimal As an example, we used the stabilized algorithm to solve the linear relaxation of a 986-1eg instance for a regional carrier [7]: the number of column generation iterations is reduced by a factor of 3.33 and the ceu time by a factor of On the one hand, decrease ε the strategy for the update-6 procedure is to update the vector parameters (6_,6+) update δ when the column k+1 δ generation k if l(u algorithm k, v stalls, k ) > l(u using the k 1, v following k 1 ) predefined sequence of embedded intervals: [50, 100], [0, 100], [-50, ec) and (-e~,oe). The last interval imposes no restrictions on the dual variables and corresponds to the set partitioning add columns formulation; the first one gives very rough estimates of the dual variables, the objective function value being around On the other hand, the vector parameters e_ and e+ are selected at random in the ranges [9, 11] and [0, 10-4], respectively, and are kept add columns fixed throughout the solution process. The first interval, for selecting e_, allows for overcovering update δthe k+1 flight legs δ k and if simulates l(u k, v k a ) set > covering l(u k 1 formulation,, v k 1 ) while the second interval, for choosing e+, corresponds to a small perturbation. For different starting values of (~ _,6 ) in the above sequence of embedded intervals, Table 1 shows the results obtained on a SUN Ultra SPARC 1300 workstation: the number of iterations, z (SP) 0 and y > 0 z (SP) < 0 and y = 0 (rare to happen) z (SP) < 0 and y > 0

20 Quality of dual solutions The quality of dual is estimated via the computation of a lower bound: l(u k, v k ) = u k b + (c u k A)x k since (u k, (c u k A)x k ) is a feasible solution of the LD: max ub + v v (c ua)x i, i = 1, 2,..., Q

21 Bundle method Bundle method differs from polyhedral penalty methods in that it takes infinitely small penalty ranges and infinitely many break points. max ub + v 1 u uc 2 2t v (c ua)x i, i = 1, 2,..., k u 0 Its Fenchel bidual is formulated as, min (cx i )λ i + u cg + t 2 g 2 (Ax i )λ i + g b λ i = 1 λ, g 0 Briant O. et al.:comparison of bundle and classical column generation. Math.Program.,Ser.A 113, (2008)

22 Interior point stabilization The idea is to generate a dual solution that is in the interior of the convex hull of optimal dual solutions to the master instead of using one of its extreme points. max u(µb) + v v (c ua)x i, i = 1, 2,..., k u 0 µ U(0, 1), i.e. each element of µ is uniformly distributed a set of problems with different µ are solved an interior point is obtained by taking convex combination of optimal solutions the dual of the problem above is, min (cx i )λ i (Ax i )λ i µb λ i = 1 λ 0 Rousseau L.M. et al.:interior point stabilization for column generation. Operations Research Letters 35, (2007)

23 Outline 1 Introduction to Column Generation 2 Motivation 3 Acceleration and Stabilization Techniques Boxstep method Polyhedral penalty du Merle stabilization Bundle method Interior point stabilization 4 Conclusions

24 Conclusions introduction to column generation slow convergence of column generation stabilization techniques

25 The End

Benders Decomposition

Benders Decomposition Benders Decomposition Yuping Huang, Dr. Qipeng Phil Zheng Department of Industrial and Management Systems Engineering West Virginia University IENG 593G Nonlinear Programg, Spring 2012 Yuping Huang (IMSE@WVU)

More information

Stabilization in Column Generation: numerical study

Stabilization in Column Generation: numerical study 1 / 26 Stabilization in Column Generation: numerical study Artur Pessoa 3 Ruslan Sadykov 1,2 Eduardo Uchoa 3 François Vanderbeck 2,1 1 INRIA Bordeaux, France 2 Univ. Bordeaux I, France 3 Universidade Federal

More information

Pedro Munari - COA 2017, February 10th, University of Edinburgh, Scotland, UK 2

Pedro Munari - COA 2017, February 10th, University of Edinburgh, Scotland, UK 2 Pedro Munari [munari@dep.ufscar.br] - COA 2017, February 10th, University of Edinburgh, Scotland, UK 2 Outline Vehicle routing problem; How interior point methods can help; Interior point branch-price-and-cut:

More information

Integer Programming Reformulations: Dantzig-Wolfe & Benders Decomposition the Coluna Software Platform

Integer Programming Reformulations: Dantzig-Wolfe & Benders Decomposition the Coluna Software Platform Integer Programming Reformulations: Dantzig-Wolfe & Benders Decomposition the Coluna Software Platform François Vanderbeck B. Detienne, F. Clautiaux, R. Griset, T. Leite, G. Marques, V. Nesello, A. Pessoa,

More information

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING 1. Lagrangian Relaxation Lecture 12 Single Machine Models, Column Generation 2. Dantzig-Wolfe Decomposition Dantzig-Wolfe Decomposition Delayed Column

More information

An Integer Cutting-Plane Procedure for the Dantzig-Wolfe Decomposition: Theory

An Integer Cutting-Plane Procedure for the Dantzig-Wolfe Decomposition: Theory An Integer Cutting-Plane Procedure for the Dantzig-Wolfe Decomposition: Theory by Troels Martin Range Discussion Papers on Business and Economics No. 10/2006 FURTHER INFORMATION Department of Business

More information

Interior-Point versus Simplex methods for Integer Programming Branch-and-Bound

Interior-Point versus Simplex methods for Integer Programming Branch-and-Bound Interior-Point versus Simplex methods for Integer Programming Branch-and-Bound Samir Elhedhli elhedhli@uwaterloo.ca Department of Management Sciences, University of Waterloo, Canada Page of 4 McMaster

More information

Column Generation for Extended Formulations

Column Generation for Extended Formulations 1 / 28 Column Generation for Extended Formulations Ruslan Sadykov 1 François Vanderbeck 2,1 1 INRIA Bordeaux Sud-Ouest, France 2 University Bordeaux I, France ISMP 2012 Berlin, August 23 2 / 28 Contents

More information

Lagrangian Relaxation in MIP

Lagrangian Relaxation in MIP Lagrangian Relaxation in MIP Bernard Gendron May 28, 2016 Master Class on Decomposition, CPAIOR2016, Banff, Canada CIRRELT and Département d informatique et de recherche opérationnelle, Université de Montréal,

More information

THE TRAVELING SALESMAN PROBLEM (TSP) is one

THE TRAVELING SALESMAN PROBLEM (TSP) is one Proceedings of the 2013 Federated Conference on Computer Science and Information Systems pp. 377 384 Quadratic TSP: A lower bounding procedure and a column generation approach Borzou Rostami, Federico

More information

Lecture 8: Column Generation

Lecture 8: Column Generation Lecture 8: Column Generation (3 units) Outline Cutting stock problem Classical IP formulation Set covering formulation Column generation A dual perspective Vehicle routing problem 1 / 33 Cutting stock

More information

Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications

Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications François Vanderbeck University of Bordeaux INRIA Bordeaux-Sud-Ouest part : Defining Extended Formulations

More information

Weighted Acyclic Di-Graph Partitioning by Balanced Disjoint Paths

Weighted Acyclic Di-Graph Partitioning by Balanced Disjoint Paths Weighted Acyclic Di-Graph Partitioning by Balanced Disjoint Paths H. Murat AFSAR Olivier BRIANT Murat.Afsar@g-scop.inpg.fr Olivier.Briant@g-scop.inpg.fr G-SCOP Laboratory Grenoble Institute of Technology

More information

Algorithms for Nonsmooth Optimization

Algorithms for Nonsmooth Optimization Algorithms for Nonsmooth Optimization Frank E. Curtis, Lehigh University presented at Center for Optimization and Statistical Learning, Northwestern University 2 March 2018 Algorithms for Nonsmooth Optimization

More information

An Adaptive Partition-based Approach for Solving Two-stage Stochastic Programs with Fixed Recourse

An Adaptive Partition-based Approach for Solving Two-stage Stochastic Programs with Fixed Recourse An Adaptive Partition-based Approach for Solving Two-stage Stochastic Programs with Fixed Recourse Yongjia Song, James Luedtke Virginia Commonwealth University, Richmond, VA, ysong3@vcu.edu University

More information

Feasibility Pump Heuristics for Column Generation Approaches

Feasibility Pump Heuristics for Column Generation Approaches 1 / 29 Feasibility Pump Heuristics for Column Generation Approaches Ruslan Sadykov 2 Pierre Pesneau 1,2 Francois Vanderbeck 1,2 1 University Bordeaux I 2 INRIA Bordeaux Sud-Ouest SEA 2012 Bordeaux, France,

More information

Approximate Farkas Lemmas in Convex Optimization

Approximate Farkas Lemmas in Convex Optimization Approximate Farkas Lemmas in Convex Optimization Imre McMaster University Advanced Optimization Lab AdvOL Graduate Student Seminar October 25, 2004 1 Exact Farkas Lemma Motivation 2 3 Future plans The

More information

Reformulation and Decomposition of Integer Programs

Reformulation and Decomposition of Integer Programs Reformulation and Decomposition of Integer Programs François Vanderbeck 1 and Laurence A. Wolsey 2 (Reference: CORE DP 2009/16) (1) Université Bordeaux 1 & INRIA-Bordeaux (2) Université de Louvain, CORE.

More information

Large-scale optimization and decomposition methods: outline. Column Generation and Cutting Plane methods: a unified view

Large-scale optimization and decomposition methods: outline. Column Generation and Cutting Plane methods: a unified view Large-scale optimization and decomposition methods: outline I Solution approaches for large-scaled problems: I Delayed column generation I Cutting plane methods (delayed constraint generation) 7 I Problems

More information

Applications. Stephen J. Stoyan, Maged M. Dessouky*, and Xiaoqing Wang

Applications. Stephen J. Stoyan, Maged M. Dessouky*, and Xiaoqing Wang Introduction to Large-Scale Linear Programming and Applications Stephen J. Stoyan, Maged M. Dessouky*, and Xiaoqing Wang Daniel J. Epstein Department of Industrial and Systems Engineering, University of

More information

Lecture 8: Column Generation

Lecture 8: Column Generation Lecture 8: Column Generation (3 units) Outline Cutting stock problem Classical IP formulation Set covering formulation Column generation A dual perspective 1 / 24 Cutting stock problem 2 / 24 Problem description

More information

Decomposition Techniques in Mathematical Programming

Decomposition Techniques in Mathematical Programming Antonio J. Conejo Enrique Castillo Roberto Minguez Raquel Garcia-Bertrand Decomposition Techniques in Mathematical Programming Engineering and Science Applications Springer Contents Part I Motivation and

More information

Decomposition-based Methods for Large-scale Discrete Optimization p.1

Decomposition-based Methods for Large-scale Discrete Optimization p.1 Decomposition-based Methods for Large-scale Discrete Optimization Matthew V Galati Ted K Ralphs Department of Industrial and Systems Engineering Lehigh University, Bethlehem, PA, USA Départment de Mathématiques

More information

Lecture 9: Dantzig-Wolfe Decomposition

Lecture 9: Dantzig-Wolfe Decomposition Lecture 9: Dantzig-Wolfe Decomposition (3 units) Outline Dantzig-Wolfe decomposition Column generation algorithm Relation to Lagrangian dual Branch-and-price method Generated assignment problem and multi-commodity

More information

Introduction to Bin Packing Problems

Introduction to Bin Packing Problems Introduction to Bin Packing Problems Fabio Furini March 13, 2015 Outline Origins and applications Applications: Definition: Bin Packing Problem (BPP) Solution techniques for the BPP Heuristic Algorithms

More information

Column Generation. ORLAB - Operations Research Laboratory. Stefano Gualandi. June 14, Politecnico di Milano, Italy

Column Generation. ORLAB - Operations Research Laboratory. Stefano Gualandi. June 14, Politecnico di Milano, Italy ORLAB - Operations Research Laboratory Politecnico di Milano, Italy June 14, 2011 Cutting Stock Problem (from wikipedia) Imagine that you work in a paper mill and you have a number of rolls of paper of

More information

Integer program reformulation for robust branch-and-cut-and-price

Integer program reformulation for robust branch-and-cut-and-price Integer program reformulation for robust branch-and-cut-and-price Marcus Poggi de Aragão Informática PUC-Rio Eduardo Uchoa Engenharia de Produção Universidade Federal Fluminense Outline of the talk Robust

More information

A stabilized column generation scheme for the traveling salesman subtour problem

A stabilized column generation scheme for the traveling salesman subtour problem Discrete Applied Mathematics 154 (2006) 2212 2238 www.elsevier.com/locate/dam A stabilized column generation scheme for the traveling salesman subtour problem Andreas Westerlund, Maud Göthe-Lundgren, Torbjörn

More information

Decomposition methods in optimization

Decomposition methods in optimization Decomposition methods in optimization I Approach I: I Partition problem constraints into two groups: explicit and implicit I Approach II: I Partition decision variables into two groups: primary and secondary

More information

Benders Decomposition Methods for Structured Optimization, including Stochastic Optimization

Benders Decomposition Methods for Structured Optimization, including Stochastic Optimization Benders Decomposition Methods for Structured Optimization, including Stochastic Optimization Robert M. Freund April 29, 2004 c 2004 Massachusetts Institute of echnology. 1 1 Block Ladder Structure We consider

More information

Primal/Dual Decomposition Methods

Primal/Dual Decomposition Methods Primal/Dual Decomposition Methods Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2018-19, HKUST, Hong Kong Outline of Lecture Subgradients

More information

Column Generation. MTech Seminar Report. Soumitra Pal Roll No: under the guidance of

Column Generation. MTech Seminar Report. Soumitra Pal Roll No: under the guidance of Column Generation MTech Seminar Report by Soumitra Pal Roll No: 05305015 under the guidance of Prof. A. G. Ranade Computer Science and Engineering IIT-Bombay a Department of Computer Science and Engineering

More information

Development of the new MINLP Solver Decogo using SCIP - Status Report

Development of the new MINLP Solver Decogo using SCIP - Status Report Development of the new MINLP Solver Decogo using SCIP - Status Report Pavlo Muts with Norman Breitfeld, Vitali Gintner, Ivo Nowak SCIP Workshop 2018, Aachen Table of contents 1. Introduction 2. Automatic

More information

Notes on Dantzig-Wolfe decomposition and column generation

Notes on Dantzig-Wolfe decomposition and column generation Notes on Dantzig-Wolfe decomposition and column generation Mette Gamst November 11, 2010 1 Introduction This note introduces an exact solution method for mathematical programming problems. The method is

More information

Classification of Dantzig-Wolfe Reformulations for MIP s

Classification of Dantzig-Wolfe Reformulations for MIP s Classification of Dantzig-Wolfe Reformulations for MIP s Raf Jans Rotterdam School of Management HEC Montreal Workshop on Column Generation Aussois, June 2008 Outline and Motivation Dantzig-Wolfe reformulation

More information

Part 4. Decomposition Algorithms

Part 4. Decomposition Algorithms In the name of God Part 4. 4.4. Column Generation for the Constrained Shortest Path Problem Spring 2010 Instructor: Dr. Masoud Yaghini Constrained Shortest Path Problem Constrained Shortest Path Problem

More information

A CONIC DANTZIG-WOLFE DECOMPOSITION APPROACH FOR LARGE SCALE SEMIDEFINITE PROGRAMMING

A CONIC DANTZIG-WOLFE DECOMPOSITION APPROACH FOR LARGE SCALE SEMIDEFINITE PROGRAMMING A CONIC DANTZIG-WOLFE DECOMPOSITION APPROACH FOR LARGE SCALE SEMIDEFINITE PROGRAMMING Kartik Krishnan Advanced Optimization Laboratory McMaster University Joint work with Gema Plaza Martinez and Tamás

More information

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini In the name of God Network Flows 6. Lagrangian Relaxation 6.3 Lagrangian Relaxation and Integer Programming Fall 2010 Instructor: Dr. Masoud Yaghini Integer Programming Outline Branch-and-Bound Technique

More information

Workforce Scheduling. Outline DM87 SCHEDULING, TIMETABLING AND ROUTING. Outline. Workforce Scheduling. 1. Workforce Scheduling.

Workforce Scheduling. Outline DM87 SCHEDULING, TIMETABLING AND ROUTING. Outline. Workforce Scheduling. 1. Workforce Scheduling. Outline DM87 SCHEDULING, TIMETABLING AND ROUTING Lecture 17 Workforce Scheduling 2. Crew Scheduling and Roering Marco Chiarandini DM87 Scheduling, Timetabling and Routing 2 Outline Workforce Scheduling

More information

3.10 Lagrangian relaxation

3.10 Lagrangian relaxation 3.10 Lagrangian relaxation Consider a generic ILP problem min {c t x : Ax b, Dx d, x Z n } with integer coefficients. Suppose Dx d are the complicating constraints. Often the linear relaxation and the

More information

Disconnecting Networks via Node Deletions

Disconnecting Networks via Node Deletions 1 / 27 Disconnecting Networks via Node Deletions Exact Interdiction Models and Algorithms Siqian Shen 1 J. Cole Smith 2 R. Goli 2 1 IOE, University of Michigan 2 ISE, University of Florida 2012 INFORMS

More information

LP Duality: outline. Duality theory for Linear Programming. alternatives. optimization I Idea: polyhedra

LP Duality: outline. Duality theory for Linear Programming. alternatives. optimization I Idea: polyhedra LP Duality: outline I Motivation and definition of a dual LP I Weak duality I Separating hyperplane theorem and theorems of the alternatives I Strong duality and complementary slackness I Using duality

More information

Benders Decomposition Methods for Structured Optimization, including Stochastic Optimization

Benders Decomposition Methods for Structured Optimization, including Stochastic Optimization Benders Decomposition Methods for Structured Optimization, including Stochastic Optimization Robert M. Freund May 2, 2001 Block Ladder Structure Basic Model minimize x;y c T x + f T y s:t: Ax = b Bx +

More information

LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE

LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE CONVEX ANALYSIS AND DUALITY Basic concepts of convex analysis Basic concepts of convex optimization Geometric duality framework - MC/MC Constrained optimization

More information

4y Springer NONLINEAR INTEGER PROGRAMMING

4y Springer NONLINEAR INTEGER PROGRAMMING NONLINEAR INTEGER PROGRAMMING DUAN LI Department of Systems Engineering and Engineering Management The Chinese University of Hong Kong Shatin, N. T. Hong Kong XIAOLING SUN Department of Mathematics Shanghai

More information

3.10 Column generation method

3.10 Column generation method 3.10 Column generation method Many relevant decision-making (discrete optimization) problems can be formulated as ILP problems with a very large (exponential) number of variables. Examples: cutting stock,

More information

Solving LP and MIP Models with Piecewise Linear Objective Functions

Solving LP and MIP Models with Piecewise Linear Objective Functions Solving LP and MIP Models with Piecewise Linear Obective Functions Zonghao Gu Gurobi Optimization Inc. Columbus, July 23, 2014 Overview } Introduction } Piecewise linear (PWL) function Convex and convex

More information

Stochastic Integer Programming

Stochastic Integer Programming IE 495 Lecture 20 Stochastic Integer Programming Prof. Jeff Linderoth April 14, 2003 April 14, 2002 Stochastic Programming Lecture 20 Slide 1 Outline Stochastic Integer Programming Integer LShaped Method

More information

Quiz Discussion. IE417: Nonlinear Programming: Lecture 12. Motivation. Why do we care? Jeff Linderoth. 16th March 2006

Quiz Discussion. IE417: Nonlinear Programming: Lecture 12. Motivation. Why do we care? Jeff Linderoth. 16th March 2006 Quiz Discussion IE417: Nonlinear Programming: Lecture 12 Jeff Linderoth Department of Industrial and Systems Engineering Lehigh University 16th March 2006 Motivation Why do we care? We are interested in

More information

Integer Linear Programming Modeling

Integer Linear Programming Modeling DM554/DM545 Linear and Lecture 9 Integer Linear Programming Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. Assignment Problem Knapsack Problem

More information

The Fixed Charge Transportation Problem: A Strong Formulation Based On Lagrangian Decomposition and Column Generation

The Fixed Charge Transportation Problem: A Strong Formulation Based On Lagrangian Decomposition and Column Generation The Fixed Charge Transportation Problem: A Strong Formulation Based On Lagrangian Decomposition and Column Generation Yixin Zhao, Torbjörn Larsson and Department of Mathematics, Linköping University, Sweden

More information

Decomposition Methods for Integer Programming

Decomposition Methods for Integer Programming Decomposition Methods for Integer Programming J.M. Valério de Carvalho vc@dps.uminho.pt Departamento de Produção e Sistemas Escola de Engenharia, Universidade do Minho Portugal PhD Course Programa Doutoral

More information

Input: System of inequalities or equalities over the reals R. Output: Value for variables that minimizes cost function

Input: System of inequalities or equalities over the reals R. Output: Value for variables that minimizes cost function Linear programming Input: System of inequalities or equalities over the reals R A linear cost function Output: Value for variables that minimizes cost function Example: Minimize 6x+4y Subject to 3x + 2y

More information

AN INTEGRATED COLUMN GENERATION AND LAGRANGIAN RELAXATION FOR SOLVING FLOWSHOP PROBLEMS TO MINIMIZE THE TOTAL WEIGHTED TARDINESS

AN INTEGRATED COLUMN GENERATION AND LAGRANGIAN RELAXATION FOR SOLVING FLOWSHOP PROBLEMS TO MINIMIZE THE TOTAL WEIGHTED TARDINESS International Journal of Innovative Computing, Information and Control ICIC International c 2011 ISSN 1349-4198 Volume 7, Number 11, November 2011 pp. 6453 6471 AN INTEGRATED COLUMN GENERATION AND LAGRANGIAN

More information

Lower bounding procedure for the Asymmetric Quadratic Traveling Salesman Problem

Lower bounding procedure for the Asymmetric Quadratic Traveling Salesman Problem Lower bounding procedure for the Asymmetric Quadratic Traveling Salesman Problem Borzou Rostami a,, Federico Malucelli b, Pietro Belotti c, Stefano Gualandi d a Fakultät für Mathematik, TU Dortmund, Germany

More information

Stabilized Branch-and-cut-and-price for the Generalized Assignment Problem

Stabilized Branch-and-cut-and-price for the Generalized Assignment Problem Stabilized Branch-and-cut-and-price for the Generalized Assignment Problem Alexandre Pigatti, Marcus Poggi de Aragão Departamento de Informática, PUC do Rio de Janeiro {apigatti, poggi}@inf.puc-rio.br

More information

2.098/6.255/ Optimization Methods Practice True/False Questions

2.098/6.255/ Optimization Methods Practice True/False Questions 2.098/6.255/15.093 Optimization Methods Practice True/False Questions December 11, 2009 Part I For each one of the statements below, state whether it is true or false. Include a 1-3 line supporting sentence

More information

56:270 Final Exam - May

56:270  Final Exam - May @ @ 56:270 Linear Programming @ @ Final Exam - May 4, 1989 @ @ @ @ @ @ @ @ @ @ @ @ @ @ Select any 7 of the 9 problems below: (1.) ANALYSIS OF MPSX OUTPUT: Please refer to the attached materials on the

More information

3.10 Column generation method

3.10 Column generation method 3.10 Column generation method Many relevant decision-making problems can be formulated as ILP problems with a very large (exponential) number of variables. Examples: cutting stock, crew scheduling, vehicle

More information

1 Solution of a Large-Scale Traveling-Salesman Problem... 7 George B. Dantzig, Delbert R. Fulkerson, and Selmer M. Johnson

1 Solution of a Large-Scale Traveling-Salesman Problem... 7 George B. Dantzig, Delbert R. Fulkerson, and Selmer M. Johnson Part I The Early Years 1 Solution of a Large-Scale Traveling-Salesman Problem............ 7 George B. Dantzig, Delbert R. Fulkerson, and Selmer M. Johnson 2 The Hungarian Method for the Assignment Problem..............

More information

Integer Programming ISE 418. Lecture 8. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 8. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 8 Dr. Ted Ralphs ISE 418 Lecture 8 1 Reading for This Lecture Wolsey Chapter 2 Nemhauser and Wolsey Sections II.3.1, II.3.6, II.4.1, II.4.2, II.5.4 Duality for Mixed-Integer

More information

Separation, Inverse Optimization, and Decomposition. Some Observations. Ted Ralphs 1 Joint work with: Aykut Bulut 1

Separation, Inverse Optimization, and Decomposition. Some Observations. Ted Ralphs 1 Joint work with: Aykut Bulut 1 : Some Observations Ted Ralphs 1 Joint work with: Aykut Bulut 1 1 COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University MOA 2016, Beijing, China, 27 June 2016 What Is This Talk

More information

Part 4: Active-set methods for linearly constrained optimization. Nick Gould (RAL)

Part 4: Active-set methods for linearly constrained optimization. Nick Gould (RAL) Part 4: Active-set methods for linearly constrained optimization Nick Gould RAL fx subject to Ax b Part C course on continuoue optimization LINEARLY CONSTRAINED MINIMIZATION fx subject to Ax { } b where

More information

Introduction to Mathematical Programming IE406. Lecture 21. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 21. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 21 Dr. Ted Ralphs IE406 Lecture 21 1 Reading for This Lecture Bertsimas Sections 10.2, 10.3, 11.1, 11.2 IE406 Lecture 21 2 Branch and Bound Branch

More information

Lecture 9 Monotone VIs/CPs Properties of cones and some existence results. October 6, 2008

Lecture 9 Monotone VIs/CPs Properties of cones and some existence results. October 6, 2008 Lecture 9 Monotone VIs/CPs Properties of cones and some existence results October 6, 2008 Outline Properties of cones Existence results for monotone CPs/VIs Polyhedrality of solution sets Game theory:

More information

Partial Path Column Generation for the Vehicle Routing Problem with Time Windows

Partial Path Column Generation for the Vehicle Routing Problem with Time Windows Partial Path Column Generation for the Vehicle Routing Problem with Time Windows Bjørn Petersen & Mads Kehlet Jepsen } DIKU Department of Computer Science, University of Copenhagen Universitetsparken 1,

More information

A PARALLEL INTERIOR POINT DECOMPOSITION ALGORITHM FOR BLOCK-ANGULAR SEMIDEFINITE PROGRAMS IN POLYNOMIAL OPTIMIZATION

A PARALLEL INTERIOR POINT DECOMPOSITION ALGORITHM FOR BLOCK-ANGULAR SEMIDEFINITE PROGRAMS IN POLYNOMIAL OPTIMIZATION A PARALLEL INTERIOR POINT DECOMPOSITION ALGORITHM FOR BLOCK-ANGULAR SEMIDEFINITE PROGRAMS IN POLYNOMIAL OPTIMIZATION Kartik K. Sivaramakrishnan Department of Mathematics North Carolina State University

More information

A CONIC INTERIOR POINT DECOMPOSITION APPROACH FOR LARGE SCALE SEMIDEFINITE PROGRAMMING

A CONIC INTERIOR POINT DECOMPOSITION APPROACH FOR LARGE SCALE SEMIDEFINITE PROGRAMMING A CONIC INTERIOR POINT DECOMPOSITION APPROACH FOR LARGE SCALE SEMIDEFINITE PROGRAMMING Kartik Krishnan Sivaramakrishnan Department of Mathematics NC State University kksivara@ncsu.edu http://www4.ncsu.edu/

More information

Algorithms for constrained local optimization

Algorithms for constrained local optimization Algorithms for constrained local optimization Fabio Schoen 2008 http://gol.dsi.unifi.it/users/schoen Algorithms for constrained local optimization p. Feasible direction methods Algorithms for constrained

More information

A Column Generation Based Heuristic for the Dial-A-Ride Problem

A Column Generation Based Heuristic for the Dial-A-Ride Problem A Column Generation Based Heuristic for the Dial-A-Ride Problem Nastaran Rahmani 1, Boris Detienne 2,3, Ruslan Sadykov 3,2, François Vanderbeck 2,3 1 Kedge Business School, 680 Cours de la Libération,

More information

Lecture #21. c T x Ax b. maximize subject to

Lecture #21. c T x Ax b. maximize subject to COMPSCI 330: Design and Analysis of Algorithms 11/11/2014 Lecture #21 Lecturer: Debmalya Panigrahi Scribe: Samuel Haney 1 Overview In this lecture, we discuss linear programming. We first show that the

More information

Chapter 3: Discrete Optimization Integer Programming

Chapter 3: Discrete Optimization Integer Programming Chapter 3: Discrete Optimization Integer Programming Edoardo Amaldi DEIB Politecnico di Milano edoardo.amaldi@polimi.it Website: http://home.deib.polimi.it/amaldi/opt-16-17.shtml Academic year 2016-17

More information

A Horizon Decomposition approach for the Capacitated Lot-Sizing Problem with Setup Times

A Horizon Decomposition approach for the Capacitated Lot-Sizing Problem with Setup Times Submitted to INFORMS Journal on Computing manuscript (Please, provide the mansucript number!) A Horizon Decomposition approach for the Capacitated Lot-Sizing Problem with Setup Times Fragkos Ioannis Rotterdam

More information

Improvements to Benders' decomposition: systematic classification and performance comparison in a Transmission Expansion Planning problem

Improvements to Benders' decomposition: systematic classification and performance comparison in a Transmission Expansion Planning problem Improvements to Benders' decomposition: systematic classification and performance comparison in a Transmission Expansion Planning problem Sara Lumbreras & Andrés Ramos July 2013 Agenda Motivation improvement

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 8 Discrete optimization: theory and algorithms

MVE165/MMG631 Linear and integer optimization with applications Lecture 8 Discrete optimization: theory and algorithms MVE165/MMG631 Linear and integer optimization with applications Lecture 8 Discrete optimization: theory and algorithms Ann-Brith Strömberg 2017 04 07 Lecture 8 Linear and integer optimization with applications

More information

Discrete Optimization 2010 Lecture 7 Introduction to Integer Programming

Discrete Optimization 2010 Lecture 7 Introduction to Integer Programming Discrete Optimization 2010 Lecture 7 Introduction to Integer Programming Marc Uetz University of Twente m.uetz@utwente.nl Lecture 8: sheet 1 / 32 Marc Uetz Discrete Optimization Outline 1 Intro: The Matching

More information

JOINT PRICING AND NETWORK CAPACITY SETTING PROBLEM

JOINT PRICING AND NETWORK CAPACITY SETTING PROBLEM Advanced OR and AI Methods in Transportation JOINT PRICING AND NETWORK CAPACITY SETTING PROBLEM Luce BROTCORNE, Patrice MARCOTTE, Gilles SAVARD, Mickael WIART Abstract. We consider the problem of jointly

More information

Multiperiod Blend Scheduling Problem

Multiperiod Blend Scheduling Problem ExxonMobil Multiperiod Blend Scheduling Problem Juan Pablo Ruiz Ignacio E. Grossmann Department of Chemical Engineering Center for Advanced Process Decision-making University Pittsburgh, PA 15213 1 Motivation

More information

A generic view of Dantzig Wolfe decomposition in mixed integer programming

A generic view of Dantzig Wolfe decomposition in mixed integer programming Operations Research Letters 34 (2006) 296 306 Operations Research Letters www.elsevier.com/locate/orl A generic view of Dantzig Wolfe decomposition in mixed integer programming François Vanderbeck a,,

More information

to work with) can be solved by solving their LP relaxations with the Simplex method I Cutting plane algorithms, e.g., Gomory s fractional cutting

to work with) can be solved by solving their LP relaxations with the Simplex method I Cutting plane algorithms, e.g., Gomory s fractional cutting Summary so far z =max{c T x : Ax apple b, x 2 Z n +} I Modeling with IP (and MIP, and BIP) problems I Formulation for a discrete set that is a feasible region of an IP I Alternative formulations for the

More information

Multicommodity Flows and Column Generation

Multicommodity Flows and Column Generation Lecture Notes Multicommodity Flows and Column Generation Marc Pfetsch Zuse Institute Berlin pfetsch@zib.de last change: 2/8/2006 Technische Universität Berlin Fakultät II, Institut für Mathematik WS 2006/07

More information

An Integrated Column Generation and Lagrangian Relaxation for Flowshop Scheduling Problems

An Integrated Column Generation and Lagrangian Relaxation for Flowshop Scheduling Problems Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics San Antonio, TX, USA - October 2009 An Integrated Column Generation and Lagrangian Relaxation for Flowshop Scheduling

More information

l p -Norm Constrained Quadratic Programming: Conic Approximation Methods

l p -Norm Constrained Quadratic Programming: Conic Approximation Methods OUTLINE l p -Norm Constrained Quadratic Programming: Conic Approximation Methods Wenxun Xing Department of Mathematical Sciences Tsinghua University, Beijing Email: wxing@math.tsinghua.edu.cn OUTLINE OUTLINE

More information

Separation, Inverse Optimization, and Decomposition. Some Observations. Ted Ralphs 1 Joint work with: Aykut Bulut 1

Separation, Inverse Optimization, and Decomposition. Some Observations. Ted Ralphs 1 Joint work with: Aykut Bulut 1 : Some Observations Ted Ralphs 1 Joint work with: Aykut Bulut 1 1 COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University COLGEN 2016, Buzios, Brazil, 25 May 2016 What Is This Talk

More information

Solving Linear and Integer Programs

Solving Linear and Integer Programs Solving Linear and Integer Programs Robert E. Bixby ILOG, Inc. and Rice University Ed Rothberg ILOG, Inc. DAY 2 2 INFORMS Practice 2002 1 Dual Simplex Algorithm 3 Some Motivation Dual simplex vs. primal

More information

Lagrangian Duality Theory

Lagrangian Duality Theory Lagrangian Duality Theory Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye Chapter 14.1-4 1 Recall Primal and Dual

More information

Column Generation in Integer Programming with Applications in Multicriteria Optimization

Column Generation in Integer Programming with Applications in Multicriteria Optimization Column Generation in Integer Programming with Applications in Multicriteria Optimization Matthias Ehrgott Department of Engineering Science The University of Auckland, New Zealand email: m.ehrgott@auckland.ac.nz

More information

Motivating examples Introduction to algorithms Simplex algorithm. On a particular example General algorithm. Duality An application to game theory

Motivating examples Introduction to algorithms Simplex algorithm. On a particular example General algorithm. Duality An application to game theory Instructor: Shengyu Zhang 1 LP Motivating examples Introduction to algorithms Simplex algorithm On a particular example General algorithm Duality An application to game theory 2 Example 1: profit maximization

More information

A decomposition approach for the integrated vehicle-crew-roster problem with days-o_ pattern

A decomposition approach for the integrated vehicle-crew-roster problem with days-o_ pattern A decomposition approach for the integrated vehicle-crew-roster problem with days-o_ pattern Marta Mesquita, Margarida Moz, Ana Paias e Margarida Pato CIO Working Paper 2/2012 A decomposition approach

More information

COT 6936: Topics in Algorithms! Giri Narasimhan. ECS 254A / EC 2443; Phone: x3748

COT 6936: Topics in Algorithms! Giri Narasimhan. ECS 254A / EC 2443; Phone: x3748 COT 6936: Topics in Algorithms! Giri Narasimhan ECS 254A / EC 2443; Phone: x3748 giri@cs.fiu.edu https://moodle.cis.fiu.edu/v2.1/course/view.php?id=612 Gaussian Elimination! Solving a system of simultaneous

More information

An interior-point stochastic approximation method and an L1-regularized delta rule

An interior-point stochastic approximation method and an L1-regularized delta rule Photograph from National Geographic, Sept 2008 An interior-point stochastic approximation method and an L1-regularized delta rule Peter Carbonetto, Mark Schmidt and Nando de Freitas University of British

More information

Optimization for Machine Learning

Optimization for Machine Learning Optimization for Machine Learning (Problems; Algorithms - A) SUVRIT SRA Massachusetts Institute of Technology PKU Summer School on Data Science (July 2017) Course materials http://suvrit.de/teaching.html

More information

is called an integer programming (IP) problem. model is called a mixed integer programming (MIP)

is called an integer programming (IP) problem. model is called a mixed integer programming (MIP) INTEGER PROGRAMMING Integer Programming g In many problems the decision variables must have integer values. Example: assign people, machines, and vehicles to activities in integer quantities. If this is

More information

Lecture 9 Tuesday, 4/20/10. Linear Programming

Lecture 9 Tuesday, 4/20/10. Linear Programming UMass Lowell Computer Science 91.503 Analysis of Algorithms Prof. Karen Daniels Spring, 2010 Lecture 9 Tuesday, 4/20/10 Linear Programming 1 Overview Motivation & Basics Standard & Slack Forms Formulating

More information

Math 273a: Optimization Subgradients of convex functions

Math 273a: Optimization Subgradients of convex functions Math 273a: Optimization Subgradients of convex functions Made by: Damek Davis Edited by Wotao Yin Department of Mathematics, UCLA Fall 2015 online discussions on piazza.com 1 / 42 Subgradients Assumptions

More information

Resource Constrained Project Scheduling Linear and Integer Programming (1)

Resource Constrained Project Scheduling Linear and Integer Programming (1) DM204, 2010 SCHEDULING, TIMETABLING AND ROUTING Lecture 3 Resource Constrained Project Linear and Integer Programming (1) Marco Chiarandini Department of Mathematics & Computer Science University of Southern

More information

21. Set cover and TSP

21. Set cover and TSP CS/ECE/ISyE 524 Introduction to Optimization Spring 2017 18 21. Set cover and TSP ˆ Set covering ˆ Cutting problems and column generation ˆ Traveling salesman problem Laurent Lessard (www.laurentlessard.com)

More information

Integer Programming ISE 418. Lecture 12. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 12. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 12 Dr. Ted Ralphs ISE 418 Lecture 12 1 Reading for This Lecture Nemhauser and Wolsey Sections II.2.1 Wolsey Chapter 9 ISE 418 Lecture 12 2 Generating Stronger Valid

More information

Convex Analysis 2013 Let f : Q R be a strongly convex function with convexity parameter µ>0, where Q R n is a bounded, closed, convex set, which contains the origin. Let Q =conv(q, Q) andconsiderthefunction

More information

Decomposition and Reformulation in Integer Programming

Decomposition and Reformulation in Integer Programming and Reformulation in Integer Programming Laurence A. WOLSEY 7/1/2008 / Aussois and Reformulation in Integer Programming Outline 1 Resource 2 and Reformulation in Integer Programming Outline Resource 1

More information