Stochastic Integer Programming

Size: px
Start display at page:

Download "Stochastic Integer Programming"

Transcription

1 IE 495 Lecture 20 Stochastic Integer Programming Prof. Jeff Linderoth April 14, 2003 April 14, 2002 Stochastic Programming Lecture 20 Slide 1

2 Outline Stochastic Integer Programming Integer LShaped Method Dual Decomposition Method Stochastic Branch and Bound Structured Enumeration April 14, 2002 Stochastic Programming Lecture 20 Slide 2

3 Stochastic MIP [ ]} min {c T x + E ω min x X:Ax=b y Y {qt y : W y = h(ω) T (ω)x} X = {x Z n 1 + R n n 1 + } Y = {y Z p 1 + R p p 1 + } v(z) min y Y {q T y : W y = z}, Q(x) E ω [v(h(ω) T (ω)x)] { min c T x + Q(x) }. x X:Ax=b April 14, 2002 Stochastic Programming Lecture 20 Slide 3

4 Stochastic MIP Recall that if Ω was nite, we could write the (deterministic equivalent) of a stochastic LP Just a large scale LP We can do the same for stochastic MIP Just a large-scale IP But a large-scale IP with a very weak linear programming relaxation not likely to be solved by off-the-shelf software like cplex. April 14, 2002 Stochastic Programming Lecture 20 Slide 4

5 Stochastic IP The Simple Case [ ]} min {c T x + E ω min x X:Ax=b y Y {qt y : W y = h(ω) T (ω)x} Suppose X Z n R n n + Y R p +. Integrality only in the rst stage? What is the shape of Q(x)? It is convex! Idea to solve Do the L-shaped method except that you solve an integer program as the master problem. This case is almost as easy as two-stage LP w/recourse April 14, 2002 Stochastic Programming Lecture 20 Slide 5

6 Integer L-Shaped Method Gilbert Laporte and François Louveaux, The integer L-shaped method for stochastic integer programs with complete recourse, Operations Research Letters, 13: , Designed to work on X {0, 1} n Y Z p + R p p + { min c T x + Q(x) } x X:Ax=b ] Q(x) = E ω [min y Y {qt y : W y = h(ω) T (ω)x} All binary rst stage variables, arbitrary second stage April 14, 2002 Stochastic Programming Lecture 20 Slide 6

7 New Optimality Cuts For x k X {0, 1} n, dene the set S k = {j x k j = 1}. Thm: The cut θ (Q(x k ) L) x j j S k x j S k L. j S k is a valid optimality cut for Q(x) Valid Optimality Cut means Cut is tight at x Inequality holds for all feasible x. April 14, 2002 Stochastic Programming Lecture 20 Slide 7

8 Proof θ (Q(x k ) L) x j j S k x j S k L. j S k Consider the quantity A j S k x j j S k x j. A S k. A = S k if and only if S k is the set based on x = (x 1, x 2,... x n ). If A = S k, then the cut is θ Q(x k ). If A < S k, then (x) is not the solution on which S k is based. In this case, A < S k A S k 1 April 14, 2002 Stochastic Programming Lecture 20 Slide 8

9 Proof, cont. A S k 1... ( j S k x j j S k x j S k + 1) 0 ( (Q(x k ) L) j S x k j ) j S x k j S k + 1 0, so thw cut is θ L + M, with M 0, and the cut must be valid for this x. QUITE ENOUGH DONE. April 14, 2002 Stochastic Programming Lecture 20 Slide 9

10 Integer L-Shaped Method Algorithm We just will do a single cut version of the Integer L-Sshaped method. (Multicut is a simple extension). 0. Let v = 0, let z = 1. Select node. If none exist, stop. 2. v = v + 1. Solve problem, if infeasible, fathom node and go to 1. Let (x v, θ v ) be solution to problem at node v. If c T x v + θ v > z, fathom node and go to If x violates integrality, branch, creating new nodes. Go to Compute Q(x v ). If z v = c t x v + Q(x v ) < z, then update z z v. 5. If θ v Q(x v ), fathom the node and go to 1. Otherwise, add (integer) optimality cut, and go to 2. April 14, 2002 Stochastic Programming Lecture 20 Slide 10

11 Dual Decomposition C. C. Carøe and R. Schultz, Dual Decomposition in Stochastic Integer Programming, Operations Research Letters, 24:37-45, Main idea, having to choose only one solution x for each scenario s is a bummer. If we didn't have this restriction, the problem would be easy in the sense that we could just solve each scenario independently. April 14, 2002 Stochastic Programming Lecture 20 Slide 11

12 Dual Decomposition minimize subject to p s c T x s + q T y s s S Ax = b T s x + W y s = h s s S x s X s S y s Y s S x 1 = x 2 =... = x s April 14, 2002 Stochastic Programming Lecture 20 Slide 12

13 Relax Nonanticipativity The constraints x 1 = x 2 =... = x s are like nonanticipativity constraints. We can write the equalities as H s x s = 0. s S April 14, 2002 Stochastic Programming Lecture 20 Slide 13

14 Dual Decomposition x 1 = X s S p s x s x 2 = X s S p s x s. x s = X s S p s x s Use Lagrangian relaxation. Provides a lower bound on the optimal solution. If solution is integer feasible, then it is optimal. Otherwise branch. More details in a presentation. April 14, 2002 Stochastic Programming Lecture 20 Slide 14

15 Stochastic Branch and Bound V. I. Norkin and Y. M. Ermoliev and A. Ruszczyński, On Optimal Allocation of Indivisibles under Uncertainty, Operations Research, 46: , Shares many similarities to the Monte Carlo Approach Very general Works on (mixed) integer variable in both stages. Arbitrary probability distributions for random parameters April 14, 2002 Stochastic Programming Lecture 20 Slide 15

16 Stochastic Branch and Bound z (X) min x X F (x) In this description, we assume X is a nite set. Partition feasible set X into partition P k {X 1, X 2,... X n(k) } at iteration k z (X) = min n(k) j=1 z (X j ) In general, we assume that we can compute (maybe statistical) upper and lower bounds L(X j ) z (X j ) U(x j ) April 14, 2002 Stochastic Programming Lecture 20 Slide 16

17 Stochastic Branch and Bound 1. Select Record Set X arg min j {L(X j )}. Select Approximate Solution x k arg min j {U(x j )}. 2. If X is not a singleton, partition X and update the working parition accordingly. 3. Update (estimates) of L(X j ) and U(X j ), paying most attention to (subsets of) the record set. 4. Remove subsets of X j that contain no feasible solutions. Bounding out can only be applied if the estimates of the bounds are exact. 5. Go to 1 unless a stopping criteria is met. April 14, 2002 Stochastic Programming Lecture 20 Slide 17

18 Stochastic Branch and Bound A typical stopping criterion is that there is some (singleton) record set ˆX where U( ˆX) < L(X k ) for all other subsets k. April 14, 2002 Stochastic Programming Lecture 20 Slide 18

19 Stochastic Branch and Bound Example min{x + Q(x) x {0, 1,..., 10} Q(x) = E ω [v(x, ω)] v(x, ω) = min{1.5y : y ω x, y Z + = 1.5 ω x + Your notes here April 14, 2002 Stochastic Programming Lecture 20 Slide 19

20 x + Q(x) x April 14, 2002 Stochastic Programming Lecture 20 Slide 20

21 Projects Everyone will prepare a short report. No more than 4 pages. Background Goal of project Things I Learned Conclusions 15 minute (NO MORE THAN 15 MINUTE) presentation to class. Six people present on 4/23 Any volunteers? Otherwise, I am going to volunteer six people. Everyone else present on 5/1 (when our nal is scheduled). April 14, 2002 Stochastic Programming Lecture 20 Slide 21

22 Final Exam I will pass out nal on 4/23. It will be due on 5/1. It will be of comparable difculty to the homeworks. It will require some modeling. It will require some sampling/computational component. April 14, 2002 Stochastic Programming Lecture 20 Slide 22

23 Next Time... Multistage Stochastic Programming Modeling Issues Nested Bender's Decomposition April 14, 2002 Stochastic Programming Lecture 20 Slide 23

Stochastic Decomposition

Stochastic Decomposition IE 495 Lecture 18 Stochastic Decomposition Prof. Jeff Linderoth March 26, 2003 March 19, 2003 Stochastic Programming Lecture 17 Slide 1 Outline Review Monte Carlo Methods Interior Sampling Methods Stochastic

More information

Monte Carlo Methods for Stochastic Programming

Monte Carlo Methods for Stochastic Programming IE 495 Lecture 16 Monte Carlo Methods for Stochastic Programming Prof. Jeff Linderoth March 17, 2003 March 17, 2003 Stochastic Programming Lecture 16 Slide 1 Outline Review Jensen's Inequality Edmundson-Madansky

More information

Chance Constrained Programming

Chance Constrained Programming IE 495 Lecture 22 Chance Constrained Programming Prof. Jeff Linderoth April 21, 2003 April 21, 2002 Stochastic Programming Lecture 22 Slide 1 Outline HW Fixes Chance Constrained Programming Is Hard Main

More information

Solution Methods for Stochastic Programs

Solution Methods for Stochastic Programs Solution Methods for Stochastic Programs Huseyin Topaloglu School of Operations Research and Information Engineering Cornell University ht88@cornell.edu August 14, 2010 1 Outline Cutting plane methods

More information

SMPS and the Recourse Function

SMPS and the Recourse Function IE 495 Lecture 8 SMPS and the Recourse Function Prof. Jeff Linderoth February 5, 2003 February 5, 2003 Stochastic Programming Lecture 8 Slide 1 Outline Formulating Stochastic Program(s). SMPS format Jacob

More information

The L-Shaped Method. Operations Research. Anthony Papavasiliou 1 / 44

The L-Shaped Method. Operations Research. Anthony Papavasiliou 1 / 44 1 / 44 The L-Shaped Method Operations Research Anthony Papavasiliou Contents 2 / 44 1 The L-Shaped Method [ 5.1 of BL] 2 Optimality Cuts [ 5.1a of BL] 3 Feasibility Cuts [ 5.1b of BL] 4 Proof of Convergence

More information

An Adaptive Partition-based Approach for Solving Two-stage Stochastic Programs with Fixed Recourse

An Adaptive Partition-based Approach for Solving Two-stage Stochastic Programs with Fixed Recourse An Adaptive Partition-based Approach for Solving Two-stage Stochastic Programs with Fixed Recourse Yongjia Song, James Luedtke Virginia Commonwealth University, Richmond, VA, ysong3@vcu.edu University

More information

The L-Shaped Method. Operations Research. Anthony Papavasiliou 1 / 38

The L-Shaped Method. Operations Research. Anthony Papavasiliou 1 / 38 1 / 38 The L-Shaped Method Operations Research Anthony Papavasiliou Contents 2 / 38 1 The L-Shaped Method 2 Example: Capacity Expansion Planning 3 Examples with Optimality Cuts [ 5.1a of BL] 4 Examples

More information

Stochastic Integer Programming An Algorithmic Perspective

Stochastic Integer Programming An Algorithmic Perspective Stochastic Integer Programming An Algorithmic Perspective sahmed@isye.gatech.edu www.isye.gatech.edu/~sahmed School of Industrial & Systems Engineering 2 Outline Two-stage SIP Formulation Challenges Simple

More information

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini In the name of God Network Flows 6. Lagrangian Relaxation 6.3 Lagrangian Relaxation and Integer Programming Fall 2010 Instructor: Dr. Masoud Yaghini Integer Programming Outline Branch-and-Bound Technique

More information

Generation and Representation of Piecewise Polyhedral Value Functions

Generation and Representation of Piecewise Polyhedral Value Functions Generation and Representation of Piecewise Polyhedral Value Functions Ted Ralphs 1 Joint work with Menal Güzelsoy 2 and Anahita Hassanzadeh 1 1 COR@L Lab, Department of Industrial and Systems Engineering,

More information

Financial Optimization ISE 347/447. Lecture 21. Dr. Ted Ralphs

Financial Optimization ISE 347/447. Lecture 21. Dr. Ted Ralphs Financial Optimization ISE 347/447 Lecture 21 Dr. Ted Ralphs ISE 347/447 Lecture 21 1 Reading for This Lecture C&T Chapter 16 ISE 347/447 Lecture 21 2 Formalizing: Random Linear Optimization Consider the

More information

Section Notes 9. Midterm 2 Review. Applied Math / Engineering Sciences 121. Week of December 3, 2018

Section Notes 9. Midterm 2 Review. Applied Math / Engineering Sciences 121. Week of December 3, 2018 Section Notes 9 Midterm 2 Review Applied Math / Engineering Sciences 121 Week of December 3, 2018 The following list of topics is an overview of the material that was covered in the lectures and sections

More information

Integer Programming. Wolfram Wiesemann. December 6, 2007

Integer Programming. Wolfram Wiesemann. December 6, 2007 Integer Programming Wolfram Wiesemann December 6, 2007 Contents of this Lecture Revision: Mixed Integer Programming Problems Branch & Bound Algorithms: The Big Picture Solving MIP s: Complete Enumeration

More information

Stochastic Dual Dynamic Integer Programming

Stochastic Dual Dynamic Integer Programming Stochastic Dual Dynamic Integer Programming Jikai Zou Shabbir Ahmed Xu Andy Sun December 26, 2017 Abstract Multistage stochastic integer programming (MSIP) combines the difficulty of uncertainty, dynamics,

More information

Stochastic Programming in Enterprise-Wide Optimization

Stochastic Programming in Enterprise-Wide Optimization Stochastic Programming in Enterprise-Wide Optimization Andrew Schaefer University of Pittsburgh Department of Industrial Engineering October 20, 2005 Outline What is stochastic programming? How do I formulate

More information

Decomposition Algorithms with Parametric Gomory Cuts for Two-Stage Stochastic Integer Programs

Decomposition Algorithms with Parametric Gomory Cuts for Two-Stage Stochastic Integer Programs Decomposition Algorithms with Parametric Gomory Cuts for Two-Stage Stochastic Integer Programs Dinakar Gade, Simge Küçükyavuz, Suvrajeet Sen Integrated Systems Engineering 210 Baker Systems, 1971 Neil

More information

Decomposition methods in optimization

Decomposition methods in optimization Decomposition methods in optimization I Approach I: I Partition problem constraints into two groups: explicit and implicit I Approach II: I Partition decision variables into two groups: primary and secondary

More information

A Benders Algorithm for Two-Stage Stochastic Optimization Problems With Mixed Integer Recourse

A Benders Algorithm for Two-Stage Stochastic Optimization Problems With Mixed Integer Recourse A Benders Algorithm for Two-Stage Stochastic Optimization Problems With Mixed Integer Recourse Ted Ralphs 1 Joint work with Menal Güzelsoy 2 and Anahita Hassanzadeh 1 1 COR@L Lab, Department of Industrial

More information

Can Li a, Ignacio E. Grossmann a,

Can Li a, Ignacio E. Grossmann a, A generalized Benders decomposition-based branch and cut algorithm for two-stage stochastic programs with nonconvex constraints and mixed-binary first and second stage variables Can Li a, Ignacio E. Grossmann

More information

Can Li a, Ignacio E. Grossmann a,

Can Li a, Ignacio E. Grossmann a, A generalized Benders decomposition-based branch and cut algorithm for two-stage stochastic programs with nonconvex constraints and mixed-binary first and second stage variables Can Li a, Ignacio E. Grossmann

More information

Fenchel Decomposition for Stochastic Mixed-Integer Programming

Fenchel Decomposition for Stochastic Mixed-Integer Programming Fenchel Decomposition for Stochastic Mixed-Integer Programming Lewis Ntaimo Department of Industrial and Systems Engineering, Texas A&M University, 3131 TAMU, College Station, TX 77843, USA, ntaimo@tamu.edu

More information

to work with) can be solved by solving their LP relaxations with the Simplex method I Cutting plane algorithms, e.g., Gomory s fractional cutting

to work with) can be solved by solving their LP relaxations with the Simplex method I Cutting plane algorithms, e.g., Gomory s fractional cutting Summary so far z =max{c T x : Ax apple b, x 2 Z n +} I Modeling with IP (and MIP, and BIP) problems I Formulation for a discrete set that is a feasible region of an IP I Alternative formulations for the

More information

MIDAS: A Mixed Integer Dynamic Approximation Scheme

MIDAS: A Mixed Integer Dynamic Approximation Scheme MIDAS: A Mixed Integer Dynamic Approximation Scheme Andy Philpott, Faisal Wahid, Frédéric Bonnans May 7, 2016 Abstract Mixed Integer Dynamic Approximation Scheme (MIDAS) is a new sampling-based algorithm

More information

Decomposition with Branch-and-Cut Approaches for Two Stage Stochastic Mixed-Integer Programming

Decomposition with Branch-and-Cut Approaches for Two Stage Stochastic Mixed-Integer Programming Decomposition with Branch-and-Cut Approaches for Two Stage Stochastic Mixed-Integer Programming by Suvrajeet Sen SIE Department, University of Arizona, Tucson, AZ 85721 and Hanif D. Sherali ISE Department,

More information

Computational Stochastic Programming

Computational Stochastic Programming Computational Stochastic Programming Jeff Linderoth Dept. of ISyE Dept. of CS Univ. of Wisconsin-Madison linderoth@wisc.edu SPXIII Bergamo, Italy July 7, 2013 Jeff Linderoth (UW-Madison) Computational

More information

Decomposition Algorithms for Two-Stage Distributionally Robust Mixed Binary Programs

Decomposition Algorithms for Two-Stage Distributionally Robust Mixed Binary Programs Decomposition Algorithms for Two-Stage Distributionally Robust Mixed Binary Programs Manish Bansal Grado Department of Industrial and Systems Engineering, Virginia Tech Email: bansal@vt.edu Kuo-Ling Huang

More information

Scenario Grouping and Decomposition Algorithms for Chance-constrained Programs

Scenario Grouping and Decomposition Algorithms for Chance-constrained Programs Scenario Grouping and Decomposition Algorithms for Chance-constrained Programs Siqian Shen Dept. of Industrial and Operations Engineering University of Michigan Joint work with Yan Deng (UMich, Google)

More information

Disjunctive Decomposition for Two-Stage Stochastic Mixed-Binary Programs with Random Recourse

Disjunctive Decomposition for Two-Stage Stochastic Mixed-Binary Programs with Random Recourse Disjunctive Decomposition for Two-Stage Stochastic Mixed-Binary Programs with Random Recourse Lewis Ntaimo Department of Industrial and Systems Engineering, Texas A&M University, 3131 TAMU, College Station,

More information

Stochastic Programming Math Review and MultiPeriod Models

Stochastic Programming Math Review and MultiPeriod Models IE 495 Lecture 5 Stochastic Programming Math Review and MultiPeriod Models Prof. Jeff Linderoth January 27, 2003 January 27, 2003 Stochastic Programming Lecture 5 Slide 1 Outline Homework questions? I

More information

IE 495 Final Exam. Due Date: May 1, 2003

IE 495 Final Exam. Due Date: May 1, 2003 IE 495 Final Exam Due Date: May 1, 2003 Do the following problems. You must work alone on this exam. The only reference materials you are allowed to use on the exam are the textbook by Birge and Louveaux,

More information

Lecture 23 Branch-and-Bound Algorithm. November 3, 2009

Lecture 23 Branch-and-Bound Algorithm. November 3, 2009 Branch-and-Bound Algorithm November 3, 2009 Outline Lecture 23 Modeling aspect: Either-Or requirement Special ILPs: Totally unimodular matrices Branch-and-Bound Algorithm Underlying idea Terminology Formal

More information

Scenario grouping and decomposition algorithms for chance-constrained programs

Scenario grouping and decomposition algorithms for chance-constrained programs Scenario grouping and decomposition algorithms for chance-constrained programs Yan Deng Shabbir Ahmed Jon Lee Siqian Shen Abstract A lower bound for a finite-scenario chance-constrained problem is given

More information

Strengthened Benders Cuts for Stochastic Integer Programs with Continuous Recourse

Strengthened Benders Cuts for Stochastic Integer Programs with Continuous Recourse Strengthened Benders Cuts for Stochastic Integer Programs with Continuous Recourse Merve Bodur 1, Sanjeeb Dash 2, Otay Günlü 2, and James Luedte 3 1 Department of Mechanical and Industrial Engineering,

More information

PORTA, NEOS, and Knapsack Covers. Cover Inequalities. Prof. Jeff Linderoth. October 29, June 23, 2004 DIMACS Reconnect Conference on MIP Slide 1

PORTA, NEOS, and Knapsack Covers. Cover Inequalities. Prof. Jeff Linderoth. October 29, June 23, 2004 DIMACS Reconnect Conference on MIP Slide 1 PORTA, NEOS, and Knapsack Covers Cover Inequalities Prof. Jeff Linderoth October 29, 2003 June 23, 2004 DIMACS Reconnect Conference on MIP Slide 1 Today s Outline Knapsack Cover inequalities Facets Lifting

More information

The Sample Average Approximation Method Applied to Stochastic Routing Problems: A Computational Study

The Sample Average Approximation Method Applied to Stochastic Routing Problems: A Computational Study Computational Optimization and Applications, 24, 289 333, 2003 c 2003 Kluwer Academic Publishers. Manufactured in The Netherlands. The Sample Average Approximation Method Applied to Stochastic Routing

More information

Introduction to integer programming II

Introduction to integer programming II Introduction to integer programming II Martin Branda Charles University in Prague Faculty of Mathematics and Physics Department of Probability and Mathematical Statistics Computational Aspects of Optimization

More information

Introduction to Mathematical Programming IE406. Lecture 21. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 21. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 21 Dr. Ted Ralphs IE406 Lecture 21 1 Reading for This Lecture Bertsimas Sections 10.2, 10.3, 11.1, 11.2 IE406 Lecture 21 2 Branch and Bound Branch

More information

Integer Programming ISE 418. Lecture 8. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 8. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 8 Dr. Ted Ralphs ISE 418 Lecture 8 1 Reading for This Lecture Wolsey Chapter 2 Nemhauser and Wolsey Sections II.3.1, II.3.6, II.4.1, II.4.2, II.5.4 Duality for Mixed-Integer

More information

Stochastic Mixed-Integer Programming

Stochastic Mixed-Integer Programming Stochastic Mixed-Integer Programming Tutorial SPXII, Halifax, August 15, 2010 Maarten H. van der Vlerk University of Groningen, Netherlands www.rug.nl/feb/mhvandervlerk 1 Outline Stochastic Mixed-Integer

More information

Reformulation and Sampling to Solve a Stochastic Network Interdiction Problem

Reformulation and Sampling to Solve a Stochastic Network Interdiction Problem Network Interdiction Stochastic Network Interdiction and to Solve a Stochastic Network Interdiction Problem Udom Janjarassuk Jeff Linderoth ISE Department COR@L Lab Lehigh University jtl3@lehigh.edu informs

More information

Disjunctive Decomposition for Two-Stage Stochastic Mixed-Binary Programs with GUB Constraints

Disjunctive Decomposition for Two-Stage Stochastic Mixed-Binary Programs with GUB Constraints Disjunctive Decomposition for Two-Stage Stochastic Mixed-Binary Programs with GUB Constraints Brian Keller Booz Allen Hamilton, 134 National Business Parkway, Annapolis Junction, MD 20701, USA, keller

More information

Decomposition with Branch-and-Cut Approaches for Two-Stage Stochastic Mixed-Integer Programming

Decomposition with Branch-and-Cut Approaches for Two-Stage Stochastic Mixed-Integer Programming Decomposition with Branch-and-Cut Approaches for Two-Stage Stochastic Mixed-Integer Programming by Suvrajeet Sen SIE Department, University of Arizona, Tucson, AZ 85721 and Hanif D. Sherali Grado Department

More information

Notes on Dantzig-Wolfe decomposition and column generation

Notes on Dantzig-Wolfe decomposition and column generation Notes on Dantzig-Wolfe decomposition and column generation Mette Gamst November 11, 2010 1 Introduction This note introduces an exact solution method for mathematical programming problems. The method is

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 8 Discrete optimization: theory and algorithms

MVE165/MMG631 Linear and integer optimization with applications Lecture 8 Discrete optimization: theory and algorithms MVE165/MMG631 Linear and integer optimization with applications Lecture 8 Discrete optimization: theory and algorithms Ann-Brith Strömberg 2017 04 07 Lecture 8 Linear and integer optimization with applications

More information

Stochastic Network Interdiction / October 2001

Stochastic Network Interdiction / October 2001 Calhoun: The NPS Institutional Archive Faculty and Researcher Publications Faculty and Researcher Publications 2001-10 Stochastic Networ Interdiction / October 2001 Sanchez, Susan M. Monterey, California.

More information

Lagrangian Relaxation in MIP

Lagrangian Relaxation in MIP Lagrangian Relaxation in MIP Bernard Gendron May 28, 2016 Master Class on Decomposition, CPAIOR2016, Banff, Canada CIRRELT and Département d informatique et de recherche opérationnelle, Université de Montréal,

More information

Multi-objective branch-and-cut algorithm and multi-modal traveling salesman problem

Multi-objective branch-and-cut algorithm and multi-modal traveling salesman problem Multi-objective branch-and-cut algorithm and multi-modal traveling salesman problem Nicolas Jozefowiez 1, Gilbert Laporte 2, Frédéric Semet 3 1. LAAS-CNRS, INSA, Université de Toulouse, Toulouse, France,

More information

Citation for published version (APA): van der Vlerk, M. H. (2002). Convex approximations for complete integer recourse models. s.n.

Citation for published version (APA): van der Vlerk, M. H. (2002). Convex approximations for complete integer recourse models. s.n. University of Groningen Convex approximations for complete integer recourse models van der Vlerk, Maarten H. IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you

More information

Bounding in Multi-Stage. Stochastic Programming. Problems. Olga Fiedler a Andras Prekopa b

Bounding in Multi-Stage. Stochastic Programming. Problems. Olga Fiedler a Andras Prekopa b R utcor Research R eport Bounding in Multi-Stage Stochastic Programming Problems Olga Fiedler a Andras Prekopa b RRR 24-95, June 1995 RUTCOR Rutgers Center for Operations Research Rutgers University P.O.

More information

IBM Research Report. Stochasic Unit Committment Problem. Julio Goez Lehigh University. James Luedtke University of Wisconsin

IBM Research Report. Stochasic Unit Committment Problem. Julio Goez Lehigh University. James Luedtke University of Wisconsin RC24713 (W0812-119) December 23, 2008 Mathematics IBM Research Report Stochasic Unit Committment Problem Julio Goez Lehigh University James Luedtke University of Wisconsin Deepak Rajan IBM Research Division

More information

Complexity of two and multi-stage stochastic programming problems

Complexity of two and multi-stage stochastic programming problems Complexity of two and multi-stage stochastic programming problems A. Shapiro School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0205, USA The concept

More information

is called an integer programming (IP) problem. model is called a mixed integer programming (MIP)

is called an integer programming (IP) problem. model is called a mixed integer programming (MIP) INTEGER PROGRAMMING Integer Programming g In many problems the decision variables must have integer values. Example: assign people, machines, and vehicles to activities in integer quantities. If this is

More information

Recoverable Robustness in Scheduling Problems

Recoverable Robustness in Scheduling Problems Master Thesis Computing Science Recoverable Robustness in Scheduling Problems Author: J.M.J. Stoef (3470997) J.M.J.Stoef@uu.nl Supervisors: dr. J.A. Hoogeveen J.A.Hoogeveen@uu.nl dr. ir. J.M. van den Akker

More information

Applications. Stephen J. Stoyan, Maged M. Dessouky*, and Xiaoqing Wang

Applications. Stephen J. Stoyan, Maged M. Dessouky*, and Xiaoqing Wang Introduction to Large-Scale Linear Programming and Applications Stephen J. Stoyan, Maged M. Dessouky*, and Xiaoqing Wang Daniel J. Epstein Department of Industrial and Systems Engineering, University of

More information

Reformulation and Sampling to Solve a Stochastic Network Interdiction Problem

Reformulation and Sampling to Solve a Stochastic Network Interdiction Problem Reformulation and Sampling to Solve a Stochastic Network Interdiction Problem UDOM JANJARASSUK, JEFF LINDEROTH Department of Industrial and Systems Engineering, Lehigh University, 200 W. Packer Ave. Bethlehem,

More information

Bilevel Integer Optimization: Theory and Algorithms

Bilevel Integer Optimization: Theory and Algorithms : Theory and Algorithms Ted Ralphs 1 Joint work with Sahar Tahernajad 1, Scott DeNegre 3, Menal Güzelsoy 2, Anahita Hassanzadeh 4 1 COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University

More information

Dual fitting approximation for Set Cover, and Primal Dual approximation for Set Cover

Dual fitting approximation for Set Cover, and Primal Dual approximation for Set Cover duality 1 Dual fitting approximation for Set Cover, and Primal Dual approximation for Set Cover Guy Kortsarz duality 2 The set cover problem with uniform costs Input: A universe U and a collection of subsets

More information

Lagrange Relaxation: Introduction and Applications

Lagrange Relaxation: Introduction and Applications 1 / 23 Lagrange Relaxation: Introduction and Applications Operations Research Anthony Papavasiliou 2 / 23 Contents 1 Context 2 Applications Application in Stochastic Programming Unit Commitment 3 / 23

More information

Column Generation for Extended Formulations

Column Generation for Extended Formulations 1 / 28 Column Generation for Extended Formulations Ruslan Sadykov 1 François Vanderbeck 2,1 1 INRIA Bordeaux Sud-Ouest, France 2 University Bordeaux I, France ISMP 2012 Berlin, August 23 2 / 28 Contents

More information

Math Models of OR: Branch-and-Bound

Math Models of OR: Branch-and-Bound Math Models of OR: Branch-and-Bound John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA November 2018 Mitchell Branch-and-Bound 1 / 15 Branch-and-Bound Outline 1 Branch-and-Bound

More information

Lecture 1. Stochastic Optimization: Introduction. January 8, 2018

Lecture 1. Stochastic Optimization: Introduction. January 8, 2018 Lecture 1 Stochastic Optimization: Introduction January 8, 2018 Optimization Concerned with mininmization/maximization of mathematical functions Often subject to constraints Euler (1707-1783): Nothing

More information

Computations with Disjunctive Cuts for Two-Stage Stochastic Mixed 0-1 Integer Programs

Computations with Disjunctive Cuts for Two-Stage Stochastic Mixed 0-1 Integer Programs Computations with Disjunctive Cuts for Two-Stage Stochastic Mixed 0-1 Integer Programs Lewis Ntaimo and Matthew W. Tanner Department of Industrial and Systems Engineering, Texas A&M University, 3131 TAMU,

More information

Benders Decomposition

Benders Decomposition Benders Decomposition Yuping Huang, Dr. Qipeng Phil Zheng Department of Industrial and Management Systems Engineering West Virginia University IENG 593G Nonlinear Programg, Spring 2012 Yuping Huang (IMSE@WVU)

More information

MVE165/MMG630, Applied Optimization Lecture 6 Integer linear programming: models and applications; complexity. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 6 Integer linear programming: models and applications; complexity. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming: models and applications; complexity Ann-Brith Strömberg 2011 04 01 Modelling with integer variables (Ch. 13.1) Variables Linear programming (LP) uses continuous

More information

arxiv: v2 [math.oc] 31 May 2014

arxiv: v2 [math.oc] 31 May 2014 Chance Constrained Mixed Integer Program: Bilinear and Linear Formulations, and Benders Decomposition Bo Zeng, Yu An and Ludwig Kuznia arxiv:1403.7875v2 [math.oc] 31 May 2014 Dept. of Industrial and Management

More information

Quiz Discussion. IE417: Nonlinear Programming: Lecture 12. Motivation. Why do we care? Jeff Linderoth. 16th March 2006

Quiz Discussion. IE417: Nonlinear Programming: Lecture 12. Motivation. Why do we care? Jeff Linderoth. 16th March 2006 Quiz Discussion IE417: Nonlinear Programming: Lecture 12 Jeff Linderoth Department of Industrial and Systems Engineering Lehigh University 16th March 2006 Motivation Why do we care? We are interested in

More information

Lecture 9: Dantzig-Wolfe Decomposition

Lecture 9: Dantzig-Wolfe Decomposition Lecture 9: Dantzig-Wolfe Decomposition (3 units) Outline Dantzig-Wolfe decomposition Column generation algorithm Relation to Lagrangian dual Branch-and-price method Generated assignment problem and multi-commodity

More information

Benders' Method Paul A Jensen

Benders' Method Paul A Jensen Benders' Method Paul A Jensen The mixed integer programming model has some variables, x, identified as real variables and some variables, y, identified as integer variables. Except for the integrality

More information

Bounds on Risk-averse Mixed-integer Multi-stage Stochastic Programming Problems with Mean-CVaR

Bounds on Risk-averse Mixed-integer Multi-stage Stochastic Programming Problems with Mean-CVaR Bounds on Risk-averse Mixed-integer Multi-stage Stochastic Programming Problems with Mean-CVaR Ali rfan Mahmuto ullar, Özlem Çavu³, and M. Selim Aktürk Department of Industrial Engineering, Bilkent University,

More information

Software for Integer and Nonlinear Optimization

Software for Integer and Nonlinear Optimization Software for Integer and Nonlinear Optimization Sven Leyffer, leyffer@mcs.anl.gov Mathematics & Computer Science Division Argonne National Laboratory Roger Fletcher & Jeff Linderoth Advanced Methods and

More information

Optimization Tools in an Uncertain Environment

Optimization Tools in an Uncertain Environment Optimization Tools in an Uncertain Environment Michael C. Ferris University of Wisconsin, Madison Uncertainty Workshop, Chicago: July 21, 2008 Michael Ferris (University of Wisconsin) Stochastic optimization

More information

Linear and Integer Programming - ideas

Linear and Integer Programming - ideas Linear and Integer Programming - ideas Paweł Zieliński Institute of Mathematics and Computer Science, Wrocław University of Technology, Poland http://www.im.pwr.wroc.pl/ pziel/ Toulouse, France 2012 Literature

More information

An Integrated Approach to Truss Structure Design

An Integrated Approach to Truss Structure Design Slide 1 An Integrated Approach to Truss Structure Design J. N. Hooker Tallys Yunes CPAIOR Workshop on Hybrid Methods for Nonlinear Combinatorial Problems Bologna, June 2010 How to Solve Nonlinear Combinatorial

More information

Branch-and-cut Approaches for Chance-constrained Formulations of Reliable Network Design Problems

Branch-and-cut Approaches for Chance-constrained Formulations of Reliable Network Design Problems Branch-and-cut Approaches for Chance-constrained Formulations of Reliable Network Design Problems Yongjia Song James R. Luedtke August 9, 2012 Abstract We study solution approaches for the design of reliably

More information

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING 1. Lagrangian Relaxation Lecture 12 Single Machine Models, Column Generation 2. Dantzig-Wolfe Decomposition Dantzig-Wolfe Decomposition Delayed Column

More information

Lecture 10: Duality in Linear Programs

Lecture 10: Duality in Linear Programs 10-725/36-725: Convex Optimization Spring 2015 Lecture 10: Duality in Linear Programs Lecturer: Ryan Tibshirani Scribes: Jingkun Gao and Ying Zhang Disclaimer: These notes have not been subjected to the

More information

Two-Stage Quadratic Integer Programs with Stochastic Right-Hand Sides

Two-Stage Quadratic Integer Programs with Stochastic Right-Hand Sides Two-Stage Quadratic Integer Programs with Stochastic Right-Hand Sides Osman Y. Özaltın Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA, oyo1@pitt.edu Oleg Prokopyev

More information

Section Notes 8. Integer Programming II. Applied Math 121. Week of April 5, expand your knowledge of big M s and logical constraints.

Section Notes 8. Integer Programming II. Applied Math 121. Week of April 5, expand your knowledge of big M s and logical constraints. Section Notes 8 Integer Programming II Applied Math 121 Week of April 5, 2010 Goals for the week understand IP relaxations be able to determine the relative strength of formulations understand the branch

More information

Improvements to Benders' decomposition: systematic classification and performance comparison in a Transmission Expansion Planning problem

Improvements to Benders' decomposition: systematic classification and performance comparison in a Transmission Expansion Planning problem Improvements to Benders' decomposition: systematic classification and performance comparison in a Transmission Expansion Planning problem Sara Lumbreras & Andrés Ramos July 2013 Agenda Motivation improvement

More information

Discrete Two-Stage Stochastic Mixed-Integer Programs with Applications to Airline Fleet Assignment and Workforce Planning Problems

Discrete Two-Stage Stochastic Mixed-Integer Programs with Applications to Airline Fleet Assignment and Workforce Planning Problems Discrete Two-Stage Stochastic Mixed-Integer Programs with Applications to Airline Fleet Assignment and Workforce Planning Problems Xiaomei Zhu Dissertation submitted to the Faculty of the Virginia Polytechnic

More information

Lecture 8: Column Generation

Lecture 8: Column Generation Lecture 8: Column Generation (3 units) Outline Cutting stock problem Classical IP formulation Set covering formulation Column generation A dual perspective 1 / 24 Cutting stock problem 2 / 24 Problem description

More information

Integer Programming Part II

Integer Programming Part II Be the first in your neighborhood to master this delightful little algorithm. Integer Programming Part II The Branch and Bound Algorithm learn about fathoming, bounding, branching, pruning, and much more!

More information

Operations Research Lecture 6: Integer Programming

Operations Research Lecture 6: Integer Programming Operations Research Lecture 6: Integer Programming Notes taken by Kaiquan Xu@Business School, Nanjing University May 12th 2016 1 Integer programming (IP) formulations The integer programming (IP) is the

More information

INTEGER PROGRAMMING. In many problems the decision variables must have integer values.

INTEGER PROGRAMMING. In many problems the decision variables must have integer values. INTEGER PROGRAMMING Integer Programming In many problems the decision variables must have integer values. Example:assign people, machines, and vehicles to activities in integer quantities. If this is the

More information

Computer Intensive Methods in Mathematical Statistics

Computer Intensive Methods in Mathematical Statistics Computer Intensive Methods in Mathematical Statistics Department of mathematics johawes@kth.se Lecture 16 Advanced topics in computational statistics 18 May 2017 Computer Intensive Methods (1) Plan of

More information

15.081J/6.251J Introduction to Mathematical Programming. Lecture 24: Discrete Optimization

15.081J/6.251J Introduction to Mathematical Programming. Lecture 24: Discrete Optimization 15.081J/6.251J Introduction to Mathematical Programming Lecture 24: Discrete Optimization 1 Outline Modeling with integer variables Slide 1 What is a good formulation? Theme: The Power of Formulations

More information

4y Springer NONLINEAR INTEGER PROGRAMMING

4y Springer NONLINEAR INTEGER PROGRAMMING NONLINEAR INTEGER PROGRAMMING DUAN LI Department of Systems Engineering and Engineering Management The Chinese University of Hong Kong Shatin, N. T. Hong Kong XIAOLING SUN Department of Mathematics Shanghai

More information

Disconnecting Networks via Node Deletions

Disconnecting Networks via Node Deletions 1 / 27 Disconnecting Networks via Node Deletions Exact Interdiction Models and Algorithms Siqian Shen 1 J. Cole Smith 2 R. Goli 2 1 IOE, University of Michigan 2 ISE, University of Florida 2012 INFORMS

More information

Lagrange duality. The Lagrangian. We consider an optimization program of the form

Lagrange duality. The Lagrangian. We consider an optimization program of the form Lagrange duality Another way to arrive at the KKT conditions, and one which gives us some insight on solving constrained optimization problems, is through the Lagrange dual. The dual is a maximization

More information

Special Classes of Fuzzy Integer Programming Models with All-Dierent Constraints

Special Classes of Fuzzy Integer Programming Models with All-Dierent Constraints Transaction E: Industrial Engineering Vol. 16, No. 1, pp. 1{10 c Sharif University of Technology, June 2009 Special Classes of Fuzzy Integer Programming Models with All-Dierent Constraints Abstract. K.

More information

Benders Decomposition Methods for Structured Optimization, including Stochastic Optimization

Benders Decomposition Methods for Structured Optimization, including Stochastic Optimization Benders Decomposition Methods for Structured Optimization, including Stochastic Optimization Robert M. Freund April 29, 2004 c 2004 Massachusetts Institute of echnology. 1 1 Block Ladder Structure We consider

More information

Mixed Integer Linear Programming Formulations for Probabilistic Constraints

Mixed Integer Linear Programming Formulations for Probabilistic Constraints Mixed Integer Linear Programming Formulations for Probabilistic Constraints J. P. Vielma a,, S. Ahmed b, G. Nemhauser b a Department of Industrial Engineering, University of Pittsburgh 1048 Benedum Hall,

More information

Structured Problems and Algorithms

Structured Problems and Algorithms Integer and quadratic optimization problems Dept. of Engg. and Comp. Sci., Univ. of Cal., Davis Aug. 13, 2010 Table of contents Outline 1 2 3 Benefits of Structured Problems Optimization problems may become

More information

Solving Bilevel Mixed Integer Program by Reformulations and Decomposition

Solving Bilevel Mixed Integer Program by Reformulations and Decomposition Solving Bilevel Mixed Integer Program by Reformulations and Decomposition June, 2014 Abstract In this paper, we study bilevel mixed integer programming (MIP) problem and present a novel computing scheme

More information

AM 121: Intro to Optimization! Models and Methods! Fall 2018!

AM 121: Intro to Optimization! Models and Methods! Fall 2018! AM 121: Intro to Optimization Models and Methods Fall 2018 Lecture 13: Branch and Bound (I) Yiling Chen SEAS Example: max 5x 1 + 8x 2 s.t. x 1 + x 2 6 5x 1 + 9x 2 45 x 1, x 2 0, integer 1 x 2 6 5 x 1 +x

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models David Sontag New York University Lecture 6, March 7, 2013 David Sontag (NYU) Graphical Models Lecture 6, March 7, 2013 1 / 25 Today s lecture 1 Dual decomposition 2 MAP inference

More information

Parallel PIPS-SBB Multi-level parallelism for 2-stage SMIPS. Lluís-Miquel Munguia, Geoffrey M. Oxberry, Deepak Rajan, Yuji Shinano

Parallel PIPS-SBB Multi-level parallelism for 2-stage SMIPS. Lluís-Miquel Munguia, Geoffrey M. Oxberry, Deepak Rajan, Yuji Shinano Parallel PIPS-SBB Multi-level parallelism for 2-stage SMIPS Lluís-Miquel Munguia, Geoffrey M. Oxberry, Deepak Rajan, Yuji Shinano ... Our contribution PIPS-PSBB*: Multi-level parallelism for Stochastic

More information

IV. Violations of Linear Programming Assumptions

IV. Violations of Linear Programming Assumptions IV. Violations of Linear Programming Assumptions Some types of Mathematical Programming problems violate at least one condition of strict Linearity - Deterministic Nature - Additivity - Direct Proportionality

More information

Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications

Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications François Vanderbeck University of Bordeaux INRIA Bordeaux-Sud-Ouest part : Defining Extended Formulations

More information