Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation

Size: px
Start display at page:

Download "Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation"

Transcription

1 Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING 1. Lagrangian Relaxation Lecture 12 Single Machine Models, Column Generation 2. Dantzig-Wolfe Decomposition Dantzig-Wolfe Decomposition Delayed Column Generation Marco Chiarandini Slides from David Pisinger s lectures at DIKU 3. Single Machine Models 2 Outline Relaxation In branch and bound we find upper bounds by relaxing the problem 1. Lagrangian Relaxation Relaxation { max g(s) maxs P f(s) s P max s S g(s) } max s S f(s) 2. Dantzig-Wolfe Decomposition Dantzig-Wolfe Decomposition Delayed Column Generation 3. Single Machine Models P : candidate solutions; S P feasible solutions; g(x) f(x) Which constraints should be relaxed? Quality of bound (tightness of relaxation) Remaining problem can be solved efficiently Proper multipliers can be found efficiently Constraints difficult to formulate mathematically Constraints which are too expensive to write up 3 4

2 Tightness of relaxation Different relaxations LP-relaxation Tighter max cx s.t. Ax b Dx d Deleting constraint Lagrange relaxation Surrogate relaxation Semidefinite relaxation Relaxations are often used in combination. Best surrogate relaxation Best Lagrangian relaxation LP relaxation x Z n + LP-relaxation: max {cx : x conv(ax b, Dx d, x Z + )} Lagrangian Relaxation: max z LR (λ) = cx λ(dx d) s.t. Ax b x Z n + LP-relaxation: max {cx : Dx d, x conv(ax b, x Z + )} 5 6 Relaxation strategies Which constraints should be relaxed "the complicating ones" remaining problem is polynomially solvable (e.g. min spanning tree, assignment problem, linear programming) remaining problem is totally unimodular (e.g. network problems) remaining problem is NP-hard but good techniques exist (e.g. knapsack) constraints which cannot be expressed in MIP terms (e.g. cutting) constraints which are too extensive to express (e.g. subtour elimination in TSP) 7 Subgradient optimization Lagrange multipliers max z = cx s. t. Ax b Dx d x Z n + Lagrange Relaxation, multipliers λ 0 max z LR (λ) = cx λ(dx d) s. t. Ax b x Z n + Lagrange Dual Problem z LD = min λ 0 z LR(λ) We do not need best multipliers in B&B algorithm Subgradient optimization fast method Works well due to convexity Roots in nonlinear programming, Held and Karp (1971) 8

3 Subgradient optimization, motivation Subgradient Generalization of gradients to non-differentiable functions. Definition An m-vector γ is subgradient of f(λ) at λ λ if f(λ) f( λ) + γ(λ λ) The inequality says that the hyperplane y = f( λ) + γ(λ λ) is tangent to y = f(λ) at λ λ and supports f(λ) from below Netwon-like method to minimize a function in one variable Lagrange function z LR (λ) is piecewise linear and convex 9 10 Proposition Given a choice of nonnegative multipliers λ. If x is an optimal solution to z LR (λ) then is a subgradient of z LR (λ) at λ = λ. γ = d Dx Proof We wish to prove that from the subgradient definition: max (cx = λ(dx d)) γ(λ λ) ( ) + max cx λ(dx d) Ax b Ax b where x is an opt. solution to the right-most subproblem. Inserting γ we get: max (cx λ(dx d)) (d Ax b Dx )(λ λ) + (cx λ(dx d)) = cx λ(dx d) Intuition Lagrange relaxation max z LR (λ) = cx λ(dx d) s.t. Ax b x Z n + Gradient in x is Subgradient Iteration Recursion where θ > 0 is step-size γ = d Dx λ k+1 = max { λ k θγ k, 0 } If γ > 0 and θ is sufficiently small z LR (λ) will decrease. Small θ slow convergence Large θ unstable 11 12

4 Lagrange relaxation and LP For an LP-problem where we Lagrange relax all constraints Dual variables are best choice of Lagrange multipliers Lagrange relaxation and LP "relaxation" give same bound Gives a clue to solve LP-problems without Simplex Iterative algorithms Polynomial algorithms Outline Dantzig-Wolfe Decomposition Motivation split it up into smaller pieces a large or difficult problem 1. Lagrangian Relaxation 2. Dantzig-Wolfe Decomposition Dantzig-Wolfe Decomposition Delayed Column Generation 3. Single Machine Models Applications Cutting Stock problems Multicommodity Flow problems Facility Location problems Capacitated Multi-item Lot-sizing problem Air-crew and Manpower Scheduling Vehicle Routing Problems Scheduling (current research) Two currently most promising directions for MIP: Branch-and-price Branch-and-cut 15 17

5 Dantzig-Wolfe Decomposition The problem is split into a master problem and a subproblem + Tighter bounds + Better control of subproblem Model may become (very) large Delayed column generation Write up the decomposed model gradually as needed Generate a few solutions to the subproblems Solve the master problem to LP-optimality Use the dual information to find most promising solutions to the subproblem Extend the master problem with the new subproblem solutions. 18

6

7 Delayed Column Generation Delayed column generation, linear master Master problem can (and will) contain many columns To find bound, solve LP-relaxation of master Delayed column generation gradually writes up master 29

8 Reduced Costs Simplex in matrix form min {cx Ax = b, x } In matrix form: [ ] [ ] 0 A z 1 c x B = {1, 2,..., p} basic variables = [ ] b 0 L = {1, 2,..., q} non-basis variables (will be set to lower bound = 0) (B, L) basis structure x B, x L, c B, c L, B = [A 1, A 2,..., A p ], L = [A p+1, A p+2,..., A p+q ] [ ] z [ 0 B L x 1 c B c B b = L 0] x L Bx B + Lx L = b x B + B 1 Lx L = B 1 b [ xl = 0 x B = B 1 b 31 [ ] z 0 B L x 1 c B c B = L x L Simplex algorithm sets x L = 0 and x B = B 1 b B invertible, hence rows linearly independent [ ] b 0 The objective function is obtained by multiplying and subtracting constraints by means of multipliers π (the dual variables) [ ] [ ] p p q p p z = c j π i a ij + c j π i a ij + π i b i i=1 i=1 Each basic variable has cost null in the objective function p c j π i a ij = 0 = π = B 1 c B i=1 Reduced costs of non-basic variables: p c j π i a ij i=1 i=1 32

9 Questions Will the process terminate? Always improving objective value. Only a finite number of basis solutions. Can we repeat the same pattern? No, since the objective functions is improved. We know the best solution among existing columns. If we generate an already existing column, then we will not improve the objective. 36 Outline Scheduling 1. Lagrangian Relaxation Sequencing (linear ordering) variables 1 prec P w j C j 2. Dantzig-Wolfe Decomposition Dantzig-Wolfe Decomposition Delayed Column Generation 3. Single Machine Models n n n min w j p k x kj + w j p j k=1 s.t. x kj + x lk + x jl 1 j, k, l = 1,..., nj k, k l x kj + x jk = 1 j, k = 1,..., n, j k x jk {0, 1} j, k = 1,..., n x jj = 0 j = 1,..., n 38 39

10 Scheduling Scheduling Time indexed variables 1 P h j (C j ) Completion time variables n min w j z j s.t. z k z j p k for j k A z j p j, for j = 1,..., n z k z j p k or z j z k p j, for (i, j) I z j R, j = 1,..., n 1 prec C max min s.t. n n h j (t + p j )x jt x jt = 1, t s=t p j +1 x js 1, for all j = 1,..., n for each t = 1,..., T x jt {0, 1}, for each j = 1,..., n; t = 1,..., T p j This formulation gives better bounds than the two preceding pseudo-polynomial number of variables Dantzig-Wolfe decomposition Reformulation: Dantzig-Wolfe decomposition Substituting X in original model getting master problem min s.t. n h j (t + p j )x jt x jt = 1, for all j = 1,..., n x jt X for each j = 1,..., n; t = 1,..., T p j + 1 n where X = x {0, 1} : t s=t p j +1 x js 1, for each t = 1,..., T π α min s.t. n h j (t + p j )( L λ l x l ) l=1 L λ l x l jt = 1, for all j = 1,..., n = l=1 L λ l = 1, l=1 λ l {0, 1} = λ l 0 LP-relaxation L λ l n l j = 1 l=1 x l, l = 1,..., L extreme points of X. x {0, 1} : x = L l=1 λ lx l X = L l=1 λ l = 1, λ l {0, 1} matrix of X is interval matrix extreme points are integral they are pseudo-schedules 42 solve LP-relaxation by column generation on pseudo-schedules x l reduced cost of λ k is c k = n (c jt π j )x k jt α 43

11 The subproblem can be solved by finding shortest path in a network N with 1, 2,..., T + 1 nodes corresponding to time periods process arcs, for all j, t, t t + p j and cost c jt π j idle time arcs, for all t, t t + 1 and cost 0 a path in this network corrsponds to a pseudo-schedule in which a job may be started more than once or not processed. the lower bound on the master problem produced by the LP-relaxation of the restricted master problem can be tighten by inequalities [Pessoa, Uchoa, Poggi de Aragão, Rodrigues, 2008], propose another time index formulation that dominates this one. They can solve consistently instances up to 100 jobs. 44

Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications

Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications François Vanderbeck University of Bordeaux INRIA Bordeaux-Sud-Ouest part : Defining Extended Formulations

More information

Resource Constrained Project Scheduling Linear and Integer Programming (1)

Resource Constrained Project Scheduling Linear and Integer Programming (1) DM204, 2010 SCHEDULING, TIMETABLING AND ROUTING Lecture 3 Resource Constrained Project Linear and Integer Programming (1) Marco Chiarandini Department of Mathematics & Computer Science University of Southern

More information

Lagrangian Relaxation in MIP

Lagrangian Relaxation in MIP Lagrangian Relaxation in MIP Bernard Gendron May 28, 2016 Master Class on Decomposition, CPAIOR2016, Banff, Canada CIRRELT and Département d informatique et de recherche opérationnelle, Université de Montréal,

More information

Outline. Outline. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Scheduling CPM/PERT Resource Constrained Project Scheduling Model

Outline. Outline. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Scheduling CPM/PERT Resource Constrained Project Scheduling Model Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING Lecture 3 and Mixed Integer Programg Marco Chiarandini 1. Resource Constrained Project Model 2. Mathematical Programg 2 Outline Outline 1. Resource Constrained

More information

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini In the name of God Network Flows 6. Lagrangian Relaxation 6.3 Lagrangian Relaxation and Integer Programming Fall 2010 Instructor: Dr. Masoud Yaghini Integer Programming Outline Branch-and-Bound Technique

More information

Lecture 9: Dantzig-Wolfe Decomposition

Lecture 9: Dantzig-Wolfe Decomposition Lecture 9: Dantzig-Wolfe Decomposition (3 units) Outline Dantzig-Wolfe decomposition Column generation algorithm Relation to Lagrangian dual Branch-and-price method Generated assignment problem and multi-commodity

More information

Discrete Optimization 2010 Lecture 8 Lagrangian Relaxation / P, N P and co-n P

Discrete Optimization 2010 Lecture 8 Lagrangian Relaxation / P, N P and co-n P Discrete Optimization 2010 Lecture 8 Lagrangian Relaxation / P, N P and co-n P Marc Uetz University of Twente m.uetz@utwente.nl Lecture 8: sheet 1 / 32 Marc Uetz Discrete Optimization Outline 1 Lagrangian

More information

Decomposition and Reformulation in Integer Programming

Decomposition and Reformulation in Integer Programming and Reformulation in Integer Programming Laurence A. WOLSEY 7/1/2008 / Aussois and Reformulation in Integer Programming Outline 1 Resource 2 and Reformulation in Integer Programming Outline Resource 1

More information

Lecture 8: Column Generation

Lecture 8: Column Generation Lecture 8: Column Generation (3 units) Outline Cutting stock problem Classical IP formulation Set covering formulation Column generation A dual perspective Vehicle routing problem 1 / 33 Cutting stock

More information

3.10 Lagrangian relaxation

3.10 Lagrangian relaxation 3.10 Lagrangian relaxation Consider a generic ILP problem min {c t x : Ax b, Dx d, x Z n } with integer coefficients. Suppose Dx d are the complicating constraints. Often the linear relaxation and the

More information

Integer program reformulation for robust branch-and-cut-and-price

Integer program reformulation for robust branch-and-cut-and-price Integer program reformulation for robust branch-and-cut-and-price Marcus Poggi de Aragão Informática PUC-Rio Eduardo Uchoa Engenharia de Produção Universidade Federal Fluminense Outline of the talk Robust

More information

On the exact solution of a large class of parallel machine scheduling problems

On the exact solution of a large class of parallel machine scheduling problems 1 / 23 On the exact solution of a large class of parallel machine scheduling problems Teobaldo Bulhões 2 Ruslan Sadykov 1 Eduardo Uchoa 2 Anand Subramanian 3 1 Inria Bordeaux and Univ. Bordeaux, France

More information

Notes on Dantzig-Wolfe decomposition and column generation

Notes on Dantzig-Wolfe decomposition and column generation Notes on Dantzig-Wolfe decomposition and column generation Mette Gamst November 11, 2010 1 Introduction This note introduces an exact solution method for mathematical programming problems. The method is

More information

Column Generation for Extended Formulations

Column Generation for Extended Formulations 1 / 28 Column Generation for Extended Formulations Ruslan Sadykov 1 François Vanderbeck 2,1 1 INRIA Bordeaux Sud-Ouest, France 2 University Bordeaux I, France ISMP 2012 Berlin, August 23 2 / 28 Contents

More information

Decomposition-based Methods for Large-scale Discrete Optimization p.1

Decomposition-based Methods for Large-scale Discrete Optimization p.1 Decomposition-based Methods for Large-scale Discrete Optimization Matthew V Galati Ted K Ralphs Department of Industrial and Systems Engineering Lehigh University, Bethlehem, PA, USA Départment de Mathématiques

More information

Discrete Optimization 2010 Lecture 7 Introduction to Integer Programming

Discrete Optimization 2010 Lecture 7 Introduction to Integer Programming Discrete Optimization 2010 Lecture 7 Introduction to Integer Programming Marc Uetz University of Twente m.uetz@utwente.nl Lecture 8: sheet 1 / 32 Marc Uetz Discrete Optimization Outline 1 Intro: The Matching

More information

Integer Program Reformulation for Robust. Branch-and-Cut-and-Price Algorithms

Integer Program Reformulation for Robust. Branch-and-Cut-and-Price Algorithms Integer Program Reformulation for Robust Branch-and-Cut-and-Price Algorithms Marcus Poggi de Aragão 1, Eduardo Uchoa 2 1 Departamento de Informática, PUC-Rio, poggi@inf.puc-rio.br 2 Dep. de Engenharia

More information

Stabilization in Column Generation: numerical study

Stabilization in Column Generation: numerical study 1 / 26 Stabilization in Column Generation: numerical study Artur Pessoa 3 Ruslan Sadykov 1,2 Eduardo Uchoa 3 François Vanderbeck 2,1 1 INRIA Bordeaux, France 2 Univ. Bordeaux I, France 3 Universidade Federal

More information

Workforce Scheduling. Outline DM87 SCHEDULING, TIMETABLING AND ROUTING. Outline. Workforce Scheduling. 1. Workforce Scheduling.

Workforce Scheduling. Outline DM87 SCHEDULING, TIMETABLING AND ROUTING. Outline. Workforce Scheduling. 1. Workforce Scheduling. Outline DM87 SCHEDULING, TIMETABLING AND ROUTING Lecture 17 Workforce Scheduling 2. Crew Scheduling and Roering Marco Chiarandini DM87 Scheduling, Timetabling and Routing 2 Outline Workforce Scheduling

More information

to work with) can be solved by solving their LP relaxations with the Simplex method I Cutting plane algorithms, e.g., Gomory s fractional cutting

to work with) can be solved by solving their LP relaxations with the Simplex method I Cutting plane algorithms, e.g., Gomory s fractional cutting Summary so far z =max{c T x : Ax apple b, x 2 Z n +} I Modeling with IP (and MIP, and BIP) problems I Formulation for a discrete set that is a feasible region of an IP I Alternative formulations for the

More information

Lecture 8: Column Generation

Lecture 8: Column Generation Lecture 8: Column Generation (3 units) Outline Cutting stock problem Classical IP formulation Set covering formulation Column generation A dual perspective 1 / 24 Cutting stock problem 2 / 24 Problem description

More information

3.4 Relaxations and bounds

3.4 Relaxations and bounds 3.4 Relaxations and bounds Consider a generic Discrete Optimization problem z = min{c(x) : x X} with an optimal solution x X. In general, the algorithms generate not only a decreasing sequence of upper

More information

Decomposition Methods for Integer Programming

Decomposition Methods for Integer Programming Decomposition Methods for Integer Programming J.M. Valério de Carvalho vc@dps.uminho.pt Departamento de Produção e Sistemas Escola de Engenharia, Universidade do Minho Portugal PhD Course Programa Doutoral

More information

Operations Research Lecture 6: Integer Programming

Operations Research Lecture 6: Integer Programming Operations Research Lecture 6: Integer Programming Notes taken by Kaiquan Xu@Business School, Nanjing University May 12th 2016 1 Integer programming (IP) formulations The integer programming (IP) is the

More information

How to Relax. CP 2008 Slide 1. John Hooker Carnegie Mellon University September 2008

How to Relax. CP 2008 Slide 1. John Hooker Carnegie Mellon University September 2008 How to Relax Slide 1 John Hooker Carnegie Mellon University September 2008 Two ways to relax Relax your mind and body. Relax your problem formulations. Slide 2 Relaxing a problem Feasible set of original

More information

The Fixed Charge Transportation Problem: A Strong Formulation Based On Lagrangian Decomposition and Column Generation

The Fixed Charge Transportation Problem: A Strong Formulation Based On Lagrangian Decomposition and Column Generation The Fixed Charge Transportation Problem: A Strong Formulation Based On Lagrangian Decomposition and Column Generation Yixin Zhao, Torbjörn Larsson and Department of Mathematics, Linköping University, Sweden

More information

Chapter 3: Discrete Optimization Integer Programming

Chapter 3: Discrete Optimization Integer Programming Chapter 3: Discrete Optimization Integer Programming Edoardo Amaldi DEIB Politecnico di Milano edoardo.amaldi@polimi.it Website: http://home.deib.polimi.it/amaldi/opt-16-17.shtml Academic year 2016-17

More information

Integer Programming ISE 418. Lecture 16. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 16. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 16 Dr. Ted Ralphs ISE 418 Lecture 16 1 Reading for This Lecture Wolsey, Chapters 10 and 11 Nemhauser and Wolsey Sections II.3.1, II.3.6, II.3.7, II.5.4 CCZ Chapter 8

More information

15.081J/6.251J Introduction to Mathematical Programming. Lecture 24: Discrete Optimization

15.081J/6.251J Introduction to Mathematical Programming. Lecture 24: Discrete Optimization 15.081J/6.251J Introduction to Mathematical Programming Lecture 24: Discrete Optimization 1 Outline Modeling with integer variables Slide 1 What is a good formulation? Theme: The Power of Formulations

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 8 Discrete optimization: theory and algorithms

MVE165/MMG631 Linear and integer optimization with applications Lecture 8 Discrete optimization: theory and algorithms MVE165/MMG631 Linear and integer optimization with applications Lecture 8 Discrete optimization: theory and algorithms Ann-Brith Strömberg 2017 04 07 Lecture 8 Linear and integer optimization with applications

More information

A Node-Flow Model for 1D Stock Cutting: Robust Branch-Cut-and-Price

A Node-Flow Model for 1D Stock Cutting: Robust Branch-Cut-and-Price A Node-Flow Model for 1D Stock Cutting: Robust Branch-Cut-and-Price Gleb Belov University of Dresden Adam N. Letchford Lancaster University Eduardo Uchoa Universidade Federal Fluminense August 4, 2011

More information

Column generation for extended formulations

Column generation for extended formulations EURO J Comput Optim (2013) 1:81 115 DOI 10.1007/s13675-013-0009-9 ORIGINAL PAPER Column generation for extended formulations Ruslan Sadykov François Vanderbeck Received: 5 May 2012 / Accepted: 21 December

More information

Part 4. Decomposition Algorithms

Part 4. Decomposition Algorithms In the name of God Part 4. 4.4. Column Generation for the Constrained Shortest Path Problem Spring 2010 Instructor: Dr. Masoud Yaghini Constrained Shortest Path Problem Constrained Shortest Path Problem

More information

and to estimate the quality of feasible solutions I A new way to derive dual bounds:

and to estimate the quality of feasible solutions I A new way to derive dual bounds: Lagrangian Relaxations and Duality I Recall: I Relaxations provide dual bounds for the problem I So do feasible solutions of dual problems I Having tight dual bounds is important in algorithms (B&B), and

More information

Integer Programming ISE 418. Lecture 8. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 8. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 8 Dr. Ted Ralphs ISE 418 Lecture 8 1 Reading for This Lecture Wolsey Chapter 2 Nemhauser and Wolsey Sections II.3.1, II.3.6, II.4.1, II.4.2, II.5.4 Duality for Mixed-Integer

More information

Multicommodity Flows and Column Generation

Multicommodity Flows and Column Generation Lecture Notes Multicommodity Flows and Column Generation Marc Pfetsch Zuse Institute Berlin pfetsch@zib.de last change: 2/8/2006 Technische Universität Berlin Fakultät II, Institut für Mathematik WS 2006/07

More information

Recoverable Robustness in Scheduling Problems

Recoverable Robustness in Scheduling Problems Master Thesis Computing Science Recoverable Robustness in Scheduling Problems Author: J.M.J. Stoef (3470997) J.M.J.Stoef@uu.nl Supervisors: dr. J.A. Hoogeveen J.A.Hoogeveen@uu.nl dr. ir. J.M. van den Akker

More information

Introduction to optimization and operations research

Introduction to optimization and operations research Introduction to optimization and operations research David Pisinger, Fall 2002 1 Smoked ham (Chvatal 1.6, adapted from Greene et al. (1957)) A meat packing plant produces 480 hams, 400 pork bellies, and

More information

Chapter 3: Discrete Optimization Integer Programming

Chapter 3: Discrete Optimization Integer Programming Chapter 3: Discrete Optimization Integer Programming Edoardo Amaldi DEIB Politecnico di Milano edoardo.amaldi@polimi.it Sito web: http://home.deib.polimi.it/amaldi/ott-13-14.shtml A.A. 2013-14 Edoardo

More information

Vehicle Routing and MIP

Vehicle Routing and MIP CORE, Université Catholique de Louvain 5th Porto Meeting on Mathematics for Industry, 11th April 2014 Contents: The Capacitated Vehicle Routing Problem Subproblems: Trees and the TSP CVRP Cutting Planes

More information

Introduction to Integer Programming

Introduction to Integer Programming Lecture 3/3/2006 p. /27 Introduction to Integer Programming Leo Liberti LIX, École Polytechnique liberti@lix.polytechnique.fr Lecture 3/3/2006 p. 2/27 Contents IP formulations and examples Total unimodularity

More information

Section Notes 8. Integer Programming II. Applied Math 121. Week of April 5, expand your knowledge of big M s and logical constraints.

Section Notes 8. Integer Programming II. Applied Math 121. Week of April 5, expand your knowledge of big M s and logical constraints. Section Notes 8 Integer Programming II Applied Math 121 Week of April 5, 2010 Goals for the week understand IP relaxations be able to determine the relative strength of formulations understand the branch

More information

Operations Research Methods in Constraint Programming

Operations Research Methods in Constraint Programming Operations Research Methods in Constraint Programming John Hooker Carnegie Mellon University Prepared for Lloret de Mar, Spain June 2007 2007 Slide 1 CP and OR Have Complementary Strengths CP: Inference

More information

0-1 Reformulations of the Network Loading Problem

0-1 Reformulations of the Network Loading Problem 0-1 Reformulations of the Network Loading Problem Antonio Frangioni 1 frangio@di.unipi.it Bernard Gendron 2 bernard@crt.umontreal.ca 1 Dipartimento di Informatica Università di Pisa Via Buonarroti, 2 56127

More information

An Integer Cutting-Plane Procedure for the Dantzig-Wolfe Decomposition: Theory

An Integer Cutting-Plane Procedure for the Dantzig-Wolfe Decomposition: Theory An Integer Cutting-Plane Procedure for the Dantzig-Wolfe Decomposition: Theory by Troels Martin Range Discussion Papers on Business and Economics No. 10/2006 FURTHER INFORMATION Department of Business

More information

Computational Integer Programming. Lecture 2: Modeling and Formulation. Dr. Ted Ralphs

Computational Integer Programming. Lecture 2: Modeling and Formulation. Dr. Ted Ralphs Computational Integer Programming Lecture 2: Modeling and Formulation Dr. Ted Ralphs Computational MILP Lecture 2 1 Reading for This Lecture N&W Sections I.1.1-I.1.6 Wolsey Chapter 1 CCZ Chapter 2 Computational

More information

Applications. Stephen J. Stoyan, Maged M. Dessouky*, and Xiaoqing Wang

Applications. Stephen J. Stoyan, Maged M. Dessouky*, and Xiaoqing Wang Introduction to Large-Scale Linear Programming and Applications Stephen J. Stoyan, Maged M. Dessouky*, and Xiaoqing Wang Daniel J. Epstein Department of Industrial and Systems Engineering, University of

More information

Integer Programming Reformulations: Dantzig-Wolfe & Benders Decomposition the Coluna Software Platform

Integer Programming Reformulations: Dantzig-Wolfe & Benders Decomposition the Coluna Software Platform Integer Programming Reformulations: Dantzig-Wolfe & Benders Decomposition the Coluna Software Platform François Vanderbeck B. Detienne, F. Clautiaux, R. Griset, T. Leite, G. Marques, V. Nesello, A. Pessoa,

More information

Discrete (and Continuous) Optimization WI4 131

Discrete (and Continuous) Optimization WI4 131 Discrete (and Continuous) Optimization WI4 131 Kees Roos Technische Universiteit Delft Faculteit Electrotechniek, Wiskunde en Informatica Afdeling Informatie, Systemen en Algoritmiek e-mail: C.Roos@ewi.tudelft.nl

More information

Disconnecting Networks via Node Deletions

Disconnecting Networks via Node Deletions 1 / 27 Disconnecting Networks via Node Deletions Exact Interdiction Models and Algorithms Siqian Shen 1 J. Cole Smith 2 R. Goli 2 1 IOE, University of Michigan 2 ISE, University of Florida 2012 INFORMS

More information

An Integrated Column Generation and Lagrangian Relaxation for Flowshop Scheduling Problems

An Integrated Column Generation and Lagrangian Relaxation for Flowshop Scheduling Problems Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics San Antonio, TX, USA - October 2009 An Integrated Column Generation and Lagrangian Relaxation for Flowshop Scheduling

More information

Introduction to Bin Packing Problems

Introduction to Bin Packing Problems Introduction to Bin Packing Problems Fabio Furini March 13, 2015 Outline Origins and applications Applications: Definition: Bin Packing Problem (BPP) Solution techniques for the BPP Heuristic Algorithms

More information

Reformulation and Decomposition of Integer Programs

Reformulation and Decomposition of Integer Programs Reformulation and Decomposition of Integer Programs François Vanderbeck 1 and Laurence A. Wolsey 2 (Reference: CORE DP 2009/16) (1) Université Bordeaux 1 & INRIA-Bordeaux (2) Université de Louvain, CORE.

More information

A Hub Location Problem with Fully Interconnected Backbone and Access Networks

A Hub Location Problem with Fully Interconnected Backbone and Access Networks A Hub Location Problem with Fully Interconnected Backbone and Access Networks Tommy Thomadsen Informatics and Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby Denmark tt@imm.dtu.dk

More information

Advanced linear programming

Advanced linear programming Advanced linear programming http://www.staff.science.uu.nl/~akker103/alp/ Chapter 10: Integer linear programming models Marjan van den Akker 1 Intro. Marjan van den Akker Master Mathematics TU/e PhD Mathematics

More information

Lecture 7: Lagrangian Relaxation and Duality Theory

Lecture 7: Lagrangian Relaxation and Duality Theory Lecture 7: Lagrangian Relaxation and Duality Theory (3 units) Outline Lagrangian dual for linear IP Lagrangian dual for general IP Dual Search Lagrangian decomposition 1 / 23 Joseph Louis Lagrange Joseph

More information

Lagrangean relaxation

Lagrangean relaxation Lagrangean relaxation Giovanni Righini Corso di Complementi di Ricerca Operativa Joseph Louis de la Grange (Torino 1736 - Paris 1813) Relaxations Given a problem P, such as: minimize z P (x) s.t. x X P

More information

Solving Dual Problems

Solving Dual Problems Lecture 20 Solving Dual Problems We consider a constrained problem where, in addition to the constraint set X, there are also inequality and linear equality constraints. Specifically the minimization problem

More information

Solutions to Exercises

Solutions to Exercises 1/13 Solutions to Exercises The exercises referred to as WS 1.1(a), and so forth, are from the course book: Williamson and Shmoys, The Design of Approximation Algorithms, Cambridge University Press, 2011,

More information

Travelling Salesman Problem

Travelling Salesman Problem Travelling Salesman Problem Fabio Furini November 10th, 2014 Travelling Salesman Problem 1 Outline 1 Traveling Salesman Problem Separation Travelling Salesman Problem 2 (Asymmetric) Traveling Salesman

More information

Column Generation. ORLAB - Operations Research Laboratory. Stefano Gualandi. June 14, Politecnico di Milano, Italy

Column Generation. ORLAB - Operations Research Laboratory. Stefano Gualandi. June 14, Politecnico di Milano, Italy ORLAB - Operations Research Laboratory Politecnico di Milano, Italy June 14, 2011 Cutting Stock Problem (from wikipedia) Imagine that you work in a paper mill and you have a number of rolls of paper of

More information

Classification of Dantzig-Wolfe Reformulations for MIP s

Classification of Dantzig-Wolfe Reformulations for MIP s Classification of Dantzig-Wolfe Reformulations for MIP s Raf Jans Rotterdam School of Management HEC Montreal Workshop on Column Generation Aussois, June 2008 Outline and Motivation Dantzig-Wolfe reformulation

More information

The traveling salesman problem

The traveling salesman problem Chapter 58 The traveling salesman problem The traveling salesman problem (TSP) asks for a shortest Hamiltonian circuit in a graph. It belongs to the most seductive problems in combinatorial optimization,

More information

The Separation Problem for Binary Decision Diagrams

The Separation Problem for Binary Decision Diagrams The Separation Problem for Binary Decision Diagrams J. N. Hooker Joint work with André Ciré Carnegie Mellon University ISAIM 2014 Separation Problem in Optimization Given a relaxation of an optimization

More information

MVE165/MMG630, Applied Optimization Lecture 6 Integer linear programming: models and applications; complexity. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 6 Integer linear programming: models and applications; complexity. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming: models and applications; complexity Ann-Brith Strömberg 2011 04 01 Modelling with integer variables (Ch. 13.1) Variables Linear programming (LP) uses continuous

More information

minimize x subject to (x 2)(x 4) u,

minimize x subject to (x 2)(x 4) u, Math 6366/6367: Optimization and Variational Methods Sample Preliminary Exam Questions 1. Suppose that f : [, L] R is a C 2 -function with f () on (, L) and that you have explicit formulae for

More information

3.10 Column generation method

3.10 Column generation method 3.10 Column generation method Many relevant decision-making (discrete optimization) problems can be formulated as ILP problems with a very large (exponential) number of variables. Examples: cutting stock,

More information

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 10 Dr. Ted Ralphs IE406 Lecture 10 1 Reading for This Lecture Bertsimas 4.1-4.3 IE406 Lecture 10 2 Duality Theory: Motivation Consider the following

More information

Nonlinear Programming (Hillier, Lieberman Chapter 13) CHEM-E7155 Production Planning and Control

Nonlinear Programming (Hillier, Lieberman Chapter 13) CHEM-E7155 Production Planning and Control Nonlinear Programming (Hillier, Lieberman Chapter 13) CHEM-E7155 Production Planning and Control 19/4/2012 Lecture content Problem formulation and sample examples (ch 13.1) Theoretical background Graphical

More information

Acceleration and Stabilization Techniques for Column Generation

Acceleration and Stabilization Techniques for Column Generation Acceleration and Stabilization Techniques for Column Generation Zhouchun Huang Qipeng Phil Zheng Department of Industrial Engineering & Management Systems University of Central Florida Sep 26, 2014 Outline

More information

Single Machine Problems Polynomial Cases

Single Machine Problems Polynomial Cases DM204, 2011 SCHEDULING, TIMETABLING AND ROUTING Lecture 2 Single Machine Problems Polynomial Cases Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline

More information

Integer programming: an introduction. Alessandro Astolfi

Integer programming: an introduction. Alessandro Astolfi Integer programming: an introduction Alessandro Astolfi Outline Introduction Examples Methods for solving ILP Optimization on graphs LP problems with integer solutions Summary Introduction Integer programming

More information

Integer Linear Programming (ILP)

Integer Linear Programming (ILP) Integer Linear Programming (ILP) Zdeněk Hanzálek, Přemysl Šůcha hanzalek@fel.cvut.cz CTU in Prague March 8, 2017 Z. Hanzálek (CTU) Integer Linear Programming (ILP) March 8, 2017 1 / 43 Table of contents

More information

Lecture 10: Linear programming duality and sensitivity 0-0

Lecture 10: Linear programming duality and sensitivity 0-0 Lecture 10: Linear programming duality and sensitivity 0-0 The canonical primal dual pair 1 A R m n, b R m, and c R n maximize z = c T x (1) subject to Ax b, x 0 n and minimize w = b T y (2) subject to

More information

The Traveling Salesman Problem: An Overview. David P. Williamson, Cornell University Ebay Research January 21, 2014

The Traveling Salesman Problem: An Overview. David P. Williamson, Cornell University Ebay Research January 21, 2014 The Traveling Salesman Problem: An Overview David P. Williamson, Cornell University Ebay Research January 21, 2014 (Cook 2012) A highly readable introduction Some terminology (imprecise) Problem Traditional

More information

1 Column Generation and the Cutting Stock Problem

1 Column Generation and the Cutting Stock Problem 1 Column Generation and the Cutting Stock Problem In the linear programming approach to the traveling salesman problem we used the cutting plane approach. The cutting plane approach is appropriate when

More information

Partial Path Column Generation for the Elementary Shortest Path Problem with Resource Constraints

Partial Path Column Generation for the Elementary Shortest Path Problem with Resource Constraints Partial Path Column Generation for the Elementary Shortest Path Problem with Resource Constraints Mads Kehlet Jepsen & Bjørn Petersen Department of Computer Science, University of Copenhagen Universitetsparken

More information

The two-dimensional bin-packing problem is the problem of orthogonally packing a given set of rectangles

The two-dimensional bin-packing problem is the problem of orthogonally packing a given set of rectangles INFORMS Journal on Computing Vol. 19, No. 1, Winter 2007, pp. 36 51 issn 1091-9856 eissn 1526-5528 07 1901 0036 informs doi 10.1287/ijoc.1060.0181 2007 INFORMS Using Decomposition Techniques and Constraint

More information

Large-scale optimization and decomposition methods: outline. Column Generation and Cutting Plane methods: a unified view

Large-scale optimization and decomposition methods: outline. Column Generation and Cutting Plane methods: a unified view Large-scale optimization and decomposition methods: outline I Solution approaches for large-scaled problems: I Delayed column generation I Cutting plane methods (delayed constraint generation) 7 I Problems

More information

Reconnect 04 Introduction to Integer Programming

Reconnect 04 Introduction to Integer Programming Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, Reconnect 04 Introduction to Integer Programming Cynthia Phillips, Sandia National Laboratories Integer programming

More information

Interior-Point versus Simplex methods for Integer Programming Branch-and-Bound

Interior-Point versus Simplex methods for Integer Programming Branch-and-Bound Interior-Point versus Simplex methods for Integer Programming Branch-and-Bound Samir Elhedhli elhedhli@uwaterloo.ca Department of Management Sciences, University of Waterloo, Canada Page of 4 McMaster

More information

Logic-based Benders Decomposition

Logic-based Benders Decomposition Logic-based Benders Decomposition A short Introduction Martin Riedler AC Retreat Contents 1 Introduction 2 Motivation 3 Further Notes MR Logic-based Benders Decomposition June 29 July 1 2 / 15 Basic idea

More information

EXACT ALGORITHMS FOR THE ATSP

EXACT ALGORITHMS FOR THE ATSP EXACT ALGORITHMS FOR THE ATSP Branch-and-Bound Algorithms: Little-Murty-Sweeney-Karel (Operations Research, ); Bellmore-Malone (Operations Research, ); Garfinkel (Operations Research, ); Smith-Srinivasan-Thompson

More information

Partial Path Column Generation for the Vehicle Routing Problem with Time Windows

Partial Path Column Generation for the Vehicle Routing Problem with Time Windows Partial Path Column Generation for the Vehicle Routing Problem with Time Windows Bjørn Petersen & Mads Kehlet Jepsen } DIKU Department of Computer Science, University of Copenhagen Universitetsparken 1,

More information

4y Springer NONLINEAR INTEGER PROGRAMMING

4y Springer NONLINEAR INTEGER PROGRAMMING NONLINEAR INTEGER PROGRAMMING DUAN LI Department of Systems Engineering and Engineering Management The Chinese University of Hong Kong Shatin, N. T. Hong Kong XIAOLING SUN Department of Mathematics Shanghai

More information

Exact algorithm over an arc-time-indexed formulation for parallel machine scheduling problems

Exact algorithm over an arc-time-indexed formulation for parallel machine scheduling problems Math. Prog. Comp. (2010) 2:259 290 DOI 10.1007/s12532-010-0019-z FULL LENGTH PAPER Exact algorithm over an arc-time-indexed formulation for parallel machine scheduling problems Artur Pessoa Eduardo Uchoa

More information

Lecture 23 Branch-and-Bound Algorithm. November 3, 2009

Lecture 23 Branch-and-Bound Algorithm. November 3, 2009 Branch-and-Bound Algorithm November 3, 2009 Outline Lecture 23 Modeling aspect: Either-Or requirement Special ILPs: Totally unimodular matrices Branch-and-Bound Algorithm Underlying idea Terminology Formal

More information

Overview of course. Introduction to Optimization, DIKU Monday 12 November David Pisinger

Overview of course. Introduction to Optimization, DIKU Monday 12 November David Pisinger Introduction to Optimization, DIKU 007-08 Monday November David Pisinger Lecture What is OR, linear models, standard form, slack form, simplex repetition, graphical interpretation, extreme points, basic

More information

IP Cut Homework from J and B Chapter 9: 14, 15, 16, 23, 24, You wish to solve the IP below with a cutting plane technique.

IP Cut Homework from J and B Chapter 9: 14, 15, 16, 23, 24, You wish to solve the IP below with a cutting plane technique. IP Cut Homework from J and B Chapter 9: 14, 15, 16, 23, 24, 31 14. You wish to solve the IP below with a cutting plane technique. Maximize 4x 1 + 2x 2 + x 3 subject to 14x 1 + 10x 2 + 11x 3 32 10x 1 +

More information

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved.

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved. Chapter 11 Approximation Algorithms Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison Wesley. All rights reserved. 1 Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should

More information

Projection in Logic, CP, and Optimization

Projection in Logic, CP, and Optimization Projection in Logic, CP, and Optimization John Hooker Carnegie Mellon University Workshop on Logic and Search Melbourne, 2017 Projection as a Unifying Concept Projection is a fundamental concept in logic,

More information

3.10 Column generation method

3.10 Column generation method 3.10 Column generation method Many relevant decision-making problems can be formulated as ILP problems with a very large (exponential) number of variables. Examples: cutting stock, crew scheduling, vehicle

More information

DEPARTMENT OF STATISTICS AND OPERATIONS RESEARCH OPERATIONS RESEARCH DETERMINISTIC QUALIFYING EXAMINATION. Part I: Short Questions

DEPARTMENT OF STATISTICS AND OPERATIONS RESEARCH OPERATIONS RESEARCH DETERMINISTIC QUALIFYING EXAMINATION. Part I: Short Questions DEPARTMENT OF STATISTICS AND OPERATIONS RESEARCH OPERATIONS RESEARCH DETERMINISTIC QUALIFYING EXAMINATION Part I: Short Questions August 12, 2008 9:00 am - 12 pm General Instructions This examination is

More information

Constrained Optimization

Constrained Optimization 1 / 22 Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University March 30, 2015 2 / 22 1. Equality constraints only 1.1 Reduced gradient 1.2 Lagrange

More information

Introduction to Integer Linear Programming

Introduction to Integer Linear Programming Lecture 7/12/2006 p. 1/30 Introduction to Integer Linear Programming Leo Liberti, Ruslan Sadykov LIX, École Polytechnique liberti@lix.polytechnique.fr sadykov@lix.polytechnique.fr Lecture 7/12/2006 p.

More information

Column Generation. MTech Seminar Report. Soumitra Pal Roll No: under the guidance of

Column Generation. MTech Seminar Report. Soumitra Pal Roll No: under the guidance of Column Generation MTech Seminar Report by Soumitra Pal Roll No: 05305015 under the guidance of Prof. A. G. Ranade Computer Science and Engineering IIT-Bombay a Department of Computer Science and Engineering

More information

15-850: Advanced Algorithms CMU, Fall 2018 HW #4 (out October 17, 2018) Due: October 28, 2018

15-850: Advanced Algorithms CMU, Fall 2018 HW #4 (out October 17, 2018) Due: October 28, 2018 15-850: Advanced Algorithms CMU, Fall 2018 HW #4 (out October 17, 2018) Due: October 28, 2018 Usual rules. :) Exercises 1. Lots of Flows. Suppose you wanted to find an approximate solution to the following

More information

ELE539A: Optimization of Communication Systems Lecture 16: Pareto Optimization and Nonconvex Optimization

ELE539A: Optimization of Communication Systems Lecture 16: Pareto Optimization and Nonconvex Optimization ELE539A: Optimization of Communication Systems Lecture 16: Pareto Optimization and Nonconvex Optimization Professor M. Chiang Electrical Engineering Department, Princeton University March 16, 2007 Lecture

More information

3.7 Cutting plane methods

3.7 Cutting plane methods 3.7 Cutting plane methods Generic ILP problem min{ c t x : x X = {x Z n + : Ax b} } with m n matrix A and n 1 vector b of rationals. According to Meyer s theorem: There exists an ideal formulation: conv(x

More information

RCPSP Single Machine Problems

RCPSP Single Machine Problems DM204 Spring 2011 Scheduling, Timetabling and Routing Lecture 3 Single Machine Problems Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. Resource

More information