IP Cut Homework from J and B Chapter 9: 14, 15, 16, 23, 24, You wish to solve the IP below with a cutting plane technique.

Size: px
Start display at page:

Download "IP Cut Homework from J and B Chapter 9: 14, 15, 16, 23, 24, You wish to solve the IP below with a cutting plane technique."

Transcription

1 IP Cut Homework from J and B Chapter 9: 14, 15, 16, 23, 24, You wish to solve the IP below with a cutting plane technique. Maximize 4x 1 + 2x 2 + x 3 subject to 14x x x x 1 + 8x 2 + 9x 3 0 x 1, x 2, x 3 0 and integer After relaxing the integrality requirements and solving the resulting linear program, the following solution is obtained. Var. no. Name Value Status 1 x BASIC 1 2 x BASIC 2 3 x 3 0 ZERO 4 SLK 1(x 4 ) 0 ZERO 5 SLK 2(x 5 ) 0 ZERO Objective value = The basis and basis inverse for this solution are B = and B 1 = a. What Gomory cuts can be derived from the current information? Express the cuts in terms of the nonbasic variables in the solution above. The Gomery cuts are: G x x x G x x x b. Write the cuts found in part a in terms of the original structural variables. The Gomery cuts are: G1. -1x 1 + 0x 2 + 1x 3-1 or 1x 1 + 0x 2-1x 3 1 G2. -10x 1 + 7x 2 + 8x 3-1 or 10x 1-7x 2-8x 3 1 1

2 c. What Dantzig cut should be added to continue the cutting plane procedure? D. x 3 + x 4 + x 5 1 d. Write the Dantzig cut in terms of the original structural variables. D. -24x 1 2x 2-1x 3-31 e. Add the Gomery cut with the largest right-hand-side value to the original LP and use an LP code to find the solution. Report the values of the variables in the optimal solution. How has the objective value changed with the addition of the cut? The new LP solution Var. no. Name Value Status 1 x BASIC 2 x BASIC 3 x 3 0 ZERO 4 SLK 1(x 4 ) 0 ZERO 5 SLK 2(x 5 ) BASIC 6 SLK Cut(x 6 ) 0 ZERO Objective value = The objective value has decreased. 2

3 15. The tableau below gives the LP solution to the relaxation of an integer programming problem with maximization objective. All a ij and b i coefficients in the original problem are integer. Row Basic Coefficients no. variables z x 1 x 2 x 3 x 4 x 5 x 6 RHS 0 z x x x a. Write out all Gomory cuts that can be derived from the tableau. Row 1: 0.3x x Row 2: 0.1x x Row 3: 0.2x x x b. Write out the Dantzig cut that can be derived from the tableau. Dantzig: x 1 + x 2 + x 4 1 c. Add the Gomory cut with the largest right-hand-side value to the tableau and use the dual simplex method to find the new solution. Perform these computations by hand. From row 3: A: 0.2x x x 4 X 7 = 0.7 Row Basic Coefficients no. variables z x 1 x 2 x 3 x 4 x 5 x 6 x 7 RHS 0 z x x x x Ratio 1/2 3/8 2/5 3

4 x 7 leaves the basis and x 4 enters Row Basic Coefficients no. variables z x1 x2 x3 x4 x5 x6 x7 RHS 0 z x x x x Drop: d. Solve the problem with the cutting plane algorithm included in the Teach IP Excel Add-in. 4

5 16. Find the relaxed LP solution to the following integer program. Maximize 2x 1 + 5x 2 subject to x 1 + x 2 5 x 1 + x 2 2 x 1 x 2 2 x 1 + x 2 3 x 1, x 2 0 and integer Now identify which of the cuts below are valid for use in a cutting plane algorithm. The constraints are not cumulative so each part should be analyzed separately. Justify your conclusion in each case. a. x 1 3 b. x 2 4 c. x 1 + 3x 2 10 d. 1.75x x (Note that x 3 and x 4 are respectively the slack variables for the first two constraints.) a. x 1 3 This is a valid inequality for the convex hull of the integer points. There are some points that are infeasible for the LP relaxation. It would be useful for a cutting plane algorithm b. x 2 4 This is a valid inequality, but it does not cut off any points in the LP relaxation. It would not be useful for a cutting plane. c. x 1 + 3x 2 10 This is a not a valid inequality for the convex hull of the integer solutions, so it would not be useful for a cutting plane algorithm d. 1.75x x (Note that x 3 and x 4 are respectively the slack variables for the first two constraints.) Rewrite d in terms of the original variables: 1.75(5 x 1 x 2 ) 0.75(2 + x 1 x 2 ) /4-1.75x x x x x 1 + x 2 9/2 or 5x 1 + 2x 2 9 This is a not a valid inequality for the convex hull of the integer solutions, so it would not be useful for a cutting plane algorithm 5

6 5 x2 C1 4 C2 Cb 3 Ca 2 1 C3 Cc C x2 Cd 6

7 23. (Branch and cut) { XE "Branch and cut" }{ XE "Integer programming:branch and cut" }How could a cutting plane technique be incorporated into an implicit enumeration technique for solving the pure integer programming problem? a. Write out the steps. The primary change involves the Bound procedure: If the relaxed solution fails to find a feasible (integer) solution or fails to discover infeasibility, we may add cuts to the LP relaxation in an attempt to obtain a better bound or find infeasibility. In the backtrack procedure we must eliminate all cuts added at lower levels of the tree. b. Under what circumstances could the cuts be used at each node of the search tree? Cuts are only valid for the whole tree if they are added at node 0. 7

8 24. (Generalized Gomory cut) { XE "Gomory cuts:generalized" }Suppose we wish to use a cutting plane technique to solve a pure integer program. Assume that the LP relaxation has been solved and the ith constraint in the simplex tableau is x B(i) + - a ij x j = b - i j Q where x B(i) is the ith basic variable and Q is the set of nonbasic variables. Multiply this equation by any rational number h. Now, using the same approach outlined in Section 8.4 to derive the basic Gomory fractional cut given in Eq. (16), derive from the equation above a more generalized version of Eq. (16). x B( i) + a ij x j = b i (1) Multiplying the expression by a rational number h: hx B i (2) ( ) + ha ij x j = hb i At the optimal integer solution all variables are nonnegative integers. Replacing the coefficients on the left side by the next smaller integer we obtain the inequality h x B( i) + ha ij x j hb i (3) Since the left side must now be integer, the right side may be replaced by the next lower integer. h x B( i) + ha ij x j hb i (4) Multiplying (1) by the integer part of h and subtracting (4) we have h x B( i) + h a ij x j = h b i ( ha ij h a ij )x j hb i h b i or ( h a ij ha ij )x j h b i hb i The last expression is the desired cut. It is valid for every h. 8

9 31. Shown below is an integer programming model and the optimal tableau of its linear programming relaxation. Maximize z = 2x 1 + x 2 3x 3 + 5x 4 subject to 3x 1 x 2 + x 3 + 2x 4 8 x 1 + x 2 + 4x 3 x 4 6 2x 1 + 3x 2 x 3 + x 4 10 x 1 + x 3 + x 4 7 x j 0 and integer, j = 1,,4 Row Basic Coefficients no. variables z x 1 x 2 x 3 x 4 x s1 x s2 x s3 x s4 RHS 0 z x /7 0 2/7 1 3/7 0 1/7 0 34/7 2 x s2 0 17/7 0 33/7 0 4/7 1 1/7 0 64/7 3 x 2 0 1/7 1 3/7 0 1/7 0 2/7 0 12/7 4 x s4 0 4/7 0 5/7 0 3/7 0 1/7 1 15/7 a. Write the Dantzig cut that can be derived from the tableau. x 1 + x 3 + x s1 + x s3 1 b. From the set of possible Gomory cuts, write the one with the greatest right-handside value. The Gomery cut with the greatest RHS is from row 1. (4/7)x 1 + (2/7)x 3 + (3/7)x s1 + (1/7)x s3 6/7 c. Write the Gomory cut that can be derived from row 0. Since the coefficients in row 0 are all integer, no Gomery cut can be derived from the row. d. Write the Gomory cut that can be obtained from row 4. Add it to the tableau and reoptimize using the dual simplex method. The cut from row 4. (3/7)x 1 + (5/7)x 3 + (4/7)x s1 + (6/7)x s3 1/7 9

10 Objective: Max Press to setup. Objective Value: LP Status: Optimal IP Status: Variables I- 1 I- 2 I- 3 I- 4 Name: X 1 X 2 X 3 X 4 Values: Linear Obj. Coef.: Variable Values : Variable Values : straints Constraint Bounds Name Value Value Value Constraint Coefficients Cut Con Con Con Con e. Solve the problem with the cutting plane algorithm embodied in the Teach IP Excel Add-in. When cut 4 is added, an integer solution is immediately obtained. Objective: Max Objective Value: 22 LP Status: Optimal IP Status: Variables I- 1 I- 2 I- 3 I- 4 Name: X 1 X 2 X 3 X 4 Values: Linear Obj. Coef.: Variable Values : Variable Values : straints Constraint Bounds Name Value Value Value Constraint Coefficients Cut E Con Con Con Con

Section Notes 9. IP: Cutting Planes. Applied Math 121. Week of April 12, 2010

Section Notes 9. IP: Cutting Planes. Applied Math 121. Week of April 12, 2010 Section Notes 9 IP: Cutting Planes Applied Math 121 Week of April 12, 2010 Goals for the week understand what a strong formulations is. be familiar with the cutting planes algorithm and the types of cuts

More information

min3x 1 + 4x 2 + 5x 3 2x 1 + 2x 2 + x 3 6 x 1 + 2x 2 + 3x 3 5 x 1, x 2, x 3 0.

min3x 1 + 4x 2 + 5x 3 2x 1 + 2x 2 + x 3 6 x 1 + 2x 2 + 3x 3 5 x 1, x 2, x 3 0. ex-.-. Foundations of Operations Research Prof. E. Amaldi. Dual simplex algorithm Given the linear program minx + x + x x + x + x 6 x + x + x x, x, x. solve it via the dual simplex algorithm. Describe

More information

maxz = 3x 1 +4x 2 2x 1 +x 2 6 2x 1 +3x 2 9 x 1,x 2

maxz = 3x 1 +4x 2 2x 1 +x 2 6 2x 1 +3x 2 9 x 1,x 2 ex-5.-5. Foundations of Operations Research Prof. E. Amaldi 5. Branch-and-Bound Given the integer linear program maxz = x +x x +x 6 x +x 9 x,x integer solve it via the Branch-and-Bound method (solving

More information

21. Solve the LP given in Exercise 19 using the big-m method discussed in Exercise 20.

21. Solve the LP given in Exercise 19 using the big-m method discussed in Exercise 20. Extra Problems for Chapter 3. Linear Programming Methods 20. (Big-M Method) An alternative to the two-phase method of finding an initial basic feasible solution by minimizing the sum of the artificial

More information

The Simplex Method. Lecture 5 Standard and Canonical Forms and Setting up the Tableau. Lecture 5 Slide 1. FOMGT 353 Introduction to Management Science

The Simplex Method. Lecture 5 Standard and Canonical Forms and Setting up the Tableau. Lecture 5 Slide 1. FOMGT 353 Introduction to Management Science The Simplex Method Lecture 5 Standard and Canonical Forms and Setting up the Tableau Lecture 5 Slide 1 The Simplex Method Formulate Constrained Maximization or Minimization Problem Convert to Standard

More information

Optimization Methods in Management Science

Optimization Methods in Management Science Optimization Methods in Management Science MIT 15.05 Recitation 8 TAs: Giacomo Nannicini, Ebrahim Nasrabadi At the end of this recitation, students should be able to: 1. Derive Gomory cut from fractional

More information

Gomory Cuts. Chapter 5. Linear Arithmetic. Decision Procedures. An Algorithmic Point of View. Revision 1.0

Gomory Cuts. Chapter 5. Linear Arithmetic. Decision Procedures. An Algorithmic Point of View. Revision 1.0 Chapter 5 Linear Arithmetic Decision Procedures An Algorithmic Point of View D.Kroening O.Strichman Revision 1.0 Cutting planes Recall that in Branch & Bound we first solve a relaxed problem (i.e., no

More information

Section Notes 9. Midterm 2 Review. Applied Math / Engineering Sciences 121. Week of December 3, 2018

Section Notes 9. Midterm 2 Review. Applied Math / Engineering Sciences 121. Week of December 3, 2018 Section Notes 9 Midterm 2 Review Applied Math / Engineering Sciences 121 Week of December 3, 2018 The following list of topics is an overview of the material that was covered in the lectures and sections

More information

AM 121: Intro to Optimization! Models and Methods! Fall 2018!

AM 121: Intro to Optimization! Models and Methods! Fall 2018! AM 121: Intro to Optimization Models and Methods Fall 2018 Lecture 15: Cutting plane methods Yiling Chen SEAS Lesson Plan Cut generation and the separation problem Cutting plane methods Chvatal-Gomory

More information

Lecture 5 Simplex Method. September 2, 2009

Lecture 5 Simplex Method. September 2, 2009 Simplex Method September 2, 2009 Outline: Lecture 5 Re-cap blind search Simplex method in steps Simplex tableau Operations Research Methods 1 Determining an optimal solution by exhaustive search Lecture

More information

Standard Form An LP is in standard form when: All variables are non-negativenegative All constraints are equalities Putting an LP formulation into sta

Standard Form An LP is in standard form when: All variables are non-negativenegative All constraints are equalities Putting an LP formulation into sta Chapter 4 Linear Programming: The Simplex Method An Overview of the Simplex Method Standard Form Tableau Form Setting Up the Initial Simplex Tableau Improving the Solution Calculating the Next Tableau

More information

SOLVING INTEGER LINEAR PROGRAMS. 1. Solving the LP relaxation. 2. How to deal with fractional solutions?

SOLVING INTEGER LINEAR PROGRAMS. 1. Solving the LP relaxation. 2. How to deal with fractional solutions? SOLVING INTEGER LINEAR PROGRAMS 1. Solving the LP relaxation. 2. How to deal with fractional solutions? Integer Linear Program: Example max x 1 2x 2 0.5x 3 0.2x 4 x 5 +0.6x 6 s.t. x 1 +2x 2 1 x 1 + x 2

More information

Math Models of OR: Sensitivity Analysis

Math Models of OR: Sensitivity Analysis Math Models of OR: Sensitivity Analysis John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 8 USA October 8 Mitchell Sensitivity Analysis / 9 Optimal tableau and pivot matrix Outline Optimal

More information

min 4x 1 5x 2 + 3x 3 s.t. x 1 + 2x 2 + x 3 = 10 x 1 x 2 6 x 1 + 3x 2 + x 3 14

min 4x 1 5x 2 + 3x 3 s.t. x 1 + 2x 2 + x 3 = 10 x 1 x 2 6 x 1 + 3x 2 + x 3 14 The exam is three hours long and consists of 4 exercises. The exam is graded on a scale 0-25 points, and the points assigned to each question are indicated in parenthesis within the text. If necessary,

More information

Lecture 8: Column Generation

Lecture 8: Column Generation Lecture 8: Column Generation (3 units) Outline Cutting stock problem Classical IP formulation Set covering formulation Column generation A dual perspective 1 / 24 Cutting stock problem 2 / 24 Problem description

More information

Sensitivity Analysis

Sensitivity Analysis Dr. Maddah ENMG 500 /9/07 Sensitivity Analysis Changes in the RHS (b) Consider an optimal LP solution. Suppose that the original RHS (b) is changed from b 0 to b new. In the following, we study the affect

More information

Operations Research Lecture 6: Integer Programming

Operations Research Lecture 6: Integer Programming Operations Research Lecture 6: Integer Programming Notes taken by Kaiquan Xu@Business School, Nanjing University May 12th 2016 1 Integer programming (IP) formulations The integer programming (IP) is the

More information

56:171 Operations Research Midterm Exam--15 October 2002

56:171 Operations Research Midterm Exam--15 October 2002 Name 56:171 Operations Research Midterm Exam--15 October 2002 Possible Score 1. True/False 25 _ 2. LP sensitivity analysis 25 _ 3. Transportation problem 15 _ 4. LP tableaux 15 _ Total 80 _ Part I: True(+)

More information

Systems Analysis in Construction

Systems Analysis in Construction Systems Analysis in Construction CB312 Construction & Building Engineering Department- AASTMT by A h m e d E l h a k e e m & M o h a m e d S a i e d 3. Linear Programming Optimization Simplex Method 135

More information

Worked Examples for Chapter 5

Worked Examples for Chapter 5 Worked Examples for Chapter 5 Example for Section 5.2 Construct the primal-dual table and the dual problem for the following linear programming model fitting our standard form. Maximize Z = 5 x 1 + 4 x

More information

Lesson 27 Linear Programming; The Simplex Method

Lesson 27 Linear Programming; The Simplex Method Lesson Linear Programming; The Simplex Method Math 0 April 9, 006 Setup A standard linear programming problem is to maximize the quantity c x + c x +... c n x n = c T x subject to constraints a x + a x

More information

Chap6 Duality Theory and Sensitivity Analysis

Chap6 Duality Theory and Sensitivity Analysis Chap6 Duality Theory and Sensitivity Analysis The rationale of duality theory Max 4x 1 + x 2 + 5x 3 + 3x 4 S.T. x 1 x 2 x 3 + 3x 4 1 5x 1 + x 2 + 3x 3 + 8x 4 55 x 1 + 2x 2 + 3x 3 5x 4 3 x 1 ~x 4 0 If we

More information

Linear Programming Inverse Projection Theory Chapter 3

Linear Programming Inverse Projection Theory Chapter 3 1 Linear Programming Inverse Projection Theory Chapter 3 University of Chicago Booth School of Business Kipp Martin September 26, 2017 2 Where We Are Headed We want to solve problems with special structure!

More information

Introduction to Mathematical Programming IE406. Lecture 13. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 13. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 13 Dr. Ted Ralphs IE406 Lecture 13 1 Reading for This Lecture Bertsimas Chapter 5 IE406 Lecture 13 2 Sensitivity Analysis In many real-world problems,

More information

Part 1. The Review of Linear Programming

Part 1. The Review of Linear Programming In the name of God Part 1. The Review of Linear Programming 1.5. Spring 2010 Instructor: Dr. Masoud Yaghini Outline Introduction Formulation of the Dual Problem Primal-Dual Relationship Economic Interpretation

More information

Simplex Algorithm Using Canonical Tableaus

Simplex Algorithm Using Canonical Tableaus 41 Simplex Algorithm Using Canonical Tableaus Consider LP in standard form: Min z = cx + α subject to Ax = b where A m n has rank m and α is a constant In tableau form we record it as below Original Tableau

More information

Foundations of Operations Research

Foundations of Operations Research Solved exercises for the course of Foundations of Operations Research Roberto Cordone Gomory cuts Given the ILP problem maxf = 4x 1 +3x 2 2x 1 +x 2 11 x 1 +2x 2 6 x 1,x 2 N solve it with the Gomory cutting

More information

Prelude to the Simplex Algorithm. The Algebraic Approach The search for extreme point solutions.

Prelude to the Simplex Algorithm. The Algebraic Approach The search for extreme point solutions. Prelude to the Simplex Algorithm The Algebraic Approach The search for extreme point solutions. 1 Linear Programming-1 x 2 12 8 (4,8) Max z = 6x 1 + 4x 2 Subj. to: x 1 + x 2

More information

TIM 206 Lecture 3: The Simplex Method

TIM 206 Lecture 3: The Simplex Method TIM 206 Lecture 3: The Simplex Method Kevin Ross. Scribe: Shane Brennan (2006) September 29, 2011 1 Basic Feasible Solutions Have equation Ax = b contain more columns (variables) than rows (constraints),

More information

Linear programs, convex polyhedra, extreme points

Linear programs, convex polyhedra, extreme points MVE165/MMG631 Extreme points of convex polyhedra; reformulations; basic feasible solutions; the simplex method Ann-Brith Strömberg 2015 03 27 Linear programs, convex polyhedra, extreme points A linear

More information

Summary of the simplex method

Summary of the simplex method MVE165/MMG630, The simplex method; degeneracy; unbounded solutions; infeasibility; starting solutions; duality; interpretation Ann-Brith Strömberg 2012 03 16 Summary of the simplex method Optimality condition:

More information

MATH 445/545 Homework 2: Due March 3rd, 2016

MATH 445/545 Homework 2: Due March 3rd, 2016 MATH 445/545 Homework 2: Due March 3rd, 216 Answer the following questions. Please include the question with the solution (write or type them out doing this will help you digest the problem). I do not

More information

Part 1. The Review of Linear Programming

Part 1. The Review of Linear Programming In the name of God Part 1. The Review of Linear Programming 1.2. Spring 2010 Instructor: Dr. Masoud Yaghini Outline Introduction Basic Feasible Solutions Key to the Algebra of the The Simplex Algorithm

More information

The simplex algorithm

The simplex algorithm The simplex algorithm The simplex algorithm is the classical method for solving linear programs. Its running time is not polynomial in the worst case. It does yield insight into linear programs, however,

More information

Slack Variable. Max Z= 3x 1 + 4x 2 + 5X 3. Subject to: X 1 + X 2 + X x 1 + 4x 2 + X X 1 + X 2 + 4X 3 10 X 1 0, X 2 0, X 3 0

Slack Variable. Max Z= 3x 1 + 4x 2 + 5X 3. Subject to: X 1 + X 2 + X x 1 + 4x 2 + X X 1 + X 2 + 4X 3 10 X 1 0, X 2 0, X 3 0 Simplex Method Slack Variable Max Z= 3x 1 + 4x 2 + 5X 3 Subject to: X 1 + X 2 + X 3 20 3x 1 + 4x 2 + X 3 15 2X 1 + X 2 + 4X 3 10 X 1 0, X 2 0, X 3 0 Standard Form Max Z= 3x 1 +4x 2 +5X 3 + 0S 1 + 0S 2

More information

1 Simplex and Matrices

1 Simplex and Matrices 1 Simplex and Matrices We will begin with a review of matrix multiplication. A matrix is simply an array of numbers. If a given array has m rows and n columns, then it is called an m n (or m-by-n) matrix.

More information

Lecture 8: Column Generation

Lecture 8: Column Generation Lecture 8: Column Generation (3 units) Outline Cutting stock problem Classical IP formulation Set covering formulation Column generation A dual perspective Vehicle routing problem 1 / 33 Cutting stock

More information

Introduction to Mathematical Programming IE406. Lecture 21. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 21. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 21 Dr. Ted Ralphs IE406 Lecture 21 1 Reading for This Lecture Bertsimas Sections 10.2, 10.3, 11.1, 11.2 IE406 Lecture 21 2 Branch and Bound Branch

More information

Metode Kuantitatif Bisnis. Week 4 Linear Programming Simplex Method - Minimize

Metode Kuantitatif Bisnis. Week 4 Linear Programming Simplex Method - Minimize Metode Kuantitatif Bisnis Week 4 Linear Programming Simplex Method - Minimize Outlines Solve Linear Programming Model Using Graphic Solution Solve Linear Programming Model Using Simplex Method (Maximize)

More information

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini In the name of God Network Flows 6. Lagrangian Relaxation 6.3 Lagrangian Relaxation and Integer Programming Fall 2010 Instructor: Dr. Masoud Yaghini Integer Programming Outline Branch-and-Bound Technique

More information

(P ) Minimize 4x 1 + 6x 2 + 5x 3 s.t. 2x 1 3x 3 3 3x 2 2x 3 6

(P ) Minimize 4x 1 + 6x 2 + 5x 3 s.t. 2x 1 3x 3 3 3x 2 2x 3 6 The exam is three hours long and consists of 4 exercises. The exam is graded on a scale 0-25 points, and the points assigned to each question are indicated in parenthesis within the text. Problem 1 Consider

More information

A Review of Linear Programming

A Review of Linear Programming A Review of Linear Programming Instructor: Farid Alizadeh IEOR 4600y Spring 2001 February 14, 2001 1 Overview In this note we review the basic properties of linear programming including the primal simplex

More information

Summary of the simplex method

Summary of the simplex method MVE165/MMG631,Linear and integer optimization with applications The simplex method: degeneracy; unbounded solutions; starting solutions; infeasibility; alternative optimal solutions Ann-Brith Strömberg

More information

The Dual Simplex Algorithm

The Dual Simplex Algorithm p. 1 The Dual Simplex Algorithm Primal optimal (dual feasible) and primal feasible (dual optimal) bases The dual simplex tableau, dual optimality and the dual pivot rules Classical applications of linear

More information

Math Models of OR: Some Definitions

Math Models of OR: Some Definitions Math Models of OR: Some Definitions John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA September 2018 Mitchell Some Definitions 1 / 20 Active constraints Outline 1 Active constraints

More information

CSC Design and Analysis of Algorithms. LP Shader Electronics Example

CSC Design and Analysis of Algorithms. LP Shader Electronics Example CSC 80- Design and Analysis of Algorithms Lecture (LP) LP Shader Electronics Example The Shader Electronics Company produces two products:.eclipse, a portable touchscreen digital player; it takes hours

More information

4. Duality and Sensitivity

4. Duality and Sensitivity 4. Duality and Sensitivity For every instance of an LP, there is an associated LP known as the dual problem. The original problem is known as the primal problem. There are two de nitions of the dual pair

More information

MAT016: Optimization

MAT016: Optimization MAT016: Optimization M.El Ghami e-mail: melghami@ii.uib.no URL: http://www.ii.uib.no/ melghami/ March 29, 2011 Outline for today The Simplex method in matrix notation Managing a production facility The

More information

AM 121: Intro to Optimization Models and Methods Fall 2018

AM 121: Intro to Optimization Models and Methods Fall 2018 AM 121: Intro to Optimization Models and Methods Fall 2018 Lecture 5: The Simplex Method Yiling Chen Harvard SEAS Lesson Plan This lecture: Moving towards an algorithm for solving LPs Tableau. Adjacent

More information

CPS 616 ITERATIVE IMPROVEMENTS 10-1

CPS 616 ITERATIVE IMPROVEMENTS 10-1 CPS 66 ITERATIVE IMPROVEMENTS 0 - APPROACH Algorithm design technique for solving optimization problems Start with a feasible solution Repeat the following step until no improvement can be found: change

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 8 Discrete optimization: theory and algorithms

MVE165/MMG631 Linear and integer optimization with applications Lecture 8 Discrete optimization: theory and algorithms MVE165/MMG631 Linear and integer optimization with applications Lecture 8 Discrete optimization: theory and algorithms Ann-Brith Strömberg 2017 04 07 Lecture 8 Linear and integer optimization with applications

More information

Relation of Pure Minimum Cost Flow Model to Linear Programming

Relation of Pure Minimum Cost Flow Model to Linear Programming Appendix A Page 1 Relation of Pure Minimum Cost Flow Model to Linear Programming The Network Model The network pure minimum cost flow model has m nodes. The external flows given by the vector b with m

More information

DEPARTMENT OF STATISTICS AND OPERATIONS RESEARCH OPERATIONS RESEARCH DETERMINISTIC QUALIFYING EXAMINATION. Part I: Short Questions

DEPARTMENT OF STATISTICS AND OPERATIONS RESEARCH OPERATIONS RESEARCH DETERMINISTIC QUALIFYING EXAMINATION. Part I: Short Questions DEPARTMENT OF STATISTICS AND OPERATIONS RESEARCH OPERATIONS RESEARCH DETERMINISTIC QUALIFYING EXAMINATION Part I: Short Questions August 12, 2008 9:00 am - 12 pm General Instructions This examination is

More information

Lecture 11: Post-Optimal Analysis. September 23, 2009

Lecture 11: Post-Optimal Analysis. September 23, 2009 Lecture : Post-Optimal Analysis September 23, 2009 Today Lecture Dual-Simplex Algorithm Post-Optimal Analysis Chapters 4.4 and 4.5. IE 30/GE 330 Lecture Dual Simplex Method The dual simplex method will

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 5 Linear programming duality and sensitivity analysis

MVE165/MMG631 Linear and integer optimization with applications Lecture 5 Linear programming duality and sensitivity analysis MVE165/MMG631 Linear and integer optimization with applications Lecture 5 Linear programming duality and sensitivity analysis Ann-Brith Strömberg 2017 03 29 Lecture 4 Linear and integer optimization with

More information

Decision Procedures An Algorithmic Point of View

Decision Procedures An Algorithmic Point of View An Algorithmic Point of View ILP References: Integer Programming / Laurence Wolsey Deciding ILPs with Branch & Bound Intro. To mathematical programming / Hillier, Lieberman Daniel Kroening and Ofer Strichman

More information

56:171 Operations Research Fall 1998

56:171 Operations Research Fall 1998 56:171 Operations Research Fall 1998 Quiz Solutions D.L.Bricker Dept of Mechanical & Industrial Engineering University of Iowa 56:171 Operations Research Quiz

More information

9.1 Linear Programs in canonical form

9.1 Linear Programs in canonical form 9.1 Linear Programs in canonical form LP in standard form: max (LP) s.t. where b i R, i = 1,..., m z = j c jx j j a ijx j b i i = 1,..., m x j 0 j = 1,..., n But the Simplex method works only on systems

More information

Structured Problems and Algorithms

Structured Problems and Algorithms Integer and quadratic optimization problems Dept. of Engg. and Comp. Sci., Univ. of Cal., Davis Aug. 13, 2010 Table of contents Outline 1 2 3 Benefits of Structured Problems Optimization problems may become

More information

Chapter 2: Linear Programming Basics. (Bertsimas & Tsitsiklis, Chapter 1)

Chapter 2: Linear Programming Basics. (Bertsimas & Tsitsiklis, Chapter 1) Chapter 2: Linear Programming Basics (Bertsimas & Tsitsiklis, Chapter 1) 33 Example of a Linear Program Remarks. minimize 2x 1 x 2 + 4x 3 subject to x 1 + x 2 + x 4 2 3x 2 x 3 = 5 x 3 + x 4 3 x 1 0 x 3

More information

IE 400: Principles of Engineering Management. Simplex Method Continued

IE 400: Principles of Engineering Management. Simplex Method Continued IE 400: Principles of Engineering Management Simplex Method Continued 1 Agenda Simplex for min problems Alternative optimal solutions Unboundedness Degeneracy Big M method Two phase method 2 Simplex for

More information

Section Notes 8. Integer Programming II. Applied Math 121. Week of April 5, expand your knowledge of big M s and logical constraints.

Section Notes 8. Integer Programming II. Applied Math 121. Week of April 5, expand your knowledge of big M s and logical constraints. Section Notes 8 Integer Programming II Applied Math 121 Week of April 5, 2010 Goals for the week understand IP relaxations be able to determine the relative strength of formulations understand the branch

More information

Linear programming: algebra

Linear programming: algebra : algebra CE 377K March 26, 2015 ANNOUNCEMENTS Groups and project topics due soon Announcements Groups and project topics due soon Did everyone get my test email? Announcements REVIEW geometry Review geometry

More information

Review Solutions, Exam 2, Operations Research

Review Solutions, Exam 2, Operations Research Review Solutions, Exam 2, Operations Research 1. Prove the weak duality theorem: For any x feasible for the primal and y feasible for the dual, then... HINT: Consider the quantity y T Ax. SOLUTION: To

More information

Simplex Method for LP (II)

Simplex Method for LP (II) Simplex Method for LP (II) Xiaoxi Li Wuhan University Sept. 27, 2017 (week 4) Operations Research (Li, X.) Simplex Method for LP (II) Sept. 27, 2017 (week 4) 1 / 31 Organization of this lecture Contents:

More information

OPRE 6201 : 3. Special Cases

OPRE 6201 : 3. Special Cases OPRE 6201 : 3. Special Cases 1 Initialization: The Big-M Formulation Consider the linear program: Minimize 4x 1 +x 2 3x 1 +x 2 = 3 (1) 4x 1 +3x 2 6 (2) x 1 +2x 2 3 (3) x 1, x 2 0. Notice that there are

More information

Introduction to Integer Linear Programming

Introduction to Integer Linear Programming Lecture 7/12/2006 p. 1/30 Introduction to Integer Linear Programming Leo Liberti, Ruslan Sadykov LIX, École Polytechnique liberti@lix.polytechnique.fr sadykov@lix.polytechnique.fr Lecture 7/12/2006 p.

More information

ORF 307: Lecture 2. Linear Programming: Chapter 2 Simplex Methods

ORF 307: Lecture 2. Linear Programming: Chapter 2 Simplex Methods ORF 307: Lecture 2 Linear Programming: Chapter 2 Simplex Methods Robert Vanderbei February 8, 2018 Slides last edited on February 8, 2018 http://www.princeton.edu/ rvdb Simplex Method for LP An Example.

More information

to work with) can be solved by solving their LP relaxations with the Simplex method I Cutting plane algorithms, e.g., Gomory s fractional cutting

to work with) can be solved by solving their LP relaxations with the Simplex method I Cutting plane algorithms, e.g., Gomory s fractional cutting Summary so far z =max{c T x : Ax apple b, x 2 Z n +} I Modeling with IP (and MIP, and BIP) problems I Formulation for a discrete set that is a feasible region of an IP I Alternative formulations for the

More information

Midterm Review. Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A.

Midterm Review. Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. Midterm Review Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye (LY, Chapter 1-4, Appendices) 1 Separating hyperplane

More information

9.5 THE SIMPLEX METHOD: MIXED CONSTRAINTS

9.5 THE SIMPLEX METHOD: MIXED CONSTRAINTS SECTION 9.5 THE SIMPLEX METHOD: MIXED CONSTRAINTS 557 9.5 THE SIMPLEX METHOD: MIXED CONSTRAINTS In Sections 9. and 9., you looked at linear programming problems that occurred in standard form. The constraints

More information

In Chapters 3 and 4 we introduced linear programming

In Chapters 3 and 4 we introduced linear programming SUPPLEMENT The Simplex Method CD3 In Chapters 3 and 4 we introduced linear programming and showed how models with two variables can be solved graphically. We relied on computer programs (WINQSB, Excel,

More information

Simplex tableau CE 377K. April 2, 2015

Simplex tableau CE 377K. April 2, 2015 CE 377K April 2, 2015 Review Reduced costs Basic and nonbasic variables OUTLINE Review by example: simplex method demonstration Outline Example You own a small firm producing construction materials for

More information

4.6 Linear Programming duality

4.6 Linear Programming duality 4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP Different spaces and objective functions but in general same optimal

More information

Week_4: simplex method II

Week_4: simplex method II Week_4: simplex method II 1 1.introduction LPs in which all the constraints are ( ) with nonnegative right-hand sides offer a convenient all-slack starting basic feasible solution. Models involving (=)

More information

March 13, Duality 3

March 13, Duality 3 15.53 March 13, 27 Duality 3 There are concepts much more difficult to grasp than duality in linear programming. -- Jim Orlin The concept [of nonduality], often described in English as "nondualism," is

More information

Example. 1 Rows 1,..., m of the simplex tableau remain lexicographically positive

Example. 1 Rows 1,..., m of the simplex tableau remain lexicographically positive 3.4 Anticycling Lexicographic order In this section we discuss two pivoting rules that are guaranteed to avoid cycling. These are the lexicographic rule and Bland s rule. Definition A vector u R n is lexicographically

More information

Introduction. Very efficient solution procedure: simplex method.

Introduction. Very efficient solution procedure: simplex method. LINEAR PROGRAMMING Introduction Development of linear programming was among the most important scientific advances of mid 20th cent. Most common type of applications: allocate limited resources to competing

More information

56:171 Operations Research Midterm Exam - October 26, 1989 Instructor: D.L. Bricker

56:171 Operations Research Midterm Exam - October 26, 1989 Instructor: D.L. Bricker 56:171 Operations Research Midterm Exam - October 26, 1989 Instructor: D.L. Bricker Answer all of Part One and two (of the four) problems of Part Two Problem: 1 2 3 4 5 6 7 8 TOTAL Possible: 16 12 20 10

More information

Math Homework 3: solutions. 1. Consider the region defined by the following constraints: x 1 + x 2 2 x 1 + 2x 2 6

Math Homework 3: solutions. 1. Consider the region defined by the following constraints: x 1 + x 2 2 x 1 + 2x 2 6 Math 7502 Homework 3: solutions 1. Consider the region defined by the following constraints: x 1 + x 2 2 x 1 + 2x 2 6 x 1, x 2 0. (i) Maximize 4x 1 + x 2 subject to the constraints above. (ii) Minimize

More information

Foundations of Operations Research

Foundations of Operations Research Solved exercises for the course of Foundations of Operations Research Roberto Cordone The dual simplex method Given the following LP problem: maxz = 5x 1 +8x 2 x 1 +x 2 6 5x 1 +9x 2 45 x 1,x 2 0 1. solve

More information

AM 121: Intro to Optimization Models and Methods

AM 121: Intro to Optimization Models and Methods AM 121: Intro to Optimization Models and Methods Fall 2017 Lecture 2: Intro to LP, Linear algebra review. Yiling Chen SEAS Lecture 2: Lesson Plan What is an LP? Graphical and algebraic correspondence Problems

More information

Dr. Maddah ENMG 500 Engineering Management I 10/21/07

Dr. Maddah ENMG 500 Engineering Management I 10/21/07 Dr. Maddah ENMG 500 Engineering Management I 10/21/07 Computational Procedure of the Simplex Method The optimal solution of a general LP problem is obtained in the following steps: Step 1. Express the

More information

Linear programs Optimization Geoff Gordon Ryan Tibshirani

Linear programs Optimization Geoff Gordon Ryan Tibshirani Linear programs 10-725 Optimization Geoff Gordon Ryan Tibshirani Review: LPs LPs: m constraints, n vars A: R m n b: R m c: R n x: R n ineq form [min or max] c T x s.t. Ax b m n std form [min or max] c

More information

Dual Basic Solutions. Observation 5.7. Consider LP in standard form with A 2 R m n,rank(a) =m, and dual LP:

Dual Basic Solutions. Observation 5.7. Consider LP in standard form with A 2 R m n,rank(a) =m, and dual LP: Dual Basic Solutions Consider LP in standard form with A 2 R m n,rank(a) =m, and dual LP: Observation 5.7. AbasisB yields min c T x max p T b s.t. A x = b s.t. p T A apple c T x 0 aprimalbasicsolutiongivenbyx

More information

Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #06. The Simplex Method

Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #06. The Simplex Method The Simplex Method Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye (LY, Chapters 2.3-2.5, 3.1-3.4) 1 Geometry of Linear

More information

The Simplex Method. Formulate Constrained Maximization or Minimization Problem. Convert to Standard Form. Convert to Canonical Form

The Simplex Method. Formulate Constrained Maximization or Minimization Problem. Convert to Standard Form. Convert to Canonical Form The Simplex Method 1 The Simplex Method Formulate Constrained Maximization or Minimization Problem Convert to Standard Form Convert to Canonical Form Set Up the Tableau and the Initial Basic Feasible Solution

More information

The use of shadow price is an example of sensitivity analysis. Duality theory can be applied to do other kind of sensitivity analysis:

The use of shadow price is an example of sensitivity analysis. Duality theory can be applied to do other kind of sensitivity analysis: Sensitivity analysis The use of shadow price is an example of sensitivity analysis. Duality theory can be applied to do other kind of sensitivity analysis: Changing the coefficient of a nonbasic variable

More information

Duality Theory, Optimality Conditions

Duality Theory, Optimality Conditions 5.1 Duality Theory, Optimality Conditions Katta G. Murty, IOE 510, LP, U. Of Michigan, Ann Arbor We only consider single objective LPs here. Concept of duality not defined for multiobjective LPs. Every

More information

Optimization (168) Lecture 7-8-9

Optimization (168) Lecture 7-8-9 Optimization (168) Lecture 7-8-9 Jesús De Loera UC Davis, Mathematics Wednesday, April 2, 2012 1 DEGENERACY IN THE SIMPLEX METHOD 2 DEGENERACY z =2x 1 x 2 + 8x 3 x 4 =1 2x 3 x 5 =3 2x 1 + 4x 2 6x 3 x 6

More information

Linear Programming Duality P&S Chapter 3 Last Revised Nov 1, 2004

Linear Programming Duality P&S Chapter 3 Last Revised Nov 1, 2004 Linear Programming Duality P&S Chapter 3 Last Revised Nov 1, 2004 1 In this section we lean about duality, which is another way to approach linear programming. In particular, we will see: How to define

More information

Integer programming: an introduction. Alessandro Astolfi

Integer programming: an introduction. Alessandro Astolfi Integer programming: an introduction Alessandro Astolfi Outline Introduction Examples Methods for solving ILP Optimization on graphs LP problems with integer solutions Summary Introduction Integer programming

More information

F 1 F 2 Daily Requirement Cost N N N

F 1 F 2 Daily Requirement Cost N N N Chapter 5 DUALITY 5. The Dual Problems Every linear programming problem has associated with it another linear programming problem and that the two problems have such a close relationship that whenever

More information

3.7 Cutting plane methods

3.7 Cutting plane methods 3.7 Cutting plane methods Generic ILP problem min{ c t x : x X = {x Z n + : Ax b} } with m n matrix A and n 1 vector b of rationals. According to Meyer s theorem: There exists an ideal formulation: conv(x

More information

The Big M Method. Modify the LP

The Big M Method. Modify the LP The Big M Method Modify the LP 1. If any functional constraints have negative constants on the right side, multiply both sides by 1 to obtain a constraint with a positive constant. Big M Simplex: 1 The

More information

Lecture 10: Linear programming. duality. and. The dual of the LP in standard form. maximize w = b T y (D) subject to A T y c, minimize z = c T x (P)

Lecture 10: Linear programming. duality. and. The dual of the LP in standard form. maximize w = b T y (D) subject to A T y c, minimize z = c T x (P) Lecture 10: Linear programming duality Michael Patriksson 19 February 2004 0-0 The dual of the LP in standard form minimize z = c T x (P) subject to Ax = b, x 0 n, and maximize w = b T y (D) subject to

More information

The augmented form of this LP is the following linear system of equations:

The augmented form of this LP is the following linear system of equations: 1 Consider the following LP given in standard form: max z = 5 x_1 + 2 x_2 Subject to 3 x_1 + 2 x_2 2400 x_2 800 2 x_1 1200 x_1, x_2 >= 0 The augmented form of this LP is the following linear system of

More information

Understanding the Simplex algorithm. Standard Optimization Problems.

Understanding the Simplex algorithm. Standard Optimization Problems. Understanding the Simplex algorithm. Ma 162 Spring 2011 Ma 162 Spring 2011 February 28, 2011 Standard Optimization Problems. A standard maximization problem can be conveniently described in matrix form

More information

LINEAR PROGRAMMING. Relation to the Text (cont.) Relation to Material in Text. Relation to the Text. Relation to the Text (cont.

LINEAR PROGRAMMING. Relation to the Text (cont.) Relation to Material in Text. Relation to the Text. Relation to the Text (cont. LINEAR PROGRAMMING Relation to Material in Text After a brief introduction to linear programming on p. 3, Cornuejols and Tϋtϋncϋ give a theoretical discussion including duality, and the simplex solution

More information

Chapter 4 The Simplex Algorithm Part I

Chapter 4 The Simplex Algorithm Part I Chapter 4 The Simplex Algorithm Part I Based on Introduction to Mathematical Programming: Operations Research, Volume 1 4th edition, by Wayne L. Winston and Munirpallam Venkataramanan Lewis Ntaimo 1 Modeling

More information