Improvements to Benders' decomposition: systematic classification and performance comparison in a Transmission Expansion Planning problem

Size: px
Start display at page:

Download "Improvements to Benders' decomposition: systematic classification and performance comparison in a Transmission Expansion Planning problem"

Transcription

1 Improvements to Benders' decomposition: systematic classification and performance comparison in a Transmission Expansion Planning problem Sara Lumbreras & Andrés Ramos July 2013

2 Agenda Motivation improvement improvement Transmission Expansion Planning Results Conclusions 2

3

4 Motivation It was first proposed in 1962 In its 50 years of history it has been applied to very diverse fields: Scheduling Routing (e.g. traveling salesman) & vehicle assignment Computer network design Capacity allocation in telecommunications networks Manufacturing system design Portfolio optimization Specially, in Power systems Generation, Transmission & Distribution Expansion Planning [Pereira et al, A decomposition approach to automated generation/ transmission expansion planning, 1985] Hydrothermal co-ordination Unit Commitment Many improvements to the basic strategy have been proposed in an uncoordinated way, so they are not easily accessible or related to the cases where they can be useful Benders, Partitioning procedures for solving mixed-variables programming problems,

5 Motivation (II) This work aims at filling this gap: Classifies the improvements to Benders decomposition that appear in the literature Proposes new improvements to add to the ones in the literature Links these methodologies to the cases where they can be useful Compares their performance in a particularly relevant case study based on Transmission Expansion Planning Given its characteristics this problem has been extensively solved with Benders decomposition 5

6

7 Benders decomposition is applied to a two-stage stochastic (linear) problem First-stage decisions (also known as investment decisions) are taken before an uncertain event occurs Second-stage decisions (also known as operation decisions or recourse decisions) are adjusted after the uncertainty has been revealed Second-stage scenarios can be solved independently Both stages are coupled through the tender constraints First-stage decisions complicate the resolution of the problem 1st stage 2nd stage Stochastic scenarios Constraints of the 1st stage Constraints that link both stages (tender constraints) Constraints of the 2nd stage 7

8 (cont ed) Benders decomposition divides the two-stage stochastic linear programming problem in two parts (master problem & subproblems) that are solved iteratively until convergence The process builds an increasingly accurate piecewise linear approximation of the recourse problem (Benders cuts) Complete problem lower bound iterations current iteration (solved independently for each scenario) upper bound 8

9 Feasibility cuts (cont ed) When a certain 1 st -stage solution is infeasible in the subproblem, a feasibility cut is generated with the aim of eliminating solutions that do not abide the constraints Usually, the sum of infeasibilities is minimized infeasibility The resulting feasibility cut has the form: For uniform notation l δ = l δ = 1 0 optimality cut feasibility cut 9

10 Scope of Benders decomposition This method is likely to yield time savings in the following cases: First-stage variables complicate the resolution of the problem Decoupling the resolution of 2nd stage scenarios is specially important Computational time taken by this method is related to the number of complicating variables Therefore, it is likely to yield time savings if the number of complicating variables is small The master problem and the subproblem have different natures (and hence it would be convenient to solve them with different methods, e.g. NLP / MIP vs LP) Both conditions apply to 10

11 Classification of improvement Improvement respond to the need to reduce either: solution time (solution time can be long because of size, integral variables or a large number of cuts), or solution time (solution time can be long because of a large number of scenarios or 2 nd stage conditions) Guides for their suitability will be provided However, the practical benefit achieved will have to be assessed on a case-by-case basis Most of them involve trade-offs that must be assessed individually A case study based on Transmission Expansion Planning will be presented 11

12 improvements

13 Improvements that modify the solution technique (I) relaxations Binary variables complicate the resolution, so solving the LP relaxation is much quicker It yields valid Benders cuts Linear-first approaches solve first the relaxed problem Recently, [Lumbreras & Ramos, Optimal design of an offshore wind farm applying decomposition strategies, 2012] proposed a progressive discretization of variables to improve convergence (semi-relaxed cuts) Can be useful if the linearized problem can be solved much quicker and the integrality gap is small upper bound variable discretization convergence lower bound 13

14 Improvements that modify the solution technique (II) Sub-optimal master problem solutions Early terminations of the master problem might improve convergence gap Using any feasible solution [Fortz& Poss, An improved Benders decomposition applied to a multi-layer network design problem, 2008] Rounding linearized solutions time [Costa et al, Accelerating Benders decomposition with heuristic master solutions, 2012] (feasibility must be checked) Alternative strategies to find master proposals Non-classical optimization (e.g., metaheuristics) can be applied to find near-optimal solutions in affordable times [Poojari & Beasley, Improving Benders decomposition using a Genetic Algorithm, 2009] Can be useful if the suboptimal solution is not far from the optimal one and is obtained in a reduced time 14

15 Box-step method ( of additional constraints): Ideally they are conditions that should be met at the optimum, so they only eliminate not useful zones of the feasible region From expert opinion Data mining If the additional constraint is active at the optimal solution the constraint should be relaxed by an specified amount (the step) and the problem resolved. Use of a more suitable solution technique E.g. Constraint programming and logic-based methods [Benoist et al, Constraint programming contribution to Benders decomposition, 2002] In many cases, complex problems include many logical constraints that make use of auxiliary binary variables This greatly complicates the problem There are that have been specially developed for these problems, where the logical constraints are included explicitly (e.g. LOGMIP) Improvements that modify the solution technique (III) Can be useful if these constraints are available Can be useful if there is a technique that is better suited to the specific problem 15

16 Extracting non-dominated cuts / Pareto-optimal cuts [Sherali & Fraticelli, On generating maximal nondominated Benders cuts, 2011] A cut or constraint dominates another if any evaluation of first stage decisions is larger than or equal to the previous one Generating covering cuts [Saharidis et al, Accelerating benders method using covering cut bundle generation, 2010] Generating cuts so that they carry the maximum amount of information possible They include the maximum possible number of 1 st -stage variables Removing inactive cuts Improvements that modify Benders cuts (I) Can be useful if there are too many cuts and most are dominated Can be useful if there are too many cuts Can be useful if there are too many cuts [Marin & Salmeron, Electricity capacity expansion under uncertain demand: decomposition approaches, 1998] Or dynamically defining the master problem so that only the cuts that are likely to be active constraints are taken into account 16

17 Minimal Infeasible Subsystems (MIS) can be used to modify the way feasibility cuts are calculated [Saharidis & Ierapitrou, Improving benders decomposition using maximum feasible subsistem (MFS) cut generation, 2009] Instead of minimizing the sum of infeasibilities the problem minimizes the number of equations that are infeasible This enables faster convergence in some cases Conversely, if most of the solutions are infeasible, it is possible to keep a maximum feasible set to derive optimality cuts to better guide the search Modifications to Benders cuts (II) Can be useful if most of the cuts are feasibility cuts 17

18 improvements

19 Scenario structure design (I) Subtree partition [Birge & Loveaux, A multicut algorithm for stochastic linear programs, 1988] The second stage scenarios can be arranged differently In general, the most efficient arrangement cannot be known beforehand (tradeoff between the accuracy of the cuts and solution time for the master problem) ws: wind scenario ss: system state 19

20 Scenario structure design (II) Scenario aggregation: the second stage corresponding to the scenarios with the highest impact on the final design are added to the master problem [Cerisola & Ramos, Node aggregation in stochastic nested benders decomposition applied to hydrothermal coordination,2000] The master problem proposes solutions that are closer to the optimal Convergence speed can be increased Can be useful if one of the scenarios has a much higher impact on the final solution 20

21 Solution technique modifications Bunching: if the 2 nd stage scenarios are similar we can solve only one scenario and calculate the others using the calculated sensitivities [Birge & Loveaux, Introduction to Stochastic Programming, 1988] Application of specific algorithms [Marin & Salmeron, Electricity Capacity Expansion Models Under Uncertain Demand. Decomposition Approaches, 1988] Can be useful if there are many similar scenarios being calculated Can be useful if there is an specific more efficient technique available Or even a series of increasingly accurate versions of the subproblem (as long as they have increasing values of the o.f.) so that time is not wasted in the first few iterations [Romero & Monticelli, A hierarchical decomposition approach for transmission network expansion planning, 1994] Sub-optimal subproblem solutions (Zakeri s cuts) [Zakeri et al, Inexact Cuts in Benders Decomposition, 1999] Any infeasible solution in the subproblem will give a valid cut (can use IPM) Can be useful if solving the subproblem until optimality, even for one scenario, is computationally very expensive 21

22 Transmission Expansion Planning

23 The power system in a nutshell Supply is composed by generators of different technologies with different operation costs Demand has to be served instantaneously (there is no possibility for storage) The transmission network enables (and constrains) the physical transactions (and the operation outcome) Flows follow Kirchhoff s laws, so bilateral transactions do not have a physical meaning 23

24 Transmission Expansion Planning The Transmission Expansion Planning () problem consists in deciding the optimal transmission investments (lines or otherwise) that should be added to the existing transmission network in order to minimize the total investment and operation costs (generation costs and reliability). 24

25 Simplified formulation The problem can be formulated as MIP in a centralized, costminimization framework Minimize the sum of investment and operation costs mininvc OpC + InvC ic x ijc ijc ijc CL Subject to Kirchhoff s laws jic OpC f f + g = d pns : σ f ijc jic ijc i i i i ijc θ θ i j = ijc EL X ijc = = ( gcg + pnspnlt) i i Respecting generation and transmission limits i i ( ) i j + M 1 x : ρ ijc ijc ijc ijc f X ijc ( ) i j M 1 x : ρ ijc ijc ijc ijc f θ θ X ijc CL θ θ ijc f f x ijc ( CL EL) : π + ijc ijc ijc ijc f f x : π ijc ijc ijc ijc g g g,0 pns d i i i i i 25

26 Benders decomposition applied to The master problem takes the form: min l c x And the subproblem: Z jic + P Θ ω ω ijc ijc 2 ijc CL ω Ω ω ωl lt lt Z + ω ω f ( ) 2 2 π π ijc ijc ijc ijc + ωlt ωlt l M ρ ρ x x ijc ijc ijc ijc ijc Θ + + = 1,..., n ωn ω ω 2 ω ω i i i g, pns i i ωi ( )( ) = min ( gcg + pns pnlt) f f + g = d pns f ω ijc : σ ω ω ω ω ω ω jic ijc i i i i ijc ω ω θ θ i j = ijc EL X ω ijc ω θ θ ω i j + ω M ( 1 x ) : ρ ijc ijc ijc ijc f X ijc ω ω θ θ ω i j ω M ( 1 x ) : ρ ijc ijc ijc ijc f X ijc CL ijc f f x ijc ( CL EL) 26 : π ω ω + ω ijc ijc ijc ijc ω ω ω f f x : π ijc ijc ijc ijc g g g,0 pns d i i i i i

27 Selection of the improvement The ratio of time spent solving the master problem and the subproblem is the most important factor in the decision Master Decomposition Case Eq Var D var Time (s) Eq Var Time (s) It. Time Time per it. (s) Garver N N scenarios 87N In all cases, time spent in the subproblem is less than 12% modification are more appropriate. 27

28 Selection of the improvement (cont ed) Are relaxations potentially interesting? The largest case study, with 152 discrete variables in the master problem, is solved in 2.9s for MIP and 0.1s in a relaxed version (85% savings) relaxations should be explored - Linear first - Semi-relaxed cuts Are suboptimal master solutions interesting? We examine the tolerance-performance curve Solution time (s) Iterations Values around 2.5% seem interesting 0 0 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% Relative optimality tolerance 28

29 Selection of the improvement (cont ed) Other master problem modification Box-step could be interesting in general in problems where an additional constraint can be easily imposed. In this case we can limit investment. Values of 85%, 100% and 115% of optimal investment were used ij C cx MaxInv ij ij Alternative solution (other than MIP) are not available for this problem Modifications to Benders cuts are not interesting in this case The number of generated cuts is not excessively large, so cover cuts or cut removal are not indicated The subproblem is feasible in all cases, so MIS is not applicable 29

30 Results

31 Results Only the largest case study is reported for the sake of clarity Semi-relaxed cuts and suboptimal master solutions offer consistent savings that can be above 50% of solution time Linear-first approaches and box-step methods are not able to provide consistent results 87N Time (s) % Savings Benders' decomposition Linear first % Semi relaxed cuts % Suboptimal master εmaster = 5% % εstep = 0.025% Suboptimal master εmaster = 2.5% % εstep = 0% Suboptimal master Highest tolerance % Boxstep Boxstep Boxstep Initial maximum investment = 85% optimal Initial maximum investment = 100% optimal Initial maximum investment = 115% optimal % % % 31

32 Conclusions

33 Conclusions (I) Benders decomposition is a key tool in stochastic optimization which divides the problem in: A master problem that optimizes the first stage and a piecewise linear approximation of the second stage costs A subproblem which optimizes the second stage and creates the piecewise approximation by means of primal and marginal information The method can bring substantial benefits when: First-stage variables complicate the resolution of the problem and subproblems have a different nature 33

34 Conclusions (II) A slow master problem can be accelerated: Modifying the solution method Relaxations Sub-optimal solutions Box-step Use of a more suitable technique Modifying the calculation of cuts: Nondominated cuts / Pareto optimal cuts Covering cuts Removing inactive cuts Minimal Infeasible Subsystems 34

35 Conclusions (III) A slow subproblem can be accelerated: Selecting the most suitable structure for the scenario tree Scenario aggregation Bunching Application of specific algorithms Sub-optimal solutions A case study based on Transmission Expansion Planning has demonstrated How to select the most promising improvement for a particular problem Results show that for this case the semi-relaxed cuts (proposed by the authors) and sub-optimal master resolution were able to consistently offer savings above 50% 35

36 Thank you

37 Santa Cruz de Marcenado, Madrid Tel Fax info@iit.upcomillas.es

Projection in Logic, CP, and Optimization

Projection in Logic, CP, and Optimization Projection in Logic, CP, and Optimization John Hooker Carnegie Mellon University Workshop on Logic and Search Melbourne, 2017 Projection as a Unifying Concept Projection is a fundamental concept in logic,

More information

A computational study of enhancements to Benders Decomposition in uncapacitated multicommodity network design

A computational study of enhancements to Benders Decomposition in uncapacitated multicommodity network design A computational study of enhancements to Benders Decomposition in uncapacitated multicommodity network design 1 Carlos Armando Zetina, 1 Ivan Contreras, 2 Jean-François Cordeau 1 Concordia University and

More information

SINGLE OBJECTIVE RISK- BASED TRANSMISSION EXPANSION

SINGLE OBJECTIVE RISK- BASED TRANSMISSION EXPANSION Vol.2, Issue.1, Jan-Feb 2012 pp-424-430 ISSN: 2249-6645 SINGLE OBJECTIVE RISK- BASED TRANSMISSION EXPANSION V.Sumadeepthi 1, K.Sarada 2 1 (Student, Department of Electrical and Electronics Engineering,

More information

Generation and Representation of Piecewise Polyhedral Value Functions

Generation and Representation of Piecewise Polyhedral Value Functions Generation and Representation of Piecewise Polyhedral Value Functions Ted Ralphs 1 Joint work with Menal Güzelsoy 2 and Anahita Hassanzadeh 1 1 COR@L Lab, Department of Industrial and Systems Engineering,

More information

Stochastic Dual Dynamic Programming with CVaR Risk Constraints Applied to Hydrothermal Scheduling. ICSP 2013 Bergamo, July 8-12, 2012

Stochastic Dual Dynamic Programming with CVaR Risk Constraints Applied to Hydrothermal Scheduling. ICSP 2013 Bergamo, July 8-12, 2012 Stochastic Dual Dynamic Programming with CVaR Risk Constraints Applied to Hydrothermal Scheduling Luiz Carlos da Costa Junior Mario V. F. Pereira Sérgio Granville Nora Campodónico Marcia Helena Costa Fampa

More information

Logic-based Benders Decomposition

Logic-based Benders Decomposition Logic-based Benders Decomposition A short Introduction Martin Riedler AC Retreat Contents 1 Introduction 2 Motivation 3 Further Notes MR Logic-based Benders Decomposition June 29 July 1 2 / 15 Basic idea

More information

Software for Integer and Nonlinear Optimization

Software for Integer and Nonlinear Optimization Software for Integer and Nonlinear Optimization Sven Leyffer, leyffer@mcs.anl.gov Mathematics & Computer Science Division Argonne National Laboratory Roger Fletcher & Jeff Linderoth Advanced Methods and

More information

An Adaptive Partition-based Approach for Solving Two-stage Stochastic Programs with Fixed Recourse

An Adaptive Partition-based Approach for Solving Two-stage Stochastic Programs with Fixed Recourse An Adaptive Partition-based Approach for Solving Two-stage Stochastic Programs with Fixed Recourse Yongjia Song, James Luedtke Virginia Commonwealth University, Richmond, VA, ysong3@vcu.edu University

More information

Stochastic Integer Programming

Stochastic Integer Programming IE 495 Lecture 20 Stochastic Integer Programming Prof. Jeff Linderoth April 14, 2003 April 14, 2002 Stochastic Programming Lecture 20 Slide 1 Outline Stochastic Integer Programming Integer LShaped Method

More information

What is an integer program? Modelling with Integer Variables. Mixed Integer Program. Let us start with a linear program: max cx s.t.

What is an integer program? Modelling with Integer Variables. Mixed Integer Program. Let us start with a linear program: max cx s.t. Modelling with Integer Variables jesla@mandtudk Department of Management Engineering Technical University of Denmark What is an integer program? Let us start with a linear program: st Ax b x 0 where A

More information

Structured Problems and Algorithms

Structured Problems and Algorithms Integer and quadratic optimization problems Dept. of Engg. and Comp. Sci., Univ. of Cal., Davis Aug. 13, 2010 Table of contents Outline 1 2 3 Benefits of Structured Problems Optimization problems may become

More information

A Stochastic-Oriented NLP Relaxation for Integer Programming

A Stochastic-Oriented NLP Relaxation for Integer Programming A Stochastic-Oriented NLP Relaxation for Integer Programming John Birge University of Chicago (With Mihai Anitescu (ANL/U of C), Cosmin Petra (ANL)) Motivation: The control of energy systems, particularly

More information

The L-Shaped Method. Operations Research. Anthony Papavasiliou 1 / 38

The L-Shaped Method. Operations Research. Anthony Papavasiliou 1 / 38 1 / 38 The L-Shaped Method Operations Research Anthony Papavasiliou Contents 2 / 38 1 The L-Shaped Method 2 Example: Capacity Expansion Planning 3 Examples with Optimality Cuts [ 5.1a of BL] 4 Examples

More information

Feasibility Pump Heuristics for Column Generation Approaches

Feasibility Pump Heuristics for Column Generation Approaches 1 / 29 Feasibility Pump Heuristics for Column Generation Approaches Ruslan Sadykov 2 Pierre Pesneau 1,2 Francois Vanderbeck 1,2 1 University Bordeaux I 2 INRIA Bordeaux Sud-Ouest SEA 2012 Bordeaux, France,

More information

The L-Shaped Method. Operations Research. Anthony Papavasiliou 1 / 44

The L-Shaped Method. Operations Research. Anthony Papavasiliou 1 / 44 1 / 44 The L-Shaped Method Operations Research Anthony Papavasiliou Contents 2 / 44 1 The L-Shaped Method [ 5.1 of BL] 2 Optimality Cuts [ 5.1a of BL] 3 Feasibility Cuts [ 5.1b of BL] 4 Proof of Convergence

More information

is called an integer programming (IP) problem. model is called a mixed integer programming (MIP)

is called an integer programming (IP) problem. model is called a mixed integer programming (MIP) INTEGER PROGRAMMING Integer Programming g In many problems the decision variables must have integer values. Example: assign people, machines, and vehicles to activities in integer quantities. If this is

More information

Logic, Optimization and Data Analytics

Logic, Optimization and Data Analytics Logic, Optimization and Data Analytics John Hooker Carnegie Mellon University United Technologies Research Center, Cork, Ireland August 2015 Thesis Logic and optimization have an underlying unity. Ideas

More information

Decomposition Techniques in Mathematical Programming

Decomposition Techniques in Mathematical Programming Antonio J. Conejo Enrique Castillo Roberto Minguez Raquel Garcia-Bertrand Decomposition Techniques in Mathematical Programming Engineering and Science Applications Springer Contents Part I Motivation and

More information

Capacity Planning with uncertainty in Industrial Gas Markets

Capacity Planning with uncertainty in Industrial Gas Markets Capacity Planning with uncertainty in Industrial Gas Markets A. Kandiraju, P. Garcia Herreros, E. Arslan, P. Misra, S. Mehta & I.E. Grossmann EWO meeting September, 2015 1 Motivation Industrial gas markets

More information

Transmission expansion with smart switching under demand uncertainty and line failures

Transmission expansion with smart switching under demand uncertainty and line failures Energy Syst DOI 10.1007/s12667-016-0213-9 ORIGINAL PAPER Transmission expansion with smart switching under demand uncertainty and line failures Kathryn M. Schumacher 1 Richard Li-Yang Chen 3 Amy E. M.

More information

Lecture 23 Branch-and-Bound Algorithm. November 3, 2009

Lecture 23 Branch-and-Bound Algorithm. November 3, 2009 Branch-and-Bound Algorithm November 3, 2009 Outline Lecture 23 Modeling aspect: Either-Or requirement Special ILPs: Totally unimodular matrices Branch-and-Bound Algorithm Underlying idea Terminology Formal

More information

Benders Decomposition for the Uncapacitated Multicommodity Network Design Problem

Benders Decomposition for the Uncapacitated Multicommodity Network Design Problem Benders Decomposition for the Uncapacitated Multicommodity Network Design Problem 1 Carlos Armando Zetina, 1 Ivan Contreras, 2 Jean-François Cordeau 1 Concordia University and CIRRELT, Montréal, Canada

More information

Stochastic Integer Programming An Algorithmic Perspective

Stochastic Integer Programming An Algorithmic Perspective Stochastic Integer Programming An Algorithmic Perspective sahmed@isye.gatech.edu www.isye.gatech.edu/~sahmed School of Industrial & Systems Engineering 2 Outline Two-stage SIP Formulation Challenges Simple

More information

Applying High Performance Computing to Multi-Area Stochastic Unit Commitment

Applying High Performance Computing to Multi-Area Stochastic Unit Commitment Applying High Performance Computing to Multi-Area Stochastic Unit Commitment IBM Research Anthony Papavasiliou, Department of Mathematical Engineering, CORE, UCL Shmuel Oren, IEOR Department, UC Berkeley

More information

The CPLEX Library: Mixed Integer Programming

The CPLEX Library: Mixed Integer Programming The CPLEX Library: Mixed Programming Ed Rothberg, ILOG, Inc. 1 The Diet Problem Revisited Nutritional values Bob considered the following foods: Food Serving Size Energy (kcal) Protein (g) Calcium (mg)

More information

Solving Mixed-Integer Nonlinear Programs

Solving Mixed-Integer Nonlinear Programs Solving Mixed-Integer Nonlinear Programs (with SCIP) Ambros M. Gleixner Zuse Institute Berlin MATHEON Berlin Mathematical School 5th Porto Meeting on Mathematics for Industry, April 10 11, 2014, Porto

More information

Agenda today. Introduction to prescriptive modeling. Linear optimization models through three examples: Beyond linear optimization

Agenda today. Introduction to prescriptive modeling. Linear optimization models through three examples: Beyond linear optimization Agenda today Introduction to prescriptive modeling Linear optimization models through three examples: 1 Production and inventory optimization 2 Distribution system design 3 Stochastic optimization Beyond

More information

3.10 Column generation method

3.10 Column generation method 3.10 Column generation method Many relevant decision-making (discrete optimization) problems can be formulated as ILP problems with a very large (exponential) number of variables. Examples: cutting stock,

More information

Multi-Area Stochastic Unit Commitment for High Wind Penetration

Multi-Area Stochastic Unit Commitment for High Wind Penetration Multi-Area Stochastic Unit Commitment for High Wind Penetration Workshop on Optimization in an Uncertain Environment Anthony Papavasiliou, UC Berkeley Shmuel S. Oren, UC Berkeley March 25th, 2011 Outline

More information

Column Generation for Extended Formulations

Column Generation for Extended Formulations 1 / 28 Column Generation for Extended Formulations Ruslan Sadykov 1 François Vanderbeck 2,1 1 INRIA Bordeaux Sud-Ouest, France 2 University Bordeaux I, France ISMP 2012 Berlin, August 23 2 / 28 Contents

More information

Stochastic Programming Models in Design OUTLINE

Stochastic Programming Models in Design OUTLINE Stochastic Programming Models in Design John R. Birge University of Michigan OUTLINE Models General - Farming Structural design Design portfolio General Approximations Solutions Revisions Decision: European

More information

Large-scale optimization and decomposition methods: outline. Column Generation and Cutting Plane methods: a unified view

Large-scale optimization and decomposition methods: outline. Column Generation and Cutting Plane methods: a unified view Large-scale optimization and decomposition methods: outline I Solution approaches for large-scaled problems: I Delayed column generation I Cutting plane methods (delayed constraint generation) 7 I Problems

More information

Capacitor Placement for Economical Electrical Systems using Ant Colony Search Algorithm

Capacitor Placement for Economical Electrical Systems using Ant Colony Search Algorithm Capacitor Placement for Economical Electrical Systems using Ant Colony Search Algorithm Bharat Solanki Abstract The optimal capacitor placement problem involves determination of the location, number, type

More information

Proper Security Criteria Determination in a Power System with High Penetration of Renewable Resources

Proper Security Criteria Determination in a Power System with High Penetration of Renewable Resources Proper Security Criteria Determination in a Power System with High Penetration of Renewable Resources Mojgan Hedayati, Kory Hedman, and Junshan Zhang School of Electrical, Computer, and Energy Engineering

More information

Benders Decomposition Methods for Structured Optimization, including Stochastic Optimization

Benders Decomposition Methods for Structured Optimization, including Stochastic Optimization Benders Decomposition Methods for Structured Optimization, including Stochastic Optimization Robert M. Freund April 29, 2004 c 2004 Massachusetts Institute of echnology. 1 1 Block Ladder Structure We consider

More information

R O B U S T E N E R G Y M AN AG E M E N T S Y S T E M F O R I S O L AT E D M I C R O G R I D S

R O B U S T E N E R G Y M AN AG E M E N T S Y S T E M F O R I S O L AT E D M I C R O G R I D S ROBUST ENERGY MANAGEMENT SYSTEM FOR ISOLATED MICROGRIDS Jose Daniel La r a Claudio Cañizares Ka nka r Bhattacharya D e p a r t m e n t o f E l e c t r i c a l a n d C o m p u t e r E n g i n e e r i n

More information

Multi-Area Stochastic Unit Commitment for High Wind Penetration in a Transmission Constrained Network

Multi-Area Stochastic Unit Commitment for High Wind Penetration in a Transmission Constrained Network Multi-Area Stochastic Unit Commitment for High Wind Penetration in a Transmission Constrained Network Anthony Papavasiliou Center for Operations Research and Econometrics Université catholique de Louvain,

More information

Computations with Disjunctive Cuts for Two-Stage Stochastic Mixed 0-1 Integer Programs

Computations with Disjunctive Cuts for Two-Stage Stochastic Mixed 0-1 Integer Programs Computations with Disjunctive Cuts for Two-Stage Stochastic Mixed 0-1 Integer Programs Lewis Ntaimo and Matthew W. Tanner Department of Industrial and Systems Engineering, Texas A&M University, 3131 TAMU,

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 8 Discrete optimization: theory and algorithms

MVE165/MMG631 Linear and integer optimization with applications Lecture 8 Discrete optimization: theory and algorithms MVE165/MMG631 Linear and integer optimization with applications Lecture 8 Discrete optimization: theory and algorithms Ann-Brith Strömberg 2017 04 07 Lecture 8 Linear and integer optimization with applications

More information

18 hours nodes, first feasible 3.7% gap Time: 92 days!! LP relaxation at root node: Branch and bound

18 hours nodes, first feasible 3.7% gap Time: 92 days!! LP relaxation at root node: Branch and bound The MIP Landscape 1 Example 1: LP still can be HARD SGM: Schedule Generation Model Example 157323 1: LP rows, still can 182812 be HARD columns, 6348437 nzs LP relaxation at root node: 18 hours Branch and

More information

The Separation Problem for Binary Decision Diagrams

The Separation Problem for Binary Decision Diagrams The Separation Problem for Binary Decision Diagrams J. N. Hooker Joint work with André Ciré Carnegie Mellon University ISAIM 2014 Separation Problem in Optimization Given a relaxation of an optimization

More information

Disjunctive Decomposition for Two-Stage Stochastic Mixed-Binary Programs with GUB Constraints

Disjunctive Decomposition for Two-Stage Stochastic Mixed-Binary Programs with GUB Constraints Disjunctive Decomposition for Two-Stage Stochastic Mixed-Binary Programs with GUB Constraints Brian Keller Booz Allen Hamilton, 134 National Business Parkway, Annapolis Junction, MD 20701, USA, keller

More information

Regularized optimization techniques for multistage stochastic programming

Regularized optimization techniques for multistage stochastic programming Regularized optimization techniques for multistage stochastic programming Felipe Beltrán 1, Welington de Oliveira 2, Guilherme Fredo 1, Erlon Finardi 1 1 UFSC/LabPlan Universidade Federal de Santa Catarina

More information

Revenue Maximization in a Cloud Federation

Revenue Maximization in a Cloud Federation Revenue Maximization in a Cloud Federation Makhlouf Hadji and Djamal Zeghlache September 14th, 2015 IRT SystemX/ Telecom SudParis Makhlouf Hadji Outline of the presentation 01 Introduction 02 03 04 05

More information

3.10 Column generation method

3.10 Column generation method 3.10 Column generation method Many relevant decision-making problems can be formulated as ILP problems with a very large (exponential) number of variables. Examples: cutting stock, crew scheduling, vehicle

More information

56:270 Final Exam - May

56:270  Final Exam - May @ @ 56:270 Linear Programming @ @ Final Exam - May 4, 1989 @ @ @ @ @ @ @ @ @ @ @ @ @ @ Select any 7 of the 9 problems below: (1.) ANALYSIS OF MPSX OUTPUT: Please refer to the attached materials on the

More information

Lessons from MIP Search. John Hooker Carnegie Mellon University November 2009

Lessons from MIP Search. John Hooker Carnegie Mellon University November 2009 Lessons from MIP Search John Hooker Carnegie Mellon University November 2009 Outline MIP search The main ideas Duality and nogoods From MIP to AI (and back) Binary decision diagrams From MIP to constraint

More information

Stochastic Unit Commitment with Topology Control Recourse for Renewables Integration

Stochastic Unit Commitment with Topology Control Recourse for Renewables Integration 1 Stochastic Unit Commitment with Topology Control Recourse for Renewables Integration Jiaying Shi and Shmuel Oren University of California, Berkeley IPAM, January 2016 33% RPS - Cumulative expected VERs

More information

Interior-Point versus Simplex methods for Integer Programming Branch-and-Bound

Interior-Point versus Simplex methods for Integer Programming Branch-and-Bound Interior-Point versus Simplex methods for Integer Programming Branch-and-Bound Samir Elhedhli elhedhli@uwaterloo.ca Department of Management Sciences, University of Waterloo, Canada Page of 4 McMaster

More information

arxiv: v2 [math.oc] 31 May 2014

arxiv: v2 [math.oc] 31 May 2014 Chance Constrained Mixed Integer Program: Bilinear and Linear Formulations, and Benders Decomposition Bo Zeng, Yu An and Ludwig Kuznia arxiv:1403.7875v2 [math.oc] 31 May 2014 Dept. of Industrial and Management

More information

A Benders decomposition method for locating stations in a one-way electric car sharing system under demand uncertainty

A Benders decomposition method for locating stations in a one-way electric car sharing system under demand uncertainty A Benders decomposition method for locating stations in a one-way electric car sharing system under demand uncertainty Hatice Calik 1,2 and Bernard Fortz 1,3 1 Department of Computer Science, Université

More information

Constraints. Sirisha. Sep. 6-8, 2006.

Constraints. Sirisha. Sep. 6-8, 2006. Towards a Better Understanding of Equality in Robust Design Optimization Constraints Sirisha Rangavajhala Achille Messac Corresponding Author Achille Messac, PhD Distinguished Professor and Department

More information

Branch-and-cut Approaches for Chance-constrained Formulations of Reliable Network Design Problems

Branch-and-cut Approaches for Chance-constrained Formulations of Reliable Network Design Problems Branch-and-cut Approaches for Chance-constrained Formulations of Reliable Network Design Problems Yongjia Song James R. Luedtke August 9, 2012 Abstract We study solution approaches for the design of reliably

More information

5 Integer Linear Programming (ILP) E. Amaldi Foundations of Operations Research Politecnico di Milano 1

5 Integer Linear Programming (ILP) E. Amaldi Foundations of Operations Research Politecnico di Milano 1 5 Integer Linear Programming (ILP) E. Amaldi Foundations of Operations Research Politecnico di Milano 1 Definition: An Integer Linear Programming problem is an optimization problem of the form (ILP) min

More information

Estimation and Optimization: Gaps and Bridges. MURI Meeting June 20, Laurent El Ghaoui. UC Berkeley EECS

Estimation and Optimization: Gaps and Bridges. MURI Meeting June 20, Laurent El Ghaoui. UC Berkeley EECS MURI Meeting June 20, 2001 Estimation and Optimization: Gaps and Bridges Laurent El Ghaoui EECS UC Berkeley 1 goals currently, estimation (of model parameters) and optimization (of decision variables)

More information

A MIXED INTEGER DISJUNCTIVE MODEL FOR TRANSMISSION NETWORK EXPANSION

A MIXED INTEGER DISJUNCTIVE MODEL FOR TRANSMISSION NETWORK EXPANSION A MIXED INTEGER DISJUNCTIVE MODEL FOR TRANSMISSION NETWORK EXPANSION Laura Bahiense*, Gerson C. Oliveira (PUC/Rio), Mario Pereira*, Member, Sergio Granville*, Member Abstract: The classical non-linear

More information

Parallel PIPS-SBB Multi-level parallelism for 2-stage SMIPS. Lluís-Miquel Munguia, Geoffrey M. Oxberry, Deepak Rajan, Yuji Shinano

Parallel PIPS-SBB Multi-level parallelism for 2-stage SMIPS. Lluís-Miquel Munguia, Geoffrey M. Oxberry, Deepak Rajan, Yuji Shinano Parallel PIPS-SBB Multi-level parallelism for 2-stage SMIPS Lluís-Miquel Munguia, Geoffrey M. Oxberry, Deepak Rajan, Yuji Shinano ... Our contribution PIPS-PSBB*: Multi-level parallelism for Stochastic

More information

SUBMITTED TO IEEE TRANSACTIONS ON POWER SYSTEMS, AUGUST

SUBMITTED TO IEEE TRANSACTIONS ON POWER SYSTEMS, AUGUST SUBMITTED TO IEEE TRANSACTIONS ON POWER SYSTEMS, AUGUST 2014 1 Adaptive Robust Optimization with Dynamic Uncertainty Sets for Multi-Period Economic Dispatch under Significant Wind Álvaro Lorca, Student

More information

Applications. Stephen J. Stoyan, Maged M. Dessouky*, and Xiaoqing Wang

Applications. Stephen J. Stoyan, Maged M. Dessouky*, and Xiaoqing Wang Introduction to Large-Scale Linear Programming and Applications Stephen J. Stoyan, Maged M. Dessouky*, and Xiaoqing Wang Daniel J. Epstein Department of Industrial and Systems Engineering, University of

More information

Branch-and-Price-and-Cut for the Split Delivery Vehicle Routing Problem with Time Windows

Branch-and-Price-and-Cut for the Split Delivery Vehicle Routing Problem with Time Windows Branch-and-Price-and-Cut for the Split Delivery Vehicle Routing Problem with Time Windows Guy Desaulniers École Polytechnique de Montréal and GERAD Column Generation 2008 Aussois, France Outline Introduction

More information

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING 1. Lagrangian Relaxation Lecture 12 Single Machine Models, Column Generation 2. Dantzig-Wolfe Decomposition Dantzig-Wolfe Decomposition Delayed Column

More information

Accelerating Benders Decomposition by Local Branching

Accelerating Benders Decomposition by Local Branching Accelerating Benders Decomposition by Local Branching Walter Rei, Michel Gendreau Département d informatique et de recherche opérationnelle and Centre de recherche sur les transports, Université demontréal,

More information

A Benders Algorithm for Two-Stage Stochastic Optimization Problems With Mixed Integer Recourse

A Benders Algorithm for Two-Stage Stochastic Optimization Problems With Mixed Integer Recourse A Benders Algorithm for Two-Stage Stochastic Optimization Problems With Mixed Integer Recourse Ted Ralphs 1 Joint work with Menal Güzelsoy 2 and Anahita Hassanzadeh 1 1 COR@L Lab, Department of Industrial

More information

An improved Benders decomposition algorithm for the logistics facility location problem with capacity expansions

An improved Benders decomposition algorithm for the logistics facility location problem with capacity expansions DOI 10.1007/s10479-011-1050-9 An improved Benders decomposition algorithm for the logistics facility location problem with capacity expansions Lixin Tang Wei Jiang Georgios K.D. Saharidis Springer Science+Business

More information

Integer Linear Programming Modeling

Integer Linear Programming Modeling DM554/DM545 Linear and Lecture 9 Integer Linear Programming Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. Assignment Problem Knapsack Problem

More information

On the Approximate Linear Programming Approach for Network Revenue Management Problems

On the Approximate Linear Programming Approach for Network Revenue Management Problems On the Approximate Linear Programming Approach for Network Revenue Management Problems Chaoxu Tong School of Operations Research and Information Engineering, Cornell University, Ithaca, New York 14853,

More information

Decomposition Algorithms for Two-Stage Distributionally Robust Mixed Binary Programs

Decomposition Algorithms for Two-Stage Distributionally Robust Mixed Binary Programs Decomposition Algorithms for Two-Stage Distributionally Robust Mixed Binary Programs Manish Bansal Grado Department of Industrial and Systems Engineering, Virginia Tech Email: bansal@vt.edu Kuo-Ling Huang

More information

Multistage Adaptive Robust Optimization for the Unit Commitment Problem

Multistage Adaptive Robust Optimization for the Unit Commitment Problem Multistage Adaptive Robust Optimization for the Unit Commitment Problem Álvaro Lorca, X. Andy Sun H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta,

More information

Decomposition with Branch-and-Cut Approaches for Two Stage Stochastic Mixed-Integer Programming

Decomposition with Branch-and-Cut Approaches for Two Stage Stochastic Mixed-Integer Programming Decomposition with Branch-and-Cut Approaches for Two Stage Stochastic Mixed-Integer Programming by Suvrajeet Sen SIE Department, University of Arizona, Tucson, AZ 85721 and Hanif D. Sherali ISE Department,

More information

Stochastic Dual Dynamic Integer Programming

Stochastic Dual Dynamic Integer Programming Stochastic Dual Dynamic Integer Programming Jikai Zou Shabbir Ahmed Xu Andy Sun December 26, 2017 Abstract Multistage stochastic integer programming (MSIP) combines the difficulty of uncertainty, dynamics,

More information

From structures to heuristics to global solvers

From structures to heuristics to global solvers From structures to heuristics to global solvers Timo Berthold Zuse Institute Berlin DFG Research Center MATHEON Mathematics for key technologies OR2013, 04/Sep/13, Rotterdam Outline From structures to

More information

A Unified Framework for Defining and Measuring Flexibility in Power System

A Unified Framework for Defining and Measuring Flexibility in Power System J A N 1 1, 2 0 1 6, A Unified Framework for Defining and Measuring Flexibility in Power System Optimization and Equilibrium in Energy Economics Workshop Jinye Zhao, Tongxin Zheng, Eugene Litvinov Outline

More information

Integer Programming ISE 418. Lecture 8. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 8. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 8 Dr. Ted Ralphs ISE 418 Lecture 8 1 Reading for This Lecture Wolsey Chapter 2 Nemhauser and Wolsey Sections II.3.1, II.3.6, II.4.1, II.4.2, II.5.4 Duality for Mixed-Integer

More information

Recoverable Robustness in Scheduling Problems

Recoverable Robustness in Scheduling Problems Master Thesis Computing Science Recoverable Robustness in Scheduling Problems Author: J.M.J. Stoef (3470997) J.M.J.Stoef@uu.nl Supervisors: dr. J.A. Hoogeveen J.A.Hoogeveen@uu.nl dr. ir. J.M. van den Akker

More information

Benders, Nested Benders and Stochastic Programming: An Intuitive Introduction James Murphy

Benders, Nested Benders and Stochastic Programming: An Intuitive Introduction James Murphy Benders, Nested Benders and Stochastic Programming: An Intuitive Introduction James Murphy Cambridge University Engineering Department Technical Report CUED/F-INFENG/TR.675 December 013 Benders, Nested

More information

Multi Objective Optimization

Multi Objective Optimization Multi Objective Optimization Handout November 4, 2011 (A good reference for this material is the book multi-objective optimization by K. Deb) 1 Multiple Objective Optimization So far we have dealt with

More information

Multistage Robust Mixed Integer Optimization with Adaptive Partitions

Multistage Robust Mixed Integer Optimization with Adaptive Partitions Vol. 00, No. 0, Xxxxx 0000, pp. 000 000 issn 0000-0000 eissn 0000-0000 00 0000 0001 INFORMS doi 10.187/xxxx.0000.0000 c 0000 INFORMS Multistage Robust Mixed Integer Optimization with Adaptive Partitions

More information

Classification of Dantzig-Wolfe Reformulations for MIP s

Classification of Dantzig-Wolfe Reformulations for MIP s Classification of Dantzig-Wolfe Reformulations for MIP s Raf Jans Rotterdam School of Management HEC Montreal Workshop on Column Generation Aussois, June 2008 Outline and Motivation Dantzig-Wolfe reformulation

More information

Operations Research: Introduction. Concept of a Model

Operations Research: Introduction. Concept of a Model Origin and Development Features Operations Research: Introduction Term or coined in 1940 by Meclosky & Trefthan in U.K. came into existence during World War II for military projects for solving strategic

More information

A Scenario-based Transmission Network Expansion Planning in Electricity Markets

A Scenario-based Transmission Network Expansion Planning in Electricity Markets A -based Transmission Network Expansion ning in Electricity Markets Pranjal Pragya Verma Department of Electrical Engineering Indian Institute of Technology Madras Email: ee14d405@ee.iitm.ac.in K.S.Swarup

More information

Integer Linear Programming (ILP)

Integer Linear Programming (ILP) Integer Linear Programming (ILP) Zdeněk Hanzálek, Přemysl Šůcha hanzalek@fel.cvut.cz CTU in Prague March 8, 2017 Z. Hanzálek (CTU) Integer Linear Programming (ILP) March 8, 2017 1 / 43 Table of contents

More information

Almost Robust Optimization with Binary Variables

Almost Robust Optimization with Binary Variables Almost Robust Optimization with Binary Variables Opher Baron, Oded Berman, Mohammad M. Fazel-Zarandi Rotman School of Management, University of Toronto, Toronto, Ontario M5S 3E6, Canada, Opher.Baron@Rotman.utoronto.ca,

More information

Financial Optimization ISE 347/447. Lecture 21. Dr. Ted Ralphs

Financial Optimization ISE 347/447. Lecture 21. Dr. Ted Ralphs Financial Optimization ISE 347/447 Lecture 21 Dr. Ted Ralphs ISE 347/447 Lecture 21 1 Reading for This Lecture C&T Chapter 16 ISE 347/447 Lecture 21 2 Formalizing: Random Linear Optimization Consider the

More information

Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications

Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications François Vanderbeck University of Bordeaux INRIA Bordeaux-Sud-Ouest part : Defining Extended Formulations

More information

INTEGER PROGRAMMING. In many problems the decision variables must have integer values.

INTEGER PROGRAMMING. In many problems the decision variables must have integer values. INTEGER PROGRAMMING Integer Programming In many problems the decision variables must have integer values. Example:assign people, machines, and vehicles to activities in integer quantities. If this is the

More information

Design of Global Supply Chains

Design of Global Supply Chains Design of Global Supply Chains Marc Goetschalckx Carlos Vidal Tjendera Santoso IERC Cleveland, Spring 2000 Marc Goetschalckx Overview Global Supply Chain Problem Bilinear Transfer Price Formulation Iterative

More information

Chapter 3: Discrete Optimization Integer Programming

Chapter 3: Discrete Optimization Integer Programming Chapter 3: Discrete Optimization Integer Programming Edoardo Amaldi DEIB Politecnico di Milano edoardo.amaldi@polimi.it Website: http://home.deib.polimi.it/amaldi/opt-16-17.shtml Academic year 2016-17

More information

Gestion de la production. Book: Linear Programming, Vasek Chvatal, McGill University, W.H. Freeman and Company, New York, USA

Gestion de la production. Book: Linear Programming, Vasek Chvatal, McGill University, W.H. Freeman and Company, New York, USA Gestion de la production Book: Linear Programming, Vasek Chvatal, McGill University, W.H. Freeman and Company, New York, USA 1 Contents 1 Integer Linear Programming 3 1.1 Definitions and notations......................................

More information

Approximate Uni-directional Benders Decomposition

Approximate Uni-directional Benders Decomposition Approximate Uni-directional Benders Decomposition Christina Burt Nir Lipovetzky, Adrian Pearce, Peter Stuckey 25th January 2015 Decomposition for Planning subproblems Suppose we have a complex real world

More information

Integer Programming. Wolfram Wiesemann. December 6, 2007

Integer Programming. Wolfram Wiesemann. December 6, 2007 Integer Programming Wolfram Wiesemann December 6, 2007 Contents of this Lecture Revision: Mixed Integer Programming Problems Branch & Bound Algorithms: The Big Picture Solving MIP s: Complete Enumeration

More information

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini In the name of God Network Flows 6. Lagrangian Relaxation 6.3 Lagrangian Relaxation and Integer Programming Fall 2010 Instructor: Dr. Masoud Yaghini Integer Programming Outline Branch-and-Bound Technique

More information

3.10 Lagrangian relaxation

3.10 Lagrangian relaxation 3.10 Lagrangian relaxation Consider a generic ILP problem min {c t x : Ax b, Dx d, x Z n } with integer coefficients. Suppose Dx d are the complicating constraints. Often the linear relaxation and the

More information

Dual Dynamic Programming for Long-Term Receding-Horizon Hydro Scheduling with Head Effects

Dual Dynamic Programming for Long-Term Receding-Horizon Hydro Scheduling with Head Effects Dual Dynamic Programming for Long-Term Receding-Horizon Hydro Scheduling with Head Effects Benjamin Flamm, Annika Eichler, Joseph Warrington, John Lygeros Automatic Control Laboratory, ETH Zurich SINTEF

More information

Algorithms and Complexity theory

Algorithms and Complexity theory Algorithms and Complexity theory Thibaut Barthelemy Some slides kindly provided by Fabien Tricoire University of Vienna WS 2014 Outline 1 Algorithms Overview How to write an algorithm 2 Complexity theory

More information

Disconnecting Networks via Node Deletions

Disconnecting Networks via Node Deletions 1 / 27 Disconnecting Networks via Node Deletions Exact Interdiction Models and Algorithms Siqian Shen 1 J. Cole Smith 2 R. Goli 2 1 IOE, University of Michigan 2 ISE, University of Florida 2012 INFORMS

More information

A new stochastic program to facilitate intermittent renewable generation

A new stochastic program to facilitate intermittent renewable generation A new stochastic program to facilitate intermittent renewable generation Golbon Zakeri Geoff Pritchard, Mette Bjorndal, Endre Bjorndal EPOC UoA and Bergen, IPAM 2016 Premise for our model Growing need

More information

Decision Diagrams for Discrete Optimization

Decision Diagrams for Discrete Optimization Decision Diagrams for Discrete Optimization Willem Jan van Hoeve Tepper School of Business Carnegie Mellon University www.andrew.cmu.edu/user/vanhoeve/mdd/ Acknowledgments: David Bergman, Andre Cire, Samid

More information

SELECT TWO PROBLEMS (OF A POSSIBLE FOUR) FROM PART ONE, AND FOUR PROBLEMS (OF A POSSIBLE FIVE) FROM PART TWO. PART ONE: TOTAL GRAND

SELECT TWO PROBLEMS (OF A POSSIBLE FOUR) FROM PART ONE, AND FOUR PROBLEMS (OF A POSSIBLE FIVE) FROM PART TWO. PART ONE: TOTAL GRAND 1 56:270 LINEAR PROGRAMMING FINAL EXAMINATION - MAY 17, 1985 SELECT TWO PROBLEMS (OF A POSSIBLE FOUR) FROM PART ONE, AND FOUR PROBLEMS (OF A POSSIBLE FIVE) FROM PART TWO. PART ONE: 1 2 3 4 TOTAL GRAND

More information

MEDIUM-TERM HYDROPOWER SCHEDULING BY STOCHASTIC DUAL DYNAMIC INTEGER PROGRAMMING: A CASE STUDY

MEDIUM-TERM HYDROPOWER SCHEDULING BY STOCHASTIC DUAL DYNAMIC INTEGER PROGRAMMING: A CASE STUDY MEDIUM-TERM HYDROPOWER SCHEDULING BY STOCHASTIC DUAL DYNAMIC INTEGER PROGRAMMING: A CASE STUDY Martin Hjelmeland NTNU Norwegian University of Science and Technology, Trondheim, Norway. martin.hjelmeland@ntnu.no

More information

Thermal Unit Commitment Problem

Thermal Unit Commitment Problem Thermal Unit Commitment Problem Moshe Potsane, Luyanda Ndlovu, Simphiwe Simelane Christiana Obagbuwa, Jesal Kika, Nadine Padayachi, Luke O. Joel Lady Kokela, Michael Olusanya, Martins Arasomwa, Sunday

More information