Orbitopes. Marc Pfetsch. joint work with Volker Kaibel. Zuse Institute Berlin

Size: px
Start display at page:

Download "Orbitopes. Marc Pfetsch. joint work with Volker Kaibel. Zuse Institute Berlin"

Transcription

1 Orbitopes Marc Pfetsch joint work with Volker Kaibel Zuse Institute Berlin

2 What this talk is about We introduce orbitopes. A polyhedral way to break symmetries in integer programs.

3 Introduction 2 Orbitopes 3 Cyclic Groups 4 Symmetric Groups 5 Coloring Polyhedra Outline

4 Motivation: Graph Coloring Given: graph G = (V, E) without isolated nodes, positive integer C C-coloring: function V {,..., C}, such that no two adjacent nodes receive the same color (number). Graph coloring: Find minimal C such that C-coloring exits. Well known NP-hard problem.

5 Variables: x ij = y j = Integer Programming Formulation iff node i receives color j iff color j is used min C j= y j x ij + x kj y j {i, k} E, j {,..., C} C x ij = i V j= x ij {, } i V, j {,..., C} y j {, } j {,..., C}

6 Variables: x ij = y j = Integer Programming Formulation iff node i receives color j iff color j is used min C j= y j x ij + x kj y j {i, k} E, j {,..., C} C x ij = i V j= x ij {, } i V, j {,..., C} y j {, } j {,..., C} Highly symmetric: Can arbitrarily permute numbers for colors without changing the structure and objective.

7 Branch-and-Cut. Solve LP-relaxation: min CX y j j= x ij + x kj y j {i, k} E, j {,..., C} CX x ij = i V j= x ij i V, j {,..., C} y j j {,..., C} 2. Add valid inequalities (cuts). Example: clique inequalities: S V a clique, x ij for all j {,..., C}. i S 3. Perform branching branching tree Example: Two branches: x ij = and x ij = for some i, j. 4. Perform bounding: cut off parts of the tree.

8 Symmetry strikes twice... weak LP-relaxations: x ij = C, y j = 2 C gives value: 2 unnecessarily large branch-andbound tree

9 Potential Applications Line planning in public transport Periodic timetabling Planning the UMTS radio interface Chip-verification Frequency assignment in mobile phone networks Location / routing areas Wavelength assignment in optical networks Block decomposition of matrices

10 Example: Line planning Line planning model that keeps track of transfers:

11 Other Approaches Margot [22]: modified branch-and-bound algorithm. Avoids redundant parts in the tree (using group theory). Work for constraint propagation, e.g., automatic symmetry detection. Exist many symmetry breaking inequalities for particular problems.

12 Introduction 2 Orbitopes 3 Cyclic Groups 4 Symmetric Groups 5 Coloring Polyhedra Outline

13 Lexicographic Ordering of /-Matrices M p,q := {, } [p] [q] S n = symmetric group G subgroup of S q, acting by permuting columns : lexicographic ordering M max p,q (G) = -maximal matrices within their orbits under the group action. M p,q := {(x ij ) M p,q : q j= x ij for all i} M = p,q := {(x ij ) M p,q : q j= x ij = for all i} M p,q := {(x ij ) M p,q : q j= x ij for all i}.

14 Orbitopes full orbitope O p,q (G) := conv M max p,q (G) packing orbitope O p,q(g) := conv(m max p,q (G) M p,q) partitioning orbitope O = p,q(g) := conv(m max p,q (G) M = p,q) covering orbitope O p,q(g) := conv(m max p,q (G) M p,q)

15 Main Goal More Detailed Plan of Talk Add inequality descriptions of orbitopes to particular integer programs in order to remove symmetry. Will discuss only packing and partitioning orbitopes.. Orbitopes for cyclic permutations C q Linear optimization over orbitopes Complete linear description 2. Orbitopes for the symmetric group S q Linear optimization over orbitopes Complete linear description Facets 3. Coloring Polyhedra

16 Introduction 2 Orbitopes 3 Cyclic Groups 4 Symmetric Groups 5 Coloring Polyhedra Outline

17 For cyclic group G = C q : Packing Lexicographically Maximal Matrices X M p,q M max p,q (C q ) iff first column lexicographically not smaller than the others. Partitioning X M = p,q M max p,q (C q ) iff it has a -entry at position (, ).

18 Optimization over Orbitopes Proposition Linear optimization over M max p,q (C q ) M p,q and over M max p,q (C q ) M = p,q can be solved in time O(pq). Proof. For partitioning orbitopes: Maximize linear objective given by c Q [p] [q]. Take matrix with at position (, ). For each row, put at c-maximal position. For packing orbitopes: just a bit more involved

19 Linear Description Partitioning Theorem O = p,q(c q ) is completely described by x = and x j = for all 2 j q, x ij for all 2 i p and j [q], x(row i ) = for all 2 i p. This system is non-redundant. row i := {(i, ), (i, 2),..., (i, q)} = ith row x(s) := (i,j) S x ij

20 Proof Proof. Constraints arise from LP-relaxation. Constraint matrix for x(row i ) = is an interval matrix: C A The whole constraint matrix is totally unimodular.

21 Theorem O p,q(c q ) is completely described by x and x j = for all 2 j q, x ij for all 2 i p and j [q], x(row i ) for all 2 i p, the inequalities Linear Description Packing q i x ij x k j=2 k= for all 2 i p. This system is non-redundant.

22 Proof Sketch Constraints arise from LP-relaxation. Constraint matrix with suitable ordering of variables: Show: the whole constraint matrix is totally unimodular. Use Ghouila-Houri criterion: For each subset of columns, assign +/ weights to columns such that weighted sum is a vector with components in {,, +}. C A

23 Introduction 2 Orbitopes 3 Cyclic Groups 4 Symmetric Groups 5 Coloring Polyhedra Outline

24 Lexicographically Maximal Matrices For symmetric group G = S q : X M max p,q (S q ) iff columns are non-increasing lexicographically ordered.

25 Proposition Optimization over Orbitopes Linear optimization over M max p,q (S q ) M p,q and over M max p,q (S q ) M = p,q can be solved in time O(p 2 q). Proof: By dynamic programming: Maximize linear objective given by c Q [p] [q]. M = optimal matrix not lexicographically sorted T = optimal matrix lexicographically sorted in last part max {c(m) + c kj + c(t ) : k = i,..., p}

26 IP Formulation for Partitioning Can fix variables: For graph coloring, Méndez-Díaz & Zabala [2] introduced: This forces lexicographic ordering. Can be strengthened...

27 IP Formulation for Partitioning IP formulation: column inequalities:

28 IP Formulation for Partitioning IP formulation: column inequalities: + = + Variable bounds

29 IP Formulation for Partitioning IP formulation: column inequalities: + = + Variable bounds Does not provide a complete linear description!

30 Exponential class of inequalities: Shifted Column Inequalities shifted column (SC) bar Shifted Column Inequality (SCI) Shiftings:

31 Separation of SCIs Proposition The separation problem for SCIs can be solved in time O(pq). Proof. Dynamic programming: Case Case 2 min{ +, }.

32 Linear Description Partitioning Theorem O = p,q(s q ) is completely described by: x ij for all i [p], j [q], x(row i ) = for all i [p], x(b) x(s) for all SCIs with SC S and bar B.

33 Facets Theorem dim O = p,q(s q ) = (p q )(q ). 2 x ij defines a facet unless i = j < q. x(b) x(s) defines a facet unless:

34 Packing Orbitopes Proposition O = p,q(s q ) and O p,q (S q ) are affinely isomorphic via orthogonal projection removing the first row and column. Theorem O p,q(s q ) is completely described by x ij for all i [p], j [q], x(row i ) for all i [p], x(b) x(s) for all SCIs with SC S and bar B.

35 Packing Orbitopes Facets Theorem dim O p,q(s q ) = (p q )q, i.e., full-dimensional 2 x ij defines a facet unless i = j < q. x(row i ) always defines a facet. x(b) x(s) defines a facet unless:

36 Introduction 2 Orbitopes 3 Cyclic Groups 4 Symmetric Groups 5 Coloring Polyhedra Outline

37 Back to Coloring Exist lots of valid inequalities. Can combine SCIs with clique inequalities: Polyhedral study is involved... (Work of Yuri Faenza.)

38 Coloring Polyhedra I CY n (G) = conv{(x, y) {, } V [n] : q x ij = i V j= x ij + x kj y j n y j i= x ij {i, k} E, j [q] j [q] y j+ y j j [q ]}. =

39 Coloring Polyhedra I CY n (G) = conv{(x, y) {, } V [n] : q x ij = i V j= x ij + x kj y j n y j i= x ij {i, k} E, j [q] j [q] y j+ y j j [q ]}. Theorem (Méndez-Díaz and Zabala (2)) dim CY n (G) = V 2 χ(g).

40 Coloring Polyhedra II CO n (G) = conv{(x, y) {, } V [n] : q x ij = i V j= x ij + x kj y j n y j i= x ij q i x il l=j k= x k,j {i, k} E, j [q] j [q] i V, j [q]}. =

41 Dimension The dimension of CO n (G) projected to x-variables depends on the order of the nodes. Example: Proposition (Faenza (26)) The dimension of the star on n nodes is ( ) n 2 if the center is labeled or 2 ( n 2) 2 otherwise.

42 Similar Problems k-colorable subgraph problem What is the largest (induced) subgraph that can be colored with k colors? k-partitioning Complete graph G = (V, E) with weights w e, find partition of V into k parts V,..., V k such that k is minimal. i,j= i j e E(V i,v j ) w e Currently investigated by Matthias Peinhardt.

43 Outlook Continue work on coloring branch-and-cut algorithm. Continue work on full orbitopes. Continue work on k-partitioning. Study covering orbitopes. Investigate interplay with special polyhedra. Applications.

Packing and Partitioning Orbitopes

Packing and Partitioning Orbitopes Konrad-Zuse-Zentrum für Informationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Germany VOLKER KAIBEL MARC E. PFETSCH Packing and Partitioning Orbitopes Supported by the DFG Research Center MATHEON

More information

Computational Aspects of Combinatorial Optimization

Computational Aspects of Combinatorial Optimization Computational Aspects of Combinatorial Optimization Dr. Marc E. Pfetsch Kumulative Habilitationsschrift an der Fakultät II Mathematik und Naturwissenschaften der Technischen Universität Berlin Lehrgebiet:

More information

AND ORBITOPES TIM JANUSCHOWSKI AND MARC E. PFETSCH

AND ORBITOPES TIM JANUSCHOWSKI AND MARC E. PFETSCH THE MAXIMUM k-colorable SUBGRAPH PROBLEM AND ORBITOPES TIM JANUSCHOWSKI AND MARC E. PFETSCH Abstract. Given an undirected node-weighted graph and a positive integer k, the maximum k-colorable subgraph

More information

Fundamental Domains for Integer Programs with Symmetries

Fundamental Domains for Integer Programs with Symmetries Fundamental Domains for Integer Programs with Symmetries Eric J. Friedman Cornell University, Ithaca, NY 14850, ejf27@cornell.edu, WWW home page: http://www.people.cornell.edu/pages/ejf27/ Abstract. We

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Instructor: Farid Alizadeh Scribe: Anton Riabov 10/08/2001 1 Overview We continue studying the maximum eigenvalue SDP, and generalize

More information

A COMPUTATIONAL COMPARISON OF SYMMETRY HANDLING METHODS FOR MIXED INTEGER PROGRAMS

A COMPUTATIONAL COMPARISON OF SYMMETRY HANDLING METHODS FOR MIXED INTEGER PROGRAMS A COMPUTATIONAL COMPARISON OF SYMMETRY HANDLING METHODS FOR MIXED INTEGER PROGRAMS MARC E. PFETSCH AND THOMAS REHN Abstract. The handling of symmetries in mixed integer programs in order to speed up the

More information

Symmetry in Scheduling Problems

Symmetry in Scheduling Problems Symmetry in Scheduling Problems James Ostrowski 1, Miguel F. Anjos 2, and Anthony Vannelli 3 1 Decision and Information Sciences, Argonne National Lab, Argonne, IL, jostrowski@anl.gov 2 GERAD & Département

More information

3.8 Strong valid inequalities

3.8 Strong valid inequalities 3.8 Strong valid inequalities By studying the problem structure, we can derive strong valid inequalities which lead to better approximations of the ideal formulation conv(x ) and hence to tighter bounds.

More information

Alternative Methods for Obtaining. Optimization Bounds. AFOSR Program Review, April Carnegie Mellon University. Grant FA

Alternative Methods for Obtaining. Optimization Bounds. AFOSR Program Review, April Carnegie Mellon University. Grant FA Alternative Methods for Obtaining Optimization Bounds J. N. Hooker Carnegie Mellon University AFOSR Program Review, April 2012 Grant FA9550-11-1-0180 Integrating OR and CP/AI Early support by AFOSR First

More information

Cutting Plane Separators in SCIP

Cutting Plane Separators in SCIP Cutting Plane Separators in SCIP Kati Wolter Zuse Institute Berlin DFG Research Center MATHEON Mathematics for key technologies 1 / 36 General Cutting Plane Method MIP min{c T x : x X MIP }, X MIP := {x

More information

Modified Orbital Branching with Applications to Orbitopes and to Unit Commitment

Modified Orbital Branching with Applications to Orbitopes and to Unit Commitment Modified Orbital Branching with Applications to Orbitopes and to Unit Commitment James Ostrowski Miguel F. Anjos Anthony Vannelli October 27, 2012 Abstract The past decade has seen advances in general

More information

A packing integer program arising in two-layer network design

A packing integer program arising in two-layer network design A packing integer program arising in two-layer network design Christian Raack Arie M.C.A Koster Zuse Institute Berlin Takustr. 7, D-14195 Berlin Centre for Discrete Mathematics and its Applications (DIMAP)

More information

SEQUENTIAL AND SIMULTANEOUS LIFTING IN THE NODE PACKING POLYHEDRON JEFFREY WILLIAM PAVELKA. B.S., Kansas State University, 2011

SEQUENTIAL AND SIMULTANEOUS LIFTING IN THE NODE PACKING POLYHEDRON JEFFREY WILLIAM PAVELKA. B.S., Kansas State University, 2011 SEQUENTIAL AND SIMULTANEOUS LIFTING IN THE NODE PACKING POLYHEDRON by JEFFREY WILLIAM PAVELKA B.S., Kansas State University, 2011 A THESIS Submitted in partial fulfillment of the requirements for the degree

More information

1 Solution of a Large-Scale Traveling-Salesman Problem... 7 George B. Dantzig, Delbert R. Fulkerson, and Selmer M. Johnson

1 Solution of a Large-Scale Traveling-Salesman Problem... 7 George B. Dantzig, Delbert R. Fulkerson, and Selmer M. Johnson Part I The Early Years 1 Solution of a Large-Scale Traveling-Salesman Problem............ 7 George B. Dantzig, Delbert R. Fulkerson, and Selmer M. Johnson 2 The Hungarian Method for the Assignment Problem..............

More information

Lecture 9: Dantzig-Wolfe Decomposition

Lecture 9: Dantzig-Wolfe Decomposition Lecture 9: Dantzig-Wolfe Decomposition (3 units) Outline Dantzig-Wolfe decomposition Column generation algorithm Relation to Lagrangian dual Branch-and-price method Generated assignment problem and multi-commodity

More information

1 T 1 = where 1 is the all-ones vector. For the upper bound, let v 1 be the eigenvector corresponding. u:(u,v) E v 1(u)

1 T 1 = where 1 is the all-ones vector. For the upper bound, let v 1 be the eigenvector corresponding. u:(u,v) E v 1(u) CME 305: Discrete Mathematics and Algorithms Instructor: Reza Zadeh (rezab@stanford.edu) Final Review Session 03/20/17 1. Let G = (V, E) be an unweighted, undirected graph. Let λ 1 be the maximum eigenvalue

More information

Cutting Planes in SCIP

Cutting Planes in SCIP Cutting Planes in SCIP Kati Wolter Zuse-Institute Berlin Department Optimization Berlin, 6th June 2007 Outline 1 Cutting Planes in SCIP 2 Cutting Planes for the 0-1 Knapsack Problem 2.1 Cover Cuts 2.2

More information

A Geometric Approach to Graph Isomorphism

A Geometric Approach to Graph Isomorphism A Geometric Approach to Graph Isomorphism Pawan Aurora and Shashank K Mehta Indian Institute of Technology, Kanpur - 208016, India {paurora,skmehta}@cse.iitk.ac.in Abstract. We present an integer linear

More information

SUNS: A NEW CLASS OF FACET DEFINING STRUCTURES FOR THE NODE PACKING POLYHEDRON CHELSEA NICOLE IRVINE. B.S., Kansas State University, 2012

SUNS: A NEW CLASS OF FACET DEFINING STRUCTURES FOR THE NODE PACKING POLYHEDRON CHELSEA NICOLE IRVINE. B.S., Kansas State University, 2012 SUNS: A NEW CLASS OF FACET DEFINING STRUCTURES FOR THE NODE PACKING POLYHEDRON by CHELSEA NICOLE IRVINE B.S., Kansas State University, 01 A THESIS Submitted in partial fulfillment of the requirements for

More information

3. Linear Programming and Polyhedral Combinatorics

3. Linear Programming and Polyhedral Combinatorics Massachusetts Institute of Technology 18.453: Combinatorial Optimization Michel X. Goemans April 5, 2017 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the introductory

More information

A New Facet Generating Procedure for the Stable Set Polytope

A New Facet Generating Procedure for the Stable Set Polytope 1 / 22 A New Facet Generating Procedure for the Stable Set Polytope Álinson S. Xavier a Manoel Campêlo b a Mestrado e Doutorado em Ciência da Computação Universidade Federal do Ceará Fortaleza, Brazil

More information

Solving the MWT. Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving the following ILP:

Solving the MWT. Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving the following ILP: Solving the MWT Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving the following ILP: max subject to e i E ω i x i e i C E x i {0, 1} x i C E 1 for all critical mixed cycles

More information

Workforce Scheduling. Outline DM87 SCHEDULING, TIMETABLING AND ROUTING. Outline. Workforce Scheduling. 1. Workforce Scheduling.

Workforce Scheduling. Outline DM87 SCHEDULING, TIMETABLING AND ROUTING. Outline. Workforce Scheduling. 1. Workforce Scheduling. Outline DM87 SCHEDULING, TIMETABLING AND ROUTING Lecture 17 Workforce Scheduling 2. Crew Scheduling and Roering Marco Chiarandini DM87 Scheduling, Timetabling and Routing 2 Outline Workforce Scheduling

More information

Integer Programming ISE 418. Lecture 12. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 12. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 12 Dr. Ted Ralphs ISE 418 Lecture 12 1 Reading for This Lecture Nemhauser and Wolsey Sections II.2.1 Wolsey Chapter 9 ISE 418 Lecture 12 2 Generating Stronger Valid

More information

Integer program reformulation for robust branch-and-cut-and-price

Integer program reformulation for robust branch-and-cut-and-price Integer program reformulation for robust branch-and-cut-and-price Marcus Poggi de Aragão Informática PUC-Rio Eduardo Uchoa Engenharia de Produção Universidade Federal Fluminense Outline of the talk Robust

More information

Exploiting Symmetry in Computing Polyhedral Bounds on Network Coding Rate Regions

Exploiting Symmetry in Computing Polyhedral Bounds on Network Coding Rate Regions Exploiting Symmetry in Computing Polyhedral Bounds on Network Coding Rate Regions Jayant Apte John Walsh Department of Electrical and Computer Engineering Drexel University, Philadelphia NetCod, 205 NSF

More information

An Algorithm to Determine the Clique Number of a Split Graph. In this paper, we propose an algorithm to determine the clique number of a split graph.

An Algorithm to Determine the Clique Number of a Split Graph. In this paper, we propose an algorithm to determine the clique number of a split graph. An Algorithm to Determine the Clique Number of a Split Graph O.Kettani email :o_ket1@yahoo.fr Abstract In this paper, we propose an algorithm to determine the clique number of a split graph. Introduction

More information

LP Relaxations of Mixed Integer Programs

LP Relaxations of Mixed Integer Programs LP Relaxations of Mixed Integer Programs John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA February 2015 Mitchell LP Relaxations 1 / 29 LP Relaxations LP relaxations We want

More information

MATHEMATICAL ENGINEERING TECHNICAL REPORTS. The Symmetric Quadratic Semi-Assignment Polytope

MATHEMATICAL ENGINEERING TECHNICAL REPORTS. The Symmetric Quadratic Semi-Assignment Polytope MATHEMATICAL ENGINEERING TECHNICAL REPORTS The Symmetric Quadratic Semi-Assignment Polytope Hiroo SAITO (Communicated by Kazuo MUROTA) METR 2005 21 August 2005 DEPARTMENT OF MATHEMATICAL INFORMATICS GRADUATE

More information

Parity Polytopes and Binarization

Parity Polytopes and Binarization Parity Polytopes and Binarization Dominik Ermel 1 and Matthias Walter 1 Otto-von-Guericke-Universität Magdeburg, dominik.ermel@st.ovgu.de RWTH Aachen University, walter@or.rwth-aachen.de March 8, 018 Abstract

More information

3. Linear Programming and Polyhedral Combinatorics

3. Linear Programming and Polyhedral Combinatorics Massachusetts Institute of Technology 18.433: Combinatorial Optimization Michel X. Goemans February 28th, 2013 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the introductory

More information

Properties and Classification of the Wheels of the OLS Polytope.

Properties and Classification of the Wheels of the OLS Polytope. Properties and Classification of the Wheels of the OLS Polytope. G. Appa 1, D. Magos 2, I. Mourtos 1 1 Operational Research Department, London School of Economics. email: {g.appa, j.mourtos}@lse.ac.uk

More information

3.7 Strong valid inequalities for structured ILP problems

3.7 Strong valid inequalities for structured ILP problems 3.7 Strong valid inequalities for structured ILP problems By studying the problem structure, we can derive strong valid inequalities yielding better approximations of conv(x ) and hence tighter bounds.

More information

ACO Comprehensive Exam October 18 and 19, Analysis of Algorithms

ACO Comprehensive Exam October 18 and 19, Analysis of Algorithms Consider the following two graph problems: 1. Analysis of Algorithms Graph coloring: Given a graph G = (V,E) and an integer c 0, a c-coloring is a function f : V {1,,...,c} such that f(u) f(v) for all

More information

Branch-and-cut Approaches for Chance-constrained Formulations of Reliable Network Design Problems

Branch-and-cut Approaches for Chance-constrained Formulations of Reliable Network Design Problems Branch-and-cut Approaches for Chance-constrained Formulations of Reliable Network Design Problems Yongjia Song James R. Luedtke August 9, 2012 Abstract We study solution approaches for the design of reliably

More information

3.7 Cutting plane methods

3.7 Cutting plane methods 3.7 Cutting plane methods Generic ILP problem min{ c t x : x X = {x Z n + : Ax b} } with m n matrix A and n 1 vector b of rationals. According to Meyer s theorem: There exists an ideal formulation: conv(x

More information

Multicommodity Flows and Column Generation

Multicommodity Flows and Column Generation Lecture Notes Multicommodity Flows and Column Generation Marc Pfetsch Zuse Institute Berlin pfetsch@zib.de last change: 2/8/2006 Technische Universität Berlin Fakultät II, Institut für Mathematik WS 2006/07

More information

3.3 Easy ILP problems and totally unimodular matrices

3.3 Easy ILP problems and totally unimodular matrices 3.3 Easy ILP problems and totally unimodular matrices Consider a generic ILP problem expressed in standard form where A Z m n with n m, and b Z m. min{c t x : Ax = b, x Z n +} (1) P(b) = {x R n : Ax =

More information

Integer Programming, Part 1

Integer Programming, Part 1 Integer Programming, Part 1 Rudi Pendavingh Technische Universiteit Eindhoven May 18, 2016 Rudi Pendavingh (TU/e) Integer Programming, Part 1 May 18, 2016 1 / 37 Linear Inequalities and Polyhedra Farkas

More information

Discrete Optimization 2010 Lecture 7 Introduction to Integer Programming

Discrete Optimization 2010 Lecture 7 Introduction to Integer Programming Discrete Optimization 2010 Lecture 7 Introduction to Integer Programming Marc Uetz University of Twente m.uetz@utwente.nl Lecture 8: sheet 1 / 32 Marc Uetz Discrete Optimization Outline 1 Intro: The Matching

More information

Fall 2017 Qualifier Exam: OPTIMIZATION. September 18, 2017

Fall 2017 Qualifier Exam: OPTIMIZATION. September 18, 2017 Fall 2017 Qualifier Exam: OPTIMIZATION September 18, 2017 GENERAL INSTRUCTIONS: 1 Answer each question in a separate book 2 Indicate on the cover of each book the area of the exam, your code number, and

More information

Four-coloring P 6 -free graphs. I. Extending an excellent precoloring

Four-coloring P 6 -free graphs. I. Extending an excellent precoloring Four-coloring P 6 -free graphs. I. Extending an excellent precoloring Maria Chudnovsky Princeton University, Princeton, NJ 08544 Sophie Spirkl Princeton University, Princeton, NJ 08544 Mingxian Zhong Columbia

More information

Decision Procedures An Algorithmic Point of View

Decision Procedures An Algorithmic Point of View An Algorithmic Point of View ILP References: Integer Programming / Laurence Wolsey Deciding ILPs with Branch & Bound Intro. To mathematical programming / Hillier, Lieberman Daniel Kroening and Ofer Strichman

More information

Lower Bounds on the Sizes of Integer Programs Without Additional Variables

Lower Bounds on the Sizes of Integer Programs Without Additional Variables Lower Bounds on the Sizes of Integer Programs Without Additional Variables Volker Kaibel and Stefan Weltge Otto-von-Guericke-Universität Magdeburg, Germany {kaibel,weltge}@ovgu.de Abstract. For a given

More information

Lecture 23 Branch-and-Bound Algorithm. November 3, 2009

Lecture 23 Branch-and-Bound Algorithm. November 3, 2009 Branch-and-Bound Algorithm November 3, 2009 Outline Lecture 23 Modeling aspect: Either-Or requirement Special ILPs: Totally unimodular matrices Branch-and-Bound Algorithm Underlying idea Terminology Formal

More information

Chapter 1. Preliminaries

Chapter 1. Preliminaries Introduction This dissertation is a reading of chapter 4 in part I of the book : Integer and Combinatorial Optimization by George L. Nemhauser & Laurence A. Wolsey. The chapter elaborates links between

More information

to work with) can be solved by solving their LP relaxations with the Simplex method I Cutting plane algorithms, e.g., Gomory s fractional cutting

to work with) can be solved by solving their LP relaxations with the Simplex method I Cutting plane algorithms, e.g., Gomory s fractional cutting Summary so far z =max{c T x : Ax apple b, x 2 Z n +} I Modeling with IP (and MIP, and BIP) problems I Formulation for a discrete set that is a feasible region of an IP I Alternative formulations for the

More information

Spectral Graph Theory and You: Matrix Tree Theorem and Centrality Metrics

Spectral Graph Theory and You: Matrix Tree Theorem and Centrality Metrics Spectral Graph Theory and You: and Centrality Metrics Jonathan Gootenberg March 11, 2013 1 / 19 Outline of Topics 1 Motivation Basics of Spectral Graph Theory Understanding the characteristic polynomial

More information

Facets for Node-Capacitated Multicut Polytopes from Path-Block Cycles with Two Common Nodes

Facets for Node-Capacitated Multicut Polytopes from Path-Block Cycles with Two Common Nodes Facets for Node-Capacitated Multicut Polytopes from Path-Block Cycles with Two Common Nodes Michael M. Sørensen July 2016 Abstract Path-block-cycle inequalities are valid, and sometimes facet-defining,

More information

THE EXISTENCE AND USEFULNESS OF EQUALITY CUTS IN THE MULTI-DEMAND MULTIDIMENSIONAL KNAPSACK PROBLEM LEVI DELISSA. B.S., Kansas State University, 2014

THE EXISTENCE AND USEFULNESS OF EQUALITY CUTS IN THE MULTI-DEMAND MULTIDIMENSIONAL KNAPSACK PROBLEM LEVI DELISSA. B.S., Kansas State University, 2014 THE EXISTENCE AND USEFULNESS OF EQUALITY CUTS IN THE MULTI-DEMAND MULTIDIMENSIONAL KNAPSACK PROBLEM by LEVI DELISSA B.S., Kansas State University, 2014 A THESIS submitted in partial fulfillment of the

More information

Theory of Computer Science. Theory of Computer Science. E5.1 Routing Problems. E5.2 Packing Problems. E5.3 Conclusion.

Theory of Computer Science. Theory of Computer Science. E5.1 Routing Problems. E5.2 Packing Problems. E5.3 Conclusion. Theory of Computer Science May 31, 2017 E5. Some NP-Complete Problems, Part II Theory of Computer Science E5. Some NP-Complete Problems, Part II E5.1 Routing Problems Malte Helmert University of Basel

More information

CS675: Convex and Combinatorial Optimization Fall 2016 Combinatorial Problems as Linear and Convex Programs. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Fall 2016 Combinatorial Problems as Linear and Convex Programs. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Fall 2016 Combinatorial Problems as Linear and Convex Programs Instructor: Shaddin Dughmi Outline 1 Introduction 2 Shortest Path 3 Algorithms for Single-Source

More information

15.1 Matching, Components, and Edge cover (Collaborate with Xin Yu)

15.1 Matching, Components, and Edge cover (Collaborate with Xin Yu) 15.1 Matching, Components, and Edge cover (Collaborate with Xin Yu) First show l = c by proving l c and c l. For a maximum matching M in G, let V be the set of vertices covered by M. Since any vertex in

More information

DISTINGUISHING PARTITIONS AND ASYMMETRIC UNIFORM HYPERGRAPHS

DISTINGUISHING PARTITIONS AND ASYMMETRIC UNIFORM HYPERGRAPHS DISTINGUISHING PARTITIONS AND ASYMMETRIC UNIFORM HYPERGRAPHS M. N. ELLINGHAM AND JUSTIN Z. SCHROEDER In memory of Mike Albertson. Abstract. A distinguishing partition for an action of a group Γ on a set

More information

Polyhedral Approaches to Online Bipartite Matching

Polyhedral Approaches to Online Bipartite Matching Polyhedral Approaches to Online Bipartite Matching Alejandro Toriello joint with Alfredo Torrico, Shabbir Ahmed Stewart School of Industrial and Systems Engineering Georgia Institute of Technology Industrial

More information

Theory of Computation Chapter 9

Theory of Computation Chapter 9 0-0 Theory of Computation Chapter 9 Guan-Shieng Huang May 12, 2003 NP-completeness Problems NP: the class of languages decided by nondeterministic Turing machine in polynomial time NP-completeness: Cook

More information

Graph Coloring Inequalities from All-different Systems

Graph Coloring Inequalities from All-different Systems Constraints manuscript No (will be inserted by the editor) Graph Coloring Inequalities from All-different Systems David Bergman J N Hooker Received: date / Accepted: date Abstract We explore the idea of

More information

On Some Polytopes Contained in the 0,1 Hypercube that Have a Small Chvátal Rank

On Some Polytopes Contained in the 0,1 Hypercube that Have a Small Chvátal Rank On ome Polytopes Contained in the 0,1 Hypercube that Have a mall Chvátal Rank Gérard Cornuéjols Dabeen Lee April 2016, revised July 2017 Abstract In this paper, we consider polytopes P that are contained

More information

Classical Complexity and Fixed-Parameter Tractability of Simultaneous Consecutive Ones Submatrix & Editing Problems

Classical Complexity and Fixed-Parameter Tractability of Simultaneous Consecutive Ones Submatrix & Editing Problems Classical Complexity and Fixed-Parameter Tractability of Simultaneous Consecutive Ones Submatrix & Editing Problems Rani M. R, Mohith Jagalmohanan, R. Subashini Binary matrices having simultaneous consecutive

More information

a 1 a 2 a 3 a 4 v i c i c(a 1, a 3 ) = 3

a 1 a 2 a 3 a 4 v i c i c(a 1, a 3 ) = 3 AM 221: Advanced Optimization Spring 2016 Prof. Yaron Singer Lecture 17 March 30th 1 Overview In the previous lecture, we saw examples of combinatorial problems: the Maximal Matching problem and the Minimum

More information

Dimension reduction for semidefinite programming

Dimension reduction for semidefinite programming 1 / 22 Dimension reduction for semidefinite programming Pablo A. Parrilo Laboratory for Information and Decision Systems Electrical Engineering and Computer Science Massachusetts Institute of Technology

More information

Optimization Exercise Set n. 4 :

Optimization Exercise Set n. 4 : Optimization Exercise Set n. 4 : Prepared by S. Coniglio and E. Amaldi translated by O. Jabali 2018/2019 1 4.1 Airport location In air transportation, usually there is not a direct connection between every

More information

Computational Integer Programming Universidad de los Andes. Lecture 1. Dr. Ted Ralphs

Computational Integer Programming Universidad de los Andes. Lecture 1. Dr. Ted Ralphs Computational Integer Programming Universidad de los Andes Lecture 1 Dr. Ted Ralphs MIP Lecture 1 1 Quick Introduction Bio Course web site Course structure http://coral.ie.lehigh.edu/ ted/teaching/mip

More information

ON MIXING SETS ARISING IN CHANCE-CONSTRAINED PROGRAMMING

ON MIXING SETS ARISING IN CHANCE-CONSTRAINED PROGRAMMING ON MIXING SETS ARISING IN CHANCE-CONSTRAINED PROGRAMMING Abstract. The mixing set with a knapsack constraint arises in deterministic equivalent of chance-constrained programming problems with finite discrete

More information

In this work, we focus on packing and covering integer programs (IP)s of the form

In this work, we focus on packing and covering integer programs (IP)s of the form Mathematical Programming manuscript No. (will be inserted by the editor) James Ostrowski Jeff Linderoth Fabrizio Rossi Stefano Smriglio Orbital Branching January 0, 009 Abstract. We introduce orbital branching,

More information

Discrete Optimization 2010 Lecture 8 Lagrangian Relaxation / P, N P and co-n P

Discrete Optimization 2010 Lecture 8 Lagrangian Relaxation / P, N P and co-n P Discrete Optimization 2010 Lecture 8 Lagrangian Relaxation / P, N P and co-n P Marc Uetz University of Twente m.uetz@utwente.nl Lecture 8: sheet 1 / 32 Marc Uetz Discrete Optimization Outline 1 Lagrangian

More information

Optimization Exercise Set n.5 :

Optimization Exercise Set n.5 : Optimization Exercise Set n.5 : Prepared by S. Coniglio translated by O. Jabali 2016/2017 1 5.1 Airport location In air transportation, usually there is not a direct connection between every pair of airports.

More information

On certain family of B-modules

On certain family of B-modules On certain family of B-modules Piotr Pragacz (IM PAN, Warszawa) joint with Witold Kraśkiewicz with results of Masaki Watanabe Issai Schur s dissertation (Berlin, 1901): classification of irreducible polynomial

More information

Information Theory + Polyhedral Combinatorics

Information Theory + Polyhedral Combinatorics Information Theory + Polyhedral Combinatorics Sebastian Pokutta Georgia Institute of Technology ISyE, ARC Joint work Gábor Braun Information Theory in Complexity Theory and Combinatorics Simons Institute

More information

arxiv: v1 [cs.dm] 15 Apr 2015

arxiv: v1 [cs.dm] 15 Apr 2015 EXTENDED FORMULATIONS FOR INDEPENDENCE POLYTOPES OF REGULAR MATROIDS VOLKER KAIBEL, JON LEE, MATTHIAS WALTER, AND STEFAN WELTGE arxiv:1504.03872v1 [cs.dm] 15 Apr 2015 Abstract. We show that the independence

More information

1 Non-deterministic Turing Machine

1 Non-deterministic Turing Machine 1 Non-deterministic Turing Machine A nondeterministic Turing machine is a generalization of the standard TM for which every configuration may yield none, or one or more than one next configurations. In

More information

Cutting planes from extended LP formulations

Cutting planes from extended LP formulations Cutting planes from extended LP formulations Merve Bodur University of Wisconsin-Madison mbodur@wisc.edu Sanjeeb Dash IBM Research sanjeebd@us.ibm.com March 7, 2016 Oktay Günlük IBM Research gunluk@us.ibm.com

More information

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING 1. Lagrangian Relaxation Lecture 12 Single Machine Models, Column Generation 2. Dantzig-Wolfe Decomposition Dantzig-Wolfe Decomposition Delayed Column

More information

Computational Integer Programming. Lecture 2: Modeling and Formulation. Dr. Ted Ralphs

Computational Integer Programming. Lecture 2: Modeling and Formulation. Dr. Ted Ralphs Computational Integer Programming Lecture 2: Modeling and Formulation Dr. Ted Ralphs Computational MILP Lecture 2 1 Reading for This Lecture N&W Sections I.1.1-I.1.6 Wolsey Chapter 1 CCZ Chapter 2 Computational

More information

Lecture 18: More NP-Complete Problems

Lecture 18: More NP-Complete Problems 6.045 Lecture 18: More NP-Complete Problems 1 The Clique Problem a d f c b e g Given a graph G and positive k, does G contain a complete subgraph on k nodes? CLIQUE = { (G,k) G is an undirected graph with

More information

THE THEORY OF SIMULTANEOUS LIFTING: CONSTELLATIONS IN CONFLICT HYPERGRAPHS SAMIR PAHWA. B.S., Kansas State University, 2009

THE THEORY OF SIMULTANEOUS LIFTING: CONSTELLATIONS IN CONFLICT HYPERGRAPHS SAMIR PAHWA. B.S., Kansas State University, 2009 THE THEORY OF SIMULTANEOUS LIFTING: CONSTELLATIONS IN CONFLICT HYPERGRAPHS by SAMIR PAHWA B.S., Kansas State University, 2009 A THESIS Submitted in partial fulfillment of the requirements for the degree

More information

Graph coloring, perfect graphs

Graph coloring, perfect graphs Lecture 5 (05.04.2013) Graph coloring, perfect graphs Scribe: Tomasz Kociumaka Lecturer: Marcin Pilipczuk 1 Introduction to graph coloring Definition 1. Let G be a simple undirected graph and k a positive

More information

CS20a: NP completeness. NP-complete definition. Related properties. Cook's Theorem

CS20a: NP completeness. NP-complete definition. Related properties. Cook's Theorem CS20a: NP completeness Cook s theorem SAT is an NP-complete problem http://www.cs.caltech.edu/courses/cs20/a/ December 2, 2002 1 NP-complete definition A problem is in NP if it can be solved by a nondeterministic

More information

CS 6820 Fall 2014 Lectures, October 3-20, 2014

CS 6820 Fall 2014 Lectures, October 3-20, 2014 Analysis of Algorithms Linear Programming Notes CS 6820 Fall 2014 Lectures, October 3-20, 2014 1 Linear programming The linear programming (LP) problem is the following optimization problem. We are given

More information

Optimization Bounds from Binary Decision Diagrams

Optimization Bounds from Binary Decision Diagrams Optimization Bounds from Binary Decision Diagrams J. N. Hooker Joint work with David Bergman, André Ciré, Willem van Hoeve Carnegie Mellon University ICS 203 Binary Decision Diagrams BDDs historically

More information

The minimum G c cut problem

The minimum G c cut problem The minimum G c cut problem Abstract In this paper we define and study the G c -cut problem. Given a complete undirected graph G = (V ; E) with V = n, edge weighted by w(v i, v j ) 0 and an undirected

More information

ON COST MATRICES WITH TWO AND THREE DISTINCT VALUES OF HAMILTONIAN PATHS AND CYCLES

ON COST MATRICES WITH TWO AND THREE DISTINCT VALUES OF HAMILTONIAN PATHS AND CYCLES ON COST MATRICES WITH TWO AND THREE DISTINCT VALUES OF HAMILTONIAN PATHS AND CYCLES SANTOSH N. KABADI AND ABRAHAM P. PUNNEN Abstract. Polynomially testable characterization of cost matrices associated

More information

CS675: Convex and Combinatorial Optimization Fall 2014 Combinatorial Problems as Linear Programs. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Fall 2014 Combinatorial Problems as Linear Programs. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Fall 2014 Combinatorial Problems as Linear Programs Instructor: Shaddin Dughmi Outline 1 Introduction 2 Shortest Path 3 Algorithms for Single-Source Shortest

More information

On Totally Unimodularity in Edge-Edge Adjacency Relationships

On Totally Unimodularity in Edge-Edge Adjacency Relationships - 1, 3 2 2 -,., -., -. -. On Totally Unimodularity in Edge-Edge Adjacency Relationships Yusuke Matsumoto, 1, 3 Naoyuki Kamiyama 2 and Keiko Imai 2 We consider totally unimodularity for edge-edge adjacency

More information

More on NP and Reductions

More on NP and Reductions Indian Institute of Information Technology Design and Manufacturing, Kancheepuram Chennai 600 127, India An Autonomous Institute under MHRD, Govt of India http://www.iiitdm.ac.in COM 501 Advanced Data

More information

Decision Diagrams for Discrete Optimization

Decision Diagrams for Discrete Optimization Decision Diagrams for Discrete Optimization Willem Jan van Hoeve Tepper School of Business Carnegie Mellon University www.andrew.cmu.edu/user/vanhoeve/mdd/ Acknowledgments: David Bergman, Andre Cire, Samid

More information

Determinants of Partition Matrices

Determinants of Partition Matrices journal of number theory 56, 283297 (1996) article no. 0018 Determinants of Partition Matrices Georg Martin Reinhart Wellesley College Communicated by A. Hildebrand Received February 14, 1994; revised

More information

Column Generation for Extended Formulations

Column Generation for Extended Formulations 1 / 28 Column Generation for Extended Formulations Ruslan Sadykov 1 François Vanderbeck 2,1 1 INRIA Bordeaux Sud-Ouest, France 2 University Bordeaux I, France ISMP 2012 Berlin, August 23 2 / 28 Contents

More information

Lagrangian Relaxation in MIP

Lagrangian Relaxation in MIP Lagrangian Relaxation in MIP Bernard Gendron May 28, 2016 Master Class on Decomposition, CPAIOR2016, Banff, Canada CIRRELT and Département d informatique et de recherche opérationnelle, Université de Montréal,

More information

INTRODUCTION TO REPRESENTATION THEORY AND CHARACTERS

INTRODUCTION TO REPRESENTATION THEORY AND CHARACTERS INTRODUCTION TO REPRESENTATION THEORY AND CHARACTERS HANMING ZHANG Abstract. In this paper, we will first build up a background for representation theory. We will then discuss some interesting topics in

More information

Integer programming: an introduction. Alessandro Astolfi

Integer programming: an introduction. Alessandro Astolfi Integer programming: an introduction Alessandro Astolfi Outline Introduction Examples Methods for solving ILP Optimization on graphs LP problems with integer solutions Summary Introduction Integer programming

More information

The master equality polyhedron with multiple rows

The master equality polyhedron with multiple rows The master equality polyhedron with multiple rows Sanjeeb Dash Ricardo Fukasawa IBM Research February 17, 2009 Oktay Günlük Abstract The master equality polyhedron (MEP) is a canonical set that generalizes

More information

A Lower Bound on the Split Rank of Intersection Cuts

A Lower Bound on the Split Rank of Intersection Cuts A Lower Bound on the Split Rank of Intersection Cuts Santanu S. Dey H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology. 200 Outline Introduction: split rank,

More information

Reformulation and Decomposition of Integer Programs

Reformulation and Decomposition of Integer Programs Reformulation and Decomposition of Integer Programs François Vanderbeck 1 and Laurence A. Wolsey 2 (Reference: CORE DP 2009/16) (1) Université Bordeaux 1 & INRIA-Bordeaux (2) Université de Louvain, CORE.

More information

15.081J/6.251J Introduction to Mathematical Programming. Lecture 24: Discrete Optimization

15.081J/6.251J Introduction to Mathematical Programming. Lecture 24: Discrete Optimization 15.081J/6.251J Introduction to Mathematical Programming Lecture 24: Discrete Optimization 1 Outline Modeling with integer variables Slide 1 What is a good formulation? Theme: The Power of Formulations

More information

Discrete Mathematics. Benny George K. September 22, 2011

Discrete Mathematics. Benny George K. September 22, 2011 Discrete Mathematics Benny George K Department of Computer Science and Engineering Indian Institute of Technology Guwahati ben@iitg.ernet.in September 22, 2011 Set Theory Elementary Concepts Let A and

More information

Sensitivity, Block Sensitivity and Certificate Complexity of Boolean Functions (Master s Thesis)

Sensitivity, Block Sensitivity and Certificate Complexity of Boolean Functions (Master s Thesis) Sensitivity, Block Sensitivity and Certificate Complexity of Boolean Functions (Master s Thesis) Sourav Chakraborty Thesis Advisor: László Babai February, 2005 Abstract We discuss several complexity measures

More information

Facet-defining inequalities for the simple graph partitioning polytope

Facet-defining inequalities for the simple graph partitioning polytope Discrete Optimization 4 2007) 221 231 www.elsevier.com/locate/disopt Facet-defining inequalities for the simple graph partitioning polytope Michael M. Sørensen Aarhus School of Business, Department of

More information

Proof Assistants for Graph Non-isomorphism

Proof Assistants for Graph Non-isomorphism Proof Assistants for Graph Non-isomorphism Arjeh M. Cohen 8 January 2007 second lecture of Three aspects of exact computation a tutorial at Mathematics: Algorithms and Proofs (MAP) Leiden, January 8 12,

More information

Some Applications of pq-groups in Graph Theory

Some Applications of pq-groups in Graph Theory Some Applications of pq-groups in Graph Theory Geoffrey Exoo Department of Mathematics and Computer Science Indiana State University Terre Haute, IN 47809 g-exoo@indstate.edu January 25, 2002 Abstract

More information