Integer programming (part 2) Lecturer: Javier Peña Convex Optimization /36-725

Size: px
Start display at page:

Download "Integer programming (part 2) Lecturer: Javier Peña Convex Optimization /36-725"

Transcription

1 Integer programming (part 2) Lecturer: Javier Peña Convex Optimization /36-725

2 Last time: integer programming Consider the problem min x subject to f(x) x C x j Z, j J where f : R n R, C R n are convex, and J {1,..., n}. Branch and bound Algorithm to solve integer programs. Divide-and-conquer scheme combined with upper and lower bounds for efficiency. 2

3 Consider the problem Branch and bound algorithm min x subject to f(x) x C x j Z, j J (IP) where f : R n R, C R n are convex and J {1,..., n}. 1. Solve the convex relaxation min x subject to f(x) x C (CR) 2. (CR) infeasible (IP) is infeasible. Stop 3. Solution x to (CR) is (IP) feasible x solves (IP). Stop 4. Solution x to (CR) not (IP) feasible lower bound for (IP). Branch and recursively solve subproblems. 3

4 After branching Key component of B&B After branching compute a lower bound for each subproblem. If a lower bound for a subproblem is larger than the current upper bound, no need to consider the subproblem. Most straightforward way to compute lower bounds is via a convex relaxation but other methods (e.g., Lagrangian relaxations) can also be used. 4

5 Tightness of relaxations Suppose we have two equivalent formulations (e.g., facility location) min x subject to with C C. f(x) x C x j Z, j J min x f(x) subject to x C x j Z, j J Which one should we prefer? 5

6 Outline Today: More about solution techniques Cutting planes Branch and cut Two extended examples Best subset selection Least mean squares 6

7 Convexification Consider the special case of an integer program with linear objective min c T x x subject to x C x j Z, j J This problem is equivalent to min x subject to c T x x S where S := conv{x C : x j Z, j J}. 7

8 Special case: integer linear programs Consider the problem min x subject to c T x Ax b x j Z, j J Theorem If A, b are rational, then the set is a polyhedron. S := conv{x : Ax b, x j Z, j J} Thus the above integer linear program is equivalent to a linear program. How hard could that be? 8

9 Cutting plane algorithm We say that the inequality π T x π 0 is valid for a set S if Consider the problem π T x π 0 for all x S. min x subject to c T x x C x j Z, j J and let S := conv{x C : x j Z, j J}. 9

10 Cutting plane algorithm Recall: S = conv{x C : x j Z, j J} and want to solve min x subject to Cutting plane algorithm c T x x C x j Z, j J (IP) 1. let C 0 := C and compute x (0) := argmin{c T x : x C 0 } x 2. for k = 0, 1,... if x (k) is (IP) feasible then x (k) is an optimal solution. Stop else find a valid inequality (π, π 0 ) for S that cuts off x (k) let C k+1 := C k {x : π T x π 0 } compute x (k+1) := argmin x {c T x : x C k+1 } end if end for A valid inequality is also called a cutting plane or a cut 10

11 11 A bit of history on cutting planes In 1954 Dantzig, Fulkerson, and Johnson pioneered the cutting plane approach for the traveling salesman problem. In 1958 Gomory proposed a general-purpose cutting plane method to solve any integer linear program. For more than three decades Gomory cuts were deemed impractical for solving actual problems. In the early 1990s Sebastian Ceria (at CMU) successfully incorporated Gomory cuts in a branch and cut framework. By the late 1990s cutting planes had become a key component of commercial optimization solvers. This subject has a long tradition at Carnegie Mellon and is associated to some of our biggest names: Balas, Cornuejols, Jeroslow, Kilinc-Karzan and many of their collaborators.

12 12 Gomory cuts (1958) This class of cuts is based on the following observation: Suppose if a b and a is an integer then a b. S x Zn + : n a j x j = a 0 j=1 where a 0 Z. The Gomory fractional cut is n (a j a j )x j a 0 a 0. j=1 There is a rich variety of extensions of the above idea: Chvatal cuts, split cuts, lift-and-project cuts, etc.

13 13 Theorem (Balas 1974) Lift-and-project cuts Assume C = {x : Ax b} {x : 0 x j 1}. Then C j :=conv{x C : x j {0, 1}} is the projection of the polyhedron L j (C) defined by the following inequalities Ay λb Az (1 λ)b y + z = x λ 1 λ 0. Suppose x C but x C j. To find a cut separating x from C j solve x x min x,y,z,λ subject to (x, y, z, λ) L j (C)

14 14 Branch and cut algorithm Combine strengths of both branch and bound and cutting planes. Consider the problem min x subject to f(x) x C x j Z, j J (IP) where f : R n R, C R n are convex and J {1,..., n}.

15 15 Branch and cut algorithm Branch and cut algorithm 1. Solve the convex relaxation min x subject to f(x) x C (CR) 2. (CR) infeasible (IP) is infeasible. 3. Solution x to (CR) is (IP) feasible x solution to (IP). 4. Solution x to (CR) is not (IP) feasible. Choose between two alternatives 4.1 Add cuts and go back to step Branch and recursively solve subproblems

16 16 Integer programming technology State-of-the-art solvers (Gurobi, CPLEX, FICO) rely on extremely efficient implementations of numerical linear algebra, simplex, interior-point, and other algorithms for convex optimization. For mixed integer optimization, most solvers use a clever type of branch and cut algorithm. They rely extensively on convex relaxations. They also take advantage of warm starts as much as possible. Some interesting numbers Speedup in algorithms : over 500,000 Speedup in hardware : over 500,000 Total speedup over 250 billion =

17 17 Best subset selection Assume X = [ x 1 x p] R n p and y R n. Best subset selection problem: 1 min β 2 y Xβ 2 2 subject to β 0 k Here β 0 := number of nonzero entries of β.

18 18 Best subset selection Integer programming formulation min β,z subject to 1 2 y Xβ 2 2 β i M i z i, i = 1,..., p p z i k i=1 z i {0, 1}, i = 1,..., p. Here M i is some a priori known bound on β i for i = 1,..., p. They can be computed via suitable preprocessing of X, y.

19 19 A clever way to get good feasible solutions Consider the problem Bertsimas, King, and Mazumder min g(β) subject to β 0 k β where g : R p R is smooth convex and g is L-Lipschitz. Best subset selection corresponds to g(β) = 1 2 Xβ y 2 2. Observation For u R p the vector H k (u) = argmin β u 2 2 β: β 0 k is obtained by retaining the k largest entries of u.

20 Consider the problem Discrete first-order algorithm Bertsimas et al. min g(β) subject to β 0 k β where g : R p R is smooth convex and g is L-Lipschitz. 1. start with some β (0) 2. for i = 0, 1,..., β (i+1) = H k ( β (i) 1 L g(β(i) ) ) end for The above iterates satisfy β (i) β where ( β = H k β 1 ) g( β). L This is a kind of local solution to the above minimization problem. 20

21 21 Best Subset Regression Computational results (Bertsimas et al.) Best Subset Regression Dataset, n =350, p Diabetes =64, k Diabetes =6 dataset, n Dataset, = 350, p = n =350, 64, k = 6p =64, k =6 Typical behavior of Overall Algorithm Typical behavior of Overall Algorithm Objective Upper Bounds Lower Bounds Global Minimum MIO Gap (MIT) Statistics via Optimization Bertsimas (MIT) June / 48 Statistics via Optimization J

22 FIG. 3. The evolution of the MIO optimality gap [in log ( ) scale] for22p with bounds implied by Sections 2.3.1, and observed that tion (2.5)armed Computational withwarm-startsand results (Bertsimas additional et al.) boundsclosed faster than their Cold Cold Start vs Warm counterpart. Starts

23 Computational results (Bertsimas et al.) Best Subset Regression Sparsity detection (synthetic datasets) Sparsity Detection for n =500,p = Method MIO Lasso Step Sparsenet 30 Number of Nonzeros Signal to Noise Ratio Bertsimas (MIT) Statistics via Optimization June / 48 23

24 24 Least median of squares regression Assume X = [ x 1 x p] R n p and y R n. Given β R p let r := y Xβ Observe Least squares (LS): β LS := argmin β Least absolute deviation (LAD): β LAD = argmin β Least Median of Squares (LMS) i r 2 i β LMS := argmin(median r i ). β r i i

25 25 Least quantile regression Least Quantile of Squares (LQS) β LQS := argmin r (q) β where r (q) is the qth ordered absolute residual: r (1) r (2) r (n). Key step in the formulation Use binary and auxiliary variables to encode the relevant condition for each entry i of r. r i r (q) or r i r (q)

26 26 Least quantile regression Integer programming formulation min β,µ, µ,z,γ subject to γ γ r i + µ i i = 1,..., n γ r i µ i, i = 1,..., n µ i Mz i, i = 1,..., n µ i M(1 z i ), i = 1,..., n p z i = q i=1 µ i, µ i 0, i = 1,..., n z i {0, 1}, i = 1,..., p.

27 27 First-order algorithm Bertsimas & Mazumder Observe r (q) = y (q) x T (q) β = H q(β) H q+1 (β) where H q (β) = n i=q y (i) x T (i) β = max w subject to n w i y i x T i β i=1 n w i = q i=1 0 w i 1, i = 1,..., n. The function H q (β) is convex. Subgradient algorithm yields a local min to H q (β) H q+1 (β).

28 Typical Computational Evolution ofresults MIO (Bertsimas & Mazumder) Bertsimas (MIT) Statistics via Optimization June / Alcohol Data; (n,p,q) = (44,5,31) Alcohol Data; (n,p,q) = (44,7,31) Objective Value Upper Bounds Lower Bounds Optimal Solution Upper Bounds Lower Bounds Optimal Solution Time (s) Time (s)

29 act of Warm-Starts Computational results (Bertsimas & Mazumder) Cold vs Warm Starts Evolution of MIO (cold-start) [top] vs (warm-start) [bottom] Objective Value Upper Bounds Lower Bounds Optimal Solution Objective Value Time (s) Upper Bounds Lower Bounds Optimal Solution Time (s) 29

30 30 References and further reading Belotti, Kirches, Leyffer, Linderoth, Luedke, and Mahajan (2012), Mixed-integer nonlinear optimization Bertsimas and Mazumder (2016), Best subset selection via a modern optimization lens Bertsimas, King, and Mazumder (2014), Least quantile regression via modern optimization Conforti, Cornuejols, and Zambelli (2014), Integer programming Wolsey (1998), Integer programming

Lift-and-Project Inequalities

Lift-and-Project Inequalities Lift-and-Project Inequalities Q. Louveaux Abstract The lift-and-project technique is a systematic way to generate valid inequalities for a mixed binary program. The technique is interesting both on the

More information

Polyhedral Approach to Integer Linear Programming. Tepper School of Business Carnegie Mellon University, Pittsburgh

Polyhedral Approach to Integer Linear Programming. Tepper School of Business Carnegie Mellon University, Pittsburgh Polyhedral Approach to Integer Linear Programming Gérard Cornuéjols Tepper School of Business Carnegie Mellon University, Pittsburgh 1 / 30 Brief history First Algorithms Polynomial Algorithms Solving

More information

Operations Research Lecture 6: Integer Programming

Operations Research Lecture 6: Integer Programming Operations Research Lecture 6: Integer Programming Notes taken by Kaiquan Xu@Business School, Nanjing University May 12th 2016 1 Integer programming (IP) formulations The integer programming (IP) is the

More information

Change in the State of the Art of (Mixed) Integer Programming

Change in the State of the Art of (Mixed) Integer Programming Change in the State of the Art of (Mixed) Integer Programming 1977 Vancouver Advanced Research Institute 24 papers 16 reports 1 paper computational, 4 small instances Report on computational aspects: only

More information

Structure in Mixed Integer Conic Optimization: From Minimal Inequalities to Conic Disjunctive Cuts

Structure in Mixed Integer Conic Optimization: From Minimal Inequalities to Conic Disjunctive Cuts Structure in Mixed Integer Conic Optimization: From Minimal Inequalities to Conic Disjunctive Cuts Fatma Kılınç-Karzan Tepper School of Business Carnegie Mellon University Joint work with Sercan Yıldız

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 8 Discrete optimization: theory and algorithms

MVE165/MMG631 Linear and integer optimization with applications Lecture 8 Discrete optimization: theory and algorithms MVE165/MMG631 Linear and integer optimization with applications Lecture 8 Discrete optimization: theory and algorithms Ann-Brith Strömberg 2017 04 07 Lecture 8 Linear and integer optimization with applications

More information

Introduction to Mathematical Programming IE406. Lecture 21. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 21. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 21 Dr. Ted Ralphs IE406 Lecture 21 1 Reading for This Lecture Bertsimas Sections 10.2, 10.3, 11.1, 11.2 IE406 Lecture 21 2 Branch and Bound Branch

More information

Introduction to Integer Linear Programming

Introduction to Integer Linear Programming Lecture 7/12/2006 p. 1/30 Introduction to Integer Linear Programming Leo Liberti, Ruslan Sadykov LIX, École Polytechnique liberti@lix.polytechnique.fr sadykov@lix.polytechnique.fr Lecture 7/12/2006 p.

More information

Lecture 2. Split Inequalities and Gomory Mixed Integer Cuts. Tepper School of Business Carnegie Mellon University, Pittsburgh

Lecture 2. Split Inequalities and Gomory Mixed Integer Cuts. Tepper School of Business Carnegie Mellon University, Pittsburgh Lecture 2 Split Inequalities and Gomory Mixed Integer Cuts Gérard Cornuéjols Tepper School of Business Carnegie Mellon University, Pittsburgh Mixed Integer Cuts Gomory 1963 Consider a single constraint

More information

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini In the name of God Network Flows 6. Lagrangian Relaxation 6.3 Lagrangian Relaxation and Integer Programming Fall 2010 Instructor: Dr. Masoud Yaghini Integer Programming Outline Branch-and-Bound Technique

More information

18 hours nodes, first feasible 3.7% gap Time: 92 days!! LP relaxation at root node: Branch and bound

18 hours nodes, first feasible 3.7% gap Time: 92 days!! LP relaxation at root node: Branch and bound The MIP Landscape 1 Example 1: LP still can be HARD SGM: Schedule Generation Model Example 157323 1: LP rows, still can 182812 be HARD columns, 6348437 nzs LP relaxation at root node: 18 hours Branch and

More information

Introduction to Integer Programming

Introduction to Integer Programming Lecture 3/3/2006 p. /27 Introduction to Integer Programming Leo Liberti LIX, École Polytechnique liberti@lix.polytechnique.fr Lecture 3/3/2006 p. 2/27 Contents IP formulations and examples Total unimodularity

More information

Section Notes 9. Midterm 2 Review. Applied Math / Engineering Sciences 121. Week of December 3, 2018

Section Notes 9. Midterm 2 Review. Applied Math / Engineering Sciences 121. Week of December 3, 2018 Section Notes 9 Midterm 2 Review Applied Math / Engineering Sciences 121 Week of December 3, 2018 The following list of topics is an overview of the material that was covered in the lectures and sections

More information

Integer Programming ISE 418. Lecture 13. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 13. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 13 Dr. Ted Ralphs ISE 418 Lecture 13 1 Reading for This Lecture Nemhauser and Wolsey Sections II.1.1-II.1.3, II.1.6 Wolsey Chapter 8 CCZ Chapters 5 and 6 Valid Inequalities

More information

Integer Programming Methods LNMB

Integer Programming Methods LNMB Integer Programming Methods LNMB 2017 2018 Dion Gijswijt homepage.tudelft.nl/64a8q/intpm/ Dion Gijswijt Intro IntPM 2017-2018 1 / 24 Organisation Webpage: homepage.tudelft.nl/64a8q/intpm/ Book: Integer

More information

1 Solution of a Large-Scale Traveling-Salesman Problem... 7 George B. Dantzig, Delbert R. Fulkerson, and Selmer M. Johnson

1 Solution of a Large-Scale Traveling-Salesman Problem... 7 George B. Dantzig, Delbert R. Fulkerson, and Selmer M. Johnson Part I The Early Years 1 Solution of a Large-Scale Traveling-Salesman Problem............ 7 George B. Dantzig, Delbert R. Fulkerson, and Selmer M. Johnson 2 The Hungarian Method for the Assignment Problem..............

More information

Integer Programming ISE 418. Lecture 8. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 8. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 8 Dr. Ted Ralphs ISE 418 Lecture 8 1 Reading for This Lecture Wolsey Chapter 2 Nemhauser and Wolsey Sections II.3.1, II.3.6, II.4.1, II.4.2, II.5.4 Duality for Mixed-Integer

More information

Integer Programming ISE 418. Lecture 13b. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 13b. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 13b Dr. Ted Ralphs ISE 418 Lecture 13b 1 Reading for This Lecture Nemhauser and Wolsey Sections II.1.1-II.1.3, II.1.6 Wolsey Chapter 8 CCZ Chapters 5 and 6 Valid Inequalities

More information

3.7 Cutting plane methods

3.7 Cutting plane methods 3.7 Cutting plane methods Generic ILP problem min{ c t x : x X = {x Z n + : Ax b} } with m n matrix A and n 1 vector b of rationals. According to Meyer s theorem: There exists an ideal formulation: conv(x

More information

Cutting Planes and Elementary Closures for Non-linear Integer Programming

Cutting Planes and Elementary Closures for Non-linear Integer Programming Cutting Planes and Elementary Closures for Non-linear Integer Programming Juan Pablo Vielma University of Pittsburgh joint work with D. Dadush and S. S. Dey S. Modaresi and M. Kılınç Georgia Institute

More information

Cutting Planes in SCIP

Cutting Planes in SCIP Cutting Planes in SCIP Kati Wolter Zuse-Institute Berlin Department Optimization Berlin, 6th June 2007 Outline 1 Cutting Planes in SCIP 2 Cutting Planes for the 0-1 Knapsack Problem 2.1 Cover Cuts 2.2

More information

BCOL RESEARCH REPORT 07.04

BCOL RESEARCH REPORT 07.04 BCOL RESEARCH REPORT 07.04 Industrial Engineering & Operations Research University of California, Berkeley, CA 94720-1777 LIFTING FOR CONIC MIXED-INTEGER PROGRAMMING ALPER ATAMTÜRK AND VISHNU NARAYANAN

More information

A computational study of Gomory cut generators

A computational study of Gomory cut generators A computational study of Gomory cut generators Gerard Cornuéjols 1, François Margot 1, Giacomo Nannicini 2 1. CMU Tepper School of Business, Pittsburgh, PA. 2. Singapore University of Technology and Design,

More information

Multi-Row Cuts in Integer Programming. Tepper School of Business Carnegie Mellon University, Pittsburgh

Multi-Row Cuts in Integer Programming. Tepper School of Business Carnegie Mellon University, Pittsburgh Multi-Row Cuts in Integer Programming Gérard Cornuéjols Tepper School o Business Carnegie Mellon University, Pittsburgh March 2011 Mixed Integer Linear Programming min s.t. cx Ax = b x j Z or j = 1,...,

More information

Structure of Valid Inequalities for Mixed Integer Conic Programs

Structure of Valid Inequalities for Mixed Integer Conic Programs Structure of Valid Inequalities for Mixed Integer Conic Programs Fatma Kılınç-Karzan Tepper School of Business Carnegie Mellon University 18 th Combinatorial Optimization Workshop Aussois, France January

More information

Convex optimization. Javier Peña Carnegie Mellon University. Universidad de los Andes Bogotá, Colombia September 2014

Convex optimization. Javier Peña Carnegie Mellon University. Universidad de los Andes Bogotá, Colombia September 2014 Convex optimization Javier Peña Carnegie Mellon University Universidad de los Andes Bogotá, Colombia September 2014 1 / 41 Convex optimization Problem of the form where Q R n convex set: min x f(x) x Q,

More information

Section Notes 9. IP: Cutting Planes. Applied Math 121. Week of April 12, 2010

Section Notes 9. IP: Cutting Planes. Applied Math 121. Week of April 12, 2010 Section Notes 9 IP: Cutting Planes Applied Math 121 Week of April 12, 2010 Goals for the week understand what a strong formulations is. be familiar with the cutting planes algorithm and the types of cuts

More information

Constraint Qualification Failure in Action

Constraint Qualification Failure in Action Constraint Qualification Failure in Action Hassan Hijazi a,, Leo Liberti b a The Australian National University, Data61-CSIRO, Canberra ACT 2601, Australia b CNRS, LIX, Ecole Polytechnique, 91128, Palaiseau,

More information

Cuts for mixed 0-1 conic programs

Cuts for mixed 0-1 conic programs Cuts for mixed 0-1 conic programs G. Iyengar 1 M. T. Cezik 2 1 IEOR Department Columbia University, New York. 2 GERAD Université de Montréal, Montréal TU-Chemnitz Workshop on Integer Programming and Continuous

More information

On the knapsack closure of 0-1 Integer Linear Programs. Matteo Fischetti University of Padova, Italy

On the knapsack closure of 0-1 Integer Linear Programs. Matteo Fischetti University of Padova, Italy On the knapsack closure of 0-1 Integer Linear Programs Matteo Fischetti University of Padova, Italy matteo.fischetti@unipd.it Andrea Lodi University of Bologna, Italy alodi@deis.unibo.it Aussois, January

More information

AM 121: Intro to Optimization! Models and Methods! Fall 2018!

AM 121: Intro to Optimization! Models and Methods! Fall 2018! AM 121: Intro to Optimization Models and Methods Fall 2018 Lecture 15: Cutting plane methods Yiling Chen SEAS Lesson Plan Cut generation and the separation problem Cutting plane methods Chvatal-Gomory

More information

Mixed Integer Programming (MIP) for Causal Inference and Beyond

Mixed Integer Programming (MIP) for Causal Inference and Beyond Mixed Integer Programming (MIP) for Causal Inference and Beyond Juan Pablo Vielma Massachusetts Institute of Technology Columbia Business School New York, NY, October, 2016. Traveling Salesman Problem

More information

The Traveling Salesman Problem: An Overview. David P. Williamson, Cornell University Ebay Research January 21, 2014

The Traveling Salesman Problem: An Overview. David P. Williamson, Cornell University Ebay Research January 21, 2014 The Traveling Salesman Problem: An Overview David P. Williamson, Cornell University Ebay Research January 21, 2014 (Cook 2012) A highly readable introduction Some terminology (imprecise) Problem Traditional

More information

Uses of duality. Geoff Gordon & Ryan Tibshirani Optimization /

Uses of duality. Geoff Gordon & Ryan Tibshirani Optimization / Uses of duality Geoff Gordon & Ryan Tibshirani Optimization 10-725 / 36-725 1 Remember conjugate functions Given f : R n R, the function is called its conjugate f (y) = max x R n yt x f(x) Conjugates appear

More information

On the knapsack closure of 0-1 Integer Linear Programs

On the knapsack closure of 0-1 Integer Linear Programs On the knapsack closure of 0-1 Integer Linear Programs Matteo Fischetti 1 Dipartimento di Ingegneria dell Informazione University of Padova Padova, Italy Andrea Lodi 2 Dipartimento di Elettronica, Informatica

More information

On Counting Lattice Points and Chvátal-Gomory Cutting Planes

On Counting Lattice Points and Chvátal-Gomory Cutting Planes On Counting Lattice Points and Chvátal-Gomory Cutting Planes Andrea Lodi 1, Gilles Pesant 2, and Louis-Martin Rousseau 2 1 DEIS, Università di Bologna - andrea.lodi@unibo.it 2 CIRRELT, École Polytechnique

More information

Column Generation for Extended Formulations

Column Generation for Extended Formulations 1 / 28 Column Generation for Extended Formulations Ruslan Sadykov 1 François Vanderbeck 2,1 1 INRIA Bordeaux Sud-Ouest, France 2 University Bordeaux I, France ISMP 2012 Berlin, August 23 2 / 28 Contents

More information

Mixed Integer Programming Solvers: from Where to Where. Andrea Lodi University of Bologna, Italy

Mixed Integer Programming Solvers: from Where to Where. Andrea Lodi University of Bologna, Italy Mixed Integer Programming Solvers: from Where to Where Andrea Lodi University of Bologna, Italy andrea.lodi@unibo.it November 30, 2011 @ Explanatory Workshop on Locational Analysis, Sevilla A. Lodi, MIP

More information

constraints Ax+Gy» b (thus any valid inequalityforp is of the form u(ax+gy)» ub for u 2 R m + ). In [13], Gomory introduced a family of valid inequali

constraints Ax+Gy» b (thus any valid inequalityforp is of the form u(ax+gy)» ub for u 2 R m + ). In [13], Gomory introduced a family of valid inequali On the Rank of Mixed 0,1 Polyhedra Λ Gérard Cornuéjols Yanjun Li Graduate School of Industrial Administration Carnegie Mellon University, Pittsburgh, USA (corresponding author: gc0v@andrew.cmu.edu) February

More information

Effective Separation of Disjunctive Cuts for Convex Mixed Integer Nonlinear Programs

Effective Separation of Disjunctive Cuts for Convex Mixed Integer Nonlinear Programs Effective Separation of Disjunctive Cuts for Convex Mixed Integer Nonlinear Programs Mustafa Kılınç Jeff Linderoth James Luedtke Department of Industrial and Systems Engineering University of Wisconsin-Madison

More information

An Integer Cutting-Plane Procedure for the Dantzig-Wolfe Decomposition: Theory

An Integer Cutting-Plane Procedure for the Dantzig-Wolfe Decomposition: Theory An Integer Cutting-Plane Procedure for the Dantzig-Wolfe Decomposition: Theory by Troels Martin Range Discussion Papers on Business and Economics No. 10/2006 FURTHER INFORMATION Department of Business

More information

Integer Programming. Wolfram Wiesemann. December 6, 2007

Integer Programming. Wolfram Wiesemann. December 6, 2007 Integer Programming Wolfram Wiesemann December 6, 2007 Contents of this Lecture Revision: Mixed Integer Programming Problems Branch & Bound Algorithms: The Big Picture Solving MIP s: Complete Enumeration

More information

Lecture 9: Dantzig-Wolfe Decomposition

Lecture 9: Dantzig-Wolfe Decomposition Lecture 9: Dantzig-Wolfe Decomposition (3 units) Outline Dantzig-Wolfe decomposition Column generation algorithm Relation to Lagrangian dual Branch-and-price method Generated assignment problem and multi-commodity

More information

arxiv: v3 [math.oc] 24 May 2016

arxiv: v3 [math.oc] 24 May 2016 Mathematical Programming manuscript No. (will be inserted by the editor) How to Convexify the Intersection of a Second Order Cone and a Nonconvex Quadratic Samuel Burer Fatma Kılınç-Karzan arxiv:1406.1031v3

More information

Barrier Method. Javier Peña Convex Optimization /36-725

Barrier Method. Javier Peña Convex Optimization /36-725 Barrier Method Javier Peña Convex Optimization 10-725/36-725 1 Last time: Newton s method For root-finding F (x) = 0 x + = x F (x) 1 F (x) For optimization x f(x) x + = x 2 f(x) 1 f(x) Assume f strongly

More information

Discrete Optimization 2010 Lecture 7 Introduction to Integer Programming

Discrete Optimization 2010 Lecture 7 Introduction to Integer Programming Discrete Optimization 2010 Lecture 7 Introduction to Integer Programming Marc Uetz University of Twente m.uetz@utwente.nl Lecture 8: sheet 1 / 32 Marc Uetz Discrete Optimization Outline 1 Intro: The Matching

More information

Cutting Planes for Mixed-Integer Programming: Theory and Practice

Cutting Planes for Mixed-Integer Programming: Theory and Practice Cutting Planes for Mixed-Integer Programming: Theory and Practice Oktay Günlük Math Sciences, IBM Research April 2018 ORF523, Princeton Mathematical optimization 1 A generic mathematical optimization problem:

More information

Deciding Emptiness of the Gomory-Chvátal Closure is NP-Complete, Even for a Rational Polyhedron Containing No Integer Point

Deciding Emptiness of the Gomory-Chvátal Closure is NP-Complete, Even for a Rational Polyhedron Containing No Integer Point Deciding Emptiness of the Gomory-Chvátal Closure is NP-Complete, Even for a Rational Polyhedron Containing No Integer Point Gérard Cornuéjols 1 and Yanjun Li 2 1 Tepper School of Business, Carnegie Mellon

More information

Lecture 8: Column Generation

Lecture 8: Column Generation Lecture 8: Column Generation (3 units) Outline Cutting stock problem Classical IP formulation Set covering formulation Column generation A dual perspective 1 / 24 Cutting stock problem 2 / 24 Problem description

More information

Linear integer programming and its application

Linear integer programming and its application Linear integer programming and its application Presented by Dr. Sasthi C. Ghosh Associate Professor Advanced Computing & Microelectronics Unit Indian Statistical Institute Kolkata, India Outline Introduction

More information

Decomposition-based Methods for Large-scale Discrete Optimization p.1

Decomposition-based Methods for Large-scale Discrete Optimization p.1 Decomposition-based Methods for Large-scale Discrete Optimization Matthew V Galati Ted K Ralphs Department of Industrial and Systems Engineering Lehigh University, Bethlehem, PA, USA Départment de Mathématiques

More information

Minimal Valid Inequalities for Integer Constraints

Minimal Valid Inequalities for Integer Constraints Minimal Valid Inequalities for Integer Constraints Valentin Borozan LIF, Faculté des Sciences de Luminy, Université de Marseille, France borozan.valentin@gmail.com and Gérard Cornuéjols Tepper School of

More information

Lecture 8: Column Generation

Lecture 8: Column Generation Lecture 8: Column Generation (3 units) Outline Cutting stock problem Classical IP formulation Set covering formulation Column generation A dual perspective Vehicle routing problem 1 / 33 Cutting stock

More information

Optimization for Compressed Sensing

Optimization for Compressed Sensing Optimization for Compressed Sensing Robert J. Vanderbei 2014 March 21 Dept. of Industrial & Systems Engineering University of Florida http://www.princeton.edu/ rvdb Lasso Regression The problem is to solve

More information

Two-Term Disjunctions on the Second-Order Cone

Two-Term Disjunctions on the Second-Order Cone Noname manuscript No. (will be inserted by the editor) Two-Term Disjunctions on the Second-Order Cone Fatma Kılınç-Karzan Sercan Yıldız the date of receipt and acceptance should be inserted later Abstract

More information

Fast Algorithms for LAD Lasso Problems

Fast Algorithms for LAD Lasso Problems Fast Algorithms for LAD Lasso Problems Robert J. Vanderbei 2015 Nov 3 http://www.princeton.edu/ rvdb INFORMS Philadelphia Lasso Regression The problem is to solve a sparsity-encouraging regularized regression

More information

Dual methods and ADMM. Barnabas Poczos & Ryan Tibshirani Convex Optimization /36-725

Dual methods and ADMM. Barnabas Poczos & Ryan Tibshirani Convex Optimization /36-725 Dual methods and ADMM Barnabas Poczos & Ryan Tibshirani Convex Optimization 10-725/36-725 1 Given f : R n R, the function is called its conjugate Recall conjugate functions f (y) = max x R n yt x f(x)

More information

Column basis reduction and decomposable knapsack problems

Column basis reduction and decomposable knapsack problems Column basis reduction and decomposable knapsack problems Bala Krishnamoorthy Gábor Pataki Abstract We propose a very simple preconditioning method for integer programming feasibility problems: replacing

More information

Monoidal Cut Strengthening and Generalized Mixed-Integer Rounding for Disjunctions and Complementarity Constraints

Monoidal Cut Strengthening and Generalized Mixed-Integer Rounding for Disjunctions and Complementarity Constraints Monoidal Cut Strengthening and Generalized Mixed-Integer Rounding for Disjunctions and Complementarity Constraints Tobias Fischer and Marc E. Pfetsch Department of Mathematics, TU Darmstadt, Germany {tfischer,pfetsch}@opt.tu-darmstadt.de

More information

Math 5593 Linear Programming Week 1

Math 5593 Linear Programming Week 1 University of Colorado Denver, Fall 2013, Prof. Engau 1 Problem-Solving in Operations Research 2 Brief History of Linear Programming 3 Review of Basic Linear Algebra Linear Programming - The Story About

More information

to work with) can be solved by solving their LP relaxations with the Simplex method I Cutting plane algorithms, e.g., Gomory s fractional cutting

to work with) can be solved by solving their LP relaxations with the Simplex method I Cutting plane algorithms, e.g., Gomory s fractional cutting Summary so far z =max{c T x : Ax apple b, x 2 Z n +} I Modeling with IP (and MIP, and BIP) problems I Formulation for a discrete set that is a feasible region of an IP I Alternative formulations for the

More information

Primal-Dual Interior-Point Methods

Primal-Dual Interior-Point Methods Primal-Dual Interior-Point Methods Lecturer: Aarti Singh Co-instructor: Pradeep Ravikumar Convex Optimization 10-725/36-725 Outline Today: Primal-dual interior-point method Special case: linear programming

More information

A geometric perspective on lifting

A geometric perspective on lifting A geometric perspective on lifting Michele Conforti Università di Padova, conforti@math.unipd.it Gérard Cornuéjols Carnegie Mellon University and Université d Aix-Marseille, gc0v@andrew.cmu.edu Giacomo

More information

The strength of multi-row models 1

The strength of multi-row models 1 The strength of multi-row models 1 Quentin Louveaux 2 Laurent Poirrier 3 Domenico Salvagnin 4 October 6, 2014 Abstract We develop a method for computing facet-defining valid inequalities for any mixed-integer

More information

MINLP: Theory, Algorithms, Applications: Lecture 3, Basics of Algorothms

MINLP: Theory, Algorithms, Applications: Lecture 3, Basics of Algorothms MINLP: Theory, Algorithms, Applications: Lecture 3, Basics of Algorothms Jeff Linderoth Industrial and Systems Engineering University of Wisconsin-Madison Jonas Schweiger Friedrich-Alexander-Universität

More information

Integer Programming ISE 418. Lecture 16. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 16. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 16 Dr. Ted Ralphs ISE 418 Lecture 16 1 Reading for This Lecture Wolsey, Chapters 10 and 11 Nemhauser and Wolsey Sections II.3.1, II.3.6, II.3.7, II.5.4 CCZ Chapter 8

More information

On the Relative Strength of Split, Triangle and Quadrilateral Cuts

On the Relative Strength of Split, Triangle and Quadrilateral Cuts On the Relative Strength of Split, Triangle and Quadrilateral Cuts Amitabh Basu Pierre Bonami Gérard Cornuéjols François Margot Abstract Integer programs defined by two equations with two free integer

More information

Lagrangian Relaxation in MIP

Lagrangian Relaxation in MIP Lagrangian Relaxation in MIP Bernard Gendron May 28, 2016 Master Class on Decomposition, CPAIOR2016, Banff, Canada CIRRELT and Département d informatique et de recherche opérationnelle, Université de Montréal,

More information

Stochastic Integer Programming

Stochastic Integer Programming IE 495 Lecture 20 Stochastic Integer Programming Prof. Jeff Linderoth April 14, 2003 April 14, 2002 Stochastic Programming Lecture 20 Slide 1 Outline Stochastic Integer Programming Integer LShaped Method

More information

Some cut-generating functions for second-order conic sets

Some cut-generating functions for second-order conic sets Some cut-generating functions for second-order conic sets Asteroide Santana 1 and Santanu S. Dey 1 1 School of Industrial and Systems Engineering, Georgia Institute of Technology June 1, 2016 Abstract

More information

Column Basis Reduction, Decomposable Knapsack. and Cascade Problems. Gábor Pataki. joint work with Bala Krishnamoorthy. What is basis reduction?

Column Basis Reduction, Decomposable Knapsack. and Cascade Problems. Gábor Pataki. joint work with Bala Krishnamoorthy. What is basis reduction? Column Basis Reduction, Decomposable Knapsack and Cascade Problems Slide 1 Gábor Pataki Dept. of Statistics and Operations Research UNC, Chapel Hill joint work with Bala Krishnamoorthy Dept. of Mathematics,

More information

Introduction to optimization and operations research

Introduction to optimization and operations research Introduction to optimization and operations research David Pisinger, Fall 2002 1 Smoked ham (Chvatal 1.6, adapted from Greene et al. (1957)) A meat packing plant produces 480 hams, 400 pork bellies, and

More information

The Frank-Wolfe Algorithm:

The Frank-Wolfe Algorithm: The Frank-Wolfe Algorithm: New Results, and Connections to Statistical Boosting Paul Grigas, Robert Freund, and Rahul Mazumder http://web.mit.edu/rfreund/www/talks.html Massachusetts Institute of Technology

More information

How to convexify the intersection of a second order cone and a nonconvex quadratic

How to convexify the intersection of a second order cone and a nonconvex quadratic Math. Program., Ser. A (217 162:393 429 DOI 1.17/s117-16-145-z FULL LENGTH PAPER How to convexify the intersection of a second order cone and a nonconvex quadratic Samuel Burer 1 Fatma Kılınç-Karzan 2

More information

Lift-and-Project Cuts for Mixed Integer Convex Programs

Lift-and-Project Cuts for Mixed Integer Convex Programs Lift-and-Project Cuts for Mixed Integer Convex Programs Pierre Bonami LIF, CNRS Aix-Marseille Université, 163 avenue de Luminy - Case 901 F-13288 Marseille Cedex 9 France pierre.bonami@lif.univ-mrs.fr

More information

Computing with Multi-Row Intersection Cuts

Computing with Multi-Row Intersection Cuts Computing with Multi-Row Intersection Cuts by Álinson Santos Xavier A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Combinatorics

More information

Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications

Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications François Vanderbeck University of Bordeaux INRIA Bordeaux-Sud-Ouest part : Defining Extended Formulations

More information

LOWER BOUNDS FOR INTEGER PROGRAMMING PROBLEMS

LOWER BOUNDS FOR INTEGER PROGRAMMING PROBLEMS LOWER BOUNDS FOR INTEGER PROGRAMMING PROBLEMS A Thesis Presented to The Academic Faculty by Yaxian Li In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Industrial

More information

Minimal inequalities for an infinite relaxation of integer programs

Minimal inequalities for an infinite relaxation of integer programs Minimal inequalities for an infinite relaxation of integer programs Amitabh Basu Carnegie Mellon University, abasu1@andrew.cmu.edu Michele Conforti Università di Padova, conforti@math.unipd.it Gérard Cornuéjols

More information

Best subset selection via bi-objective mixed integer linear programming

Best subset selection via bi-objective mixed integer linear programming Best subset selection via bi-objective mixed integer linear programming Hadi Charkhgard a,, Ali Eshragh b a Department of Industrial and Management Systems Engineering, University of South Florida, Tampa,

More information

MINI-TUTORIAL ON SEMI-ALGEBRAIC PROOF SYSTEMS. Albert Atserias Universitat Politècnica de Catalunya Barcelona

MINI-TUTORIAL ON SEMI-ALGEBRAIC PROOF SYSTEMS. Albert Atserias Universitat Politècnica de Catalunya Barcelona MINI-TUTORIAL ON SEMI-ALGEBRAIC PROOF SYSTEMS Albert Atserias Universitat Politècnica de Catalunya Barcelona Part I CONVEX POLYTOPES Convex polytopes as linear inequalities Polytope: P = {x R n : Ax b}

More information

Decision Procedures An Algorithmic Point of View

Decision Procedures An Algorithmic Point of View An Algorithmic Point of View ILP References: Integer Programming / Laurence Wolsey Deciding ILPs with Branch & Bound Intro. To mathematical programming / Hillier, Lieberman Daniel Kroening and Ofer Strichman

More information

Indicator Constraints in Mixed-Integer Programming

Indicator Constraints in Mixed-Integer Programming Indicator Constraints in Mixed-Integer Programming Andrea Lodi University of Bologna, Italy - andrea.lodi@unibo.it Amaya Nogales-Gómez, Universidad de Sevilla, Spain Pietro Belotti, FICO, UK Matteo Fischetti,

More information

Travelling Salesman Problem

Travelling Salesman Problem Travelling Salesman Problem Fabio Furini November 10th, 2014 Travelling Salesman Problem 1 Outline 1 Traveling Salesman Problem Separation Travelling Salesman Problem 2 (Asymmetric) Traveling Salesman

More information

CORC Technical Report TR Cuts for mixed 0-1 conic programming

CORC Technical Report TR Cuts for mixed 0-1 conic programming CORC Technical Report TR-2001-03 Cuts for mixed 0-1 conic programming M. T. Çezik G. Iyengar July 25, 2005 Abstract In this we paper we study techniques for generating valid convex constraints for mixed

More information

Logic, Optimization and Data Analytics

Logic, Optimization and Data Analytics Logic, Optimization and Data Analytics John Hooker Carnegie Mellon University United Technologies Research Center, Cork, Ireland August 2015 Thesis Logic and optimization have an underlying unity. Ideas

More information

Solution Methods for Stochastic Programs

Solution Methods for Stochastic Programs Solution Methods for Stochastic Programs Huseyin Topaloglu School of Operations Research and Information Engineering Cornell University ht88@cornell.edu August 14, 2010 1 Outline Cutting plane methods

More information

DATA MINING AND MACHINE LEARNING

DATA MINING AND MACHINE LEARNING DATA MINING AND MACHINE LEARNING Lecture 5: Regularization and loss functions Lecturer: Simone Scardapane Academic Year 2016/2017 Table of contents Loss functions Loss functions for regression problems

More information

Disjunctive Cuts for Mixed Integer Nonlinear Programming Problems

Disjunctive Cuts for Mixed Integer Nonlinear Programming Problems Disjunctive Cuts for Mixed Integer Nonlinear Programming Problems Pierre Bonami, Jeff Linderoth, Andrea Lodi December 29, 2012 Abstract We survey recent progress in applying disjunctive programming theory

More information

Operations Research Methods in Constraint Programming

Operations Research Methods in Constraint Programming Operations Research Methods in Constraint Programming John Hooker Carnegie Mellon University Prepared for Lloret de Mar, Spain June 2007 2007 Slide 1 CP and OR Have Complementary Strengths CP: Inference

More information

A hard integer program made easy by lexicography

A hard integer program made easy by lexicography Noname manuscript No. (will be inserted by the editor) A hard integer program made easy by lexicography Egon Balas Matteo Fischetti Arrigo Zanette October 12, 2010 Abstract A small but notoriously hard

More information

3.10 Lagrangian relaxation

3.10 Lagrangian relaxation 3.10 Lagrangian relaxation Consider a generic ILP problem min {c t x : Ax b, Dx d, x Z n } with integer coefficients. Suppose Dx d are the complicating constraints. Often the linear relaxation and the

More information

A geometric perspective on lifting

A geometric perspective on lifting A geometric perspective on lifting Michele Conforti Università di Padova, conforti@math.unipd.it Gérard Cornuéjols Carnegie Mellon University and Université d Aix-Marseille, gc0v@andrew.cmu.edu Giacomo

More information

1 Column Generation and the Cutting Stock Problem

1 Column Generation and the Cutting Stock Problem 1 Column Generation and the Cutting Stock Problem In the linear programming approach to the traveling salesman problem we used the cutting plane approach. The cutting plane approach is appropriate when

More information

16.410/413 Principles of Autonomy and Decision Making

16.410/413 Principles of Autonomy and Decision Making 6.4/43 Principles of Autonomy and Decision Making Lecture 8: (Mixed-Integer) Linear Programming for Vehicle Routing and Motion Planning Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute

More information

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING 1. Lagrangian Relaxation Lecture 12 Single Machine Models, Column Generation 2. Dantzig-Wolfe Decomposition Dantzig-Wolfe Decomposition Delayed Column

More information

Integer Programming: Cutting Planes

Integer Programming: Cutting Planes OptIntro 1 / 39 Integer Programming: Cutting Planes Eduardo Camponogara Department of Automation and Systems Engineering Federal University of Santa Catarina October 2016 OptIntro 2 / 39 Summary Introduction

More information

Lifting for conic mixed-integer programming

Lifting for conic mixed-integer programming Math. Program., Ser. A DOI 1.17/s117-9-282-9 FULL LENGTH PAPER Lifting for conic mixed-integer programming Alper Atamtürk Vishnu Narayanan Received: 13 March 28 / Accepted: 28 January 29 The Author(s)

More information

Decision Diagram Relaxations for Integer Programming

Decision Diagram Relaxations for Integer Programming Decision Diagram Relaxations for Integer Programming Christian Tjandraatmadja April, 2018 Tepper School of Business Carnegie Mellon University Submitted to the Tepper School of Business in Partial Fulfillment

More information

Master 2 MathBigData. 3 novembre CMAP - Ecole Polytechnique

Master 2 MathBigData. 3 novembre CMAP - Ecole Polytechnique Master 2 MathBigData S. Gaïffas 1 3 novembre 2014 1 CMAP - Ecole Polytechnique 1 Supervised learning recap Introduction Loss functions, linearity 2 Penalization Introduction Ridge Sparsity Lasso 3 Some

More information