Surface x(u, v) and curve α(t) on it given by u(t) & v(t). Math 4140/5530: Differential Geometry

Size: px
Start display at page:

Download "Surface x(u, v) and curve α(t) on it given by u(t) & v(t). Math 4140/5530: Differential Geometry"

Transcription

1 Surface x(u, v) and curve α(t) on it given by u(t) & v(t). α du dv (t) x u dt + x v dt

2 Surface x(u, v) and curve α(t) on it given by u(t) & v(t). α du dv (t) x u dt + x v dt ( ds dt )2

3 Surface x(u, v) and curve α(t) on it given by u(t) & v(t). α du dv (t) x u dt + x v dt ( ds dt )2 α (t) 2 α (t) α du (t) ( x u dt + x v dv dt ) ( x u du dt + x v dv dt )

4 Surface x(u, v) and curve α(t) on it given by u(t) & v(t). α du dv (t) x u dt + x v dt ( ds dt )2 α (t) 2 α (t) α (t) ( x u du dt + x v dv x u x u ( du dt )2 du + 2 x u x v dt dv dt + x v x v ( dv dt )2 dt ) ( x u du dt + x v dv dt )

5 Surface x(u, v) and curve α(t) on it given by u(t) & v(t). α du dv (t) x u dt + x v dt ( ds dt )2 α (t) 2 α (t) α (t) ( x u du dt + x v dv x u x u ( du dt )2 du + 2 x u x v dt E( du dt )2 + 2F du dt dv dt + G( dv dt )2 dv dt + x v x v ( dv dt )2 dt ) ( x u du dt + x v dv E, F, G play important roles in many intrinsic properties of a surface like length, area and angles Example 1: x(u, v) (u, v, 0) dt )

6 [ ] [ ] g11 g Matrix representation: g ij 12 E F g 21 g 22 F G g ij determines dot products of tangent vectors

7 [ ] [ ] g11 g Matrix representation: g ij 12 E F g 21 g 22 F G g ij determines dot products of tangent vectors E, F, G play important roles in many intrinsic properties of a surface like length, area and angles (ds ) 2 (du ) 2 du dv E + 2F dt dt dt dt + G( dv ) 2 dt ds 2 g 11 du 1 du 1 +g 12 du 1 du 2 +g 21 du 2 du 1 +g 22 du 2 du 2 i,j g ij du i du j

8 [ ] [ ] g11 g Matrix representation: g ij 12 E F g 21 g 22 F G g ij determines dot products of tangent vectors w 1, w 2 in T p M { x u, x v } is a basis: w 1 a x u + b x v, w 2 c x u + d x v w 1 w 2 foil

9 [ ] [ ] g11 g Matrix representation: g ij 12 E F g 21 g 22 F G g ij determines dot products of tangent vectors w 1, w 2 in T p M { x u, x v } is a basis: w 1 a x u + b x v, w 2 c x u + d x v foil w 1 w 2 ac x u x u + (ad + bc) x u x v + bd x v x v ace + (ad + bc)f + bdg

10 [ ] [ ] g11 g Matrix representation: g ij 12 E F g 21 g 22 F G g ij determines dot products of tangent vectors w 1, w 2 in T p M { x u, x v } is a basis: w 1 a x u + b x v, w 2 c x u + d x v foil w 1 w 2 ac x u x u + (ad + bc) x u x v + bd x v x v ace + (ad + bc)f + bdg a(ce + df) + b(cf + dg) [ a b ] [ ] ce + df cf + dg

11 [ ] [ ] g11 g Matrix representation: g ij 12 E F g 21 g 22 F G g ij determines dot products of tangent vectors w 1, w 2 in T p M { x u, x v } is a basis: w 1 a x u + b x v, w 2 c x u + d x v foil w 1 w 2 ac x u x u + (ad + bc) x u x v + bd x v x v ace + (ad + bc)f + bdg a(ce + df) + b(cf + dg) [ a b ] [ ] ce + df cf + dg [ a b ] [ ] [ ] E F c F G d

12 [ ] [ ] g11 g Matrix representation: g ij 12 E F g 21 g 22 F G g ij determines dot products of tangent vectors w 1, w 2 in T p M { x u, x v } is a basis: w 1 a x u + b x v, w 2 c x u + d x v foil w 1 w 2 ac x u x u + (ad + bc) x u x v + bd x v x v ace + (ad + bc)f + bdg a(ce + df) + b(cf + dg) [ a b ] [ ] ce + df cf + dg [ a b ] [ ] [ ] E F c F G d w 1 w 2 w 1 w 2 cos θ E, F, G play important roles in many intrinsic properties of a surface like length ( ds dt )2, area (det) and angles (above)

13

14 2nd Fundamental Form l x uu U, m x uv U, n x vv U 2nd picture: The Center of Population of the United States curve: κ, τ rate of change of unit vector fields T & B ( N). surface: U unit vector field. Whole plane of directions rates of change of U are measured, not numerically, but by a linear operator called the shape operator, which captures the bending of a surface.

15 2nd Fundamental Form l x uu U, m x uv U, n x vv U 2nd picture: The Center of Population of the United States curve: κ, τ rate of change of unit vector fields T & B ( N). surface: U unit vector field. Whole plane of directions rates of change of U are measured, not numerically, but by a linear operator called the shape operator, which captures the bending of a surface. S p ( w) w U S( x u ) x u x uu U l, S( x u ) x v x uv U m, S( x v ) x v x vv U n eigenvalues of the shape operator: max and min normal curvature at p, called the principal curvatures κ 1 and κ 2

The First Fundamental Form

The First Fundamental Form The First Fundamental Form Outline 1. Bilinear Forms Let V be a vector space. A bilinear form on V is a function V V R that is linear in each variable separately. That is,, is bilinear if αu + β v, w αu,

More information

CS Tutorial 5 - Differential Geometry I - Surfaces

CS Tutorial 5 - Differential Geometry I - Surfaces 236861 Numerical Geometry of Images Tutorial 5 Differential Geometry II Surfaces c 2009 Parameterized surfaces A parameterized surface X : U R 2 R 3 a differentiable map 1 X from an open set U R 2 to R

More information

Lecture 13 The Fundamental Forms of a Surface

Lecture 13 The Fundamental Forms of a Surface Lecture 13 The Fundamental Forms of a Surface In the following we denote by F : O R 3 a parametric surface in R 3, F(u, v) = (x(u, v), y(u, v), z(u, v)). We denote partial derivatives with respect to the

More information

1 The Differential Geometry of Surfaces

1 The Differential Geometry of Surfaces 1 The Differential Geometry of Surfaces Three-dimensional objects are bounded by surfaces. This section reviews some of the basic definitions and concepts relating to the geometry of smooth surfaces. 1.1

More information

Notes on Cartan s Method of Moving Frames

Notes on Cartan s Method of Moving Frames Math 553 σιι June 4, 996 Notes on Cartan s Method of Moving Frames Andrejs Treibergs The method of moving frames is a very efficient way to carry out computations on surfaces Chern s Notes give an elementary

More information

HOMEWORK 3 MA1132: ADVANCED CALCULUS, HILARY 2017

HOMEWORK 3 MA1132: ADVANCED CALCULUS, HILARY 2017 HOMEWORK MA112: ADVANCED CALCULUS, HILARY 2017 (1) A particle moves along a curve in R with position function given by r(t) = (e t, t 2 + 1, t). Find the velocity v(t), the acceleration a(t), the speed

More information

Chapter 4. The First Fundamental Form (Induced Metric)

Chapter 4. The First Fundamental Form (Induced Metric) Chapter 4. The First Fundamental Form (Induced Metric) We begin with some definitions from linear algebra. Def. Let V be a vector space (over IR). A bilinear form on V is a map of the form B : V V IR which

More information

Hyperbolic Geometry on Geometric Surfaces

Hyperbolic Geometry on Geometric Surfaces Mathematics Seminar, 15 September 2010 Outline Introduction Hyperbolic geometry Abstract surfaces The hemisphere model as a geometric surface The Poincaré disk model as a geometric surface Conclusion Introduction

More information

Math 115 ( ) Yum-Tong Siu 1. Euler-Lagrange Equations for Many Functions and Variables and High-Order Derivatives

Math 115 ( ) Yum-Tong Siu 1. Euler-Lagrange Equations for Many Functions and Variables and High-Order Derivatives Math 115 006-007 Yum-Tong Siu 1 Euler-Lagrange Equations for Many Functions and Variables and High-Order Derivatives The Case of High-Order Derivatives. The context is to find the extremal for the functional

More information

Chapter 14. Basics of The Differential Geometry of Surfaces. Introduction. Parameterized Surfaces. The First... Home Page. Title Page.

Chapter 14. Basics of The Differential Geometry of Surfaces. Introduction. Parameterized Surfaces. The First... Home Page. Title Page. Chapter 14 Basics of The Differential Geometry of Surfaces Page 649 of 681 14.1. Almost all of the material presented in this chapter is based on lectures given by Eugenio Calabi in an upper undergraduate

More information

MATH 332: Vector Analysis Summer 2005 Homework

MATH 332: Vector Analysis Summer 2005 Homework MATH 332, (Vector Analysis), Summer 2005: Homework 1 Instructor: Ivan Avramidi MATH 332: Vector Analysis Summer 2005 Homework Set 1. (Scalar Product, Equation of a Plane, Vector Product) Sections: 1.9,

More information

A PROOF OF THE GAUSS-BONNET THEOREM. Contents. 1. Introduction. 2. Regular Surfaces

A PROOF OF THE GAUSS-BONNET THEOREM. Contents. 1. Introduction. 2. Regular Surfaces A PROOF OF THE GAUSS-BONNET THEOREM AARON HALPER Abstract. In this paper I will provide a proof of the Gauss-Bonnet Theorem. I will start by briefly explaining regular surfaces and move on to the first

More information

Chapter 5. The Second Fundamental Form

Chapter 5. The Second Fundamental Form Chapter 5. The Second Fundamental Form Directional Derivatives in IR 3. Let f : U IR 3 IR be a smooth function defined on an open subset of IR 3. Fix p U and X T p IR 3. The directional derivative of f

More information

Tangent and Normal Vectors

Tangent and Normal Vectors Tangent and Normal Vectors MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Navigation When an observer is traveling along with a moving point, for example the passengers in

More information

CHAPTER 3. Gauss map. In this chapter we will study the Gauss map of surfaces in R 3.

CHAPTER 3. Gauss map. In this chapter we will study the Gauss map of surfaces in R 3. CHAPTER 3 Gauss map In this chapter we will study the Gauss map of surfaces in R 3. 3.1. Surfaces in R 3 Let S R 3 be a submanifold of dimension 2. Let {U i, ϕ i } be a DS on S. For any p U i we have a

More information

d F = (df E 3 ) E 3. (4.1)

d F = (df E 3 ) E 3. (4.1) 4. The Second Fundamental Form In the last section we developed the theory of intrinsic geometry of surfaces by considering the covariant differential d F, that is, the tangential component of df for a

More information

9.1 Mean and Gaussian Curvatures of Surfaces

9.1 Mean and Gaussian Curvatures of Surfaces Chapter 9 Gauss Map II 9.1 Mean and Gaussian Curvatures of Surfaces in R 3 We ll assume that the curves are in R 3 unless otherwise noted. We start off by quoting the following useful theorem about self

More information

HOMEWORK 2 SOLUTIONS

HOMEWORK 2 SOLUTIONS HOMEWORK SOLUTIONS MA11: ADVANCED CALCULUS, HILARY 17 (1) Find parametric equations for the tangent line of the graph of r(t) = (t, t + 1, /t) when t = 1. Solution: A point on this line is r(1) = (1,,

More information

Introduction to Algebraic and Geometric Topology Week 14

Introduction to Algebraic and Geometric Topology Week 14 Introduction to Algebraic and Geometric Topology Week 14 Domingo Toledo University of Utah Fall 2016 Computations in coordinates I Recall smooth surface S = {f (x, y, z) =0} R 3, I rf 6= 0 on S, I Chart

More information

Intrinsic Surface Geometry

Intrinsic Surface Geometry Chapter 7 Intrinsic Surface Geometry The second fundamental form of a regular surface M R 3 helps to describe precisely how M sits inside the Euclidean space R 3. The first fundamental form of M, on the

More information

Report submitted to Prof. P. Shipman for Math 641, Spring 2012

Report submitted to Prof. P. Shipman for Math 641, Spring 2012 Dynamics at the Horsetooth Volume 4, 2012. The Weierstrass-Enneper Representations Department of Mathematics Colorado State University mylak@rams.colostate.edu drpackar@rams.colostate.edu Report submitted

More information

Metrics and Curvature

Metrics and Curvature Metrics and Curvature How to measure curvature? Metrics Euclidian/Minkowski Curved spaces General 4 dimensional space Cosmological principle Homogeneity and isotropy: evidence Robertson-Walker metrics

More information

THE LOWELL LEDGER. INDEPENDENT NOT NEUTRAL. NPRAKER BLOCK SOLI)

THE LOWELL LEDGER. INDEPENDENT NOT NEUTRAL. NPRAKER BLOCK SOLI) D DD U X X 2 U UD U 2 90 x F D D F & U [V U 2 225 00 U D?? - F V D VV U F D «- U 20 -! - - > - U ( >»!( - > ( - - < x V ) - - F 8 F z F < : V - x x F - ) V V ( V x V V x V D 6 0 ( F - V x x z F 5-- - F

More information

t f(u)g (u) g(u)f (u) du,

t f(u)g (u) g(u)f (u) du, Chapter 2 Notation. Recall that F(R 3 ) denotes the set of all differentiable real-valued functions f : R 3 R and V(R 3 ) denotes the set of all differentiable vector fields on R 3. 2.1 7. The problem

More information

DIFFERENTIAL GEOMETRY HW 4. Show that a catenoid and helicoid are locally isometric.

DIFFERENTIAL GEOMETRY HW 4. Show that a catenoid and helicoid are locally isometric. DIFFERENTIAL GEOMETRY HW 4 CLAY SHONKWILER Show that a catenoid and helicoid are locally isometric. 3 Proof. Let X(u, v) = (a cosh v cos u, a cosh v sin u, av) be the parametrization of the catenoid and

More information

Definition of Derivative

Definition of Derivative Definition of Derivative The derivative of the function f with respect to the variable x is the function ( ) fʹ x whose value at xis ( x) fʹ = lim provided the limit exists. h 0 ( + ) ( ) f x h f x h Slide

More information

Geometric Modelling Summer 2016

Geometric Modelling Summer 2016 Geometric Modelling Summer 2016 Exercises Benjamin Karer M.Sc. http://gfx.uni-kl.de/~gm Benjamin Karer M.Sc. Geometric Modelling Summer 2016 1 Dierential Geometry Benjamin Karer M.Sc. Geometric Modelling

More information

Topic 5.6: Surfaces and Surface Elements

Topic 5.6: Surfaces and Surface Elements Math 275 Notes Topic 5.6: Surfaces and Surface Elements Textbook Section: 16.6 From the Toolbox (what you need from previous classes): Using vector valued functions to parametrize curves. Derivatives of

More information

Normal Curvature, Geodesic Curvature and Gauss Formulas

Normal Curvature, Geodesic Curvature and Gauss Formulas Title Normal Curvature, Geodesic Curvature and Gauss Formulas MATH 2040 December 20, 2016 MATH 2040 Normal and Geodesic Curvature December 20, 2016 1 / 12 Readings Readings Readings: 4.4 MATH 2040 Normal

More information

Week 3: Differential Geometry of Curves

Week 3: Differential Geometry of Curves Week 3: Differential Geometry of Curves Introduction We now know how to differentiate and integrate along curves. This week we explore some of the geometrical properties of curves that can be addressed

More information

Review for the Final Exam

Review for the Final Exam Math 171 Review for the Final Exam 1 Find the limits (4 points each) (a) lim 4x 2 3; x x (b) lim ( x 2 x x 1 )x ; (c) lim( 1 1 ); x 1 ln x x 1 sin (x 2) (d) lim x 2 x 2 4 Solutions (a) The limit lim 4x

More information

Getting started: CFD notation

Getting started: CFD notation PDE of p-th order Getting started: CFD notation f ( u,x, t, u x 1,..., u x n, u, 2 u x 1 x 2,..., p u p ) = 0 scalar unknowns u = u(x, t), x R n, t R, n = 1,2,3 vector unknowns v = v(x, t), v R m, m =

More information

Math 20E Midterm II(ver. a)

Math 20E Midterm II(ver. a) Name: olutions tudent ID No.: Discussion ection: Math 20E Midterm IIver. a) Fall 2018 Problem core 1 /24 2 /25 3 /26 4 /25 Total /100 1. 24 Points.) Consider the force field F 5y ı + 3y 2 j. Compute the

More information

Geodesics: Minimizing Distance on a Surface

Geodesics: Minimizing Distance on a Surface Geodesics: Minimizing Distance on a Surface Seth Donahue 5/13/13 Abstract Geodesics use the principles of differential geometry. The system of differential equations and the analysis of these will be done

More information

Inner Product Spaces 6.1 Length and Dot Product in R n

Inner Product Spaces 6.1 Length and Dot Product in R n Inner Product Spaces 6.1 Length and Dot Product in R n Summer 2017 Goals We imitate the concept of length and angle between two vectors in R 2, R 3 to define the same in the n space R n. Main topics are:

More information

Sec. 1.1: Basics of Vectors

Sec. 1.1: Basics of Vectors Sec. 1.1: Basics of Vectors Notation for Euclidean space R n : all points (x 1, x 2,..., x n ) in n-dimensional space. Examples: 1. R 1 : all points on the real number line. 2. R 2 : all points (x 1, x

More information

MTH 277 Test 4 review sheet Chapter , 14.7, 14.8 Chalmeta

MTH 277 Test 4 review sheet Chapter , 14.7, 14.8 Chalmeta MTH 77 Test 4 review sheet Chapter 13.1-13.4, 14.7, 14.8 Chalmeta Multiple Choice 1. Let r(t) = 3 sin t i + 3 cos t j + αt k. What value of α gives an arc length of 5 from t = 0 to t = 1? (a) 6 (b) 5 (c)

More information

Final Exam Topic Outline

Final Exam Topic Outline Math 442 - Differential Geometry of Curves and Surfaces Final Exam Topic Outline 30th November 2010 David Dumas Note: There is no guarantee that this outline is exhaustive, though I have tried to include

More information

DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES 5. The Second Fundamental Form of a Surface

DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES 5. The Second Fundamental Form of a Surface DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES 5. The Second Fundamental Form of a Surface The main idea of this chapter is to try to measure to which extent a surface S is different from a plane, in other

More information

WORKSHEET #13 MATH 1260 FALL 2014

WORKSHEET #13 MATH 1260 FALL 2014 WORKSHEET #3 MATH 26 FALL 24 NOT DUE. Short answer: (a) Find the equation of the tangent plane to z = x 2 + y 2 at the point,, 2. z x (, ) = 2x = 2, z y (, ) = 2y = 2. So then the tangent plane equation

More information

Lectures 18: Gauss's Remarkable Theorem II. Table of contents

Lectures 18: Gauss's Remarkable Theorem II. Table of contents Math 348 Fall 27 Lectures 8: Gauss's Remarkable Theorem II Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only. It should not be relied on when preparing for exams.

More information

ON CHRISTOFFEL SYMBOLS AND TEOREMA EGREGIUM

ON CHRISTOFFEL SYMBOLS AND TEOREMA EGREGIUM ON CHRISTOFFEL SYMBOLS AND TEOREMA EGREGIUM LISBETH FAJSTRUP 1. CHRISTOFFEL SYMBOLS Thisisasectiononatechnicaldevicewhichisindispensableboth in the proof of Gauss Theorema egregium and when handling geodesics

More information

Totally quasi-umbilic timelike surfaces in R 1,2

Totally quasi-umbilic timelike surfaces in R 1,2 Totally quasi-umbilic timelike surfaces in R 1,2 Jeanne N. Clelland, University of Colorado AMS Central Section Meeting Macalester College April 11, 2010 Definition: Three-dimensional Minkowski space R

More information

Math 497C Mar 3, Curves and Surfaces Fall 2004, PSU

Math 497C Mar 3, Curves and Surfaces Fall 2004, PSU Math 497C Mar 3, 2004 1 Curves and Surfaces Fall 2004, PSU Lecture Notes 10 2.3 Meaning of Gaussian Curvature In the previous lecture we gave a formal definition for Gaussian curvature K in terms of the

More information

Indeterminate Analysis Force Method 1

Indeterminate Analysis Force Method 1 Indeterminate Analysis Force Method 1 The force (flexibility) method expresses the relationships between displacements and forces that exist in a structure. Primary objective of the force method is to

More information

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the 1.(8pts) Find F ds where F = x + ye z + ze y, y + xe z + ze x, z and where T is the T surface in the pictures. (The two pictures are two views of the same surface.) The boundary of T is the unit circle

More information

Solutions for Math 348 Assignment #4 1

Solutions for Math 348 Assignment #4 1 Solutions for Math 348 Assignment #4 1 (1) Do the following: (a) Show that the intersection of two spheres S 1 = {(x, y, z) : (x x 1 ) 2 + (y y 1 ) 2 + (z z 1 ) 2 = r 2 1} S 2 = {(x, y, z) : (x x 2 ) 2

More information

Topics. CS Advanced Computer Graphics. Differential Geometry Basics. James F. O Brien. Vector and Tensor Fields.

Topics. CS Advanced Computer Graphics. Differential Geometry Basics. James F. O Brien. Vector and Tensor Fields. CS 94-3 Advanced Computer Graphics Differential Geometry Basics James F. O Brien Associate Professor U.C. Berkeley Topics Vector and Tensor Fields Divergence, curl, etc. Parametric Curves Tangents, curvature,

More information

Practice Final Solutions

Practice Final Solutions Practice Final Solutions Math 1, Fall 17 Problem 1. Find a parameterization for the given curve, including bounds on the parameter t. Part a) The ellipse in R whose major axis has endpoints, ) and 6, )

More information

M435: INTRODUCTION TO DIFFERENTIAL GEOMETRY

M435: INTRODUCTION TO DIFFERENTIAL GEOMETRY M435: INTODUCTION TO DIFFNTIAL GOMTY MAK POWLL Contents 7. The Gauss-Bonnet Theorem 1 7.1. Statement of local Gauss-Bonnet theorem 1 7.2. Area of geodesic triangles 2 7.3. Special case of the plane 2 7.4.

More information

Dierential Geometry Curves and surfaces Local properties Geometric foundations (critical for visual modeling and computing) Quantitative analysis Algo

Dierential Geometry Curves and surfaces Local properties Geometric foundations (critical for visual modeling and computing) Quantitative analysis Algo Dierential Geometry Curves and surfaces Local properties Geometric foundations (critical for visual modeling and computing) Quantitative analysis Algorithm development Shape control and interrogation Curves

More information

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions alculus III Math 33 pring 7 Final exam May 3rd. uggested solutions This exam contains twenty problems numbered 1 through. All problems are multiple choice problems, and each counts 5% of your total score.

More information

5.2 The Levi-Civita Connection on Surfaces. 1 Parallel transport of vector fields on a surface M

5.2 The Levi-Civita Connection on Surfaces. 1 Parallel transport of vector fields on a surface M 5.2 The Levi-Civita Connection on Surfaces In this section, we define the parallel transport of vector fields on a surface M, and then we introduce the concept of the Levi-Civita connection, which is also

More information

Affine invariant Fourier descriptors

Affine invariant Fourier descriptors Affine invariant Fourier descriptors Sought: a generalization of the previously introduced similarityinvariant Fourier descriptors H. Burkhardt, Institut für Informatik, Universität Freiburg ME-II, Kap.

More information

Math 433 Outline for Final Examination

Math 433 Outline for Final Examination Math 433 Outline for Final Examination Richard Koch May 3, 5 Curves From the chapter on curves, you should know. the formula for arc length of a curve;. the definition of T (s), N(s), B(s), and κ(s) for

More information

5.3 Surface Theory with Differential Forms

5.3 Surface Theory with Differential Forms 5.3 Surface Theory with Differential Forms 1 Differential forms on R n, Click here to see more details Differential forms provide an approach to multivariable calculus (Click here to see more detailes)

More information

Arbitrary-Speed Curves

Arbitrary-Speed Curves Arbitrary-Speed Curves (Com S 477/577 Notes) Yan-Bin Jia Oct 12, 2017 The Frenet formulas are valid only for unit-speed curves; they tell the rate of change of the orthonormal vectors T, N, B with respect

More information

Lectures 15: Parallel Transport. Table of contents

Lectures 15: Parallel Transport. Table of contents Lectures 15: Parallel Transport Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only. It should not be relied on when preparing for exams. In this lecture we study the

More information

of all two dimensional curvatures found by considering the intersection of the surface and a plane that contains the surface normal. Or, more simply,

of all two dimensional curvatures found by considering the intersection of the surface and a plane that contains the surface normal. Or, more simply, A Proof that the Divergence of a Surface Normal Is Equal to the Sum of the Principal Curvatures Patience Henson May 5, 000 Motivation In solving problems that include an interface it is often important

More information

Motion in Space. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Motion in Space

Motion in Space. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Motion in Space Motion in Space MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Background Suppose the position vector of a moving object is given by r(t) = f (t), g(t), h(t), Background

More information

Math 1501 Calc I Summer 2015 QUP SOUP w/ GTcourses

Math 1501 Calc I Summer 2015 QUP SOUP w/ GTcourses Math 1501 Calc I Summer 2015 QUP SOUP w/ GTcourses Instructor: Sal Barone School of Mathematics Georgia Tech May 22, 2015 (updated May 22, 2015) Covered sections: 3.3 & 3.5 Exam 1 (Ch.1 - Ch.3) Thursday,

More information

2009 Applied Mathematics. Advanced Higher Mechanics. Finalised Marking Instructions

2009 Applied Mathematics. Advanced Higher Mechanics. Finalised Marking Instructions 2009 Applied Mathematics Advanced Higher Mechanics Finalised Marking Instructions Scottish Qualifications Authority 2009 The information in this publication may be reproduced to support SQA qualifications

More information

Map Projections. Jim Emery. Revision 7/21/ The Earth Ellipsoid 2. 2 The Fundamental Quadratic Forms of a Surface 6

Map Projections. Jim Emery. Revision 7/21/ The Earth Ellipsoid 2. 2 The Fundamental Quadratic Forms of a Surface 6 Map Projections Jim Emery Revision 7/21/2004 Contents 1 The Earth Ellipsoid 2 2 The Fundamental Quadratic Forms of a Surface 6 3 Principal Directions On A Surface 9 4 Principal Normal Curvatures on the

More information

GEOMETRY HW Consider the parametrized surface (Enneper s surface)

GEOMETRY HW Consider the parametrized surface (Enneper s surface) GEOMETRY HW 4 CLAY SHONKWILER 3.3.5 Consider the parametrized surface (Enneper s surface φ(u, v (x u3 3 + uv2, v v3 3 + vu2, u 2 v 2 show that (a The coefficients of the first fundamental form are E G

More information

Dust devils, water spouts, tornados

Dust devils, water spouts, tornados Balanced flow Things we know Primitive equations are very comprehensive, but there may be a number of vast simplifications that may be relevant (e.g., geostrophic balance). Seems that there are things

More information

HOMEWORK 3 - GEOMETRY OF CURVES AND SURFACES. where ν is the unit normal consistent with the orientation of α (right hand rule).

HOMEWORK 3 - GEOMETRY OF CURVES AND SURFACES. where ν is the unit normal consistent with the orientation of α (right hand rule). HOMEWORK 3 - GEOMETRY OF CURVES AND SURFACES ANDRÉ NEVES ) If α : I R 2 is a curve on the plane parametrized by arc length and θ is the angle that α makes with the x-axis, show that α t) = dθ dt ν, where

More information

Calculus 1: A Large and In Charge Review Solutions

Calculus 1: A Large and In Charge Review Solutions Calculus : A Large and n Charge Review Solutions use the symbol which is shorthand for the phrase there eists.. We use the formula that Average Rate of Change is given by f(b) f(a) b a (a) (b) 5 = 3 =

More information

Math 340 Final Exam December 16, 2006

Math 340 Final Exam December 16, 2006 Math 34 Final Exam December 6, 6. () Suppose A 3 4. a) Find the row-reduced echelon form of A. 3 4 so the row reduced echelon form is b) What is rank(a)? 3 4 4 The rank is two since there are two pivots.

More information

Homework 2. Solutions T =

Homework 2. Solutions T = Homework. s Let {e x, e y, e z } be an orthonormal basis in E. Consider the following ordered triples: a) {e x, e x + e y, 5e z }, b) {e y, e x, 5e z }, c) {e y, e x, e z }, d) {e y, e x, 5e z }, e) {

More information

Allen Cahn Equation in Two Spatial Dimension

Allen Cahn Equation in Two Spatial Dimension Allen Cahn Equation in Two Spatial Dimension Yoichiro Mori April 25, 216 Consider the Allen Cahn equation in two spatial dimension: ɛ u = ɛ2 u + fu) 1) where ɛ > is a small parameter and fu) is of cubic

More information

Rational Bézier Patch Differentiation using the Rational Forward Difference Operator

Rational Bézier Patch Differentiation using the Rational Forward Difference Operator Rational Bézier Patch Differentiation using the Rational Forward Difference Operator Xianming Chen, Richard F. Riesenfeld, Elaine Cohen School of Computing, University of Utah Abstract This paper introduces

More information

Surfaces of Revolution with Constant Mean Curvature H = c in Hyperbolic 3-Space H 3 ( c 2 )

Surfaces of Revolution with Constant Mean Curvature H = c in Hyperbolic 3-Space H 3 ( c 2 ) Surfaces of Revolution with Constant Mean Curvature H = c in Hyerbolic 3-Sace H 3 ( c 2 Kinsey-Ann Zarske Deartment of Mathematics, University of Southern Mississii, Hattiesburg, MS 39406, USA E-mail:

More information

HILBERT S THEOREM ON THE HYPERBOLIC PLANE

HILBERT S THEOREM ON THE HYPERBOLIC PLANE HILBET S THEOEM ON THE HYPEBOLIC PLANE MATTHEW D. BOWN Abstract. We recount a proof of Hilbert s result that a complete geometric surface of constant negative Gaussian curvature cannot be isometrically

More information

OHSx XM521 Multivariable Differential Calculus: Homework Solutions 14.1

OHSx XM521 Multivariable Differential Calculus: Homework Solutions 14.1 OHSx XM5 Multivariable Differential Calculus: Homework Solutions 4. (8) Describe the graph of the equation. r = i + tj + (t )k. Solution: Let y(t) = t, so that z(t) = t = y. In the yz-plane, this is just

More information

Chapter 14: Vector Calculus

Chapter 14: Vector Calculus Chapter 14: Vector Calculus Introduction to Vector Functions Section 14.1 Limits, Continuity, Vector Derivatives a. Limit of a Vector Function b. Limit Rules c. Component By Component Limits d. Continuity

More information

Christoffel symbols and Gauss Theorema Egregium

Christoffel symbols and Gauss Theorema Egregium Durham University Pavel Tumarkin Epiphany 207 Dierential Geometry III, Solutions 5 (Week 5 Christoel symbols and Gauss Theorema Egregium 5.. Show that the Gauss curvature K o the surace o revolution locally

More information

A local characterization for constant curvature metrics in 2-dimensional Lorentz manifolds

A local characterization for constant curvature metrics in 2-dimensional Lorentz manifolds A local characterization for constant curvature metrics in -dimensional Lorentz manifolds Ivo Terek Couto Alexandre Lymberopoulos August 9, 8 arxiv:65.7573v [math.dg] 4 May 6 Abstract In this paper we

More information

Theorema Egregium, Intrinsic Curvature

Theorema Egregium, Intrinsic Curvature Theorema Egregium, Intrinsic Curvature Cartan s second structural equation dω 12 = K θ 1 θ 2, (1) is, as we have seen, a powerful tool for computing curvature. But it also has far reaching theoretical

More information

Alignment processes on the sphere

Alignment processes on the sphere Alignment processes on the sphere Amic Frouvelle CEREMADE Université Paris Dauphine Joint works with : Pierre Degond (Imperial College London) and Gaël Raoul (École Polytechnique) Jian-Guo Liu (Duke University)

More information

Mathematical Notation Math Calculus & Analytic Geometry III

Mathematical Notation Math Calculus & Analytic Geometry III Name : Mathematical Notation Math 221 - alculus & Analytic Geometry III Use Word or WordPerect to recreate the ollowing documents. Each article is worth 10 points and can e printed and given to the instructor

More information

MATH107 Vectors and Matrices

MATH107 Vectors and Matrices School of Mathematics, KSU 20/11/16 Vector valued functions Let D be a set of real numbers D R. A vector-valued functions r with domain D is a correspondence that assigns to each number t in D exactly

More information

Part IB. Geometry. Year

Part IB. Geometry. Year Part IB Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2017 17 Paper 1, Section I 3G Give the definition for the area of a hyperbolic triangle with interior angles

More information

Surfaces of Arbitrary Constant Negative Gaussian Curvature and Related Sine-Gordon Equations

Surfaces of Arbitrary Constant Negative Gaussian Curvature and Related Sine-Gordon Equations Mathematica Aeterna, Vol.1, 011, no. 01, 1-11 Surfaces of Arbitrary Constant Negative Gaussian Curvature and Related Sine-Gordon Equations Paul Bracken Department of Mathematics, University of Texas, Edinburg,

More information

Exercise 1 (Formula for connection 1-forms) Using the first structure equation, show that

Exercise 1 (Formula for connection 1-forms) Using the first structure equation, show that 1 Stokes s Theorem Let D R 2 be a connected compact smooth domain, so that D is a smooth embedded circle. Given a smooth function f : D R, define fdx dy fdxdy, D where the left-hand side is the integral

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors /88 Chia-Ping Chen Department of Computer Science and Engineering National Sun Yat-sen University Linear Algebra Eigenvalue Problem /88 Eigenvalue Equation By definition, the eigenvalue equation for matrix

More information

Molding surfaces and Liouville s equation

Molding surfaces and Liouville s equation Molding surfaces and Liouville s equation Naoya Ando Abstract According to [9], a molding surface has a property that a family of lines of curvature consists of geodesics. In the present paper, we will

More information

Riemannian geometry of surfaces

Riemannian geometry of surfaces Riemannian geometry of surfaces In this note, we will learn how to make sense of the concepts of differential geometry on a surface M, which is not necessarily situated in R 3. This intrinsic approach

More information

Course on Inverse Problems

Course on Inverse Problems Stanford University School of Earth Sciences Course on Inverse Problems Albert Tarantola Third Lesson: Probability (Elementary Notions) Let u and v be two Cartesian parameters (then, volumetric probabilities

More information

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is 1. The value of the double integral (a) 15 26 (b) 15 8 (c) 75 (d) 105 26 5 4 0 1 1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is 2. What is the value of the double integral interchange the order

More information

1 Vector algebra in R 3.

1 Vector algebra in R 3. ECE 298JA VC #1 Version 3.03 November 14, 2017 Fall 2017 Univ. of Illinois Due Mon, Dec 4, 2017 Prof. Allen Topic of this homework: Vector algebra and fields in R 3 ; Gradient and scalar Laplacian operator;

More information

Differential calculus. Background mathematics review

Differential calculus. Background mathematics review Differential calculus Background mathematics review David Miller Differential calculus First derivative Background mathematics review David Miller First derivative For some function y The (first) derivative

More information

Mathematics Review Exercises. (answers at end)

Mathematics Review Exercises. (answers at end) Brock University Physics 1P21/1P91 Mathematics Review Exercises (answers at end) Work each exercise without using a calculator. 1. Express each number in scientific notation. (a) 437.1 (b) 563, 000 (c)

More information

Exact Solutions of the Einstein Equations

Exact Solutions of the Einstein Equations Notes from phz 6607, Special and General Relativity University of Florida, Fall 2004, Detweiler Exact Solutions of the Einstein Equations These notes are not a substitute in any manner for class lectures.

More information

Part IB Geometry. Theorems. Based on lectures by A. G. Kovalev Notes taken by Dexter Chua. Lent 2016

Part IB Geometry. Theorems. Based on lectures by A. G. Kovalev Notes taken by Dexter Chua. Lent 2016 Part IB Geometry Theorems Based on lectures by A. G. Kovalev Notes taken by Dexter Chua Lent 2016 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

UNIVERSITY OF DUBLIN

UNIVERSITY OF DUBLIN UNIVERSITY OF DUBLIN TRINITY COLLEGE JS & SS Mathematics SS Theoretical Physics SS TSM Mathematics Faculty of Engineering, Mathematics and Science school of mathematics Trinity Term 2015 Module MA3429

More information

THE TRANSLATION PLANES OF ORDER 49 AND THEIR AUTOMORPHISM GROUPS

THE TRANSLATION PLANES OF ORDER 49 AND THEIR AUTOMORPHISM GROUPS MATHEMATICS OF COMPUTATION Volume 67, Number 223, July 1998, Pages 1207 1224 S 0025-5718(98)00961-2 THE TRANSLATION PLANES OF ORDER 49 AND THEIR AUTOMORPHISM GROUPS C. CHARNES AND U. DEMPWOLFF Abstract.

More information

Look out for typos! Homework 1: Review of Calc 1 and 2. Problem 1. Sketch the graphs of the following functions:

Look out for typos! Homework 1: Review of Calc 1 and 2. Problem 1. Sketch the graphs of the following functions: Math 226 homeworks, Fall 2016 General Info All homeworks are due mostly on Tuesdays, occasionally on Thursdays, at the discussion section. No late submissions will be accepted. If you need to miss the

More information

Lecture 31 INTEGRATION

Lecture 31 INTEGRATION Lecture 3 INTEGRATION Substitution. Example. x (let u = x 3 +5 x3 +5 du =3x = 3x 3 x 3 +5 = du 3 u du =3x ) = 3 u du = 3 u = 3 u = 3 x3 +5+C. Example. du (let u =3x +5 3x+5 = 3 3 3x+5 =3 du =3.) = 3 du

More information

Lectures on Quantum sine-gordon Models

Lectures on Quantum sine-gordon Models Lectures on Quantum sine-gordon Models Juan Mateos Guilarte 1, 1 Departamento de Física Fundamental (Universidad de Salamanca) IUFFyM (Universidad de Salamanca) Universidade Federal de Matto Grosso Cuiabá,

More information

Fronts of Whitney umbrella a differential geometric approach via blowing up

Fronts of Whitney umbrella a differential geometric approach via blowing up Journal of Singularities Volume 4 (202), 35-67 received 3 October 20 in revised form 9 January 202 DOI: 0.5427/jsing.202.4c Fronts of Whitney umbrella a differential geometric approach via blowing up Toshizumi

More information