MTH 277 Test 4 review sheet Chapter , 14.7, 14.8 Chalmeta

Size: px
Start display at page:

Download "MTH 277 Test 4 review sheet Chapter , 14.7, 14.8 Chalmeta"

Transcription

1 MTH 77 Test 4 review sheet Chapter , 14.7, 14.8 Chalmeta Multiple Choice 1. Let r(t) = 3 sin t i + 3 cos t j + αt k. What value of α gives an arc length of 5 from t = 0 to t = 1? (a) 6 (b) 5 (c) 4 (d) 3. Consider the device shown. An expression of point P as a function of wheel radius R, base length L, and angle θ is: (a) x = R L(1 cos θ) (b) x = R L(cos θ) (c) x = L R(1 cos θ) (d) x = L R(cos θ) 3. Let r(t) = cos ( ) t i + sin ( t ) j. Which of the following statements is FALSE? (a) A particle traveling this path has constant speed. (b) Velocity is always orthogonal to acceleration. (c) Acceleration is zero. (d) Curvature is If r(t) = cos t i + t j, then the maximum magnitude of acceleration occurs at (a) t = 0, π (b) t = π, 3π (c) t = π 4, 3π 4 (d) t = 0, π, π Short Answer 5. The velocity of a particle is given by v(t) = e t i + sin t j + k. Find the position function if the initial position is r(0) = 3 i + 4 j + 5 k. 1

2 MTH 77 Test 4 review sheet Chapter , 14.7, 14.8 Chalmeta 6. You are supervising the construction of a stretch of highway. Your supervisor tells you that at a certain point in a sharp turn, the road is following a circular arc with the radius 100 ft. (a) What is the curvature at this point (P ) on the road? (b) If a vehicle can be expected to hold the road safely when a N 5 ft/sec, then what is the maximum safe speed that should be posted on the warning sign? (Give your answer in ft./sec. If you dont get an answer in part (1), use κ = 36, which is not the correct answer.) 7. Let r(t) = t i + ln (sec t) j over the interval π t π. Find each of the following. (a) velocity v(t) and speed v(t). (b) acceleration a(t). (c) unit tangent vector T (t). (d) unit normal vector N(t). (e) curvature κ(t). Is there any value of t in this interval where the curve has no bend (κ(t) = 0)? If so, what is it? (f) tangential component of acceleration a T. (g) normal component of acceleration a N. 8. A projectile is launched horizontally off a cliff 100 feet high. What should the initial speed be in order to hit a target on the ground 500 feet away? 9. Find all local maxima, local minima, and saddle point(s) of f(x, y) = xy(1 x y) 10. Find all local maxima, local minima, and saddle point(s) of f(x, y) = x 3 xy + y Given f(x, y) = x 4x + y 4y + 1, make a list of all candidates for absolute max and min on the closed triangle bounded by the lines, x = 0, y =, and y = x in the first quadrant. Find the absolute maximum and minimum of f(x, y) on the region. 1. Given f(x, y) = x 4 + y 4 4xy +. (a) Make a list of all candidates for absolute maximums and minimums on the closed rectangular region defined by D = {(x, y) 0 x 3, 0 y }. (b) Find the absolute maximum and minimum values of f(x, y) in the region.

3 MTH 77 Test 4 review sheet Chapter , 14.7, 14.8 Chalmeta 13. Find the absolute maxima and/or minima of f(x, y) = x + y + 4x 4y on the disk x + y 9. Make a table showing all critical points on interior of the disk and it s boundary. The table should include the function value at each point. Be sure to state your final conclusion about the absolute maximum value and absolute minimum value of f(x, y). 14. Find the absolute minimum of f(x, y, z) = xy + 6yz + 8xz subject to the constraint xyz = 1, 000 3

4 MTH 77 Test 4 review sheet Chapter , 14.7, 14.8 Chalmeta 1. c. c 3. c 4. a Answers 5. r(t) = (e t + 1) i + ( cos t + 5) j + (t + 5) k 6. (a) κ = (b) 50 ft/sec 7. Find each of the following. (a) v(t) = i + tan t j, v(t) = sec t (b) a(t) = sec t j (c) T (t) = cos t i + sin t j (d) N(t) = sin t i + cos t j (e) κ(t) = cos t (f) a T = sec t tan t (g) a N = sec t 8. v 0 = 00 ft/sec 9. Saddle points at (0, 0), (0, 1), (1, 0); Maximum at ( 1, ) Saddle point at (0, 0); Minimum at (, ) Maximum: f(0, 0) = 1; Minimum f(1, ) = 5 1. Given f(x, y) = x 4 + y 4 4xy +. (a) (0, 0), (1, 1), (3,0), (3, 3 3), ( 3, ), (3, ), (0, ) (b) Max 83, Min 0 ( ) Maximum f, 3 = 9 + 1, Minimum f(, ) = f(30, 40, 10) = 700 4

5 MTH 77 Test 4 review sheet Chapter , 14.7, 14.8 Chalmeta Given a curve r(t) =< f(t), g(t), h(t) > Arc Length: L = s(t) = b a v(t) dt = t b a r (t) dt Arc Length from t = a to t = b. t 0 v(τ) dτ Arc Length from t 0 to t. Note: ds dt = r (t) = v = speed Important Unit Vectors: T (t) = v(t) v(t) = r (t) r (t) Unit Tangent Vector: Gives the direction in which the object is traveling. This is also the direction of the tangential component of acceleration. N(t) = T (t) T (t) Unit Normal Vector: Gives the direction in which the object is turning. This is also the direction of the normal component of acceleration. Curvature and Components of Acceleration: (Note: all are functions of time but the t s have been left off to be concise) d κ(t) = T /dt v a = ds/dt v 3 Curvature: The rate of change of direction per unit f (x) length along the curve. Expresses how sharply the object κ(x) = [1 + (f (x)) ] 3/ is turning. (For a circle of radius r, κ = 1.) r a = a T T + an N Acceleration: written as a sum of its components. a T = d v dt = d s dt Tangential Component of Acceleration: The acceleration in the direction of motion. (The rate of change of speed.) a N = κ v = κ ( ) ds Normal Component of Acceleration: The part of dt the acceleration that causes the object to turn. 5

Section Arclength and Curvature. (1) Arclength, (2) Parameterizing Curves by Arclength, (3) Curvature, (4) Osculating and Normal Planes.

Section Arclength and Curvature. (1) Arclength, (2) Parameterizing Curves by Arclength, (3) Curvature, (4) Osculating and Normal Planes. Section 10.3 Arclength and Curvature (1) Arclength, (2) Parameterizing Curves by Arclength, (3) Curvature, (4) Osculating and Normal Planes. MATH 127 (Section 10.3) Arclength and Curvature The University

More information

Math 223 Final. July 24, 2014

Math 223 Final. July 24, 2014 Math 223 Final July 24, 2014 Name Directions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Total 1. No books, notes, or evil looks. You may use a calculator to do routine arithmetic computations. You may not use your

More information

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is 1. The value of the double integral (a) 15 26 (b) 15 8 (c) 75 (d) 105 26 5 4 0 1 1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is 2. What is the value of the double integral interchange the order

More information

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions alculus III Math 33 pring 7 Final exam May 3rd. uggested solutions This exam contains twenty problems numbered 1 through. All problems are multiple choice problems, and each counts 5% of your total score.

More information

Motion in Space. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Motion in Space

Motion in Space. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Motion in Space Motion in Space MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Background Suppose the position vector of a moving object is given by r(t) = f (t), g(t), h(t), Background

More information

13.3 Arc Length and Curvature

13.3 Arc Length and Curvature 13 Vector Functions 13.3 Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. We have defined the length of a plane curve with parametric equations x = f(t),

More information

Review problems for the final exam Calculus III Fall 2003

Review problems for the final exam Calculus III Fall 2003 Review problems for the final exam alculus III Fall 2003 1. Perform the operations indicated with F (t) = 2t ı 5 j + t 2 k, G(t) = (1 t) ı + 1 t k, H(t) = sin(t) ı + e t j a) F (t) G(t) b) F (t) [ H(t)

More information

HOMEWORK 3 MA1132: ADVANCED CALCULUS, HILARY 2017

HOMEWORK 3 MA1132: ADVANCED CALCULUS, HILARY 2017 HOMEWORK MA112: ADVANCED CALCULUS, HILARY 2017 (1) A particle moves along a curve in R with position function given by r(t) = (e t, t 2 + 1, t). Find the velocity v(t), the acceleration a(t), the speed

More information

Tangent and Normal Vector - (11.5)

Tangent and Normal Vector - (11.5) Tangent and Normal Vector - (.5). Principal Unit Normal Vector Let C be the curve traced out bythe vector-valued function r!!t # f!t, g!t, h!t $. The vector T!!t r! % r! %!t!t is the unit tangent vector

More information

Calculus III: Practice Final

Calculus III: Practice Final Calculus III: Practice Final Name: Circle one: Section 6 Section 7. Read the problems carefully. Show your work unless asked otherwise. Partial credit will be given for incomplete work. The exam contains

More information

This exam contains 9 problems. CHECK THAT YOU HAVE A COMPLETE EXAM.

This exam contains 9 problems. CHECK THAT YOU HAVE A COMPLETE EXAM. Math 126 Final Examination Autumn 2011 Your Name Your Signature Student ID # Quiz Section Professor s Name TA s Name This exam contains 9 problems. CHECK THAT YOU HAVE A COMPLETE EXAM. This exam is closed

More information

(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere.

(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere. MATH 4 FINAL EXAM REVIEW QUESTIONS Problem. a) The points,, ) and,, 4) are the endpoints of a diameter of a sphere. i) Determine the center and radius of the sphere. ii) Find an equation for the sphere.

More information

Vectors, dot product, and cross product

Vectors, dot product, and cross product MTH 201 Multivariable calculus and differential equations Practice problems Vectors, dot product, and cross product 1. Find the component form and length of vector P Q with the following initial point

More information

Practice Problems for the Final Exam

Practice Problems for the Final Exam Math 114 Spring 2017 Practice Problems for the Final Exam 1. The planes 3x + 2y + z = 6 and x + y = 2 intersect in a line l. Find the distance from the origin to l. (Answer: 24 3 ) 2. Find the area of

More information

AB CALCULUS SEMESTER A REVIEW Show all work on separate paper. (b) lim. lim. (f) x a. for each of the following functions: (b) y = 3x 4 x + 2

AB CALCULUS SEMESTER A REVIEW Show all work on separate paper. (b) lim. lim. (f) x a. for each of the following functions: (b) y = 3x 4 x + 2 AB CALCULUS Page 1 of 6 NAME DATE 1. Evaluate each it: AB CALCULUS Show all work on separate paper. x 3 x 9 x 5x + 6 x 0 5x 3sin x x 7 x 3 x 3 5x (d) 5x 3 x +1 x x 4 (e) x x 9 3x 4 6x (f) h 0 sin( π 6

More information

Exercises for Multivariable Differential Calculus XM521

Exercises for Multivariable Differential Calculus XM521 This document lists all the exercises for XM521. The Type I (True/False) exercises will be given, and should be answered, online immediately following each lecture. The Type III exercises are to be done

More information

Tangent and Normal Vectors

Tangent and Normal Vectors Tangent and Normal Vectors MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Navigation When an observer is traveling along with a moving point, for example the passengers in

More information

EXAM 2 ANSWERS AND SOLUTIONS, MATH 233 WEDNESDAY, OCTOBER 18, 2000

EXAM 2 ANSWERS AND SOLUTIONS, MATH 233 WEDNESDAY, OCTOBER 18, 2000 EXAM 2 ANSWERS AND SOLUTIONS, MATH 233 WEDNESDAY, OCTOBER 18, 2000 This examination has 30 multiple choice questions. Problems are worth one point apiece, for a total of 30 points for the whole examination.

More information

AP Calculus AB Chapter 2 Test Review #1

AP Calculus AB Chapter 2 Test Review #1 AP Calculus AB Chapter Test Review # Open-Ended Practice Problems:. Nicole just loves drinking chocolate milk out of her special cone cup which has a radius of inches and a height of 8 inches. Nicole pours

More information

1 Vectors and 3-Dimensional Geometry

1 Vectors and 3-Dimensional Geometry Calculus III (part ): Vectors and 3-Dimensional Geometry (by Evan Dummit, 07, v..55) Contents Vectors and 3-Dimensional Geometry. Functions of Several Variables and 3-Space..................................

More information

MAT 272 Test 1 Review. 1. Let P = (1,1) and Q = (2,3). Find the unit vector u that has the same

MAT 272 Test 1 Review. 1. Let P = (1,1) and Q = (2,3). Find the unit vector u that has the same 11.1 Vectors in the Plane 1. Let P = (1,1) and Q = (2,3). Find the unit vector u that has the same direction as. QP a. u =< 1, 2 > b. u =< 1 5, 2 5 > c. u =< 1, 2 > d. u =< 1 5, 2 5 > 2. If u has magnitude

More information

Physics 2514 Lecture 22

Physics 2514 Lecture 22 Physics 2514 Lecture 22 P. Gutierrez Department of Physics & Astronomy University of Oklahoma Physics 2514 p. 1/15 Information Information needed for the exam Exam will be in the same format as the practice

More information

CALCULUS EXPLORATION OF THE SECOND FUNDAMENTAL THEOREM OF CALCULUS. Second Fundamental Theorem of Calculus (Chain Rule Version): f t dt

CALCULUS EXPLORATION OF THE SECOND FUNDAMENTAL THEOREM OF CALCULUS. Second Fundamental Theorem of Calculus (Chain Rule Version): f t dt CALCULUS EXPLORATION OF THE SECOND FUNDAMENTAL THEOREM OF CALCULUS d d d d t dt 6 cos t dt Second Fundamental Theorem of Calculus: d f tdt d a d d 4 t dt d d a f t dt d d 6 cos t dt Second Fundamental

More information

MA 351 Fall 2007 Exam #1 Review Solutions 1

MA 351 Fall 2007 Exam #1 Review Solutions 1 MA 35 Fall 27 Exam # Review Solutions THERE MAY BE TYPOS in these solutions. Please let me know if you find any.. Consider the two surfaces ρ 3 csc θ in spherical coordinates and r 3 in cylindrical coordinates.

More information

Math 11 Fall 2018 Practice Final Exam

Math 11 Fall 2018 Practice Final Exam Math 11 Fall 218 Practice Final Exam Disclaimer: This practice exam should give you an idea of the sort of questions we may ask on the actual exam. Since the practice exam (like the real exam) is not long

More information

Solutions to old Exam 3 problems

Solutions to old Exam 3 problems Solutions to old Exam 3 problems Hi students! I am putting this version of my review for the Final exam review here on the web site, place and time to be announced. Enjoy!! Best, Bill Meeks PS. There are

More information

APPLICATIONS OF DERIVATIVES UNIT PROBLEM SETS

APPLICATIONS OF DERIVATIVES UNIT PROBLEM SETS APPLICATIONS OF DERIVATIVES UNIT PROBLEM SETS PROBLEM SET #1 Related Rates ***Calculators Allowed*** 1. An oil tanker spills oil that spreads in a circular pattern whose radius increases at the rate of

More information

Displacement and Total Distance Traveled

Displacement and Total Distance Traveled Displacement and Total Distance Traveled We have gone over these concepts before. Displacement: This is the distance a particle has moved within a certain time - To find this you simply subtract its position

More information

APPM 2350 Section Exam points Wednesday September 26, 6:00pm 7:30pm, 2018

APPM 2350 Section Exam points Wednesday September 26, 6:00pm 7:30pm, 2018 APPM 2350 Section Exam 1 140 points Wednesday September 26, 6:00pm 7:30pm, 2018 ON THE FRONT OF YOUR BLUEBOOK write: (1) your name, (2) your student ID number, (3) lecture section/time (4) your instructor

More information

Without fully opening the exam, check that you have pages 1 through 12.

Without fully opening the exam, check that you have pages 1 through 12. MTH 34 Solutions to Exam April 9th, 8 Name: Section: Recitation Instructor: INSTRUTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through. Show

More information

Math 207 Honors Calculus III Final Exam Solutions

Math 207 Honors Calculus III Final Exam Solutions Math 207 Honors Calculus III Final Exam Solutions PART I. Problem 1. A particle moves in the 3-dimensional space so that its velocity v(t) and acceleration a(t) satisfy v(0) = 3j and v(t) a(t) = t 3 for

More information

CHAPTER 11 Vector-Valued Functions

CHAPTER 11 Vector-Valued Functions CHAPTER Vector-Valued Functions Section. Vector-Valued Functions...................... 9 Section. Differentiation and Integration of Vector-Valued Functions.... Section. Velocit and Acceleration.....................

More information

OHSx XM521 Multivariable Differential Calculus: Homework Solutions 14.1

OHSx XM521 Multivariable Differential Calculus: Homework Solutions 14.1 OHSx XM5 Multivariable Differential Calculus: Homework Solutions 4. (8) Describe the graph of the equation. r = i + tj + (t )k. Solution: Let y(t) = t, so that z(t) = t = y. In the yz-plane, this is just

More information

Projectile Motion. Chin- Sung Lin STEM GARAGE SCIENCE PHYSICS

Projectile Motion. Chin- Sung Lin STEM GARAGE SCIENCE PHYSICS Projectile Motion Chin- Sung Lin Introduction to Projectile Motion q What is Projectile Motion? q Trajectory of a Projectile q Calculation of Projectile Motion Introduction to Projectile Motion q What

More information

APPM 2350, Summer 2018: Exam 1 June 15, 2018

APPM 2350, Summer 2018: Exam 1 June 15, 2018 APPM 2350, Summer 2018: Exam 1 June 15, 2018 Instructions: Please show all of your work and make your methods and reasoning clear. Answers out of the blue with no supporting work will receive no credit

More information

Unit Speed Curves. Recall that a curve Α is said to be a unit speed curve if

Unit Speed Curves. Recall that a curve Α is said to be a unit speed curve if Unit Speed Curves Recall that a curve Α is said to be a unit speed curve if The reason that we like unit speed curves that the parameter t is equal to arc length; i.e. the value of t tells us how far along

More information

MATH 332: Vector Analysis Summer 2005 Homework

MATH 332: Vector Analysis Summer 2005 Homework MATH 332, (Vector Analysis), Summer 2005: Homework 1 Instructor: Ivan Avramidi MATH 332: Vector Analysis Summer 2005 Homework Set 1. (Scalar Product, Equation of a Plane, Vector Product) Sections: 1.9,

More information

Figure 10: Tangent vectors approximating a path.

Figure 10: Tangent vectors approximating a path. 3 Curvature 3.1 Curvature Now that we re parametrizing curves, it makes sense to wonder how we might measure the extent to which a curve actually curves. That is, how much does our path deviate from being

More information

Review Exercises for Chapter 2

Review Exercises for Chapter 2 Review Eercises for Chapter 367 Review Eercises for Chapter. f 1 1 f f f lim lim 1 1 1 1 lim 1 1 1 1 lim 1 1 lim lim 1 1 1 1 1 1 1 1 1 4. 8. f f f f lim lim lim lim lim f 4, 1 4, if < if (a) Nonremovable

More information

(b) Find the range of h(x, y) (5) Use the definition of continuity to explain whether or not the function f(x, y) is continuous at (0, 0)

(b) Find the range of h(x, y) (5) Use the definition of continuity to explain whether or not the function f(x, y) is continuous at (0, 0) eview Exam Math 43 Name Id ead each question carefully. Avoid simple mistakes. Put a box around the final answer to a question (use the back of the page if necessary). For full credit you must show your

More information

Section 14.8 Maxima & minima of functions of two variables. Learning outcomes. After completing this section, you will inshaallah be able to

Section 14.8 Maxima & minima of functions of two variables. Learning outcomes. After completing this section, you will inshaallah be able to Section 14.8 Maxima & minima of functions of two variables 14.8 1 Learning outcomes After completing this section, you will inshaallah be able to 1. explain what is meant by relative maxima or relative

More information

1 The Derivative and Differrentiability

1 The Derivative and Differrentiability 1 The Derivative and Differrentiability 1.1 Derivatives and rate of change Exercise 1 Find the equation of the tangent line to f (x) = x 2 at the point (1, 1). Exercise 2 Suppose that a ball is dropped

More information

2018 MIDTERM EXAM REVIEW

2018 MIDTERM EXAM REVIEW Name: Hour: 2018 MIDTERM EXAM REVIEW PRE-CALCULUS Please keep in mind that this exam is worth 20% of your overall grade for this SEMESTER and your semester grade is averaged into your overall GPA. Schedule

More information

Examiner: D. Burbulla. Aids permitted: Formula Sheet, and Casio FX-991 or Sharp EL-520 calculator.

Examiner: D. Burbulla. Aids permitted: Formula Sheet, and Casio FX-991 or Sharp EL-520 calculator. University of Toronto Faculty of Applied Science and Engineering Solutions to Final Examination, June 216 Duration: 2 and 1/2 hrs First Year - CHE, CIV, CPE, ELE, ENG, IND, LME, MEC, MMS MAT187H1F - Calculus

More information

MLC Practice Final Exam. Recitation Instructor: Page Points Score Total: 200.

MLC Practice Final Exam. Recitation Instructor: Page Points Score Total: 200. Name: PID: Section: Recitation Instructor: DO NOT WRITE BELOW THIS LINE. GO ON TO THE NEXT PAGE. Page Points Score 3 20 4 30 5 20 6 20 7 20 8 20 9 25 10 25 11 20 Total: 200 Page 1 of 11 Name: Section:

More information

Exam Review Sheets Combined

Exam Review Sheets Combined Exam Review Sheets Combined Fall 2008 1 Fall 2007 Exam 1 1. For each part, if the statement is always true, circle the printed capital T. If the statement is sometimes false, circle the printed capital

More information

3 = arccos. A a and b are parallel, B a and b are perpendicular, C a and b are normalized, or D this is always true.

3 = arccos. A a and b are parallel, B a and b are perpendicular, C a and b are normalized, or D this is always true. Math 210-101 Test #1 Sept. 16 th, 2016 Name: Answer Key Be sure to show your work! 1. (20 points) Vector Basics: Let v = 1, 2,, w = 1, 2, 2, and u = 2, 1, 1. (a) Find the area of a parallelogram spanned

More information

EF 151 Final Exam, Fall, 2011 Page 1 of 11

EF 151 Final Exam, Fall, 2011 Page 1 of 11 EF 5 Final Exam, Fall, 0 Page of Instructions Do not open or turn over the exam until instructed to do so. Name, and section will be written on the st page of the exam after time starts. Do not leave your

More information

This exam will be over material covered in class from Monday 14 February through Tuesday 8 March, corresponding to sections in the text.

This exam will be over material covered in class from Monday 14 February through Tuesday 8 March, corresponding to sections in the text. Math 275, section 002 (Ultman) Spring 2011 MIDTERM 2 REVIEW The second midterm will be held in class (1:40 2:30pm) on Friday 11 March. You will be allowed one half of one side of an 8.5 11 sheet of paper

More information

MTH Calculus with Analytic Geom I TEST 1

MTH Calculus with Analytic Geom I TEST 1 MTH 229-105 Calculus with Analytic Geom I TEST 1 Name Please write your solutions in a clear and precise manner. SHOW your work entirely. (1) Find the equation of a straight line perpendicular to the line

More information

Unit #17: Spring Trig Unit. A. First Quadrant Notice how the x-values decrease by while the y-values increase by that same amount.

Unit #17: Spring Trig Unit. A. First Quadrant Notice how the x-values decrease by while the y-values increase by that same amount. Name Unit #17: Spring Trig Unit Notes #1: Basic Trig Review I. Unit Circle A circle with center point and radius. A. First Quadrant Notice how the x-values decrease by while the y-values increase by that

More information

UNIT 3: DERIVATIVES STUDY GUIDE

UNIT 3: DERIVATIVES STUDY GUIDE Calculus I UNIT 3: Derivatives REVIEW Name: Date: UNIT 3: DERIVATIVES STUDY GUIDE Section 1: Section 2: Limit Definition (Derivative as the Slope of the Tangent Line) Calculating Rates of Change (Average

More information

Math 323 Exam 2 - Practice Problem Solutions. 2. Given the vectors a = 1,2,0, b = 1,0,2, and c = 0,1,1, compute the following:

Math 323 Exam 2 - Practice Problem Solutions. 2. Given the vectors a = 1,2,0, b = 1,0,2, and c = 0,1,1, compute the following: Math 323 Eam 2 - Practice Problem Solutions 1. Given the vectors a = 2,, 1, b = 3, 2,4, and c = 1, 4,, compute the following: (a) A unit vector in the direction of c. u = c c = 1, 4, 1 4 =,, 1+16+ 17 17

More information

Math 32A Discussion Session Week 5 Notes November 7 and 9, 2017

Math 32A Discussion Session Week 5 Notes November 7 and 9, 2017 Math 32A Discussion Session Week 5 Notes November 7 and 9, 2017 This week we want to talk about curvature and osculating circles. You might notice that these notes contain a lot of the same theory or proofs

More information

The Princeton Review AP Calculus BC Practice Test 2

The Princeton Review AP Calculus BC Practice Test 2 0 The Princeton Review AP Calculus BC Practice Test CALCULUS BC SECTION I, Part A Time 55 Minutes Number of questions 8 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION Directions: Solve each

More information

Sudoku Puzzle A.P. Exam (Part B) Questions are from the 1997 and 1998 A.P. Exams A Puzzle by David Pleacher

Sudoku Puzzle A.P. Exam (Part B) Questions are from the 1997 and 1998 A.P. Exams A Puzzle by David Pleacher Sudoku Puzzle A.P. Exam (Part B) Questions are from the 1997 and 1998 A.P. Exams A Puzzle by David Pleacher Solve the 4 multiple-choice problems below. A graphing calculator is required for some questions

More information

3.4 The Chain Rule. F (x) = f (g(x))g (x) Alternate way of thinking about it: If y = f(u) and u = g(x) where both are differentiable functions, then

3.4 The Chain Rule. F (x) = f (g(x))g (x) Alternate way of thinking about it: If y = f(u) and u = g(x) where both are differentiable functions, then 3.4 The Chain Rule To find the derivative of a function that is the composition of two functions for which we already know the derivatives, we can use the Chain Rule. The Chain Rule: Suppose F (x) = f(g(x)).

More information

1. If the line l has symmetric equations. = y 3 = z+2 find a vector equation for the line l that contains the point (2, 1, 3) and is parallel to l.

1. If the line l has symmetric equations. = y 3 = z+2 find a vector equation for the line l that contains the point (2, 1, 3) and is parallel to l. . If the line l has symmetric equations MA 6 PRACTICE PROBLEMS x = y = z+ 7, find a vector equation for the line l that contains the point (,, ) and is parallel to l. r = ( + t) i t j + ( + 7t) k B. r

More information

MATH107 Vectors and Matrices

MATH107 Vectors and Matrices School of Mathematics, KSU 20/11/16 Vector valued functions Let D be a set of real numbers D R. A vector-valued functions r with domain D is a correspondence that assigns to each number t in D exactly

More information

Math 241 Final Exam, Spring 2013

Math 241 Final Exam, Spring 2013 Math 241 Final Exam, Spring 2013 Name: Section number: Instructor: Read all of the following information before starting the exam. Question Points Score 1 5 2 5 3 12 4 10 5 17 6 15 7 6 8 12 9 12 10 14

More information

Circular motion. Announcements:

Circular motion. Announcements: Circular motion Announcements: Clicker scores through Wednesday are now posted on DL. Scoring is points for a wrong answer, 3 points for a right answer. 13 clicker questions so far, so max is 39 points.

More information

9.5 Parametric Equations

9.5 Parametric Equations Date: 9.5 Parametric Equations Syllabus Objective: 1.10 The student will solve problems using parametric equations. Parametric Curve: the set of all points xy,, where on an interval I (called the parameter

More information

AP Calculus AB 2017 Free-Response Solutions

AP Calculus AB 2017 Free-Response Solutions AP Calculus AB 217 Free-Response Solutions Louis A. Talman, Ph.D. Emeritus Professor of Mathematics Metropolitan State University of Denver May 18, 217 1 Problem 1 1.1 Part a The approximation with a left-hand

More information

SOLUTIONS 1 (27) 2 (18) 3 (18) 4 (15) 5 (22) TOTAL (100) PROBLEM NUMBER SCORE MIDTERM 2. Form A. Recitation Instructor : Recitation Time :

SOLUTIONS 1 (27) 2 (18) 3 (18) 4 (15) 5 (22) TOTAL (100) PROBLEM NUMBER SCORE MIDTERM 2. Form A. Recitation Instructor : Recitation Time : Math 5 March 8, 206 Form A Page of 8 Name : OSU Name.# : Lecturer:: Recitation Instructor : SOLUTIONS Recitation Time : SHOW ALL WORK in problems, 2, and 3. Incorrect answers with work shown may receive

More information

Motion in Space Parametric Equations of a Curve

Motion in Space Parametric Equations of a Curve Motion in Space Parametric Equations of a Curve A curve, C, inr 3 can be described by parametric equations of the form x x t y y t z z t. Any curve can be parameterized in many different ways. For example,

More information

Math 233 Calculus 3 - Fall 2016

Math 233 Calculus 3 - Fall 2016 Math 233 Calculus 3 - Fall 2016 2 12.1 - Three-Dimensional Coordinate Systems 12.1 - THREE-DIMENSIONAL COORDINATE SYSTEMS Definition. R 3 means By convention, we graph points in R 3 using a right-handed

More information

MULTIVARIABLE CALCULUS

MULTIVARIABLE CALCULUS MULTIVARIABLE CALCULUS Summer Assignment Welcome to Multivariable Calculus, Multivariable Calculus is a course commonly taken by second and third year college students. The general concept is to take the

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Two Dimensions; Vectors Vectors and Scalars Addition of Vectors Graphical Methods (One and Two- Dimension) Multiplication of a Vector by a Scalar Subtraction of Vectors Graphical

More information

Geometry and Motion Selected answers to Sections A and C Dwight Barkley 2016

Geometry and Motion Selected answers to Sections A and C Dwight Barkley 2016 MA34 Geometry and Motion Selected answers to Sections A and C Dwight Barkley 26 Example Sheet d n+ = d n cot θ n r θ n r = Θθ n i. 2. 3. 4. Possible answers include: and with opposite orientation: 5..

More information

MTH 254 STUDY GUIDE Summary of Topics

MTH 254 STUDY GUIDE Summary of Topics MTH 254 STUDY GUIDE Summary of Topics Lesson 1 (p. 3): Coordinate Systems, 10.2, 13.5 Lesson 2 (p. 9): Vectors in the Plane and in 3-Space, 11.1, 11.2 Lesson 3 (p. 16): Dot Products, 11.3 Lesson 4 (p.

More information

Tangent and Normal Vector - (11.5)

Tangent and Normal Vector - (11.5) Tangent and Normal Vector - (.5). Principal Unit Normal Vector Let C be the curve traced out by the vector-valued function rt vector T t r r t t is the unit tangent vector to the curve C. Now define N

More information

SOLUTIONS FOR PRACTICE FINAL EXAM

SOLUTIONS FOR PRACTICE FINAL EXAM SOLUTIONS FOR PRACTICE FINAL EXAM ANDREW J. BLUMBERG. Solutions () Short answer questions: (a) State the mean value theorem. Proof. The mean value theorem says that if f is continuous on (a, b) and differentiable

More information

Practice problems for Exam 1. a b = (2) 2 + (4) 2 + ( 3) 2 = 29

Practice problems for Exam 1. a b = (2) 2 + (4) 2 + ( 3) 2 = 29 Practice problems for Exam.. Given a = and b =. Find the area of the parallelogram with adjacent sides a and b. A = a b a ı j k b = = ı j + k = ı + 4 j 3 k Thus, A = 9. a b = () + (4) + ( 3)

More information

Name: Instructor: 1. a b c d e. 15. a b c d e. 2. a b c d e a b c d e. 16. a b c d e a b c d e. 4. a b c d e... 5.

Name: Instructor: 1. a b c d e. 15. a b c d e. 2. a b c d e a b c d e. 16. a b c d e a b c d e. 4. a b c d e... 5. Name: Instructor: Math 155, Practice Final Exam, December The Honor Code is in effect for this examination. All work is to be your own. No calculators. The exam lasts for 2 hours. Be sure that your name

More information

Things to Know and Be Able to Do Understand the meaning of equations given in parametric and polar forms, and develop a sketch of the appropriate

Things to Know and Be Able to Do Understand the meaning of equations given in parametric and polar forms, and develop a sketch of the appropriate AP Calculus BC Review Chapter (Parametric Equations and Polar Coordinates) Things to Know and Be Able to Do Understand the meaning of equations given in parametric and polar forms, and develop a sketch

More information

Final Review Worksheet

Final Review Worksheet Score: Name: Final Review Worksheet Math 2110Q Fall 2014 Professor Hohn Answers (in no particular order): f(x, y) = e y + xe xy + C; 2; 3; e y cos z, e z cos x, e x cos y, e x sin y e y sin z e z sin x;

More information

Name Date Period. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Name Date Period. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. AB Fall Final Exam Review 200-20 Name Date Period MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. ) The position of a particle

More information

Puxi High School Examinations Semester 1, AP Calculus (BC) Part 1. Wednesday, December 16 th, :45 pm 3:15 pm.

Puxi High School Examinations Semester 1, AP Calculus (BC) Part 1. Wednesday, December 16 th, :45 pm 3:15 pm. Puxi High School Examinations Semester 1, 2009 2010 AP Calculus (BC) Part 1 Wednesday, December 16 th, 2009 12:45 pm 3:15 pm Time: 45 minutes Teacher: Mr. Surowski Testing Site: HS Gymnasium Student Name:

More information

MLC Practice Final Exam

MLC Practice Final Exam Name: Section: Recitation/Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through. Show all your work on the standard response

More information

Review Test 2. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. D) ds dt = 4t3 sec 2 t -

Review Test 2. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. D) ds dt = 4t3 sec 2 t - Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the derivative. ) = 7 + 0 sec ) A) = - 7 + 0 tan B) = - 7-0 csc C) = 7-0 sec tan

More information

a b c d e GOOD LUCK! 3. a b c d e 12. a b c d e 4. a b c d e 13. a b c d e 5. a b c d e 14. a b c d e 6. a b c d e 15. a b c d e

a b c d e GOOD LUCK! 3. a b c d e 12. a b c d e 4. a b c d e 13. a b c d e 5. a b c d e 14. a b c d e 6. a b c d e 15. a b c d e MA23 Elem. Calculus Spring 206 Final Exam 206-05-05 Name: Sec.: Do not remove this answer page you will turn in the entire exam. No books or notes may be used. You may use an ACT-approved calculator during

More information

SOME PROBLEMS YOU SHOULD BE ABLE TO DO

SOME PROBLEMS YOU SHOULD BE ABLE TO DO OME PROBLEM YOU HOULD BE ABLE TO DO I ve attempted to make a list of the main calculations you should be ready for on the exam, and included a handful of the more important formulas. There are no examples

More information

1 Exam 1 Spring 2007.

1 Exam 1 Spring 2007. Exam Spring 2007.. An object is moving along a line. At each time t, its velocity v(t is given by v(t = t 2 2 t 3. Find the total distance traveled by the object from time t = to time t = 5. 2. Use the

More information

MATH Final Review

MATH Final Review MATH 1592 - Final Review 1 Chapter 7 1.1 Main Topics 1. Integration techniques: Fitting integrands to basic rules on page 485. Integration by parts, Theorem 7.1 on page 488. Guidelines for trigonometric

More information

Calculus Vector Principia Mathematica. Lynne Ryan Associate Professor Mathematics Blue Ridge Community College

Calculus Vector Principia Mathematica. Lynne Ryan Associate Professor Mathematics Blue Ridge Community College Calculus Vector Principia Mathematica Lynne Ryan Associate Professor Mathematics Blue Ridge Community College Defining a vector Vectors in the plane A scalar is a quantity that can be represented by a

More information

Solutions to Test #1 MATH 2421

Solutions to Test #1 MATH 2421 Solutions to Test # MATH Pulhalskii/Kawai (#) Decide whether the following properties are TRUE or FALSE for arbitrary vectors a; b; and c: Circle your answer. [Remember, TRUE means that the statement is

More information

Multiple Choice. Circle the best answer. No work needed. No partial credit available. is continuous.

Multiple Choice. Circle the best answer. No work needed. No partial credit available. is continuous. Multiple Choice. Circle the best answer. No work needed. No partial credit available. + +. Evaluate lim + (a (b (c (d 0 (e None of the above.. Evaluate lim (a (b (c (d 0 (e + + None of the above.. Find

More information

Find all points where the function is discontinuous. 1) Find all vertical asymptotes of the given function. x(x - 1) 2) f(x) =

Find all points where the function is discontinuous. 1) Find all vertical asymptotes of the given function. x(x - 1) 2) f(x) = Math 90 Final Review Find all points where the function is discontinuous. ) Find all vertical asymptotes of the given function. x(x - ) 2) f(x) = x3 + 4x Provide an appropriate response. 3) If x 3 f(x)

More information

MAC Find the x-value that maximizes the area of the shaded rectangle inscribed in a right triangle below.

MAC Find the x-value that maximizes the area of the shaded rectangle inscribed in a right triangle below. MAC 23. Find the x-value that maximizes the area of the shaded rectangle inscribed in a right triangle below. (x, y) y = 3 x + 4 a. x = 6 b. x = 4 c. x = 2 d. x = 5 e. x = 3 2. Consider the area of the

More information

Solution: It could be discontinuous, or have a vertical tangent like y = x 1/3, or have a corner like y = x.

Solution: It could be discontinuous, or have a vertical tangent like y = x 1/3, or have a corner like y = x. 1. Name three different reasons that a function can fail to be differentiable at a point. Give an example for each reason, and explain why your examples are valid. It could be discontinuous, or have a

More information

No calculators, cell phones or any other electronic devices can be used on this exam. Clear your desk of everything excepts pens, pencils and erasers.

No calculators, cell phones or any other electronic devices can be used on this exam. Clear your desk of everything excepts pens, pencils and erasers. Name: Section: Recitation Instructor: READ THE FOLLOWING INSTRUCTIONS. Do not open your exam until told to do so. No calculators, cell phones or any other electronic devices can be used on this exam. Clear

More information

MTH 234 Exam 1 February 20th, Without fully opening the exam, check that you have pages 1 through 11.

MTH 234 Exam 1 February 20th, Without fully opening the exam, check that you have pages 1 through 11. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through 11. Show all your work on the standard

More information

INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION

INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION (Sections 12.1-12.2) Today s Objectives: Students will be able to find the kinematic quantities (position, displacement, velocity, and acceleration)

More information

Practice Final Exam Solutions

Practice Final Exam Solutions Important Notice: To prepare for the final exam, study past exams and practice exams, and homeworks, quizzes, and worksheets, not just this practice final. A topic not being on the practice final does

More information

Math Exam 02 Review

Math Exam 02 Review Math 10350 Exam 02 Review 1. A differentiable function g(t) is such that g(2) = 2, g (2) = 1, g (2) = 1/2. (a) If p(t) = g(t)e t2 find p (2) and p (2). (Ans: p (2) = 7e 4 ; p (2) = 28.5e 4 ) (b) If f(t)

More information

5. Find the intercepts of the following equations. Also determine whether the equations are symmetric with respect to the y-axis or the origin.

5. Find the intercepts of the following equations. Also determine whether the equations are symmetric with respect to the y-axis or the origin. MATHEMATICS 1571 Final Examination Review Problems 1. For the function f defined by f(x) = 2x 2 5x find the following: a) f(a + b) b) f(2x) 2f(x) 2. Find the domain of g if a) g(x) = x 2 3x 4 b) g(x) =

More information

MULTIVARIABLE CALCULUS MATH SUMMER 2013 (COHEN) LECTURE NOTES

MULTIVARIABLE CALCULUS MATH SUMMER 2013 (COHEN) LECTURE NOTES MULTIVARIABLE CALCULUS MATH 2730.001 SUMMER 2013 (COHEN) LECTURE NOTES These lecture notes are intended as an outline for both student and instructor; for much more detailed exposition on the topics contained

More information

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative.

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. MAC2313 Final A (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. ii. The vector field F = 5(x 2 + y 2 ) 3/2 x, y is radial. iii. All constant

More information

Maximum and Minimum Values section 4.1

Maximum and Minimum Values section 4.1 Maximum and Minimum Values section 4.1 Definition. Consider a function f on its domain D. (i) We say that f has absolute maximum at a point x 0 D if for all x D we have f(x) f(x 0 ). (ii) We say that f

More information

Curvilinear Motion: Normal and Tangential Components

Curvilinear Motion: Normal and Tangential Components Curvilinear Motion: Normal and Tangential Components Coordinate System Provided the path of the particle is known, we can establish a set of n and t coordinates having a fixed origin, which is coincident

More information