Motion in Space. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Motion in Space

Size: px
Start display at page:

Download "Motion in Space. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Motion in Space"

Transcription

1 Motion in Space MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011

2 Background Suppose the position vector of a moving object is given by r(t) = f (t), g(t), h(t),

3 Background Suppose the position vector of a moving object is given by r(t) = f (t), g(t), h(t), then the tangent vector to the motion is r (t) = f (t), g (t), h (t),

4 Background Suppose the position vector of a moving object is given by r(t) = f (t), g(t), h(t), then the tangent vector to the motion is r (t) = f (t), g (t), h (t), and the magnitude of the tangent vector is r (t) = [f (t)] 2 + [g (t)] 2 + [h (t)] 2.

5 Background (continued) Recall the arc length of a parametric curve in three dimensions is t t s(t) = [f (u)] 2 + [g (u)] 2 + [h (u)] 2 du = r (u) du. t 0 t 0

6 Background (continued) Recall the arc length of a parametric curve in three dimensions is t t s(t) = [f (u)] 2 + [g (u)] 2 + [h (u)] 2 du = r (u) du. t 0 t 0 The FTC, Part II implies s (t) = r (t) so r (t) is the speed of the moving object.

7 Background (continued) Recall the arc length of a parametric curve in three dimensions is t t s(t) = [f (u)] 2 + [g (u)] 2 + [h (u)] 2 du = r (u) du. t 0 t 0 The FTC, Part II implies s (t) = r (t) so r (t) is the speed of the moving object. Consequently, r (t) is the velocity vector and r (t) is the acceleration vector.

8 Example (1 of 2) Find the velocity and acceleration vectors of an object whose position vector is 2 r(t) = 3 t3 + t + 1, t 3 t, e t.

9 Example (1 of 2) Find the velocity and acceleration vectors of an object whose position vector is 2 r(t) = 3 t3 + t + 1, t 3 t, e t. v(t) = r (t) = 2t 2 + 1, 3t 2 1, e t a(t) = r (t) = 4t, 6t, e t

10 Example (2 of 2) The acceleration vector of a moving object is t a(t) =, sin t, 0, 6 while its initial velocity is v(0) = 2, 0, 3 and its initial position is r(0) = 0, 0, 1. Find the velocity and position vectors as a function of t for this object.

11 Example (2 of 2) The acceleration vector of a moving object is t a(t) =, sin t, 0, 6 while its initial velocity is v(0) = 2, 0, 3 and its initial position is r(0) = 0, 0, 1. Find the velocity and position vectors as a function of t for this object. t s v(t) v(0) = 0 6, sin s, 0 ds t 2 v(t) = 2, 0, 3 + =, 1 cos t, t2, 1 cos t, 3 12

12 Finding the Position Vector r(t) r(0) = t s2 r(t) = 0, 0, 1 + =, 1 cos s, 3 12 ds 2t + t3, t sin t, 3t 36 2t + t3, t sin t, 1 + 3t 36

13 Newton s Second Law One of the most fundamental physical laws is Newton s second law of motion which states that the force vector acting on an object is the product of the object s mass (a scalar) and the object s acceleration vector. This is stated concisely as F = ma.

14 Example Find the force acting on an object moving along an elliptical path x 2 a 2 + y 2 b 2 = 1.

15 Example Find the force acting on an object moving along an elliptical path x 2 a 2 + y 2 b 2 = 1. Let the position vector of the object be then r(t) = a cos ωt, b sin ωt

16 Example Find the force acting on an object moving along an elliptical path x 2 a 2 + y 2 b 2 = 1. Let the position vector of the object be then r(t) = a cos ωt, b sin ωt F(t) = ma(t) = mr (t) = mω 2 a cos t, b sin t = mω 2 r(t).

17 Centripetal Motion r(t) = a cos ωt, b sin ωt x

18 Equations of Motion Suppose an object is launched at an angle θ with respect to the horizontal from a height h. The object is given an initial speed of s 0. Find the position vector describing the path the object takes.

19 Equations of Motion Suppose an object is launched at an angle θ with respect to the horizontal from a height h. The object is given an initial speed of s 0. Find the position vector describing the path the object takes. Treating this as motion in the xy-plane, we have an acceleration vector a(t) = 0, g and initial condition vectors v 0 = s 0 cos θ, sin θ and r 0 = 0, h.

20 Equations of Motion Suppose an object is launched at an angle θ with respect to the horizontal from a height h. The object is given an initial speed of s 0. Find the position vector describing the path the object takes. Treating this as motion in the xy-plane, we have an acceleration vector a(t) = 0, g and initial condition vectors v 0 = s 0 cos θ, sin θ and r 0 = 0, h. Thus the velocity and position vectors are v(t) = s 0 cos θ, s 0 sin θ gt r(t) = (s 0 cos θ)t, h + (s 0 sin θ)t 12 gt2.

21 Rotational Motion We can adapt Newton s second law for spinning objects. τ torque (scalar, τ = τ ) I moment of inertia, measure of the force required to start an object rotating θ angle of displacement ω angular velocity α angular acceleration α(t) = ω (t) = θ (t)

22 Rotational Motion We can adapt Newton s second law for spinning objects. τ torque (scalar, τ = τ ) I moment of inertia, measure of the force required to start an object rotating θ angle of displacement ω angular velocity α angular acceleration α(t) = ω (t) = θ (t) τ = Iα

23 Example A merry-go-round of radius 6 feet and moment of inertia I = 12 rotates at 5 radians per second. Find the constant force applied tangent to the edge of the merry-go-round needed to stop the merry-go-round in 3 seconds.

24 Example A merry-go-round of radius 6 feet and moment of inertia I = 12 rotates at 5 radians per second. Find the constant force applied tangent to the edge of the merry-go-round needed to stop the merry-go-round in 3 seconds. implies α = 5/3. 5 = ω(3) ω(0) = 3 0 α dt = 3α τ = (12)(5/3) = 20 = r F = r F = (6) F which implies F = 10/3 pounds.

25 Momentum Suppose an object has mass m and velocity v. The object s linear momentum is p(t) = mv(t).

26 Momentum Suppose an object has mass m and velocity v. The object s linear momentum is p(t) = mv(t). The object s angular momentum is L(t) = r(t) mv(t). Example Show that torque is the derivative of angular momentum.

27 Momentum Suppose an object has mass m and velocity v. The object s linear momentum is p(t) = mv(t). The object s angular momentum is L(t) = r(t) mv(t). Example Show that torque is the derivative of angular momentum. L (t) = r (t) mv(t) + r(t) mv (t) = v(t) mv(t) + r(t) ma(t) = 0 + r(t) F(t) = τ (t)

28 Projectile Motion in Three Dimensions A projectile of mass 10 kg is launched to the east from a height of 1 m at a speed of 10 m/s. The launch angle is 45. The projectile spins as it flies and thus is subject to a Magnus force of magnitude 2 N in the southerly direction. Find the position of the projectile, its landing location, and its speed at impact.

29 Example (1 of 3) Assumptions: East is the positive x-direction and south is the negative y-direction. The only forces acting on the projectile are gravity and the Magnus force. The projectile is launched one meter above the origin on the positive z-axis.

30 Example (1 of 3) Assumptions: East is the positive x-direction and south is the negative y-direction. The only forces acting on the projectile are gravity and the Magnus force. The projectile is launched one meter above the origin on the positive z-axis. ma = F = 10 0, 0, , 2, 0 a = 0, 1 5, 9.8

31 Example (2 of 3) r (t) = 0, 1 5, 9.8 r (t) = 0, t, 9.8t + v(0) 5 where v(0) = 10 cos 45, 0, sin 45 = 5 2, 0, 5 2.

32 Example (2 of 3) r (t) = 0, 1 5, 9.8 r (t) = 0, t, 9.8t + v(0) 5 where v(0) = 10 cos 45, 0, sin 45 = 5 2, 0, 5 2. r (t) = 5 2, t 5, t r(t) = 5 2t, t2 10, 5 2t 4.9t 2 + r(0) where r(0) = 0, 0, 1.

33 Example (2 of 3) r (t) = 0, 1 5, 9.8 r (t) = 0, t, 9.8t + v(0) 5 where v(0) = 10 cos 45, 0, sin 45 = 5 2, 0, 5 2. r (t) = 5 2, t 5, t r(t) = 5 2t, t2 10, 5 2t 4.9t 2 + r(0) where r(0) = 0, 0, 1. r(t) = 5 2t, t2 10, t 4.9t 2

34 Example (3 of 3) Since r(t) = 5 2t, t2 10, t 4.9t 2 the projectile lands when which implies t 4.9t 2 = 0 = t , r( ) , , 0 r ( )

35 Homework Read Section Exercises: 1 55 odd.

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics Circular Motion, Pt 2: Angular Dynamics Mr. Velazquez AP/Honors Physics Formulas: Angular Kinematics (θ must be in radians): s = rθ Arc Length 360 = 2π rads = 1 rev ω = θ t = v t r Angular Velocity α av

More information

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction)

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction) Kinematics (special case) a = constant 1D motion 2D projectile Uniform circular Dynamics gravity, tension, elastic, normal, friction Motion with a = constant Newton s Laws F = m a F 12 = F 21 Time & Position

More information

Tangent and Normal Vectors

Tangent and Normal Vectors Tangent and Normal Vectors MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Navigation When an observer is traveling along with a moving point, for example the passengers in

More information

The Cross Product. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan The Cross Product

The Cross Product. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan The Cross Product The Cross Product MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Introduction Recall: the dot product of two vectors is a scalar. There is another binary operation on vectors

More information

Plane Curves and Parametric Equations

Plane Curves and Parametric Equations Plane Curves and Parametric Equations MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction We typically think of a graph as a curve in the xy-plane generated by the

More information

Chapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx

Chapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx Chapter 1 Lecture Notes Chapter 1 Oscillatory Motion Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx When the mass is released, the spring will pull

More information

z F 3 = = = m 1 F 1 m 2 F 2 m 3 - Linear Momentum dp dt F net = d P net = d p 1 dt d p n dt - Conservation of Linear Momentum Δ P = 0

z F 3 = = = m 1 F 1 m 2 F 2 m 3 - Linear Momentum dp dt F net = d P net = d p 1 dt d p n dt - Conservation of Linear Momentum Δ P = 0 F 1 m 2 F 2 x m 1 O z F 3 m 3 y Ma com = F net F F F net, x net, y net, z = = = Ma Ma Ma com, x com, y com, z p = mv - Linear Momentum F net = dp dt F net = d P dt = d p 1 dt +...+ d p n dt Δ P = 0 - Conservation

More information

Chapter 10: Rotation

Chapter 10: Rotation Chapter 10: Rotation Review of translational motion (motion along a straight line) Position x Displacement x Velocity v = dx/dt Acceleration a = dv/dt Mass m Newton s second law F = ma Work W = Fdcosφ

More information

Rotational Motion and Torque

Rotational Motion and Torque Rotational Motion and Torque Introduction to Angular Quantities Sections 8- to 8-2 Introduction Rotational motion deals with spinning objects, or objects rotating around some point. Rotational motion is

More information

Vector Geometry Final Exam Review

Vector Geometry Final Exam Review Vector Geometry Final Exam Review Problem 1. Find the center and the radius for the sphere x + 4x 3 + y + z 4y 3 that the center and the radius of a sphere z 7 = 0. Note: Recall x + ax + y + by + z = d

More information

Uniform Circular Motion

Uniform Circular Motion Uniform Circular Motion Motion in a circle at constant angular speed. ω: angular velocity (rad/s) Rotation Angle The rotation angle is the ratio of arc length to radius of curvature. For a given angle,

More information

The Calculus of Vec- tors

The Calculus of Vec- tors Physics 2460 Electricity and Magnetism I, Fall 2007, Lecture 3 1 The Calculus of Vec- Summary: tors 1. Calculus of Vectors: Limits and Derivatives 2. Parametric representation of Curves r(t) = [x(t), y(t),

More information

Physics 4A Solutions to Chapter 10 Homework

Physics 4A Solutions to Chapter 10 Homework Physics 4A Solutions to Chapter 0 Homework Chapter 0 Questions: 4, 6, 8 Exercises & Problems 6, 3, 6, 4, 45, 5, 5, 7, 8 Answers to Questions: Q 0-4 (a) positive (b) zero (c) negative (d) negative Q 0-6

More information

Physics 2514 Lecture 22

Physics 2514 Lecture 22 Physics 2514 Lecture 22 P. Gutierrez Department of Physics & Astronomy University of Oklahoma Physics 2514 p. 1/15 Information Information needed for the exam Exam will be in the same format as the practice

More information

Chapter 10: Rotation. Chapter 10: Rotation

Chapter 10: Rotation. Chapter 10: Rotation Chapter 10: Rotation Change in Syllabus: Only Chapter 10 problems (CH10: 04, 27, 67) are due on Thursday, Oct. 14. The Chapter 11 problems (Ch11: 06, 37, 50) will be due on Thursday, Oct. 21 in addition

More information

Slide 1 / 37. Rotational Motion

Slide 1 / 37. Rotational Motion Slide 1 / 37 Rotational Motion Slide 2 / 37 Angular Quantities An angle θ can be given by: where r is the radius and l is the arc length. This gives θ in radians. There are 360 in a circle or 2π radians.

More information

Distance travelled time taken and if the particle is a distance s(t) along the x-axis, then its instantaneous speed is:

Distance travelled time taken and if the particle is a distance s(t) along the x-axis, then its instantaneous speed is: Chapter 1 Kinematics 1.1 Basic ideas r(t) is the position of a particle; r = r is the distance to the origin. If r = x i + y j + z k = (x, y, z), then r = r = x 2 + y 2 + z 2. v(t) is the velocity; v =

More information

MTH 277 Test 4 review sheet Chapter , 14.7, 14.8 Chalmeta

MTH 277 Test 4 review sheet Chapter , 14.7, 14.8 Chalmeta MTH 77 Test 4 review sheet Chapter 13.1-13.4, 14.7, 14.8 Chalmeta Multiple Choice 1. Let r(t) = 3 sin t i + 3 cos t j + αt k. What value of α gives an arc length of 5 from t = 0 to t = 1? (a) 6 (b) 5 (c)

More information

Rigid body simulation. Once we consider an object with spatial extent, particle system simulation is no longer sufficient

Rigid body simulation. Once we consider an object with spatial extent, particle system simulation is no longer sufficient Rigid body dynamics Rigid body simulation Once we consider an object with spatial extent, particle system simulation is no longer sufficient Rigid body simulation Unconstrained system no contact Constrained

More information

AP Pd 3 Rotational Dynamics.notebook. May 08, 2014

AP Pd 3 Rotational Dynamics.notebook. May 08, 2014 1 Rotational Dynamics Why do objects spin? Objects can travel in different ways: Translation all points on the body travel in parallel paths Rotation all points on the body move around a fixed point An

More information

Chapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc.

Chapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc. Chapter 10 Rotational Kinematics and Energy 10-1 Angular Position, Velocity, and Acceleration 10-1 Angular Position, Velocity, and Acceleration Degrees and revolutions: 10-1 Angular Position, Velocity,

More information

LECTURE 1- ROTATION. Phys 124H- Honors Analytical Physics IB Chapter 10 Professor Noronha-Hostler

LECTURE 1- ROTATION. Phys 124H- Honors Analytical Physics IB Chapter 10 Professor Noronha-Hostler LECTURE 1- ROTATION Phys 124H- Honors Analytical Physics IB Chapter 10 Professor Noronha-Hostler CLASS MATERIALS Your Attention (but attendance is OPTIONAL) i-clicker OPTIONAL- EXTRA CREDIT ONLY Homework

More information

Conservation of Angular Momentum

Conservation of Angular Momentum Physics 101 Section 3 March 3 rd : Ch. 10 Announcements: Monday s Review Posted (in Plummer s section (4) Today start Ch. 10. Next Quiz will be next week Test# (Ch. 7-9) will be at 6 PM, March 3, Lockett-6

More information

Chapter 14: Vector Calculus

Chapter 14: Vector Calculus Chapter 14: Vector Calculus Introduction to Vector Functions Section 14.1 Limits, Continuity, Vector Derivatives a. Limit of a Vector Function b. Limit Rules c. Component By Component Limits d. Continuity

More information

HOMEWORK 3 MA1132: ADVANCED CALCULUS, HILARY 2017

HOMEWORK 3 MA1132: ADVANCED CALCULUS, HILARY 2017 HOMEWORK MA112: ADVANCED CALCULUS, HILARY 2017 (1) A particle moves along a curve in R with position function given by r(t) = (e t, t 2 + 1, t). Find the velocity v(t), the acceleration a(t), the speed

More information

Physics 2A Chapter 10 - Rotational Motion Fall 2018

Physics 2A Chapter 10 - Rotational Motion Fall 2018 Physics A Chapter 10 - Rotational Motion Fall 018 These notes are five pages. A quick summary: The concepts of rotational motion are a direct mirror image of the same concepts in linear motion. Follow

More information

Chapter 6: Vector Analysis

Chapter 6: Vector Analysis Chapter 6: Vector Analysis We use derivatives and various products of vectors in all areas of physics. For example, Newton s 2nd law is F = m d2 r. In electricity dt 2 and magnetism, we need surface and

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Essential physics for game developers Introduction The primary issues Let s move virtual objects Kinematics: description

More information

Two-Dimensional Rotational Kinematics

Two-Dimensional Rotational Kinematics Two-Dimensional Rotational Kinematics Rigid Bodies A rigid body is an extended object in which the distance between any two points in the object is constant in time. Springs or human bodies are non-rigid

More information

= o + t = ot + ½ t 2 = o + 2

= o + t = ot + ½ t 2 = o + 2 Chapters 8-9 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the

More information

Chapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum:

Chapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum: linear momentum: Chapter 8: Momentum, Impulse, & Collisions Newton s second law in terms of momentum: impulse: Under what SPECIFIC condition is linear momentum conserved? (The answer does not involve collisions.)

More information

CIRCULAR MOTION AND ROTATION

CIRCULAR MOTION AND ROTATION 1. UNIFORM CIRCULAR MOTION So far we have learned a great deal about linear motion. This section addresses rotational motion. The simplest kind of rotational motion is an object moving in a perfect circle

More information

Final Exam. June 10, 2008, 1:00pm

Final Exam. June 10, 2008, 1:00pm PHYSICS 101: Fundamentals of Physics Final Exam Final Exam Name TA/ Section # June 10, 2008, 1:00pm Recitation Time You have 2 hour to complete the exam. Please answer all questions clearly and completely,

More information

1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches

1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches AP Physics B Practice Questions: Rotational Motion Multiple-Choice Questions 1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches

More information

Motion Part 4: Projectile Motion

Motion Part 4: Projectile Motion Motion Part 4: Projectile Motion Last modified: 28/03/2017 CONTENTS Projectile Motion Uniform Motion Equations Projectile Motion Equations Trajectory How to Approach Problems Example 1 Example 2 Example

More information

III. Work and Energy

III. Work and Energy Rotation I. Kinematics - Angular analogs II. III. IV. Dynamics - Torque and Rotational Inertia Work and Energy Angular Momentum - Bodies and particles V. Elliptical Orbits The student will be able to:

More information

Final Exam Spring 2014 May 05, 2014

Final Exam Spring 2014 May 05, 2014 95.141 Final Exam Spring 2014 May 05, 2014 Section number Section instructor Last/First name Last 3 Digits of Student ID Number: Answer all questions, beginning each new question in the space provided.

More information

Mathematical Models. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Spring Department of Mathematics

Mathematical Models. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Spring Department of Mathematics Mathematical Models MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Spring 2018 Ordinary Differential Equations The topic of ordinary differential equations (ODEs)

More information

Mathematical Models. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics

Mathematical Models. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics Mathematical Models MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Ordinary Differential Equations The topic of ordinary differential equations (ODEs) is

More information

Chapter Units and Measurement

Chapter Units and Measurement 2 Chapter Units and Measurement 1. Identify the pair whose dimensions are equal [2002] torque and work stress and energy force and stress force and work 2. [2003] [L -1 T] ] [L -2 T 2 ] [L 2 T -2 ] [LT

More information

Rotation Basics. I. Angular Position A. Background

Rotation Basics. I. Angular Position A. Background Rotation Basics I. Angular Position A. Background Consider a student who is riding on a merry-go-round. We can represent the student s location by using either Cartesian coordinates or by using cylindrical

More information

We define angular displacement, θ, and angular velocity, ω. What's a radian?

We define angular displacement, θ, and angular velocity, ω. What's a radian? We define angular displacement, θ, and angular velocity, ω Units: θ = rad ω = rad/s What's a radian? Radian is the ratio between the length of an arc and its radius note: counterclockwise is + clockwise

More information

Symmetries 2 - Rotations in Space

Symmetries 2 - Rotations in Space Symmetries 2 - Rotations in Space This symmetry is about the isotropy of space, i.e. space is the same in all orientations. Thus, if we continuously rotated an entire system in space, we expect the system

More information

Chapters 10 & 11: Rotational Dynamics Thursday March 8 th

Chapters 10 & 11: Rotational Dynamics Thursday March 8 th Chapters 10 & 11: Rotational Dynamics Thursday March 8 th Review of rotational kinematics equations Review and more on rotational inertia Rolling motion as rotation and translation Rotational kinetic energy

More information

Physics 218: Final. Class of 2:20pm. May 7th, You have the full class period to complete the exam.

Physics 218: Final. Class of 2:20pm. May 7th, You have the full class period to complete the exam. Physics 218: Final Class of 2:20pm May 7th, 2012. ules of the exam: 1. You have the full class period to complete the exam. 2. Formulae will be displayed in the big screen. You may NOT use any other formula

More information

Chapter 8- Rotational Kinematics Angular Variables Kinematic Equations

Chapter 8- Rotational Kinematics Angular Variables Kinematic Equations Chapter 8- Rotational Kinematics Angular Variables Kinematic Equations Chapter 9- Rotational Dynamics Torque Center of Gravity Newton s 2 nd Law- Angular Rotational Work & Energy Angular Momentum Angular

More information

Rotational & Rigid-Body Mechanics. Lectures 3+4

Rotational & Rigid-Body Mechanics. Lectures 3+4 Rotational & Rigid-Body Mechanics Lectures 3+4 Rotational Motion So far: point objects moving through a trajectory. Next: moving actual dimensional objects and rotating them. 2 Circular Motion - Definitions

More information

Fundamental Theorem of Calculus

Fundamental Theorem of Calculus Fundamental Theorem of Calculus MATH 6 Calculus I J. Robert Buchanan Department of Mathematics Summer 208 Remarks The Fundamental Theorem of Calculus (FTC) will make the evaluation of definite integrals

More information

Physics of Rotation. Physics 109, Introduction To Physics Fall 2017

Physics of Rotation. Physics 109, Introduction To Physics Fall 2017 Physics of Rotation Physics 109, Introduction To Physics Fall 017 Outline Next two lab periods Rolling without slipping Angular Momentum Comparison with Translation New Rotational Terms Rotational and

More information

Chapter 14 Periodic Motion

Chapter 14 Periodic Motion Chapter 14 Periodic Motion 1 Describing Oscillation First, we want to describe the kinematical and dynamical quantities associated with Simple Harmonic Motion (SHM), for example, x, v x, a x, and F x.

More information

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion Torque and angular momentum In Figure, in order to turn a rod about a fixed hinge at one end, a force F is applied at a

More information

-- Angular momentum. -- Equilibrium. Final Exam. During class (1-3:55 pm) on 6/27, Mon Room: 412 FMH (classroom)

-- Angular momentum. -- Equilibrium. Final Exam. During class (1-3:55 pm) on 6/27, Mon Room: 412 FMH (classroom) inal Exam During class (1-3:55 pm) on 6/27, Mon Room: 412 MH (classroom) Bring scientific calculators No smart phone calculators l are allowed. Exam covers everything learned in this course. tomorrow s

More information

AP Physics. Harmonic Motion. Multiple Choice. Test E

AP Physics. Harmonic Motion. Multiple Choice. Test E AP Physics Harmonic Motion Multiple Choice Test E A 0.10-Kg block is attached to a spring, initially unstretched, of force constant k = 40 N m as shown below. The block is released from rest at t = 0 sec.

More information

Exam II Difficult Problems

Exam II Difficult Problems Exam II Difficult Problems Exam II Difficult Problems 90 80 70 60 50 40 30 20 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Two boxes are connected to each other as shown. The system is released

More information

Chapter 8 Lecture Notes

Chapter 8 Lecture Notes Chapter 8 Lecture Notes Physics 2414 - Strauss Formulas: v = l / t = r θ / t = rω a T = v / t = r ω / t =rα a C = v 2 /r = ω 2 r ω = ω 0 + αt θ = ω 0 t +(1/2)αt 2 θ = (1/2)(ω 0 +ω)t ω 2 = ω 0 2 +2αθ τ

More information

DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS OPTION B-1A: ROTATIONAL DYNAMICS Essential Idea: The basic laws of mechanics have an extension when equivalent principles are applied to rotation. Actual

More information

Exam 3 Practice Solutions

Exam 3 Practice Solutions Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at

More information

Lecture Outline Chapter 10. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 10. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 10 Physics, 4 th Edition James S. Walker Chapter 10 Rotational Kinematics and Energy Units of Chapter 10 Angular Position, Velocity, and Acceleration Rotational Kinematics Connections

More information

Quiz Number 4 PHYSICS April 17, 2009

Quiz Number 4 PHYSICS April 17, 2009 Instructions Write your name, student ID and name of your TA instructor clearly on all sheets and fill your name and student ID on the bubble sheet. Solve all multiple choice questions. No penalty is given

More information

Rotational Motion Rotational Kinematics

Rotational Motion Rotational Kinematics Rotational Motion Rotational Kinematics Lana Sheridan De Anza College Nov 16, 2017 Last time 3D center of mass example systems of many particles deforming systems Overview rotation relating rotational

More information

Torque/Rotational Energy Mock Exam. Instructions: (105 points) Answer the following questions. SHOW ALL OF YOUR WORK.

Torque/Rotational Energy Mock Exam. Instructions: (105 points) Answer the following questions. SHOW ALL OF YOUR WORK. AP Physics C Spring, 2017 Torque/Rotational Energy Mock Exam Name: Answer Key Mr. Leonard Instructions: (105 points) Answer the following questions. SHOW ALL OF YOUR WORK. (22 pts ) 1. Two masses are attached

More information

Chapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc.

Chapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc. Chapter 10 Rotational Kinematics and Energy Copyright 010 Pearson Education, Inc. 10-1 Angular Position, Velocity, and Acceleration Copyright 010 Pearson Education, Inc. 10-1 Angular Position, Velocity,

More information

Rotational Motion. Every quantity that we have studied with translational motion has a rotational counterpart

Rotational Motion. Every quantity that we have studied with translational motion has a rotational counterpart Rotational Motion & Angular Momentum Rotational Motion Every quantity that we have studied with translational motion has a rotational counterpart TRANSLATIONAL ROTATIONAL Displacement x Angular Displacement

More information

Circular motion, Center of Gravity, and Rotational Mechanics

Circular motion, Center of Gravity, and Rotational Mechanics Circular motion, Center of Gravity, and Rotational Mechanics Rotation and Revolution Every object moving in a circle turns around an axis. If the axis is internal to the object (inside) then it is called

More information

AAPT UNITED STATES PHYSICS TEAM AIP 2016

AAPT UNITED STATES PHYSICS TEAM AIP 2016 216 F = ma Exam 1 AAPT UNITED STATES PHYSICS TEAM AIP 216 216 F = ma Contest 25 QUESTIONS - 75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD TO BEGIN Use g = 1 N/kg throughout this contest.

More information

Regular Physics Semester 1

Regular Physics Semester 1 Regular Physics Semester 1 1.1.Can define major components of the scientific method 1.2.Can accurately carry out conversions using dimensional analysis 1.3.Can utilize and convert metric prefixes 1.4.Can

More information

Translational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work

Translational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work Translational vs Rotational / / 1/ Δ m x v dx dt a dv dt F ma p mv KE mv Work Fd / / 1/ θ ω θ α ω τ α ω ω τθ Δ I d dt d dt I L I KE I Work / θ ω α τ Δ Δ c t s r v r a v r a r Fr L pr Connection Translational

More information

Uniform circular motion (UCM) is the motion of an object in a perfect circle with a constant or uniform speed.

Uniform circular motion (UCM) is the motion of an object in a perfect circle with a constant or uniform speed. Uniform circular motion (UCM) is the motion of an object in a perfect circle with a constant or uniform speed. 1. Distance around a circle? circumference 2. Distance from one side of circle to the opposite

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 130) Lecture 0 Rotational dynamics equilibrium nd Newton s Law for rotational motion rolling Exam II review http://www.physics.wayne.edu/~apetrov/phy130/ Lightning Review Last lecture:

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS LSN 8-5: ROTATIONAL DYNAMICS; TORQUE AND ROTATIONAL INERTIA LSN 8-6: SOLVING PROBLEMS IN ROTATIONAL DYNAMICS Questions From Reading Activity? Big Idea(s):

More information

General Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10

General Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10 Units of Chapter 10 Determining Moments of Inertia Rotational Kinetic Energy Rotational Plus Translational Motion; Rolling Why Does a Rolling Sphere Slow Down? General Definition of Torque, final Taking

More information

Rotation. Rotational Variables

Rotation. Rotational Variables Rotation Rigid Bodies Rotation variables Constant angular acceleration Rotational KE Rotational Inertia Rotational Variables Rotation of a rigid body About a fixed rotation axis. Rigid Body an object that

More information

Circular motion. Aug. 22, 2017

Circular motion. Aug. 22, 2017 Circular motion Aug. 22, 2017 Until now, we have been observers to Newtonian physics through inertial reference frames. From our discussion of Newton s laws, these are frames which obey Newton s first

More information

Arc Length and Surface Area in Parametric Equations

Arc Length and Surface Area in Parametric Equations Arc Length and Surface Area in Parametric Equations MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2011 Background We have developed definite integral formulas for arc length

More information

Rotation. Kinematics Rigid Bodies Kinetic Energy. Torque Rolling. featuring moments of Inertia

Rotation. Kinematics Rigid Bodies Kinetic Energy. Torque Rolling. featuring moments of Inertia Rotation Kinematics Rigid Bodies Kinetic Energy featuring moments of Inertia Torque Rolling Angular Motion We think about rotation in the same basic way we do about linear motion How far does it go? How

More information

Calculus and Parametric Equations

Calculus and Parametric Equations Calculus and Parametric Equations MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Given a pair a parametric equations x = f (t) y = g(t) for a t b we know how

More information

Afternoon Section. Physics 1210 Exam 2 November 8, ! v = d! r dt. a avg. = v2. ) T 2! w = m g! f s. = v at v 2 1.

Afternoon Section. Physics 1210 Exam 2 November 8, ! v = d! r dt. a avg. = v2. ) T 2! w = m g! f s. = v at v 2 1. Name Physics 1210 Exam 2 November 8, 2012 Afternoon Section Please write directly on the exam and attach other sheets of work if necessary. Calculators are allowed. No notes or books may be used. Multiple-choice

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science

UNIVERSITY OF TORONTO Faculty of Arts and Science UNIVERSITY OF TORONTO Faculty of Arts and Science DECEMBER 2013 EXAMINATIONS PHY 151H1F Duration - 3 hours Attempt all questions. Each question is worth 10 points. Points for each part-question are shown

More information

PHYS 21: Assignment 4 Solutions

PHYS 21: Assignment 4 Solutions PHYS 1: Assignment 4 Solutions Due on Feb 4 013 Prof. Oh Katharine Hyatt 1 Katharine Hyatt PHYS 1 (Prof. Oh ): Assignment 4 Solutions H + R 1.43 We see immediately that there is friction in this problem,

More information

EF 151 Final Exam, Fall, 2011 Page 1 of 11

EF 151 Final Exam, Fall, 2011 Page 1 of 11 EF 5 Final Exam, Fall, 0 Page of Instructions Do not open or turn over the exam until instructed to do so. Name, and section will be written on the st page of the exam after time starts. Do not leave your

More information

ω avg [between t 1 and t 2 ] = ω(t 1) + ω(t 2 ) 2

ω avg [between t 1 and t 2 ] = ω(t 1) + ω(t 2 ) 2 PHY 302 K. Solutions for problem set #9. Textbook problem 7.10: For linear motion at constant acceleration a, average velocity during some time interval from t 1 to t 2 is the average of the velocities

More information

0J2 - Mechanics Lecture Notes 4

0J2 - Mechanics Lecture Notes 4 0J2 - Mechanics Lecture Notes 4 Dynamics II Forces and motion in 2D and 3D This is the generalisation of Dynamics I to 2D and 3D. We shall use vectors and vector algebra including the scalar (dot) product.

More information

Work - kinetic energy theorem for rotational motion *

Work - kinetic energy theorem for rotational motion * OpenStax-CNX module: m14307 1 Work - kinetic energy theorem for rotational motion * Sunil Kumar Singh This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Two Dimensions; Vectors Vectors and Scalars Addition of Vectors Graphical Methods (One and Two- Dimension) Multiplication of a Vector by a Scalar Subtraction of Vectors Graphical

More information

31 ROTATIONAL KINEMATICS

31 ROTATIONAL KINEMATICS 31 ROTATIONAL KINEMATICS 1. Compare and contrast circular motion and rotation? Address the following Which involves an object and which involves a system? Does an object/system in circular motion have

More information

PHY2020 Test 2 November 5, Name:

PHY2020 Test 2 November 5, Name: 1 PHY2020 Test 2 November 5, 2014 Name: sin(30) = 1/2 cos(30) = 3/2 tan(30) = 3/3 sin(60) = 3/2 cos(60) = 1/2 tan(60) = 3 sin(45) = cos(45) = 2/2 tan(45) = 1 sin(37) = cos(53) = 0.6 cos(37) = sin(53) =

More information

Rotational Kinematics and Dynamics. UCVTS AIT Physics

Rotational Kinematics and Dynamics. UCVTS AIT Physics Rotational Kinematics and Dynamics UCVTS AIT Physics Angular Position Axis of rotation is the center of the disc Choose a fixed reference line Point P is at a fixed distance r from the origin Angular Position,

More information

PH1104/PH114S - MECHANICS

PH1104/PH114S - MECHANICS PH04/PH4S - MECHANICS FAISAN DAY FALL 06 MULTIPLE CHOICE ANSWES. (E) the first four options are clearly wrong since v x needs to change its sign at a moment during the motion and there s no way v x could

More information

= W Q H. ɛ = T H T C T H = = 0.20 = T C = T H (1 0.20) = = 320 K = 47 C

= W Q H. ɛ = T H T C T H = = 0.20 = T C = T H (1 0.20) = = 320 K = 47 C 1. Four identical 0.18 kg masses are placed at the corners of a 4.0 x 3.0 m rectangle, and are held there by very light connecting rods which form the sides of the rectangle. What is the moment of inertia

More information

Things to Know and Be Able to Do Understand the meaning of equations given in parametric and polar forms, and develop a sketch of the appropriate

Things to Know and Be Able to Do Understand the meaning of equations given in parametric and polar forms, and develop a sketch of the appropriate AP Calculus BC Review Chapter (Parametric Equations and Polar Coordinates) Things to Know and Be Able to Do Understand the meaning of equations given in parametric and polar forms, and develop a sketch

More information

Rotational Dynamics Smart Pulley

Rotational Dynamics Smart Pulley Rotational Dynamics Smart Pulley The motion of the flywheel of a steam engine, an airplane propeller, and any rotating wheel are examples of a very important type of motion called rotational motion. If

More information

PH 221-3A Fall 2009 ROTATION. Lectures Chapter 10 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 221-3A Fall 2009 ROTATION. Lectures Chapter 10 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 1-3A Fall 009 ROTATION Lectures 16-17 Chapter 10 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 10 Rotation In this chapter we will study the rotational motion of rigid bodies

More information

AP Physics QUIZ Chapters 10

AP Physics QUIZ Chapters 10 Name: 1. Torque is the rotational analogue of (A) Kinetic Energy (B) Linear Momentum (C) Acceleration (D) Force (E) Mass A 5-kilogram sphere is connected to a 10-kilogram sphere by a rigid rod of negligible

More information

INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION

INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION (Sections 12.1-12.2) Today s Objectives: Students will be able to find the kinematic quantities (position, displacement, velocity, and acceleration)

More information

CHAPTER 12 OSCILLATORY MOTION

CHAPTER 12 OSCILLATORY MOTION CHAPTER 1 OSCILLATORY MOTION Before starting the discussion of the chapter s concepts it is worth to define some terms we will use frequently in this chapter: 1. The period of the motion, T, is the time

More information

Ron Ferril SBCC Physics 101 Chapter Jun07A Page 1 of 22. Chapter 03 Rotation, Gravity, Projectiles and Spacecraft

Ron Ferril SBCC Physics 101 Chapter Jun07A Page 1 of 22. Chapter 03 Rotation, Gravity, Projectiles and Spacecraft Ron Ferril SBCC Physics 101 Chapter 03 2017Jun07A Page 1 of 22 Chapter 03 Rotation, Gravity, Projectiles and Spacecraft Angular Quantities Previous chapters involved the linear quantities mass, displacement,

More information

Chapter 8. Rotational Equilibrium and Rotational Dynamics

Chapter 8. Rotational Equilibrium and Rotational Dynamics Chapter 8 Rotational Equilibrium and Rotational Dynamics Wrench Demo Torque Torque, τ, is the tendency of a force to rotate an object about some axis τ = Fd F is the force d is the lever arm (or moment

More information

For a rigid body that is constrained to rotate about a fixed axis, the gravitational torque about the axis is

For a rigid body that is constrained to rotate about a fixed axis, the gravitational torque about the axis is Experiment 14 The Physical Pendulum The period of oscillation of a physical pendulum is found to a high degree of accuracy by two methods: theory and experiment. The values are then compared. Theory For

More information

Physics 5A Final Review Solutions

Physics 5A Final Review Solutions Physics A Final Review Solutions Eric Reichwein Department of Physics University of California, Santa Cruz November 6, 0. A stone is dropped into the water from a tower 44.m above the ground. Another stone

More information

Chap10. Rotation of a Rigid Object about a Fixed Axis

Chap10. Rotation of a Rigid Object about a Fixed Axis Chap10. Rotation of a Rigid Object about a Fixed Axis Level : AP Physics Teacher : Kim 10.1 Angular Displacement, Velocity, and Acceleration - A rigid object rotating about a fixed axis through O perpendicular

More information