Nonlinear Programming Models

Size: px
Start display at page:

Download "Nonlinear Programming Models"

Transcription

1 Nonlinear Programming Models Fabio Schoen Nonlinear Programming Models p.

2 Introduction Nonlinear Programming Models p.

3 NLP problems minf(x) x S R n Standard form: min f(x) h i (x) = 0 i = 1,m g j (x) 0 j = 1,k Here S = {x R n : h i (x) = 0 i,g j (x) 0 j} Nonlinear Programming Models p.

4 Local and global optima A global minimum or global optimum is any x S such that x S f(x) f(x ) A point x is a local optimum if ε > 0 such that x S B( x,ε) f(x) f( x) where B( x,ε) = {x R n : x x ε} is a ball in R n. Any global optimum is also a local optimum, but the opposite is generally false. Nonlinear Programming Models p.

5 Convex Functions A set S R n is convex if x,y S λx + (1 λ)y S for all choices of λ [0, 1]. Let Ω R n : non empty convex set. A function f : Ω R is convex iff for all x,y Ω,λ [0, 1] f(λx + (1 λ)y) λf(x) + (1 λ)f(y) Nonlinear Programming Models p.

6 Convex Functions x y Nonlinear Programming Models p.

7 Properties of convex functions Every convex function is continuous in the interior of Ω. It might be discontinuous, but only on the frontier. If f is continuously differentiable then it is convex iff for all y Ω f(y) f(x) + (y x) T f(x) Nonlinear Programming Models p.

8 Convex functions x y Nonlinear Programming Models p.

9 If f is twice continuously differentiable f it is convex iff its Hessian matrix is positive semi-definite: [ ] 2 2 f f(x) := x i x j then 2 f(x) 0 iff v T 2 f(x)v 0 v R n or, equivalently, all eigenvalues of 2 f(x) are non negative. Nonlinear Programming Models p.

10 Example: an affine function is convex (and concave) For a quadratic function (Q: symmetric matrix): we have f(x) = 1 2 xt Qx + b T x + c f(x) = Qx + b 2 f(x) = Q f is convex iff Q 0 Nonlinear Programming Models p. 1

11 Convex Optimization Problems minf(x) x S is a convex optimization problem iff S is a convex set and f is convex on S. For a problem in standard form min f(x) h i (x) = 0 i = 1,m g j (x) 0 j = 1,k if f is convex, h i (x) are affine functions, g j (x) are convex functions, then the problem is convex. Nonlinear Programming Models p. 1

12 Maximization Slight abuse in notation: a problem maxf(x) x S is called convex iff S is a convex set and f is a concave function (not to be confused with minimization of a concave function, (or maximization of a convex function) which are NOT a convex optimization problem) Nonlinear Programming Models p. 1

13 Convex and non convex optimization Convex optimization is easy, non convex optimization is usually very hard. Fundamental property of convex optimization problems: every local optimum is also a global optimum (will give a proof later) Minimizing a positive semidefinite quadratic function on a polyhedron is easy (polynomially solvable); if even a single eigenvalue of the hessian is negative the problem becomes NP hard Nonlinear Programming Models p. 1

14 Convex functions: examples Many (of course not all... ) functions are convex! affine functions a T x + b quadratic functions 1 2 xt Qx + b T x + c with Q = Q T, Q 0 any norm is a convex function x log x (however log x is concave) f is convex if and only if x 0,d R n, its restriction to any line: φ(α) = f(x 0 + αd), is a convex function a linear non negative combination of convex functions is convex g(x,y) convex in x for all y g(x,y)dy convex Nonlinear Programming Models p. 1

15 more examples... max i {a T i x + b} is convex f,g: convex max{f(x),g(x)} is convex f a convex functions for any a A (a possibly uncountable set) sup a A f a (x) is convex f convex f(ax + b) let S R n be any set f(x) = sup s S x s is convex Trace(A T X) = i,j A ijx ij is convex (it is linear!) log det X 1 is convex over the set of matrices X R n n : X 0 λ max (X) (the largest eigenvalue of a matrix X) Nonlinear Programming Models p. 1

16 Data Approximation Nonlinear Programming Models p. 1

17 Table of contents norm approximation maximum likelihood robust estimation Nonlinear Programming Models p. 1

18 Norm approximation Problem: min x Ax b where A, b: parameters. Usually the system is over-determined, i.e. b Range(A). For example, this happens when A R m n with m > n and A has full rank. r := Ax b: residual. Nonlinear Programming Models p. 1

19 Examples r = r T r: least squares (or regression ) r = r T Pr with P 0: weighted least squares r = max i r i : minimax, or l or di Tchebichev approximation r = i r i : absolute or l 1 approximation Possible (convex) additional constraints: maximum deviation from an initial estimate: x x est ǫ simple bounds l i x i u i ordering: x 1 x 2 x n Nonlinear Programming Models p. 1

20 Example: l 1 norm Matrix A R norm 1 residuals Nonlinear Programming Models p. 2

21 l norm norm residuals Nonlinear Programming Models p. 2

22 l 2 norm norm 2 residuals Nonlinear Programming Models p. 2

23 Variants min i h(y i a T i x) where h: convex function: { z 2 z 1 h linear quadratic h(z) = 2 z 1 z > 1 { 0 z 1 dead zone : h(z) = z 1 z > 1 { log(1 z 2 ) z < 1 logarithmic barrier: h(z) = z 1 Nonlinear Programming Models p. 2

24 comparison norm 1(x) norm 2(x) linquad(x) deadzone(x) logbarrier(x) Nonlinear Programming Models p. 2

25 Maximum likelihood Given a sample X 1,X 2,...,X k and a parametric family of probability density functions L( ; θ), the maximum likelihood estimate of θ given the sample is ˆθ = arg max θ L(X 1,...,X k ;θ) Example: linear measures with and additive i.i.d. (independent identically dsitributed) noise: X i = a T i θ + ε i (1) where ε i iid random variables with density p( ): L(X 1...,X k ;θ) = k i=1 p(x i a T i θ) Nonlinear Programming Models p. 2

26 Max likelihood estimate - MLE (taking the logarithm, which does not change optimum points): ˆθ = arg max θ log(p(x i a T i θ)) If p is log concave this problem is convex. Examples: i ε N(0,σ), i.e. p(z) = (2πσ) 1/2 exp( z 2 /2σ 2 ) MLE is the l 2 estimate: θ = arg min Aθ X 2 ; p(z) = (1/(2a)) exp( z /a) l 1 estimate: ˆθ = arg min θ Aθ X 1 Nonlinear Programming Models p. 2

27 p(z) = (1/a) exp( z/a)1 {z 0} (negative exponential) the estimate can be found solving the LP problem: min 1 T (X Aθ) Aθ X p uniform on [ a,a] the MLE is any θ such that Aθ X a Nonlinear Programming Models p. 2

28 Ellipsoids An ellipsoid is a subset of R n of the form E = {x R n : (x x 0 ) T P 1 (x x 0 ) 1} where x 0 R n is the center of the ellipsoid and P is a symmetric positive-definite matrix. Alternative representations: where A 0, or E = {x R n : Ax b 2 1} E = {x R n : x = x 0 + Au u 2 1} where A is square and non singular (affine transformation of the unit ball) Nonlinear Programming Models p. 2

29 Robust Least Squares Least Squares: ˆx = arg min i (at i x b i) 2 Hp: a i not known, but it is known that a i E i = {ā i + P i u : u 1} where P i = P T i 0. Definition: worst case residuals: max a i E i (a T i x b i) 2 i A robust estimate of x is the solution of ˆx r = arg minmax (a T i x b x i) 2 a i E i i Nonlinear Programming Models p. 2

30 RLS It holds: α + β T y α + β y then, choosing y = β/ β if α 0 and y = β/ β, otherwise if α < 0, then y = 1 and then: α + β T y = α + β T β/ β sign(α) = α + β max (a T i x b i ) a i E i = max ā T i x b i + u T P i x u 1 = ā T i x b i + P i x Nonlinear Programming Models p. 3

31 ... Thus the Robust Least Squares problem reduces to min ( ) 1/2 ( ā T i x b i + P i x ) 2 i (a convex optimization problem). Transformation: min x,t t 2 ā T i x b i + P i x t i i i.e. Nonlinear Programming Models p. 3

32 ... min x,t t 2 ā T i x b i + P i x t i ā T i x + b i + P i x t i (Second Order Cone Problem). A norm cone is a convex set C = {(x,t) R n+1 : x t} Nonlinear Programming Models p. 3

33 Geometrical Problems Nonlinear Programming Models p. 3

34 Geometrical Problems projections and distances polyhedral intersection extremal volume ellipsoids classification problems Nonlinear Programming Models p. 3

35 Projection on a set Given a set C the projection of x on C is defined as: P C (x) = arg min z C z x Nonlinear Programming Models p. 3

36 Projection on a convex set If C = {x : Ax = b,f i (x) 0,i = 1,m} where f i : convex C is a convex set and the problem P C (x) = arg min x z Az = b f i (z) 0 i = 1,m is convex. Nonlinear Programming Models p. 3

37 Distance between convex sets dist(c (1),C (2) ) = min x y x C (1),y C (2) Nonlinear Programming Models p. 3

38 Distance between convex sets If C (j) = {x : A (j) x = b (j),f (j) i 0} then the minimum distance can be found through a convex model: min x (1) x (2) A (1) x (1) = b (1) A (2) x (2) = b (2) f (1) i x (1) 0 f (2) i x (2) 0 Nonlinear Programming Models p. 3

39 Polyhedral intersection 1: polyhedra described by means of linear inequalities: P 1 = {x : Ax b}, P 2 = {x : Cx d} Nonlinear Programming Models p. 3

40 Polyhedral intersection P 1 P2 =? It is a linear feasibility problem: Ax b,cx d P 1 P 2? Just check sup{c T k x : Ax b} d k k (solution of a finite number of LP s) Nonlinear Programming Models p. 4

41 Polyhedral intersection (2) 2: polyhedra (polytopes) described through vertices: P 1 = conv{v 1,...,v k }, P 2 = conv{w 1,...,w h } P 1 P2 =? Need to find λ 1,λ k,µ 1,µ h 0: λ i = 1 µ j = 1 i λ i v i i j = µ j w j j P 1 P 2? i = 1,...,k check whether µ j 0: µ j = 1 j µj w j = v i Nonlinear Programming Models p. 4

42 Minimal ellipsoid containing k points Given v 1,...,v k R n find an ellipsoid E = {x : Ax b 1} with minimal volume containing the k given points. Nonlinear Programming Models p. 4

43 A = A T 0. Volume of E is proportional to deta 1 convex optimization problem (in the unknowns: A, b): min log deta 1 A = A T A 0 Av i b 1 i = 1,k Nonlinear Programming Models p. 4

44 Max. ellipsoid contained in a polyhedron Given P = {x : Ax b} find an ellipsoid: E = {By + d : y 1} contained in P with maximum volume. Nonlinear Programming Models p. 4

45 Max. ellipsoid contained in a polyhedron E P a T i (By + d) b i y : y 1 sup {a T i By + a T i d} b i i y 1 Ba i + a T i d b i max B,d log detb B = B T 0 Ba i + a T i d b i i = 1,... Nonlinear Programming Models p. 4

46 Difficult variants These problems are hard: find a maximal volume ellipsoid contained in a polyhedron given by its vertices Nonlinear Programming Models p. 4

47 find a minimal volume ellipsoid containing a polyhedron described as a system of linear inequalities. Nonlinear Programming Models p. 4

48 It is already a difficult problem to show whether a given ellipsoid E contains a polyhedron P = {Ax b}. This problem is still difficult even when the ellipsoid is a sphere: this problem is equivalent to norm maximization in a polyhedron it is an NP hard concave optimization problem. Nonlinear Programming Models p. 4

49 Linear classification (separation) Nonlinear Programming Models p. 4

50 Given two point sets X 1,...,X k,y 1,...,Y h find an hyperplane a T x = t such that: (LP feasibility problem). a T X i 1 i = 1,k a T Y j 1 j = 1,h Nonlinear Programming Models p. 5

51 Robust separation Nonlinear Programming Models p. 5

52 Robust separation Find a maximal separation: max a: a 1 equivalent to the convex problem: ( ) min a T X i maxa T Y j i j maxt 1 t 2 a T X i t 1 i a T Y j t 2 j a 1 Nonlinear Programming Models p. 5

Nonlinear Programming Models p. 1

Nonlinear Programming Models p. 1 Nonlinear Programming Models Fabio Schoen Introduction 2008 http://gol.dsi.unifi.it/users/schoen Nonlinear Programming Models p. Nonlinear Programming Models p. 2 NLP problems Local and global optima min

More information

9. Geometric problems

9. Geometric problems 9. Geometric problems EE/AA 578, Univ of Washington, Fall 2016 projection on a set extremal volume ellipsoids centering classification 9 1 Projection on convex set projection of point x on set C defined

More information

8. Geometric problems

8. Geometric problems 8. Geometric problems Convex Optimization Boyd & Vandenberghe extremal volume ellipsoids centering classification placement and facility location 8 1 Minimum volume ellipsoid around a set Löwner-John ellipsoid

More information

8. Geometric problems

8. Geometric problems 8. Geometric problems Convex Optimization Boyd & Vandenberghe extremal volume ellipsoids centering classification placement and facility location 8 Minimum volume ellipsoid around a set Löwner-John ellipsoid

More information

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 17

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 17 EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 17 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory May 29, 2012 Andre Tkacenko

More information

Geometric problems. Chapter Projection on a set. The distance of a point x 0 R n to a closed set C R n, in the norm, is defined as

Geometric problems. Chapter Projection on a set. The distance of a point x 0 R n to a closed set C R n, in the norm, is defined as Chapter 8 Geometric problems 8.1 Projection on a set The distance of a point x 0 R n to a closed set C R n, in the norm, is defined as dist(x 0,C) = inf{ x 0 x x C}. The infimum here is always achieved.

More information

Convex Optimization: Applications

Convex Optimization: Applications Convex Optimization: Applications Lecturer: Pradeep Ravikumar Co-instructor: Aarti Singh Convex Optimization 1-75/36-75 Based on material from Boyd, Vandenberghe Norm Approximation minimize Ax b (A R m

More information

MATHEMATICAL ECONOMICS: OPTIMIZATION. Contents

MATHEMATICAL ECONOMICS: OPTIMIZATION. Contents MATHEMATICAL ECONOMICS: OPTIMIZATION JOÃO LOPES DIAS Contents 1. Introduction 2 1.1. Preliminaries 2 1.2. Optimal points and values 2 1.3. The optimization problems 3 1.4. Existence of optimal points 4

More information

Convex Optimization and Modeling

Convex Optimization and Modeling Convex Optimization and Modeling Convex Optimization Fourth lecture, 05.05.2010 Jun.-Prof. Matthias Hein Reminder from last time Convex functions: first-order condition: f(y) f(x) + f x,y x, second-order

More information

Lecture 2: Convex functions

Lecture 2: Convex functions Lecture 2: Convex functions f : R n R is convex if dom f is convex and for all x, y dom f, θ [0, 1] f is concave if f is convex f(θx + (1 θ)y) θf(x) + (1 θ)f(y) x x convex concave neither x examples (on

More information

Lecture: Convex Optimization Problems

Lecture: Convex Optimization Problems 1/36 Lecture: Convex Optimization Problems http://bicmr.pku.edu.cn/~wenzw/opt-2015-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Introduction 2/36 optimization

More information

Linear and non-linear programming

Linear and non-linear programming Linear and non-linear programming Benjamin Recht March 11, 2005 The Gameplan Constrained Optimization Convexity Duality Applications/Taxonomy 1 Constrained Optimization minimize f(x) subject to g j (x)

More information

Introduction to Nonlinear Stochastic Programming

Introduction to Nonlinear Stochastic Programming School of Mathematics T H E U N I V E R S I T Y O H F R G E D I N B U Introduction to Nonlinear Stochastic Programming Jacek Gondzio Email: J.Gondzio@ed.ac.uk URL: http://www.maths.ed.ac.uk/~gondzio SPS

More information

LMI Methods in Optimal and Robust Control

LMI Methods in Optimal and Robust Control LMI Methods in Optimal and Robust Control Matthew M. Peet Arizona State University Lecture 02: Optimization (Convex and Otherwise) What is Optimization? An Optimization Problem has 3 parts. x F f(x) :

More information

UNDERGROUND LECTURE NOTES 1: Optimality Conditions for Constrained Optimization Problems

UNDERGROUND LECTURE NOTES 1: Optimality Conditions for Constrained Optimization Problems UNDERGROUND LECTURE NOTES 1: Optimality Conditions for Constrained Optimization Problems Robert M. Freund February 2016 c 2016 Massachusetts Institute of Technology. All rights reserved. 1 1 Introduction

More information

LMI MODELLING 4. CONVEX LMI MODELLING. Didier HENRION. LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ. Universidad de Valladolid, SP March 2009

LMI MODELLING 4. CONVEX LMI MODELLING. Didier HENRION. LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ. Universidad de Valladolid, SP March 2009 LMI MODELLING 4. CONVEX LMI MODELLING Didier HENRION LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ Universidad de Valladolid, SP March 2009 Minors A minor of a matrix F is the determinant of a submatrix

More information

A Brief Review on Convex Optimization

A Brief Review on Convex Optimization A Brief Review on Convex Optimization 1 Convex set S R n is convex if x,y S, λ,µ 0, λ+µ = 1 λx+µy S geometrically: x,y S line segment through x,y S examples (one convex, two nonconvex sets): A Brief Review

More information

Semidefinite Programming Basics and Applications

Semidefinite Programming Basics and Applications Semidefinite Programming Basics and Applications Ray Pörn, principal lecturer Åbo Akademi University Novia University of Applied Sciences Content What is semidefinite programming (SDP)? How to represent

More information

4. Convex optimization problems

4. Convex optimization problems Convex Optimization Boyd & Vandenberghe 4. Convex optimization problems optimization problem in standard form convex optimization problems quasiconvex optimization linear optimization quadratic optimization

More information

Lecture 4: Convex Functions, Part I February 1

Lecture 4: Convex Functions, Part I February 1 IE 521: Convex Optimization Instructor: Niao He Lecture 4: Convex Functions, Part I February 1 Spring 2017, UIUC Scribe: Shuanglong Wang Courtesy warning: These notes do not necessarily cover everything

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 8 A. d Aspremont. Convex Optimization M2. 1/57 Applications A. d Aspremont. Convex Optimization M2. 2/57 Outline Geometrical problems Approximation problems Combinatorial

More information

3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions

3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions 3. Convex functions Convex Optimization Boyd & Vandenberghe basic properties and examples operations that preserve convexity the conjugate function quasiconvex functions log-concave and log-convex functions

More information

Lecture 1: Entropy, convexity, and matrix scaling CSE 599S: Entropy optimality, Winter 2016 Instructor: James R. Lee Last updated: January 24, 2016

Lecture 1: Entropy, convexity, and matrix scaling CSE 599S: Entropy optimality, Winter 2016 Instructor: James R. Lee Last updated: January 24, 2016 Lecture 1: Entropy, convexity, and matrix scaling CSE 599S: Entropy optimality, Winter 2016 Instructor: James R. Lee Last updated: January 24, 2016 1 Entropy Since this course is about entropy maximization,

More information

Semidefinite Programming

Semidefinite Programming Chapter 2 Semidefinite Programming 2.0.1 Semi-definite programming (SDP) Given C M n, A i M n, i = 1, 2,..., m, and b R m, the semi-definite programming problem is to find a matrix X M n for the optimization

More information

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 18

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 18 EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 18 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory May 31, 2012 Andre Tkacenko

More information

3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions

3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions 3. Convex functions Convex Optimization Boyd & Vandenberghe basic properties and examples operations that preserve convexity the conjugate function quasiconvex functions log-concave and log-convex functions

More information

Symmetric Matrices and Eigendecomposition

Symmetric Matrices and Eigendecomposition Symmetric Matrices and Eigendecomposition Robert M. Freund January, 2014 c 2014 Massachusetts Institute of Technology. All rights reserved. 1 2 1 Symmetric Matrices and Convexity of Quadratic Functions

More information

Math 273a: Optimization Basic concepts

Math 273a: Optimization Basic concepts Math 273a: Optimization Basic concepts Instructor: Wotao Yin Department of Mathematics, UCLA Spring 2015 slides based on Chong-Zak, 4th Ed. Goals of this lecture The general form of optimization: minimize

More information

A function(al) f is convex if dom f is a convex set, and. f(θx + (1 θ)y) < θf(x) + (1 θ)f(y) f(x) = x 3

A function(al) f is convex if dom f is a convex set, and. f(θx + (1 θ)y) < θf(x) + (1 θ)f(y) f(x) = x 3 Convex functions The domain dom f of a functional f : R N R is the subset of R N where f is well-defined. A function(al) f is convex if dom f is a convex set, and f(θx + (1 θ)y) θf(x) + (1 θ)f(y) for all

More information

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given.

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given. HW1 solutions Exercise 1 (Some sets of probability distributions.) Let x be a real-valued random variable with Prob(x = a i ) = p i, i = 1,..., n, where a 1 < a 2 < < a n. Of course p R n lies in the standard

More information

CSCI : Optimization and Control of Networks. Review on Convex Optimization

CSCI : Optimization and Control of Networks. Review on Convex Optimization CSCI7000-016: Optimization and Control of Networks Review on Convex Optimization 1 Convex set S R n is convex if x,y S, λ,µ 0, λ+µ = 1 λx+µy S geometrically: x,y S line segment through x,y S examples (one

More information

Nonlinear Programming Algorithms Handout

Nonlinear Programming Algorithms Handout Nonlinear Programming Algorithms Handout Michael C. Ferris Computer Sciences Department University of Wisconsin Madison, Wisconsin 5376 September 9 1 Eigenvalues The eigenvalues of a matrix A C n n are

More information

1 Overview. 2 A Characterization of Convex Functions. 2.1 First-order Taylor approximation. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 A Characterization of Convex Functions. 2.1 First-order Taylor approximation. AM 221: Advanced Optimization Spring 2016 AM 221: Advanced Optimization Spring 2016 Prof. Yaron Singer Lecture 8 February 22nd 1 Overview In the previous lecture we saw characterizations of optimality in linear optimization, and we reviewed the

More information

Lecture 3. Optimization Problems and Iterative Algorithms

Lecture 3. Optimization Problems and Iterative Algorithms Lecture 3 Optimization Problems and Iterative Algorithms January 13, 2016 This material was jointly developed with Angelia Nedić at UIUC for IE 598ns Outline Special Functions: Linear, Quadratic, Convex

More information

Convex optimization problems. Optimization problem in standard form

Convex optimization problems. Optimization problem in standard form Convex optimization problems optimization problem in standard form convex optimization problems linear optimization quadratic optimization geometric programming quasiconvex optimization generalized inequality

More information

CS 143 Linear Algebra Review

CS 143 Linear Algebra Review CS 143 Linear Algebra Review Stefan Roth September 29, 2003 Introductory Remarks This review does not aim at mathematical rigor very much, but instead at ease of understanding and conciseness. Please see

More information

Minimizing Cubic and Homogeneous Polynomials over Integers in the Plane

Minimizing Cubic and Homogeneous Polynomials over Integers in the Plane Minimizing Cubic and Homogeneous Polynomials over Integers in the Plane Alberto Del Pia Department of Industrial and Systems Engineering & Wisconsin Institutes for Discovery, University of Wisconsin-Madison

More information

Convex optimization. Javier Peña Carnegie Mellon University. Universidad de los Andes Bogotá, Colombia September 2014

Convex optimization. Javier Peña Carnegie Mellon University. Universidad de los Andes Bogotá, Colombia September 2014 Convex optimization Javier Peña Carnegie Mellon University Universidad de los Andes Bogotá, Colombia September 2014 1 / 41 Convex optimization Problem of the form where Q R n convex set: min x f(x) x Q,

More information

Chapter 4: Unconstrained nonlinear optimization

Chapter 4: Unconstrained nonlinear optimization Chapter 4: Unconstrained nonlinear optimization Edoardo Amaldi DEIB Politecnico di Milano edoardo.amaldi@polimi.it Website: http://home.deib.polimi.it/amaldi/opt-15-16.shtml Academic year 2015-16 Edoardo

More information

minimize x x2 2 x 1x 2 x 1 subject to x 1 +2x 2 u 1 x 1 4x 2 u 2, 5x 1 +76x 2 1,

minimize x x2 2 x 1x 2 x 1 subject to x 1 +2x 2 u 1 x 1 4x 2 u 2, 5x 1 +76x 2 1, 4 Duality 4.1 Numerical perturbation analysis example. Consider the quadratic program with variables x 1, x 2, and parameters u 1, u 2. minimize x 2 1 +2x2 2 x 1x 2 x 1 subject to x 1 +2x 2 u 1 x 1 4x

More information

COURSE ON LMI PART I.2 GEOMETRY OF LMI SETS. Didier HENRION henrion

COURSE ON LMI PART I.2 GEOMETRY OF LMI SETS. Didier HENRION   henrion COURSE ON LMI PART I.2 GEOMETRY OF LMI SETS Didier HENRION www.laas.fr/ henrion October 2006 Geometry of LMI sets Given symmetric matrices F i we want to characterize the shape in R n of the LMI set F

More information

4. Convex optimization problems

4. Convex optimization problems Convex Optimization Boyd & Vandenberghe 4. Convex optimization problems optimization problem in standard form convex optimization problems quasiconvex optimization linear optimization quadratic optimization

More information

Convex Optimization in Classification Problems

Convex Optimization in Classification Problems New Trends in Optimization and Computational Algorithms December 9 13, 2001 Convex Optimization in Classification Problems Laurent El Ghaoui Department of EECS, UC Berkeley elghaoui@eecs.berkeley.edu 1

More information

Mathematical Preliminaries

Mathematical Preliminaries Chapter 33 Mathematical Preliminaries In this appendix, we provide essential definitions and key results which are used at various points in the book. We also provide a list of sources where more details

More information

Convex Functions and Optimization

Convex Functions and Optimization Chapter 5 Convex Functions and Optimization 5.1 Convex Functions Our next topic is that of convex functions. Again, we will concentrate on the context of a map f : R n R although the situation can be generalized

More information

15. Conic optimization

15. Conic optimization L. Vandenberghe EE236C (Spring 216) 15. Conic optimization conic linear program examples modeling duality 15-1 Generalized (conic) inequalities Conic inequality: a constraint x K where K is a convex cone

More information

Lecture 2: Convex Sets and Functions

Lecture 2: Convex Sets and Functions Lecture 2: Convex Sets and Functions Hyang-Won Lee Dept. of Internet & Multimedia Eng. Konkuk University Lecture 2 Network Optimization, Fall 2015 1 / 22 Optimization Problems Optimization problems are

More information

Constrained Optimization and Lagrangian Duality

Constrained Optimization and Lagrangian Duality CIS 520: Machine Learning Oct 02, 2017 Constrained Optimization and Lagrangian Duality Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may

More information

Lecture 6 - Convex Sets

Lecture 6 - Convex Sets Lecture 6 - Convex Sets Definition A set C R n is called convex if for any x, y C and λ [0, 1], the point λx + (1 λ)y belongs to C. The above definition is equivalent to saying that for any x, y C, the

More information

Conic Linear Programming. Yinyu Ye

Conic Linear Programming. Yinyu Ye Conic Linear Programming Yinyu Ye December 2004, revised January 2015 i ii Preface This monograph is developed for MS&E 314, Conic Linear Programming, which I am teaching at Stanford. Information, lecture

More information

Assignment 1: From the Definition of Convexity to Helley Theorem

Assignment 1: From the Definition of Convexity to Helley Theorem Assignment 1: From the Definition of Convexity to Helley Theorem Exercise 1 Mark in the following list the sets which are convex: 1. {x R 2 : x 1 + i 2 x 2 1, i = 1,..., 10} 2. {x R 2 : x 2 1 + 2ix 1x

More information

3. Linear Programming and Polyhedral Combinatorics

3. Linear Programming and Polyhedral Combinatorics Massachusetts Institute of Technology 18.433: Combinatorial Optimization Michel X. Goemans February 28th, 2013 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the introductory

More information

4TE3/6TE3. Algorithms for. Continuous Optimization

4TE3/6TE3. Algorithms for. Continuous Optimization 4TE3/6TE3 Algorithms for Continuous Optimization (Duality in Nonlinear Optimization ) Tamás TERLAKY Computing and Software McMaster University Hamilton, January 2004 terlaky@mcmaster.ca Tel: 27780 Optimality

More information

Appendix PRELIMINARIES 1. THEOREMS OF ALTERNATIVES FOR SYSTEMS OF LINEAR CONSTRAINTS

Appendix PRELIMINARIES 1. THEOREMS OF ALTERNATIVES FOR SYSTEMS OF LINEAR CONSTRAINTS Appendix PRELIMINARIES 1. THEOREMS OF ALTERNATIVES FOR SYSTEMS OF LINEAR CONSTRAINTS Here we consider systems of linear constraints, consisting of equations or inequalities or both. A feasible solution

More information

Lecture: Examples of LP, SOCP and SDP

Lecture: Examples of LP, SOCP and SDP 1/34 Lecture: Examples of LP, SOCP and SDP Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html wenzw@pku.edu.cn Acknowledgement:

More information

Lecture 1 Introduction

Lecture 1 Introduction L. Vandenberghe EE236A (Fall 2013-14) Lecture 1 Introduction course overview linear optimization examples history approximate syllabus basic definitions linear optimization in vector and matrix notation

More information

Computational Optimization. Mathematical Programming Fundamentals 1/25 (revised)

Computational Optimization. Mathematical Programming Fundamentals 1/25 (revised) Computational Optimization Mathematical Programming Fundamentals 1/5 (revised) If you don t know where you are going, you probably won t get there. -from some book I read in eight grade If you do get there,

More information

Maximum likelihood estimation

Maximum likelihood estimation Maximum likelihood estimation Guillaume Obozinski Ecole des Ponts - ParisTech Master MVA Maximum likelihood estimation 1/26 Outline 1 Statistical concepts 2 A short review of convex analysis and optimization

More information

Convex Optimization Boyd & Vandenberghe. 5. Duality

Convex Optimization Boyd & Vandenberghe. 5. Duality 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

Optimization WS 13/14:, by Y. Goldstein/K. Reinert, 9. Dezember 2013, 16: Linear programming. Optimization Problems

Optimization WS 13/14:, by Y. Goldstein/K. Reinert, 9. Dezember 2013, 16: Linear programming. Optimization Problems Optimization WS 13/14:, by Y. Goldstein/K. Reinert, 9. Dezember 2013, 16:38 2001 Linear programming Optimization Problems General optimization problem max{z(x) f j (x) 0,x D} or min{z(x) f j (x) 0,x D}

More information

3. Linear Programming and Polyhedral Combinatorics

3. Linear Programming and Polyhedral Combinatorics Massachusetts Institute of Technology 18.453: Combinatorial Optimization Michel X. Goemans April 5, 2017 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the introductory

More information

The Q-parametrization (Youla) Lecture 13: Synthesis by Convex Optimization. Lecture 13: Synthesis by Convex Optimization. Example: Spring-mass System

The Q-parametrization (Youla) Lecture 13: Synthesis by Convex Optimization. Lecture 13: Synthesis by Convex Optimization. Example: Spring-mass System The Q-parametrization (Youla) Lecture 3: Synthesis by Convex Optimization controlled variables z Plant distubances w Example: Spring-mass system measurements y Controller control inputs u Idea for lecture

More information

Conic Linear Programming. Yinyu Ye

Conic Linear Programming. Yinyu Ye Conic Linear Programming Yinyu Ye December 2004, revised October 2017 i ii Preface This monograph is developed for MS&E 314, Conic Linear Programming, which I am teaching at Stanford. Information, lecture

More information

The general programming problem is the nonlinear programming problem where a given function is maximized subject to a set of inequality constraints.

The general programming problem is the nonlinear programming problem where a given function is maximized subject to a set of inequality constraints. 1 Optimization Mathematical programming refers to the basic mathematical problem of finding a maximum to a function, f, subject to some constraints. 1 In other words, the objective is to find a point,

More information

EC /11. Math for Microeconomics September Course, Part II Problem Set 1 with Solutions. a11 a 12. x 2

EC /11. Math for Microeconomics September Course, Part II Problem Set 1 with Solutions. a11 a 12. x 2 LONDON SCHOOL OF ECONOMICS Professor Leonardo Felli Department of Economics S.478; x7525 EC400 2010/11 Math for Microeconomics September Course, Part II Problem Set 1 with Solutions 1. Show that the general

More information

Lecture 5. 1 Goermans-Williamson Algorithm for the maxcut problem

Lecture 5. 1 Goermans-Williamson Algorithm for the maxcut problem Math 280 Geometric and Algebraic Ideas in Optimization April 26, 2010 Lecture 5 Lecturer: Jesús A De Loera Scribe: Huy-Dung Han, Fabio Lapiccirella 1 Goermans-Williamson Algorithm for the maxcut problem

More information

Linear Regression and Its Applications

Linear Regression and Its Applications Linear Regression and Its Applications Predrag Radivojac October 13, 2014 Given a data set D = {(x i, y i )} n the objective is to learn the relationship between features and the target. We usually start

More information

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44 Convex Optimization Newton s method ENSAE: Optimisation 1/44 Unconstrained minimization minimize f(x) f convex, twice continuously differentiable (hence dom f open) we assume optimal value p = inf x f(x)

More information

Linear Algebra Review: Linear Independence. IE418 Integer Programming. Linear Algebra Review: Subspaces. Linear Algebra Review: Affine Independence

Linear Algebra Review: Linear Independence. IE418 Integer Programming. Linear Algebra Review: Subspaces. Linear Algebra Review: Affine Independence Linear Algebra Review: Linear Independence IE418: Integer Programming Department of Industrial and Systems Engineering Lehigh University 21st March 2005 A finite collection of vectors x 1,..., x k R n

More information

Lecture 1: Introduction. Outline. B9824 Foundations of Optimization. Fall Administrative matters. 2. Introduction. 3. Existence of optima

Lecture 1: Introduction. Outline. B9824 Foundations of Optimization. Fall Administrative matters. 2. Introduction. 3. Existence of optima B9824 Foundations of Optimization Lecture 1: Introduction Fall 2009 Copyright 2009 Ciamac Moallemi Outline 1. Administrative matters 2. Introduction 3. Existence of optima 4. Local theory of unconstrained

More information

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010 I.3. LMI DUALITY Didier HENRION henrion@laas.fr EECI Graduate School on Control Supélec - Spring 2010 Primal and dual For primal problem p = inf x g 0 (x) s.t. g i (x) 0 define Lagrangian L(x, z) = g 0

More information

Lecture Note 5: Semidefinite Programming for Stability Analysis

Lecture Note 5: Semidefinite Programming for Stability Analysis ECE7850: Hybrid Systems:Theory and Applications Lecture Note 5: Semidefinite Programming for Stability Analysis Wei Zhang Assistant Professor Department of Electrical and Computer Engineering Ohio State

More information

c 2000 Society for Industrial and Applied Mathematics

c 2000 Society for Industrial and Applied Mathematics SIAM J. OPIM. Vol. 10, No. 3, pp. 750 778 c 2000 Society for Industrial and Applied Mathematics CONES OF MARICES AND SUCCESSIVE CONVEX RELAXAIONS OF NONCONVEX SES MASAKAZU KOJIMA AND LEVEN UNÇEL Abstract.

More information

Applications of Linear Programming

Applications of Linear Programming Applications of Linear Programming lecturer: András London University of Szeged Institute of Informatics Department of Computational Optimization Lecture 9 Non-linear programming In case of LP, the goal

More information

10725/36725 Optimization Homework 2 Solutions

10725/36725 Optimization Homework 2 Solutions 10725/36725 Optimization Homework 2 Solutions 1 Convexity (Kevin) 1.1 Sets Let A R n be a closed set with non-empty interior that has a supporting hyperplane at every point on its boundary. (a) Show that

More information

Introduction and Math Preliminaries

Introduction and Math Preliminaries Introduction and Math Preliminaries Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye Appendices A, B, and C, Chapter

More information

Notes, March 4, 2013, R. Dudley Maximum likelihood estimation: actual or supposed

Notes, March 4, 2013, R. Dudley Maximum likelihood estimation: actual or supposed 18.466 Notes, March 4, 2013, R. Dudley Maximum likelihood estimation: actual or supposed 1. MLEs in exponential families Let f(x,θ) for x X and θ Θ be a likelihood function, that is, for present purposes,

More information

Scientific Computing: Optimization

Scientific Computing: Optimization Scientific Computing: Optimization Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course MATH-GA.2043 or CSCI-GA.2112, Spring 2012 March 8th, 2011 A. Donev (Courant Institute) Lecture

More information

FRTN10 Multivariable Control, Lecture 13. Course outline. The Q-parametrization (Youla) Example: Spring-mass System

FRTN10 Multivariable Control, Lecture 13. Course outline. The Q-parametrization (Youla) Example: Spring-mass System FRTN Multivariable Control, Lecture 3 Anders Robertsson Automatic Control LTH, Lund University Course outline The Q-parametrization (Youla) L-L5 Purpose, models and loop-shaping by hand L6-L8 Limitations

More information

Fundamentals of Unconstrained Optimization

Fundamentals of Unconstrained Optimization dalmau@cimat.mx Centro de Investigación en Matemáticas CIMAT A.C. Mexico Enero 2016 Outline Introduction 1 Introduction 2 3 4 Optimization Problem min f (x) x Ω where f (x) is a real-valued function The

More information

Jensen s inequality for multivariate medians

Jensen s inequality for multivariate medians Jensen s inequality for multivariate medians Milan Merkle University of Belgrade, Serbia emerkle@etf.rs Given a probability measure µ on Borel sigma-field of R d, and a function f : R d R, the main issue

More information

Lecture Unconstrained optimization. In this lecture we will study the unconstrained problem. minimize f(x), (2.1)

Lecture Unconstrained optimization. In this lecture we will study the unconstrained problem. minimize f(x), (2.1) Lecture 2 In this lecture we will study the unconstrained problem minimize f(x), (2.1) where x R n. Optimality conditions aim to identify properties that potential minimizers need to satisfy in relation

More information

Interior Point Methods: Second-Order Cone Programming and Semidefinite Programming

Interior Point Methods: Second-Order Cone Programming and Semidefinite Programming School of Mathematics T H E U N I V E R S I T Y O H F E D I N B U R G Interior Point Methods: Second-Order Cone Programming and Semidefinite Programming Jacek Gondzio Email: J.Gondzio@ed.ac.uk URL: http://www.maths.ed.ac.uk/~gondzio

More information

Strong Formulations for Convex Functions over Non-Convex Domains

Strong Formulations for Convex Functions over Non-Convex Domains Strong Formulations for Convex Functions over Non-Convex Domains Daniel Bienstock and Alexander Michalka University JMM 2013 Introduction Generic Problem: min Q(x), s.t. x F, Introduction Generic Problem:

More information

What can be expressed via Conic Quadratic and Semidefinite Programming?

What can be expressed via Conic Quadratic and Semidefinite Programming? What can be expressed via Conic Quadratic and Semidefinite Programming? A. Nemirovski Faculty of Industrial Engineering and Management Technion Israel Institute of Technology Abstract Tremendous recent

More information

IE 521 Convex Optimization

IE 521 Convex Optimization Lecture 1: 16th January 2019 Outline 1 / 20 Which set is different from others? Figure: Four sets 2 / 20 Which set is different from others? Figure: Four sets 3 / 20 Interior, Closure, Boundary Definition.

More information

5. Duality. Lagrangian

5. Duality. Lagrangian 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

Computational Optimization. Convexity and Unconstrained Optimization 1/29/08 and 2/1(revised)

Computational Optimization. Convexity and Unconstrained Optimization 1/29/08 and 2/1(revised) Computational Optimization Convexity and Unconstrained Optimization 1/9/08 and /1(revised) Convex Sets A set S is convex if the line segment joining any two points in the set is also in the set, i.e.,

More information

Convex envelopes, cardinality constrained optimization and LASSO. An application in supervised learning: support vector machines (SVMs)

Convex envelopes, cardinality constrained optimization and LASSO. An application in supervised learning: support vector machines (SVMs) ORF 523 Lecture 8 Princeton University Instructor: A.A. Ahmadi Scribe: G. Hall Any typos should be emailed to a a a@princeton.edu. 1 Outline Convexity-preserving operations Convex envelopes, cardinality

More information

DO NOT OPEN THIS QUESTION BOOKLET UNTIL YOU ARE TOLD TO DO SO

DO NOT OPEN THIS QUESTION BOOKLET UNTIL YOU ARE TOLD TO DO SO QUESTION BOOKLET EECS 227A Fall 2009 Midterm Tuesday, Ocotober 20, 11:10-12:30pm DO NOT OPEN THIS QUESTION BOOKLET UNTIL YOU ARE TOLD TO DO SO You have 80 minutes to complete the midterm. The midterm consists

More information

Solution to EE 617 Mid-Term Exam, Fall November 2, 2017

Solution to EE 617 Mid-Term Exam, Fall November 2, 2017 Solution to EE 67 Mid-erm Exam, Fall 207 November 2, 207 EE 67 Solution to Mid-erm Exam - Page 2 of 2 November 2, 207 (4 points) Convex sets (a) (2 points) Consider the set { } a R k p(0) =, p(t) for t

More information

Algorithms for constrained local optimization

Algorithms for constrained local optimization Algorithms for constrained local optimization Fabio Schoen 2008 http://gol.dsi.unifi.it/users/schoen Algorithms for constrained local optimization p. Feasible direction methods Algorithms for constrained

More information

Lecture 1: Introduction. Outline. B9824 Foundations of Optimization. Fall Administrative matters. 2. Introduction. 3. Existence of optima

Lecture 1: Introduction. Outline. B9824 Foundations of Optimization. Fall Administrative matters. 2. Introduction. 3. Existence of optima B9824 Foundations of Optimization Lecture 1: Introduction Fall 2010 Copyright 2010 Ciamac Moallemi Outline 1. Administrative matters 2. Introduction 3. Existence of optima 4. Local theory of unconstrained

More information

The proximal mapping

The proximal mapping The proximal mapping http://bicmr.pku.edu.cn/~wenzw/opt-2016-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes Outline 2/37 1 closed function 2 Conjugate function

More information

Module 04 Optimization Problems KKT Conditions & Solvers

Module 04 Optimization Problems KKT Conditions & Solvers Module 04 Optimization Problems KKT Conditions & Solvers Ahmad F. Taha EE 5243: Introduction to Cyber-Physical Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ taha/index.html September

More information

CSCI 1951-G Optimization Methods in Finance Part 10: Conic Optimization

CSCI 1951-G Optimization Methods in Finance Part 10: Conic Optimization CSCI 1951-G Optimization Methods in Finance Part 10: Conic Optimization April 6, 2018 1 / 34 This material is covered in the textbook, Chapters 9 and 10. Some of the materials are taken from it. Some of

More information

7. Statistical estimation

7. Statistical estimation 7. Statistical estimation Convex Optimization Boyd & Vandenberghe maximum likelihood estimation optimal detector design experiment design 7 1 Parametric distribution estimation distribution estimation

More information

ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications

ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications Professor M. Chiang Electrical Engineering Department, Princeton University March

More information

Additional Homework Problems

Additional Homework Problems Additional Homework Problems Robert M. Freund April, 2004 2004 Massachusetts Institute of Technology. 1 2 1 Exercises 1. Let IR n + denote the nonnegative orthant, namely IR + n = {x IR n x j ( ) 0,j =1,...,n}.

More information

Algorithmic Convex Geometry

Algorithmic Convex Geometry Algorithmic Convex Geometry August 2011 2 Contents 1 Overview 5 1.1 Learning by random sampling.................. 5 2 The Brunn-Minkowski Inequality 7 2.1 The inequality.......................... 8 2.1.1

More information