Convex Optimization in Classification Problems

Size: px
Start display at page:

Download "Convex Optimization in Classification Problems"

Transcription

1 New Trends in Optimization and Computational Algorithms December 9 13, 2001 Convex Optimization in Classification Problems Laurent El Ghaoui Department of EECS, UC Berkeley elghaoui@eecs.berkeley.edu 1

2 goal connection between classification and LP, convex QP has a long history (Vapnik, Mangasarian, Bennett, etc) recent progresses in convex optimization: conic and semidefinite programming; geometric programming; robust optimization we ll outline some connections between convex optimization and classification problems joint work with: M. Jordan, N. Cristianini, G. Lanckriet, C. Bhattacharrya 2

3 outline convex optimization SVMs and robust linear programming minimax probability machine kernel optimization 3

4 convex optimization standard form: min x f0(x) : fi(x) 0, i = 1,..., m arises in many applications convexity not always recognized in practice can solve large classes of convex problems in polynomial-time (Nesterov, Nemirovski, 1990) 4

5 conic optimization special class of convex problems: min x c T x : Ax = b, x K where K is a cone, direct product of the following building blocks : K = R n + linear programming K = {(y, t) R n+1 : t y 2} second-order cone programming, quadratic programming K = {x R n n : x = x T 0} semidefinite programming fact: can solve conic problems in polynomial-time (Nesterov, Nemirovski, 1990) 5

6 conic duality dual of conic problem min x c T x : Ax = b, x K is where max b T y : c A T y K y K = {z : z, x 0 x K} is the cone dual to K for the cones mentioned before, and direct products of them, K = K 6

7 robust optimization conic problem in dual form: maxy b T y : c A T y K what if A is unknown-but-bounded, say A A, where A is given? robust counterpart: maxy b T y : A A, c A T y K still convex, but tractability depends on A systematic ways to approximate (get lower bounds) for large classes of A, approximation is exact 7

8 example: robust LP linear program: minx c T x : a T i assume ai s are unknown-but-bounded in ellipsoids Ei := { a : (a âi) T Γ 1 i (a âi) 1 } where âi: center, Γi 0: shape matrix robust LP: minx c T x : ai Ei, a T i 8 x b, i = 1,..., m x b, i = 1,..., m

9 robust LP: SOCP representation robust LP equivalent to min x c T x : â T i x + Γ 1/2 i x 2 b, i = 1,..., m a second-order cone program! interpretation: smoothes boundary of feasible set 9

10 LP with Gaussian coefficients assume a N (â, Γ), then for given x, Prob{a T x b} 1 ɛ is equivalent to: â T x + κ Γ 1/2 x 2 b where κ = Φ 1 (1 ɛ) and Φ is the c.d.f. of N (0, 1) hence, can solve LP with Gaussian coefficients using second-order cone programming resulting SOCP is similar to one obtained with ellipsoidal uncertainty 10

11 LP with random coefficients assume a (â, Γ), i.e. distribution of a has mean â and covariance matrix Γ, but is otherwise unknown Chebychev inequality: Prob{a T x b} 1 ɛ is equivalent to: â T x + κ Γ 1/2 x 2 b where 1 ɛ κ = ɛ leads to SOCP similar to ones obtained previously 11

12 outline convex optimization SVMs and robust linear programming minimax probability machine kernel optimization 12

13 SVMs: setup given data points xi with labels yi = ±1, i = 1,..., N two-class linear classification with support vector: min a 2 : yi(a T xi b) 1, i = 1,..., N amounts to select one separating hyperplane among the many possible problem is feasible iff there exists a separating hyperplane between the two classes 13

14 SVMs: robust optimization interpretation interpretation: SVMs are a way to handle noise in data points assume each data point is unknown-but-bounded in a sphere of radius ρ and center xi find the largest ρ such that separation is still possible between the two classes of perturbed points 14

15 variations can use other data noise models: hypercube uncertainty (gives rise to LP) ellipsoidal uncertainty ( QP) probabilistic uncertainty, Gaussian or Chebychev ( QP) 15

16 separation with hypercube uncertainty assume each data point is unknown-but-bounded in an hypercube Ci: xi Ci := {ˆxi + ρp u : u 1} where centers ˆxi and shape matrix P are given robust separation: leads to linear program min P a 1 : yi(a T ˆxi b) 1, i = 1,..., N 16

17 separation with ellipsoidal uncertainty assume each data point is unknown-but-bounded in an ellipsoid Ei: xi Ei := {ˆxi + ρp u : u 2 1} where center ˆxi and shape matrix P are given robust separation leads to QP min P a 2 : yi(a T ˆxi b) 1, i = 1,..., N 17

18 outline convex optimization SVMs and robust linear programming minimax probability machine kernel optimization 18

19 minimax probability machine goal: make assumptions about the data generating process do not assume Gaussian distributions use second-moment analysis of the two classes let ˆx±, Γ± be the mean and covariance matrix of class y = ±1 MPM: maximize ɛ such that there exists (a, b) such that inf x (ˆx+,Γ+) Prob{aT x b} 1 ɛ inf x (ˆx,Γ ) Prob{aT x b} 1 ɛ 19

20 MPMs: optimization problem two-sided, multivariable Chebychev inequality: (b a T ˆx) 2 inf x (ˆx,Γ) Prob{aT + x b} = (b a T ˆx) a T Γa MPM leads to second-order cone program: min a Γ 1/2 + a 2 + Γ 1/2 a 2 : a T (ˆx+ ˆx ) = 1 complexity is the same as standard SVMs 20

21 dual problem express problem as unconstrained min-max problem: min a max u 2 1, v 2 1 ut Γ 1/2 + a v T Γ 1/2 a + λ(1 a T (x+ x )) exchange min and max, and set ρ := 1/λ: min ρ : x + + Γ 1/2 + u = x + Γ 1/2 v, u 2 ρ, v 2 ρ ρ,u,v geometric interpretation: define the two ellipsoids { } E±(ρ) := ˆx± + Γ 1/2 ± u : u 2 ρ and find largest ρ for which ellipsoids intersect 21

22 robust optimization interpretation assume data generated as follows: for data with label +, { } x+ E+(ρ) := ˆx+ + Γ 1/2 + u : u 2 ρ and similarly for data with label MPM finds largest ρ for which robust separation is possible PSfrag replacements ˆx+ a T x b = 0 ˆx 22

23 variations minimize weighted sum of misclassification probabilities quadratic separation: find a quadratic set such that inf x (ˆx+,Γ+) inf x (ˆx,Γ ) Prob{x Q} 1 ɛ Prob{x Q} 1 ɛ leads to a semidefinite programming problem nonlinear classification via kernels (using plug-in estimates of mean and covariance matrix) 23

24 outline convex optimization SVMs and robust linear programming minimax probability machine kernel optimization 24

25 transduction transduction: given labeled training set and unlabeled test set, predict the labels the data contains both labeled points and unlabeled points 25

26 kernel methods main goal: separate using a nonlinear classifier a T φ(x) = b where φ is a nonlinear operator define the kernel matrix (on both labeled and unlabeled data) Kij = φ(xi)φ(xj) T in a transductive setting, all we need to know to predicts the labels are a, b and the kernel matrix 26

27 kernel methods: idea of proof all the linear classification methods we ve seen so far are such that at the optimum, a is in the range of the labeled data: a = i λixi thus, in the nonlinear case, the optimization problem depends only on the values of kernel matrix Kij for labeled points xi, xj in a transductive setting, the prediction of labels also involves Kij only, since for an unlabeled data point xj, a T φ(xj) = i λiφ(xi) T φ(xj) involves only Kij s 27

28 kernel optimization all previous algorithms can be kernelized what is a good kernel? kernel should be close to a target kernel kernel matrix satisfies some structure constraints main idea: kernel can be described via the Gram matrix of data points, hence is a positive semidefinite matrix semidefinite programming plays a role in kernel optimization 28

29 setup we assume we have given training and test sets goal: maximize alignment to a given kernel on training set (translates into constraints on upper-left block of kernel matrix) kernel matrix satisfies structure constraints (translates into constraints on the whole matrix, including test set) 29

30 alignment idea: align K to a target kernel C by maximizing A(K, C) := C, K K F C F where C, K = Tr (CK) is the inner product of two symmetric matrices, and C F = C, C is the Frobenius norm we can impose a lower bound α on the alignment with the second-order cone constraint on K α C F K F C, K 30

31 affine constraints it is also useful to impose that the kernel lies in some affine subspace example: assume that K is of the form N K = λiuiu T i i=1 where λi 0 are the (variable) eigenvalues, and ui s are the (fixed) eigenvectors 31

32 optimizing kernels: example problem goal: find a kernel that has an alignement with a given matrix (eg, C = yy T ) on the training set belongs to some affine set K the problem reduces to a semidefinite programming feasibility problem: find K such that K K, α C F K F C, K, K positive definite 32

33 kernel optimization: what s next? of course, this is not a learning method much to learn from duality theory many other constraints can be handled, e.g., margin requirements 33

34 wrap-up convex optimization has much to offer and gain from interaction with classification described variations on linear classification many robust optimization interpretations all these methods can be kernelized kernel optimization has high potential 34

35 see also Learning the Kernel Matrix with Semi-Definite Programming (Lanckiert, Cristianini, Bartlett, Elghaoui, Jordan) In Preparation (2002) Minimax probability machine (Lanckiert, Bhattacharrya, El Ghaoui, Jordan) (NIPS 2001) 35

Robust Kernel-Based Regression

Robust Kernel-Based Regression Robust Kernel-Based Regression Budi Santosa Department of Industrial Engineering Sepuluh Nopember Institute of Technology Kampus ITS Surabaya Surabaya 60111,Indonesia Theodore B. Trafalis School of Industrial

More information

Learning the Kernel Matrix with Semidefinite Programming

Learning the Kernel Matrix with Semidefinite Programming Journal of Machine Learning Research 5 (2004) 27-72 Submitted 10/02; Revised 8/03; Published 1/04 Learning the Kernel Matrix with Semidefinite Programg Gert R.G. Lanckriet Department of Electrical Engineering

More information

Learning the Kernel Matrix with Semi-Definite Programming

Learning the Kernel Matrix with Semi-Definite Programming Learning the Kernel Matrix with Semi-Definite Programg Gert R.G. Lanckriet gert@cs.berkeley.edu Department of Electrical Engineering and Computer Science University of California, Berkeley, CA 94720, USA

More information

Support Vector Machine (SVM) and Kernel Methods

Support Vector Machine (SVM) and Kernel Methods Support Vector Machine (SVM) and Kernel Methods CE-717: Machine Learning Sharif University of Technology Fall 2014 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

More information

A Robust Minimax Approach to Classification

A Robust Minimax Approach to Classification A Robust Minimax Approach to Classification Gert R.G. Lanckriet gert@cs.berkeley.edu Department of Electrical Engineering and Computer Science University of California, Berkeley, CA 94720, USA Laurent

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Support vector machines (SVMs) are one of the central concepts in all of machine learning. They are simply a combination of two ideas: linear classification via maximum (or optimal

More information

Short Course Robust Optimization and Machine Learning. Lecture 6: Robust Optimization in Machine Learning

Short Course Robust Optimization and Machine Learning. Lecture 6: Robust Optimization in Machine Learning Short Course Robust Optimization and Machine Machine Lecture 6: Robust Optimization in Machine Laurent El Ghaoui EECS and IEOR Departments UC Berkeley Spring seminar TRANSP-OR, Zinal, Jan. 16-19, 2012

More information

A Robust Minimax Approach to Classification

A Robust Minimax Approach to Classification A Robust Minimax Approach to Classification Gert R.G. Lanckriet Laurent El Ghaoui Chiranjib Bhattacharyya Michael I. Jordan Department of Electrical Engineering and Computer Science and Department of Statistics

More information

Support Vector Machine (SVM) and Kernel Methods

Support Vector Machine (SVM) and Kernel Methods Support Vector Machine (SVM) and Kernel Methods CE-717: Machine Learning Sharif University of Technology Fall 2015 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

More information

Outline. Basic concepts: SVM and kernels SVM primal/dual problems. Chih-Jen Lin (National Taiwan Univ.) 1 / 22

Outline. Basic concepts: SVM and kernels SVM primal/dual problems. Chih-Jen Lin (National Taiwan Univ.) 1 / 22 Outline Basic concepts: SVM and kernels SVM primal/dual problems Chih-Jen Lin (National Taiwan Univ.) 1 / 22 Outline Basic concepts: SVM and kernels Basic concepts: SVM and kernels SVM primal/dual problems

More information

Convex optimization problems. Optimization problem in standard form

Convex optimization problems. Optimization problem in standard form Convex optimization problems optimization problem in standard form convex optimization problems linear optimization quadratic optimization geometric programming quasiconvex optimization generalized inequality

More information

Estimation and Optimization: Gaps and Bridges. MURI Meeting June 20, Laurent El Ghaoui. UC Berkeley EECS

Estimation and Optimization: Gaps and Bridges. MURI Meeting June 20, Laurent El Ghaoui. UC Berkeley EECS MURI Meeting June 20, 2001 Estimation and Optimization: Gaps and Bridges Laurent El Ghaoui EECS UC Berkeley 1 goals currently, estimation (of model parameters) and optimization (of decision variables)

More information

Support Vector Machines: Maximum Margin Classifiers

Support Vector Machines: Maximum Margin Classifiers Support Vector Machines: Maximum Margin Classifiers Machine Learning and Pattern Recognition: September 16, 2008 Piotr Mirowski Based on slides by Sumit Chopra and Fu-Jie Huang 1 Outline What is behind

More information

Robust Novelty Detection with Single Class MPM

Robust Novelty Detection with Single Class MPM Robust Novelty Detection with Single Class MPM Gert R.G. Lanckriet EECS, U.C. Berkeley gert@eecs.berkeley.edu Laurent El Ghaoui EECS, U.C. Berkeley elghaoui@eecs.berkeley.edu Michael I. Jordan Computer

More information

Jeff Howbert Introduction to Machine Learning Winter

Jeff Howbert Introduction to Machine Learning Winter Classification / Regression Support Vector Machines Jeff Howbert Introduction to Machine Learning Winter 2012 1 Topics SVM classifiers for linearly separable classes SVM classifiers for non-linearly separable

More information

Lecture: Convex Optimization Problems

Lecture: Convex Optimization Problems 1/36 Lecture: Convex Optimization Problems http://bicmr.pku.edu.cn/~wenzw/opt-2015-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Introduction 2/36 optimization

More information

Support Vector Machine (SVM) & Kernel CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012

Support Vector Machine (SVM) & Kernel CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012 Support Vector Machine (SVM) & Kernel CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Linear classifier Which classifier? x 2 x 1 2 Linear classifier Margin concept x 2

More information

ICS-E4030 Kernel Methods in Machine Learning

ICS-E4030 Kernel Methods in Machine Learning ICS-E4030 Kernel Methods in Machine Learning Lecture 3: Convex optimization and duality Juho Rousu 28. September, 2016 Juho Rousu 28. September, 2016 1 / 38 Convex optimization Convex optimisation This

More information

Robust Fisher Discriminant Analysis

Robust Fisher Discriminant Analysis Robust Fisher Discriminant Analysis Seung-Jean Kim Alessandro Magnani Stephen P. Boyd Information Systems Laboratory Electrical Engineering Department, Stanford University Stanford, CA 94305-9510 sjkim@stanford.edu

More information

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 18

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 18 EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 18 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory May 31, 2012 Andre Tkacenko

More information

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation.

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation. CS 189 Spring 2015 Introduction to Machine Learning Midterm You have 80 minutes for the exam. The exam is closed book, closed notes except your one-page crib sheet. No calculators or electronic items.

More information

4. Convex optimization problems

4. Convex optimization problems Convex Optimization Boyd & Vandenberghe 4. Convex optimization problems optimization problem in standard form convex optimization problems quasiconvex optimization linear optimization quadratic optimization

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2012 Project: Robust Optimization and its Application of Robust Portfolio Optimization

Semidefinite and Second Order Cone Programming Seminar Fall 2012 Project: Robust Optimization and its Application of Robust Portfolio Optimization Semidefinite and Second Order Cone Programming Seminar Fall 2012 Project: Robust Optimization and its Application of Robust Portfolio Optimization Instructor: Farid Alizadeh Author: Ai Kagawa 12/12/2012

More information

Multisurface Proximal Support Vector Machine Classification via Generalized Eigenvalues

Multisurface Proximal Support Vector Machine Classification via Generalized Eigenvalues Multisurface Proximal Support Vector Machine Classification via Generalized Eigenvalues O. L. Mangasarian and E. W. Wild Presented by: Jun Fang Multisurface Proximal Support Vector Machine Classification

More information

Machine Learning. Support Vector Machines. Manfred Huber

Machine Learning. Support Vector Machines. Manfred Huber Machine Learning Support Vector Machines Manfred Huber 2015 1 Support Vector Machines Both logistic regression and linear discriminant analysis learn a linear discriminant function to separate the data

More information

Support Vector Machines. Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar

Support Vector Machines. Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar Data Mining Support Vector Machines Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar 02/03/2018 Introduction to Data Mining 1 Support Vector Machines Find a linear hyperplane

More information

Support Vector Machine (SVM) and Kernel Methods

Support Vector Machine (SVM) and Kernel Methods Support Vector Machine (SVM) and Kernel Methods CE-717: Machine Learning Sharif University of Technology Fall 2016 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

More information

Lecture: Examples of LP, SOCP and SDP

Lecture: Examples of LP, SOCP and SDP 1/34 Lecture: Examples of LP, SOCP and SDP Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html wenzw@pku.edu.cn Acknowledgement:

More information

4. Convex optimization problems

4. Convex optimization problems Convex Optimization Boyd & Vandenberghe 4. Convex optimization problems optimization problem in standard form convex optimization problems quasiconvex optimization linear optimization quadratic optimization

More information

EE 227A: Convex Optimization and Applications October 14, 2008

EE 227A: Convex Optimization and Applications October 14, 2008 EE 227A: Convex Optimization and Applications October 14, 2008 Lecture 13: SDP Duality Lecturer: Laurent El Ghaoui Reading assignment: Chapter 5 of BV. 13.1 Direct approach 13.1.1 Primal problem Consider

More information

A Second order Cone Programming Formulation for Classifying Missing Data

A Second order Cone Programming Formulation for Classifying Missing Data A Second order Cone Programming Formulation for Classifying Missing Data Chiranjib Bhattacharyya Department of Computer Science and Automation Indian Institute of Science Bangalore, 560 012, India chiru@csa.iisc.ernet.in

More information

8. Geometric problems

8. Geometric problems 8. Geometric problems Convex Optimization Boyd & Vandenberghe extremal volume ellipsoids centering classification placement and facility location 8 Minimum volume ellipsoid around a set Löwner-John ellipsoid

More information

CS295: Convex Optimization. Xiaohui Xie Department of Computer Science University of California, Irvine

CS295: Convex Optimization. Xiaohui Xie Department of Computer Science University of California, Irvine CS295: Convex Optimization Xiaohui Xie Department of Computer Science University of California, Irvine Course information Prerequisites: multivariate calculus and linear algebra Textbook: Convex Optimization

More information

Support Vector Machines

Support Vector Machines EE 17/7AT: Optimization Models in Engineering Section 11/1 - April 014 Support Vector Machines Lecturer: Arturo Fernandez Scribe: Arturo Fernandez 1 Support Vector Machines Revisited 1.1 Strictly) Separable

More information

CS6375: Machine Learning Gautam Kunapuli. Support Vector Machines

CS6375: Machine Learning Gautam Kunapuli. Support Vector Machines Gautam Kunapuli Example: Text Categorization Example: Develop a model to classify news stories into various categories based on their content. sports politics Use the bag-of-words representation for this

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Support Vector Machine (SVM) Hamid R. Rabiee Hadi Asheri, Jafar Muhammadi, Nima Pourdamghani Spring 2013 http://ce.sharif.edu/courses/91-92/2/ce725-1/ Agenda Introduction

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 8 A. d Aspremont. Convex Optimization M2. 1/57 Applications A. d Aspremont. Convex Optimization M2. 2/57 Outline Geometrical problems Approximation problems Combinatorial

More information

Sparse and Robust Optimization and Applications

Sparse and Robust Optimization and Applications Sparse and and Statistical Learning Workshop Les Houches, 2013 Robust Laurent El Ghaoui with Mert Pilanci, Anh Pham EECS Dept., UC Berkeley January 7, 2013 1 / 36 Outline Sparse Sparse Sparse Probability

More information

Semidefinite Programming Basics and Applications

Semidefinite Programming Basics and Applications Semidefinite Programming Basics and Applications Ray Pörn, principal lecturer Åbo Akademi University Novia University of Applied Sciences Content What is semidefinite programming (SDP)? How to represent

More information

Handout 6: Some Applications of Conic Linear Programming

Handout 6: Some Applications of Conic Linear Programming ENGG 550: Foundations of Optimization 08 9 First Term Handout 6: Some Applications of Conic Linear Programming Instructor: Anthony Man Cho So November, 08 Introduction Conic linear programming CLP, and

More information

Short Course Robust Optimization and Machine Learning. 3. Optimization in Supervised Learning

Short Course Robust Optimization and Machine Learning. 3. Optimization in Supervised Learning Short Course Robust Optimization and 3. Optimization in Supervised EECS and IEOR Departments UC Berkeley Spring seminar TRANSP-OR, Zinal, Jan. 16-19, 2012 Outline Overview of Supervised models and variants

More information

Lecture 6: Conic Optimization September 8

Lecture 6: Conic Optimization September 8 IE 598: Big Data Optimization Fall 2016 Lecture 6: Conic Optimization September 8 Lecturer: Niao He Scriber: Juan Xu Overview In this lecture, we finish up our previous discussion on optimality conditions

More information

Advances in Convex Optimization: Theory, Algorithms, and Applications

Advances in Convex Optimization: Theory, Algorithms, and Applications Advances in Convex Optimization: Theory, Algorithms, and Applications Stephen Boyd Electrical Engineering Department Stanford University (joint work with Lieven Vandenberghe, UCLA) ISIT 02 ISIT 02 Lausanne

More information

Lecture Notes on Support Vector Machine

Lecture Notes on Support Vector Machine Lecture Notes on Support Vector Machine Feng Li fli@sdu.edu.cn Shandong University, China 1 Hyperplane and Margin In a n-dimensional space, a hyper plane is defined by ω T x + b = 0 (1) where ω R n is

More information

Handout 8: Dealing with Data Uncertainty

Handout 8: Dealing with Data Uncertainty MFE 5100: Optimization 2015 16 First Term Handout 8: Dealing with Data Uncertainty Instructor: Anthony Man Cho So December 1, 2015 1 Introduction Conic linear programming CLP, and in particular, semidefinite

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 3 A. d Aspremont. Convex Optimization M2. 1/49 Duality A. d Aspremont. Convex Optimization M2. 2/49 DMs DM par email: dm.daspremont@gmail.com A. d Aspremont. Convex Optimization

More information

Support'Vector'Machines. Machine(Learning(Spring(2018 March(5(2018 Kasthuri Kannan

Support'Vector'Machines. Machine(Learning(Spring(2018 March(5(2018 Kasthuri Kannan Support'Vector'Machines Machine(Learning(Spring(2018 March(5(2018 Kasthuri Kannan kasthuri.kannan@nyumc.org Overview Support Vector Machines for Classification Linear Discrimination Nonlinear Discrimination

More information

Second Order Cone Programming, Missing or Uncertain Data, and Sparse SVMs

Second Order Cone Programming, Missing or Uncertain Data, and Sparse SVMs Second Order Cone Programming, Missing or Uncertain Data, and Sparse SVMs Ammon Washburn University of Arizona September 25, 2015 1 / 28 Introduction We will begin with basic Support Vector Machines (SVMs)

More information

Support Vector Machine

Support Vector Machine Support Vector Machine Kernel: Kernel is defined as a function returning the inner product between the images of the two arguments k(x 1, x 2 ) = ϕ(x 1 ), ϕ(x 2 ) k(x 1, x 2 ) = k(x 2, x 1 ) modularity-

More information

Characterizing Robust Solution Sets of Convex Programs under Data Uncertainty

Characterizing Robust Solution Sets of Convex Programs under Data Uncertainty Characterizing Robust Solution Sets of Convex Programs under Data Uncertainty V. Jeyakumar, G. M. Lee and G. Li Communicated by Sándor Zoltán Németh Abstract This paper deals with convex optimization problems

More information

8. Geometric problems

8. Geometric problems 8. Geometric problems Convex Optimization Boyd & Vandenberghe extremal volume ellipsoids centering classification placement and facility location 8 1 Minimum volume ellipsoid around a set Löwner-John ellipsoid

More information

Lecture Note 5: Semidefinite Programming for Stability Analysis

Lecture Note 5: Semidefinite Programming for Stability Analysis ECE7850: Hybrid Systems:Theory and Applications Lecture Note 5: Semidefinite Programming for Stability Analysis Wei Zhang Assistant Professor Department of Electrical and Computer Engineering Ohio State

More information

LMI MODELLING 4. CONVEX LMI MODELLING. Didier HENRION. LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ. Universidad de Valladolid, SP March 2009

LMI MODELLING 4. CONVEX LMI MODELLING. Didier HENRION. LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ. Universidad de Valladolid, SP March 2009 LMI MODELLING 4. CONVEX LMI MODELLING Didier HENRION LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ Universidad de Valladolid, SP March 2009 Minors A minor of a matrix F is the determinant of a submatrix

More information

Perceptron Revisited: Linear Separators. Support Vector Machines

Perceptron Revisited: Linear Separators. Support Vector Machines Support Vector Machines Perceptron Revisited: Linear Separators Binary classification can be viewed as the task of separating classes in feature space: w T x + b > 0 w T x + b = 0 w T x + b < 0 Department

More information

Convex Optimization. (EE227A: UC Berkeley) Lecture 6. Suvrit Sra. (Conic optimization) 07 Feb, 2013

Convex Optimization. (EE227A: UC Berkeley) Lecture 6. Suvrit Sra. (Conic optimization) 07 Feb, 2013 Convex Optimization (EE227A: UC Berkeley) Lecture 6 (Conic optimization) 07 Feb, 2013 Suvrit Sra Organizational Info Quiz coming up on 19th Feb. Project teams by 19th Feb Good if you can mix your research

More information

Support Vector Machines

Support Vector Machines Wien, June, 2010 Paul Hofmarcher, Stefan Theussl, WU Wien Hofmarcher/Theussl SVM 1/21 Linear Separable Separating Hyperplanes Non-Linear Separable Soft-Margin Hyperplanes Hofmarcher/Theussl SVM 2/21 (SVM)

More information

Nonlinear Programming Models

Nonlinear Programming Models Nonlinear Programming Models Fabio Schoen 2008 http://gol.dsi.unifi.it/users/schoen Nonlinear Programming Models p. Introduction Nonlinear Programming Models p. NLP problems minf(x) x S R n Standard form:

More information

ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications

ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications Professor M. Chiang Electrical Engineering Department, Princeton University March

More information

1 Graph Kernels by Spectral Transforms

1 Graph Kernels by Spectral Transforms Graph Kernels by Spectral Transforms Xiaojin Zhu Jaz Kandola John Lafferty Zoubin Ghahramani Many graph-based semi-supervised learning methods can be viewed as imposing smoothness conditions on the target

More information

CSCI 1951-G Optimization Methods in Finance Part 10: Conic Optimization

CSCI 1951-G Optimization Methods in Finance Part 10: Conic Optimization CSCI 1951-G Optimization Methods in Finance Part 10: Conic Optimization April 6, 2018 1 / 34 This material is covered in the textbook, Chapters 9 and 10. Some of the materials are taken from it. Some of

More information

LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE

LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE CONVEX ANALYSIS AND DUALITY Basic concepts of convex analysis Basic concepts of convex optimization Geometric duality framework - MC/MC Constrained optimization

More information

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given.

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given. HW1 solutions Exercise 1 (Some sets of probability distributions.) Let x be a real-valued random variable with Prob(x = a i ) = p i, i = 1,..., n, where a 1 < a 2 < < a n. Of course p R n lies in the standard

More information

Lecture 3 January 28

Lecture 3 January 28 EECS 28B / STAT 24B: Advanced Topics in Statistical LearningSpring 2009 Lecture 3 January 28 Lecturer: Pradeep Ravikumar Scribe: Timothy J. Wheeler Note: These lecture notes are still rough, and have only

More information

Lecture 7: Kernels for Classification and Regression

Lecture 7: Kernels for Classification and Regression Lecture 7: Kernels for Classification and Regression CS 194-10, Fall 2011 Laurent El Ghaoui EECS Department UC Berkeley September 15, 2011 Outline Outline A linear regression problem Linear auto-regressive

More information

5. Duality. Lagrangian

5. Duality. Lagrangian 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

Robust linear optimization under general norms

Robust linear optimization under general norms Operations Research Letters 3 (004) 50 56 Operations Research Letters www.elsevier.com/locate/dsw Robust linear optimization under general norms Dimitris Bertsimas a; ;, Dessislava Pachamanova b, Melvyn

More information

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 17

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 17 EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 17 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory May 29, 2012 Andre Tkacenko

More information

Geometric problems. Chapter Projection on a set. The distance of a point x 0 R n to a closed set C R n, in the norm, is defined as

Geometric problems. Chapter Projection on a set. The distance of a point x 0 R n to a closed set C R n, in the norm, is defined as Chapter 8 Geometric problems 8.1 Projection on a set The distance of a point x 0 R n to a closed set C R n, in the norm, is defined as dist(x 0,C) = inf{ x 0 x x C}. The infimum here is always achieved.

More information

ML (cont.): SUPPORT VECTOR MACHINES

ML (cont.): SUPPORT VECTOR MACHINES ML (cont.): SUPPORT VECTOR MACHINES CS540 Bryan R Gibson University of Wisconsin-Madison Slides adapted from those used by Prof. Jerry Zhu, CS540-1 1 / 40 Support Vector Machines (SVMs) The No-Math Version

More information

EE613 Machine Learning for Engineers. Kernel methods Support Vector Machines. jean-marc odobez 2015

EE613 Machine Learning for Engineers. Kernel methods Support Vector Machines. jean-marc odobez 2015 EE613 Machine Learning for Engineers Kernel methods Support Vector Machines jean-marc odobez 2015 overview Kernel methods introductions and main elements defining kernels Kernelization of k-nn, K-Means,

More information

15. Conic optimization

15. Conic optimization L. Vandenberghe EE236C (Spring 216) 15. Conic optimization conic linear program examples modeling duality 15-1 Generalized (conic) inequalities Conic inequality: a constraint x K where K is a convex cone

More information

Max-Margin Ratio Machine

Max-Margin Ratio Machine JMLR: Workshop and Conference Proceedings 25:1 13, 2012 Asian Conference on Machine Learning Max-Margin Ratio Machine Suicheng Gu and Yuhong Guo Department of Computer and Information Sciences Temple University,

More information

NEW ROBUST UNSUPERVISED SUPPORT VECTOR MACHINES

NEW ROBUST UNSUPERVISED SUPPORT VECTOR MACHINES J Syst Sci Complex () 24: 466 476 NEW ROBUST UNSUPERVISED SUPPORT VECTOR MACHINES Kun ZHAO Mingyu ZHANG Naiyang DENG DOI:.7/s424--82-8 Received: March 8 / Revised: 5 February 9 c The Editorial Office of

More information

Modeling Dependence of Daily Stock Prices and Making Predictions of Future Movements

Modeling Dependence of Daily Stock Prices and Making Predictions of Future Movements Modeling Dependence of Daily Stock Prices and Making Predictions of Future Movements Taavi Tamkivi, prof Tõnu Kollo Institute of Mathematical Statistics University of Tartu 29. June 2007 Taavi Tamkivi,

More information

Lecture 10: A brief introduction to Support Vector Machine

Lecture 10: A brief introduction to Support Vector Machine Lecture 10: A brief introduction to Support Vector Machine Advanced Applied Multivariate Analysis STAT 2221, Fall 2013 Sungkyu Jung Department of Statistics, University of Pittsburgh Xingye Qiao Department

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Reading: Ben-Hur & Weston, A User s Guide to Support Vector Machines (linked from class web page) Notation Assume a binary classification problem. Instances are represented by vector

More information

CS798: Selected topics in Machine Learning

CS798: Selected topics in Machine Learning CS798: Selected topics in Machine Learning Support Vector Machine Jakramate Bootkrajang Department of Computer Science Chiang Mai University Jakramate Bootkrajang CS798: Selected topics in Machine Learning

More information

Robustness and Regularization: An Optimization Perspective

Robustness and Regularization: An Optimization Perspective Robustness and Regularization: An Optimization Perspective Laurent El Ghaoui (EECS/IEOR, UC Berkeley) with help from Brian Gawalt, Onureena Banerjee Neyman Seminar, Statistics Department, UC Berkeley September

More information

Lecture 8. Strong Duality Results. September 22, 2008

Lecture 8. Strong Duality Results. September 22, 2008 Strong Duality Results September 22, 2008 Outline Lecture 8 Slater Condition and its Variations Convex Objective with Linear Inequality Constraints Quadratic Objective over Quadratic Constraints Representation

More information

Chapter 9. Support Vector Machine. Yongdai Kim Seoul National University

Chapter 9. Support Vector Machine. Yongdai Kim Seoul National University Chapter 9. Support Vector Machine Yongdai Kim Seoul National University 1. Introduction Support Vector Machine (SVM) is a classification method developed by Vapnik (1996). It is thought that SVM improved

More information

Sparse Covariance Selection using Semidefinite Programming

Sparse Covariance Selection using Semidefinite Programming Sparse Covariance Selection using Semidefinite Programming A. d Aspremont ORFE, Princeton University Joint work with O. Banerjee, L. El Ghaoui & G. Natsoulis, U.C. Berkeley & Iconix Pharmaceuticals Support

More information

Linear vs Non-linear classifier. CS789: Machine Learning and Neural Network. Introduction

Linear vs Non-linear classifier. CS789: Machine Learning and Neural Network. Introduction Linear vs Non-linear classifier CS789: Machine Learning and Neural Network Support Vector Machine Jakramate Bootkrajang Department of Computer Science Chiang Mai University Linear classifier is in the

More information

Introduction to Support Vector Machines

Introduction to Support Vector Machines Introduction to Support Vector Machines Hsuan-Tien Lin Learning Systems Group, California Institute of Technology Talk in NTU EE/CS Speech Lab, November 16, 2005 H.-T. Lin (Learning Systems Group) Introduction

More information

Machine Learning. Support Vector Machines. Fabio Vandin November 20, 2017

Machine Learning. Support Vector Machines. Fabio Vandin November 20, 2017 Machine Learning Support Vector Machines Fabio Vandin November 20, 2017 1 Classification and Margin Consider a classification problem with two classes: instance set X = R d label set Y = { 1, 1}. Training

More information

COURSE ON LMI PART I.2 GEOMETRY OF LMI SETS. Didier HENRION henrion

COURSE ON LMI PART I.2 GEOMETRY OF LMI SETS. Didier HENRION   henrion COURSE ON LMI PART I.2 GEOMETRY OF LMI SETS Didier HENRION www.laas.fr/ henrion October 2006 Geometry of LMI sets Given symmetric matrices F i we want to characterize the shape in R n of the LMI set F

More information

Lecture 18: Optimization Programming

Lecture 18: Optimization Programming Fall, 2016 Outline Unconstrained Optimization 1 Unconstrained Optimization 2 Equality-constrained Optimization Inequality-constrained Optimization Mixture-constrained Optimization 3 Quadratic Programming

More information

Advanced Topics in Machine Learning, Summer Semester 2012

Advanced Topics in Machine Learning, Summer Semester 2012 Math. - Naturwiss. Fakultät Fachbereich Informatik Kognitive Systeme. Prof. A. Zell Advanced Topics in Machine Learning, Summer Semester 2012 Assignment 3 Aufgabe 1 Lagrangian Methods [20 Points] Handed

More information

CS-E4830 Kernel Methods in Machine Learning

CS-E4830 Kernel Methods in Machine Learning CS-E4830 Kernel Methods in Machine Learning Lecture 3: Convex optimization and duality Juho Rousu 27. September, 2017 Juho Rousu 27. September, 2017 1 / 45 Convex optimization Convex optimisation This

More information

Indirect Rule Learning: Support Vector Machines. Donglin Zeng, Department of Biostatistics, University of North Carolina

Indirect Rule Learning: Support Vector Machines. Donglin Zeng, Department of Biostatistics, University of North Carolina Indirect Rule Learning: Support Vector Machines Indirect learning: loss optimization It doesn t estimate the prediction rule f (x) directly, since most loss functions do not have explicit optimizers. Indirection

More information

Support Vector Machines for Classification and Regression

Support Vector Machines for Classification and Regression CIS 520: Machine Learning Oct 04, 207 Support Vector Machines for Classification and Regression Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may

More information

Kernel Machines. Pradeep Ravikumar Co-instructor: Manuela Veloso. Machine Learning

Kernel Machines. Pradeep Ravikumar Co-instructor: Manuela Veloso. Machine Learning Kernel Machines Pradeep Ravikumar Co-instructor: Manuela Veloso Machine Learning 10-701 SVM linearly separable case n training points (x 1,, x n ) d features x j is a d-dimensional vector Primal problem:

More information

A direct formulation for sparse PCA using semidefinite programming

A direct formulation for sparse PCA using semidefinite programming A direct formulation for sparse PCA using semidefinite programming A. d Aspremont, L. El Ghaoui, M. Jordan, G. Lanckriet ORFE, Princeton University & EECS, U.C. Berkeley Available online at www.princeton.edu/~aspremon

More information

LECTURE 13 LECTURE OUTLINE

LECTURE 13 LECTURE OUTLINE LECTURE 13 LECTURE OUTLINE Problem Structures Separable problems Integer/discrete problems Branch-and-bound Large sum problems Problems with many constraints Conic Programming Second Order Cone Programming

More information

Interior-point methods Optimization Geoff Gordon Ryan Tibshirani

Interior-point methods Optimization Geoff Gordon Ryan Tibshirani Interior-point methods 10-725 Optimization Geoff Gordon Ryan Tibshirani SVM duality Review min v T v/2 + 1 T s s.t. Av yd + s 1! 0 s! 0 max 1 T α α T Kα/2 s.t. y T α = 0 0 " α " 1 Gram matrix K Interpretation

More information

Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines

Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Fall 2018 CS 551, Fall

More information

Support Vector Machines, Kernel SVM

Support Vector Machines, Kernel SVM Support Vector Machines, Kernel SVM Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 27, 2017 1 / 40 Outline 1 Administration 2 Review of last lecture 3 SVM

More information

Learning Kernels -Tutorial Part III: Theoretical Guarantees.

Learning Kernels -Tutorial Part III: Theoretical Guarantees. Learning Kernels -Tutorial Part III: Theoretical Guarantees. Corinna Cortes Google Research corinna@google.com Mehryar Mohri Courant Institute & Google Research mohri@cims.nyu.edu Afshin Rostami UC Berkeley

More information

Kernels and the Kernel Trick. Machine Learning Fall 2017

Kernels and the Kernel Trick. Machine Learning Fall 2017 Kernels and the Kernel Trick Machine Learning Fall 2017 1 Support vector machines Training by maximizing margin The SVM objective Solving the SVM optimization problem Support vectors, duals and kernels

More information

Machine Learning And Applications: Supervised Learning-SVM

Machine Learning And Applications: Supervised Learning-SVM Machine Learning And Applications: Supervised Learning-SVM Raphaël Bournhonesque École Normale Supérieure de Lyon, Lyon, France raphael.bournhonesque@ens-lyon.fr 1 Supervised vs unsupervised learning Machine

More information

Learning SVM Classifiers with Indefinite Kernels

Learning SVM Classifiers with Indefinite Kernels Learning SVM Classifiers with Indefinite Kernels Suicheng Gu and Yuhong Guo Dept. of Computer and Information Sciences Temple University Support Vector Machines (SVMs) (Kernel) SVMs are widely used in

More information