Metastability for the Ising model on a random graph

Size: px
Start display at page:

Download "Metastability for the Ising model on a random graph"

Transcription

1 Metastability for the Ising model on a random graph Joint project with Sander Dommers, Frank den Hollander, Francesca Nardi

2 Outline A little about metastability Some key questions A little about the, and the Configuration model random graph Significance of low temperature limit The communication height and some of its properties

3 Concept of metastability We observe (Markovian) dynamics on some state space Ω with energy function H that has a global minimum s and or more local minima m. Dynamics started at m may appear to be in equilibrium, prevented from moving far due to a

4 Concept of metastability We observe (Markovian) dynamics on some state space Ω with energy function H that has a global minimum s and or more local minima m. Dynamics started at m may appear to be in equilibrium, prevented from moving far due to a potential barrier.

5 m and s s is a stable state (trivially unique in our model).

6 m and s s is a stable state (trivially unique in our model). m is a metastable state if no other state has a greater potential barrier between itself and configurations of lower energy (along best path). V (m) V (q)

7 Main questions What can we say about the crossover time In particular, m s?

8 Main questions What can we say about the crossover time m s? In particular, what is the average crossover time E m [τ s ]?

9 Main questions What can we say about the crossover time m s? In particular, what is the average crossover time E m [τ s ]? how does it vary with Ω?

10 Main questions What can we say about the crossover time m s? In particular, what is the average crossover time E m [τ s ]? how does it vary with Ω? what kind of configurations does the dynamics see near the top? We investigate these in the low temperature setting β (this is a parameter of the model).

11 Let G = (V, E) be a multi-graph.

12 Let G = (V, E) be a multi-graph. Configuration (state) space : Ω = {+1, 1} V is the set of +1/ 1 configurations on G.

13 Let G = (V, E) be a multi-graph. Configuration (state) space : Ω = {+1, 1} V is the set of +1/ 1 configurations on G. Hamiltonian on configuration space: for ω Ω, H (ω) = J 2 with J > 0 and h > 0. <u,v> E ω (v) ω (u) h ω (v) 2 v V

14 Let G = (V, E) be a multi-graph. Configuration (state) space : Ω = {+1, 1} V is the set of +1/ 1 configurations on G. Hamiltonian on configuration space: for ω Ω, H (ω) = J 2 with J > 0 and h > 0. Gibbs measure on Ω <u,v> E ω (v) ω (u) h ω (v) 2 µ β (ω) = 1 Z β exp { βh (ω)} v V Assigns exponential preference to configurations with low energy.

15 Configuration model random graph A family of random graphs that are of particular interest to us, are based on the Configuration model. This begins with a given set of vertices {v 1,..., v n }, and a prescribed degree sequence d = (d 1,..., d n ).

16 Configuration model random graph A family of random graphs that are of particular interest to us, are based on the Configuration model. This begins with a given set of vertices {v 1,..., v n }, and a prescribed degree sequence d = (d 1,..., d n ). E.g. for the example below, d = (4, 4, 3, 4, 4, 3)

17 Configuration model random graph A family of random graphs that are of particular interest to us, are based on the Configuration model. This begins with a given set of vertices {v 1,..., v n }, and a prescribed degree sequence d = (d 1,..., d n ). E.g. for the example below, d = (4, 4, 3, 4, 4, 3)

18 Configuration model random graph A family of random graphs that are of particular interest to us, are based on the Configuration model. This begins with a given set of vertices {v 1,..., v n }, and a prescribed degree sequence d = (d 1,..., d n ). E.g. for the example below, d = (4, 4, 3, 4, 4, 3)

19 Configuration model random graph A family of random graphs that are of particular interest to us, are based on the Configuration model. This begins with a given set of vertices {v 1,..., v n }, and a prescribed degree sequence d = (d 1,..., d n ). E.g. for the example below, d = (4, 4, 3, 4, 4, 3)

20 Configuration model random graph A family of random graphs that are of particular interest to us, are based on the Configuration model. This begins with a given set of vertices {v 1,..., v n }, and a prescribed degree sequence d = (d 1,..., d n ). E.g. for the example below, d = (4, 4, 3, 4, 4, 3)

21 Configuration model random graph A family of random graphs that are of particular interest to us, are based on the Configuration model. This begins with a given set of vertices {v 1,..., v n }, and a prescribed degree sequence d = (d 1,..., d n ). E.g. for the example below, d = (4, 4, 3, 4, 4, 3)

22 Glauber Dynamics, significance of β Dynamics on configuration space: continuous-time Glauber dynamics with transition rates {exp ( ) β [H (ω ) H (ω)] c β (ω, ω ) = + if ω ω 0 otherwise where ω ω iff ω and ω differ at exactly one vertex.

23 Glauber Dynamics, significance of β Dynamics on configuration space: continuous-time Glauber dynamics with transition rates {exp ( ) β [H (ω ) H (ω)] c β (ω, ω ) = + if ω ω 0 otherwise where ω ω iff ω and ω differ at exactly one vertex. Note that up moves become exponentially expensive.

24 Glauber Dynamics, significance of β Dynamics on configuration space: continuous-time Glauber dynamics with transition rates {exp ( ) β [H (ω ) H (ω)] c β (ω, ω ) = + if ω ω 0 otherwise where ω ω iff ω and ω differ at exactly one vertex. Note that up moves become exponentially expensive. Bounds on R eff (effective resistance) show that w.h.p. dynamics avoid unnecessarily expensive configurations when going from m s, and will take an optimal path (see for example Metastability - A. Bovier, F. den Hollander).

25 Communication Height The communication height between m and s on G is Γ := Φ (m, s) H (m) = min max γ:m s σ γ H (σ) H (m) - represents the lowest barrier between m and s which the dynamics must overcome. - paths γ that correspond to the minimum are called optimal paths.

26 Communication Height For example, for the previous graph we have the following optimal path for suitable values of J and h (note: easy to show here that m = and s = )

27 Communication Height For example, for the previous graph we have the following optimal path for suitable values of J and h (note: easy to show here that m = and s = )

28 Communication Height For example, for the previous graph we have the following optimal path for suitable values of J and h (note: easy to show here that m = and s = )

29 Communication Height For example, for the previous graph we have the following optimal path for suitable values of J and h (note: easy to show here that m = and s = )

30 Communication Height For example, for the previous graph we have the following optimal path for suitable values of J and h (note: easy to show here that m = and s = )

31 Communication Height For example, for the previous graph we have the following optimal path for suitable values of J and h (note: easy to show here that m = and s = )

32 Communication Height For example, for the previous graph we have the following optimal path for suitable values of J and h (note: easy to show here that m = and s = )

33 Significance of Γ How is Γ related to the crossover time m s? It follows from standard universal metastability theorems that lim exp β ( βγ ) E [τ ] = K Furthermore, in T 2 Z 2 the pre-factor K is related to C, where C := Configurations on optimal paths where height Γ is first seen. We expect that a similar relation holds for our model.

34 Some properties of Γ When min i d i 3, the resulting Configuration model is an expander graph. Therefore Γ = Θ (n), with n = V (under some assumptions on the distribution of d).

35 Some properties of Γ When min i d i 3, the resulting Configuration model is an expander graph. Therefore Γ = Θ (n), with n = V (under some assumptions on the distribution of d). Upper bound on Γ : by a coupling argument, we can show that Γ l n /4 where l n is the total degree of the graph. We would like to make this sharper.

36 Some properties of Γ We also expect that Γ n n C for some constant C depending on the parameters of the model, when d is regular, and possibly also for d i i.i.d. under some constraints.

37 Some properties of Γ We also expect that Γ n n C for some constant C depending on the parameters of the model, when d is regular, and possibly also for d i i.i.d. under some constraints. To this avail, we can show that if A V is a random set/configuration of total degree l A, then ( A L2 l A 1 l ) A 1 d d 1

38 Some properties of Γ A d ( L2 l A 1 l ) A 1 d 1 We need to show that this holds not only for random sets, but also for extremal.

39 Some properties of Γ A d ( L2 l A 1 l ) A 1 d 1 We need to show that this holds not only for random sets, but also for extremal.

40 back to m and s But what are m and s? It is easy to see that s =, i.e. the configuration with +1 assigned at every vertex. It is also easy to see that is a local minimum (for non-degenerate values of J and h). Showing that m = and nothing else (in the case when degree sequence satisfies d i 3) is difficult.

41 Conclusion There are many unforeseen challenges when assigning the Ising model to a random graph. Global properties of the random graph model play a key role. Precise descriptions of Γ, C exist in lattice setting, but may be too difficult for random graphs. But good estimates should be attainable.

Metastability for continuum interacting particle systems

Metastability for continuum interacting particle systems Metastability for continuum interacting particle systems Sabine Jansen Ruhr-Universität Bochum joint work with Frank den Hollander (Leiden University) Sixth Workshop on Random Dynamical Systems Bielefeld,

More information

Metastability for the Ginzburg Landau equation with space time white noise

Metastability for the Ginzburg Landau equation with space time white noise Barbara Gentz gentz@math.uni-bielefeld.de http://www.math.uni-bielefeld.de/ gentz Metastability for the Ginzburg Landau equation with space time white noise Barbara Gentz University of Bielefeld, Germany

More information

Three lectures on metastability under stochastic dynamics

Three lectures on metastability under stochastic dynamics Three lectures on metastability under stochastic dynamics Frank den Hollander 12 1 Mathematical Institute Leiden University P.O. Box 9512 2300 RA Leiden The Netherlands denholla@math.leidenuniv.nl 2 EURANDOM

More information

7.4* General logarithmic and exponential functions

7.4* General logarithmic and exponential functions 7.4* General logarithmic and exponential functions Mark Woodard Furman U Fall 2010 Mark Woodard (Furman U) 7.4* General logarithmic and exponential functions Fall 2010 1 / 9 Outline 1 General exponential

More information

Glauber Dynamics for Ising Model I AMS Short Course

Glauber Dynamics for Ising Model I AMS Short Course Glauber Dynamics for Ising Model I AMS Short Course January 2010 Ising model Let G n = (V n, E n ) be a graph with N = V n < vertices. The nearest-neighbor Ising model on G n is the probability distribution

More information

Metastability for interacting particle systems

Metastability for interacting particle systems Metastability for interacting particle systems Frank den Hollander Leiden University, The Netherlands Minerva Lectures, Columbia University, New York, 28 September - 2 October 2015 Lecture 1 Introduction:

More information

Hard-Core Model on Random Graphs

Hard-Core Model on Random Graphs Hard-Core Model on Random Graphs Antar Bandyopadhyay Theoretical Statistics and Mathematics Unit Seminar Theoretical Statistics and Mathematics Unit Indian Statistical Institute, New Delhi Centre New Delhi,

More information

7.1 Coupling from the Past

7.1 Coupling from the Past Georgia Tech Fall 2006 Markov Chain Monte Carlo Methods Lecture 7: September 12, 2006 Coupling from the Past Eric Vigoda 7.1 Coupling from the Past 7.1.1 Introduction We saw in the last lecture how Markov

More information

Metastability for reversible probabilistic cellular automata with self interaction

Metastability for reversible probabilistic cellular automata with self interaction Metastability for reversible probabilistic cellular automata with self interaction Emilio N.M. Cirillo 1 Francesca R. Nardi 2,4 Cristian Spitoni 3,4 1 Dipartimento Me. Mo. Mat., Università di Roma La Sapienza

More information

arxiv: v1 [math.pr] 31 Aug 2015

arxiv: v1 [math.pr] 31 Aug 2015 METASTABILITY FOR THE ISING MODEL ON THE HYPERCUBE OLIVER JOVANOVSKI arxiv:1508.07769v1 [math.pr] 31 Aug 2015 Abstract. We consider Glauber dynamics for the low-temperature, ferromagnetic Ising Model set

More information

On Markov Chain Monte Carlo

On Markov Chain Monte Carlo MCMC 0 On Markov Chain Monte Carlo Yevgeniy Kovchegov Oregon State University MCMC 1 Metropolis-Hastings algorithm. Goal: simulating an Ω-valued random variable distributed according to a given probability

More information

Antiferromagnetic Potts models and random colorings

Antiferromagnetic Potts models and random colorings Antiferromagnetic Potts models and random colorings of planar graphs. joint with A.D. Sokal (New York) and R. Kotecký (Prague) October 9, 0 Gibbs measures Let G = (V, E) be a finite graph and let S be

More information

The condensation phase transition in random graph coloring

The condensation phase transition in random graph coloring The condensation phase transition in random graph coloring Victor Bapst Goethe University, Frankfurt Joint work with Amin Coja-Oghlan, Samuel Hetterich, Felicia Rassmann and Dan Vilenchik arxiv:1404.5513

More information

Lecture 19: November 10

Lecture 19: November 10 CS294 Markov Chain Monte Carlo: Foundations & Applications Fall 2009 Lecture 19: November 10 Lecturer: Prof. Alistair Sinclair Scribes: Kevin Dick and Tanya Gordeeva Disclaimer: These notes have not been

More information

Oberwolfach workshop on Combinatorics and Probability

Oberwolfach workshop on Combinatorics and Probability Apr 2009 Oberwolfach workshop on Combinatorics and Probability 1 Describes a sharp transition in the convergence of finite ergodic Markov chains to stationarity. Steady convergence it takes a while to

More information

Stein s Method for concentration inequalities

Stein s Method for concentration inequalities Number of Triangles in Erdős-Rényi random graph, UC Berkeley joint work with Sourav Chatterjee, UC Berkeley Cornell Probability Summer School July 7, 2009 Number of triangles in Erdős-Rényi random graph

More information

Sharp asymptotics for Kawasaki dynamics on a finite box with open boundary

Sharp asymptotics for Kawasaki dynamics on a finite box with open boundary Probab. Theory Relat. Fields 135, 265 310 (2006) Digital Object Identifier (DOI) 10.1007/s00440-005-0460-5 A. Bovier F. den Hollander F.R. Nardi Sharp asymptotics for Kawasaki dynamics on a finite box

More information

Spontaneous Symmetry Breaking

Spontaneous Symmetry Breaking Spontaneous Symmetry Breaking Second order phase transitions are generally associated with spontaneous symmetry breaking associated with an appropriate order parameter. Identifying symmetry of the order

More information

Random geometric analysis of the 2d Ising model

Random geometric analysis of the 2d Ising model Random geometric analysis of the 2d Ising model Hans-Otto Georgii Bologna, February 2001 Plan: Foundations 1. Gibbs measures 2. Stochastic order 3. Percolation The Ising model 4. Random clusters and phase

More information

Layering in the SOS Model Without External Fields

Layering in the SOS Model Without External Fields Layering in the SOS Model Without External Fields Ken Alexander Univ. of Southern California Coauthors: François Dunlop (Université de Cergy-Pontoise) Salvador Miracle-Solé (CPT, Marseille) March 2011

More information

Where Probability Meets Combinatorics and Statistical Mechanics

Where Probability Meets Combinatorics and Statistical Mechanics Where Probability Meets Combinatorics and Statistical Mechanics Daniel Ueltschi Department of Mathematics, University of Warwick MASDOC, 15 March 2011 Collaboration with V. Betz, N.M. Ercolani, C. Goldschmidt,

More information

Gibbs Sampling in Linear Models #2

Gibbs Sampling in Linear Models #2 Gibbs Sampling in Linear Models #2 Econ 690 Purdue University Outline 1 Linear Regression Model with a Changepoint Example with Temperature Data 2 The Seemingly Unrelated Regressions Model 3 Gibbs sampling

More information

Exam TFY4230 Statistical Physics kl Wednesday 01. June 2016

Exam TFY4230 Statistical Physics kl Wednesday 01. June 2016 TFY423 1. June 216 Side 1 av 5 Exam TFY423 Statistical Physics l 9. - 13. Wednesday 1. June 216 Problem 1. Ising ring (Points: 1+1+1 = 3) A system of Ising spins σ i = ±1 on a ring with periodic boundary

More information

MIXING TIMES OF RANDOM WALKS ON DYNAMIC CONFIGURATION MODELS

MIXING TIMES OF RANDOM WALKS ON DYNAMIC CONFIGURATION MODELS MIXING TIMES OF RANDOM WALKS ON DYNAMIC CONFIGURATION MODELS Frank den Hollander Leiden University, The Netherlands New Results and Challenges with RWDRE, 11 13 January 2017, Heilbronn Institute for Mathematical

More information

Periodicity & State Transfer Some Results Some Questions. Periodic Graphs. Chris Godsil. St John s, June 7, Chris Godsil Periodic Graphs

Periodicity & State Transfer Some Results Some Questions. Periodic Graphs. Chris Godsil. St John s, June 7, Chris Godsil Periodic Graphs St John s, June 7, 2009 Outline 1 Periodicity & State Transfer 2 Some Results 3 Some Questions Unitary Operators Suppose X is a graph with adjacency matrix A. Definition We define the operator H X (t)

More information

SPIN SYSTEMS: HARDNESS OF APPROXIMATE COUNTING VIA PHASE TRANSITIONS

SPIN SYSTEMS: HARDNESS OF APPROXIMATE COUNTING VIA PHASE TRANSITIONS SPIN SYSTEMS: HARDNESS OF APPROXIMATE COUNTING VIA PHASE TRANSITIONS Andreas Galanis Joint work with: Jin-Yi Cai Leslie Ann Goldberg Heng Guo Mark Jerrum Daniel Štefankovič Eric Vigoda The Power of Randomness

More information

Path Coupling and Aggregate Path Coupling

Path Coupling and Aggregate Path Coupling Path Coupling and Aggregate Path Coupling 0 Path Coupling and Aggregate Path Coupling Yevgeniy Kovchegov Oregon State University (joint work with Peter T. Otto from Willamette University) Path Coupling

More information

Equilibrium, out of equilibrium and consequences

Equilibrium, out of equilibrium and consequences Equilibrium, out of equilibrium and consequences Katarzyna Sznajd-Weron Institute of Physics Wroc law University of Technology, Poland SF-MTPT Katarzyna Sznajd-Weron (WUT) Equilibrium, out of equilibrium

More information

The glass transition as a spin glass problem

The glass transition as a spin glass problem The glass transition as a spin glass problem Mike Moore School of Physics and Astronomy, University of Manchester UBC 2007 Co-Authors: Joonhyun Yeo, Konkuk University Marco Tarzia, Saclay Mike Moore (Manchester)

More information

Conditional Distributions

Conditional Distributions Conditional Distributions The goal is to provide a general definition of the conditional distribution of Y given X, when (X, Y ) are jointly distributed. Let F be a distribution function on R. Let G(,

More information

MONOTONE COUPLING AND THE ISING MODEL

MONOTONE COUPLING AND THE ISING MODEL MONOTONE COUPLING AND THE ISING MODEL 1. PERFECT MATCHING IN BIPARTITE GRAPHS Definition 1. A bipartite graph is a graph G = (V, E) whose vertex set V can be partitioned into two disjoint set V I, V O

More information

Quantum Many Body Systems and Tensor Networks

Quantum Many Body Systems and Tensor Networks Quantum Many Body Systems and Tensor Networks Aditya Jain International Institute of Information Technology, Hyderabad aditya.jain@research.iiit.ac.in July 30, 2015 Aditya Jain (IIIT-H) Quantum Hamiltonian

More information

Practice Final Solutions. 1. Consider the following algorithm. Assume that n 1. line code 1 alg(n) { 2 j = 0 3 if (n = 0) { 4 return j

Practice Final Solutions. 1. Consider the following algorithm. Assume that n 1. line code 1 alg(n) { 2 j = 0 3 if (n = 0) { 4 return j Practice Final Solutions 1. Consider the following algorithm. Assume that n 1. line code 1 alg(n) 2 j = 0 3 if (n = 0) 4 return j } 5 else 6 j = 2n+ alg(n 1) 7 return j } } Set up a recurrence relation

More information

Decay of correlations in 2d quantum systems

Decay of correlations in 2d quantum systems Decay of correlations in 2d quantum systems Costanza Benassi University of Warwick Quantissima in the Serenissima II, 25th August 2017 Costanza Benassi (University of Warwick) Decay of correlations in

More information

What can be sampled locally?

What can be sampled locally? What can be sampled locally? Yitong Yin Nanjing University Joint work with: Weiming Feng, Yuxin Sun Local Computation Locality in distributed graph algorithms. [Linial, FOCS 87, SICOMP 92] the LOCAL model:

More information

Simons Workshop on Approximate Counting, Markov Chains and Phase Transitions: Open Problem Session

Simons Workshop on Approximate Counting, Markov Chains and Phase Transitions: Open Problem Session Simons Workshop on Approximate Counting, Markov Chains and Phase Transitions: Open Problem Session Scribes: Antonio Blanca, Sarah Cannon, Yumeng Zhang February 4th, 06 Yuval Peres: Simple Random Walk on

More information

Homework 5 Solutions

Homework 5 Solutions Homework 5 Solutions Eliot Kapit (from past year solutions by Shivam Ghosh and Ravishankar Sundararaman) March 6, 2012 Ex. 2.4.4 Localization Length for a Low-Resistance Wire (a) To find the mean free

More information

CUTOFF FOR GENERAL SPIN SYSTEMS WITH ARBITRARY BOUNDARY CONDITIONS

CUTOFF FOR GENERAL SPIN SYSTEMS WITH ARBITRARY BOUNDARY CONDITIONS CUTOFF FOR GENERAL SPIN SYSTEMS WITH ARBITRARY BOUNDARY CONDITIONS EYAL LUBETZKY AND ALLAN SLY Abstract. The cutoff phenomenon describes a sharp transition in the convergence of a Markov chain to equilibrium.

More information

5.3 METABOLIC NETWORKS 193. P (x i P a (x i )) (5.30) i=1

5.3 METABOLIC NETWORKS 193. P (x i P a (x i )) (5.30) i=1 5.3 METABOLIC NETWORKS 193 5.3 Metabolic Networks 5.4 Bayesian Networks Let G = (V, E) be a directed acyclic graph. We assume that the vertices i V (1 i n) represent for example genes and correspond to

More information

Corrections. ir j r mod n 2 ). (i r j r ) mod n should be d. p. 83, l. 2 [p. 80, l. 5]: d. p. 92, l. 1 [p. 87, l. 2]: Λ Z d should be Λ Z d.

Corrections. ir j r mod n 2 ). (i r j r ) mod n should be d. p. 83, l. 2 [p. 80, l. 5]: d. p. 92, l. 1 [p. 87, l. 2]: Λ Z d should be Λ Z d. Corrections We list here typos and errors that have been found in the published version of the book. We welcome any additional corrections you may find! We indicate page and line numbers for the published

More information

Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY , USA. Florida State University, Tallahassee, Florida , USA

Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY , USA. Florida State University, Tallahassee, Florida , USA 5 Dynamic Phase Diagram for a Periodically Driven Kinetic Square-lattice Ising Ferromagnet: Finite-size Scaling Evidence for the Absence of a Tri-critical Point G. Korniss 1, P.A. Rikvold 2,3, and M.A.

More information

Physics Qual - Statistical Mechanics ( Fall 2016) I. Describe what is meant by: (a) A quasi-static process (b) The second law of thermodynamics (c) A throttling process and the function that is conserved

More information

High dimensional ising model selection using l 1 -regularized logistic regression

High dimensional ising model selection using l 1 -regularized logistic regression High dimensional ising model selection using l 1 -regularized logistic regression 1 Department of Statistics Pennsylvania State University 597 Presentation 2016 1/29 Outline Introduction 1 Introduction

More information

The Ihara zeta function of the infinite grid

The Ihara zeta function of the infinite grid The Ihara zeta function of the infinite grid Bryan Clair Department of Mathematics and Computer Science Saint Louis University bryan@slu.edu November 3, 2013 An Integral I(k) = 1 2π 2π (2π) 2 log [ 1 k

More information

6 Markov Chain Monte Carlo (MCMC)

6 Markov Chain Monte Carlo (MCMC) 6 Markov Chain Monte Carlo (MCMC) The underlying idea in MCMC is to replace the iid samples of basic MC methods, with dependent samples from an ergodic Markov chain, whose limiting (stationary) distribution

More information

Non-equilibrium dynamics of Kinetically Constrained Models. Paul Chleboun 20/07/2015 SMFP - Heraclion

Non-equilibrium dynamics of Kinetically Constrained Models. Paul Chleboun 20/07/2015 SMFP - Heraclion Non-equilibrium dynamics of Kinetically Constrained Models Paul Chleboun 20/07/2015 SMFP - Heraclion 1 Outline Kinetically constrained models (KCM)» Motivation» Definition Results» In one dimension There

More information

Vertex Identifying Code in Infinite Hexagonal Grid

Vertex Identifying Code in Infinite Hexagonal Grid Gexin Yu gyu@wm.edu College of William and Mary Joint work with Ari Cukierman Definitions and Motivation Goal: put sensors in a network to detect which machine failed Definitions and Motivation Goal: put

More information

Topic 1: a paper The asymmetric one-dimensional constrained Ising model by David Aldous and Persi Diaconis. J. Statistical Physics 2002.

Topic 1: a paper The asymmetric one-dimensional constrained Ising model by David Aldous and Persi Diaconis. J. Statistical Physics 2002. Topic 1: a paper The asymmetric one-dimensional constrained Ising model by David Aldous and Persi Diaconis. J. Statistical Physics 2002. Topic 2: my speculation on use of constrained Ising as algorithm

More information

2 The Curie Weiss Model

2 The Curie Weiss Model 2 The Curie Weiss Model In statistical mechanics, a mean-field approximation is often used to approximate a model by a simpler one, whose global behavior can be studied with the help of explicit computations.

More information

Stein s Method: Distributional Approximation and Concentration of Measure

Stein s Method: Distributional Approximation and Concentration of Measure Stein s Method: Distributional Approximation and Concentration of Measure Larry Goldstein University of Southern California 36 th Midwest Probability Colloquium, 2014 Concentration of Measure Distributional

More information

Solutions For Stochastic Process Final Exam

Solutions For Stochastic Process Final Exam Solutions For Stochastic Process Final Exam (a) λ BMW = 20 0% = 2 X BMW Poisson(2) Let N t be the number of BMWs which have passes during [0, t] Then the probability in question is P (N ) = P (N = 0) =

More information

arxiv: v2 [math.pr] 22 Oct 2018

arxiv: v2 [math.pr] 22 Oct 2018 Breaking of ensemble equivalence for perturbed Erdős-Rényi random graphs arxiv:807.07750v [math.pr] Oct 08 F. den Hollander M. Mandjes A. Roccaverde 3 N.J. Starreveld 4 October 3, 08 Abstract In a previous

More information

Topological Graph Theory Lecture 4: Circle packing representations

Topological Graph Theory Lecture 4: Circle packing representations Topological Graph Theory Lecture 4: Circle packing representations Notes taken by Andrej Vodopivec Burnaby, 2006 Summary: A circle packing of a plane graph G is a set of circles {C v v V (G)} in R 2 such

More information

Generalized Exponential Random Graph Models: Inference for Weighted Graphs

Generalized Exponential Random Graph Models: Inference for Weighted Graphs Generalized Exponential Random Graph Models: Inference for Weighted Graphs James D. Wilson University of North Carolina at Chapel Hill June 18th, 2015 Political Networks, 2015 James D. Wilson GERGMs for

More information

CONSTRAINED PERCOLATION ON Z 2

CONSTRAINED PERCOLATION ON Z 2 CONSTRAINED PERCOLATION ON Z 2 ZHONGYANG LI Abstract. We study a constrained percolation process on Z 2, and prove the almost sure nonexistence of infinite clusters and contours for a large class of probability

More information

MFM Practitioner Module: Quantitiative Risk Management. John Dodson. October 14, 2015

MFM Practitioner Module: Quantitiative Risk Management. John Dodson. October 14, 2015 MFM Practitioner Module: Quantitiative Risk Management October 14, 2015 The n-block maxima 1 is a random variable defined as M n max (X 1,..., X n ) for i.i.d. random variables X i with distribution function

More information

Holomorphic symplectic fermions

Holomorphic symplectic fermions Holomorphic symplectic fermions Ingo Runkel Hamburg University joint with Alexei Davydov Outline Investigate holomorphic extensions of symplectic fermions via embedding into a holomorphic VOA (existence)

More information

Activated Dynamics of the Cascading 2-GREM Scaling limits & Aging

Activated Dynamics of the Cascading 2-GREM Scaling limits & Aging Activated Dynamics of the Cascading 2-GREM Scaling limits & Aging Véronique Gayrard CNRS, Université d Aix-Marseille Based on joint work with L.R. Fontes, arxiv:1801.08832 Spin Glasses and Related Topics,

More information

Statistical Physics. Solutions Sheet 11.

Statistical Physics. Solutions Sheet 11. Statistical Physics. Solutions Sheet. Exercise. HS 0 Prof. Manfred Sigrist Condensation and crystallization in the lattice gas model. The lattice gas model is obtained by dividing the volume V into microscopic

More information

An old new class of meromorphic functions. Norbert Steinmetz. June 13, 2015

An old new class of meromorphic functions. Norbert Steinmetz. June 13, 2015 Norbert Steinmetz June 13, 2015 NEW & OLD NEW: Hamiltonian system p = H q = q 2 zp α q = H p = p 2 + zq + β with Hamiltonian H(z, p, q) = 1 3 (p3 + q 3 ) + zpq + αq + βp OLD: Almost Painlevé IV 2ww = w

More information

Mixing Rates for the Gibbs Sampler over Restricted Boltzmann Machines

Mixing Rates for the Gibbs Sampler over Restricted Boltzmann Machines Mixing Rates for the Gibbs Sampler over Restricted Boltzmann Machines Christopher Tosh Department of Computer Science and Engineering University of California, San Diego ctosh@cs.ucsd.edu Abstract The

More information

Mathematical Structures of Statistical Mechanics: from equilibrium to nonequilibrium and beyond Hao Ge

Mathematical Structures of Statistical Mechanics: from equilibrium to nonequilibrium and beyond Hao Ge Mathematical Structures of Statistical Mechanics: from equilibrium to nonequilibrium and beyond Hao Ge Beijing International Center for Mathematical Research and Biodynamic Optical Imaging Center Peking

More information

Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) Markov Chain Monte Carlo (MCMC Dependent Sampling Suppose we wish to sample from a density π, and we can evaluate π as a function but have no means to directly generate a sample. Rejection sampling can

More information

Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS014) p.4149

Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS014) p.4149 Int. Statistical Inst.: Proc. 58th orld Statistical Congress, 011, Dublin (Session CPS014) p.4149 Invariant heory for Hypothesis esting on Graphs Priebe, Carey Johns Hopkins University, Applied Mathematics

More information

Dynamics for the critical 2D Potts/FK model: many questions and a few answers

Dynamics for the critical 2D Potts/FK model: many questions and a few answers Dynamics for the critical 2D Potts/FK model: many questions and a few answers Eyal Lubetzky May 2018 Courant Institute, New York University Outline The models: static and dynamical Dynamical phase transitions

More information

Quantum Physics III (8.06) Spring 2016 Assignment 3

Quantum Physics III (8.06) Spring 2016 Assignment 3 Quantum Physics III (8.6) Spring 6 Assignment 3 Readings Griffiths Chapter 9 on time-dependent perturbation theory Shankar Chapter 8 Cohen-Tannoudji, Chapter XIII. Problem Set 3. Semi-classical approximation

More information

Scaling Theory. Roger Herrigel Advisor: Helmut Katzgraber

Scaling Theory. Roger Herrigel Advisor: Helmut Katzgraber Scaling Theory Roger Herrigel Advisor: Helmut Katzgraber 7.4.2007 Outline The scaling hypothesis Critical exponents The scaling hypothesis Derivation of the scaling relations Heuristic explanation Kadanoff

More information

Localization I: General considerations, one-parameter scaling

Localization I: General considerations, one-parameter scaling PHYS598PTD A.J.Leggett 2013 Lecture 4 Localization I: General considerations 1 Localization I: General considerations, one-parameter scaling Traditionally, two mechanisms for localization of electron states

More information

Ferromagnets and superconductors. Kay Kirkpatrick, UIUC

Ferromagnets and superconductors. Kay Kirkpatrick, UIUC Ferromagnets and superconductors Kay Kirkpatrick, UIUC Ferromagnet and superconductor models: Phase transitions and asymptotics Kay Kirkpatrick, Urbana-Champaign October 2012 Ferromagnet and superconductor

More information

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory Renormalization of microscopic Hamiltonians Renormalization Group without Field Theory Alberto Parola Università dell Insubria (Como - Italy) Renormalization Group Universality Only dimensionality and

More information

22 Path Optimisation Methods

22 Path Optimisation Methods 22 Path Optimisation Methods 204 22 Path Optimisation Methods Many interesting chemical and physical processes involve transitions from one state to another. Typical examples are migration paths for defects

More information

Hertz, Krogh, Palmer: Introduction to the Theory of Neural Computation. Addison-Wesley Publishing Company (1991). (v ji (1 x i ) + (1 v ji )x i )

Hertz, Krogh, Palmer: Introduction to the Theory of Neural Computation. Addison-Wesley Publishing Company (1991). (v ji (1 x i ) + (1 v ji )x i ) Symmetric Networks Hertz, Krogh, Palmer: Introduction to the Theory of Neural Computation. Addison-Wesley Publishing Company (1991). How can we model an associative memory? Let M = {v 1,..., v m } be a

More information

Quantum speedup of backtracking and Monte Carlo algorithms

Quantum speedup of backtracking and Monte Carlo algorithms Quantum speedup of backtracking and Monte Carlo algorithms Ashley Montanaro School of Mathematics, University of Bristol 19 February 2016 arxiv:1504.06987 and arxiv:1509.02374 Proc. R. Soc. A 2015 471

More information

Markov and Gibbs Random Fields

Markov and Gibbs Random Fields Markov and Gibbs Random Fields Bruno Galerne bruno.galerne@parisdescartes.fr MAP5, Université Paris Descartes Master MVA Cours Méthodes stochastiques pour l analyse d images Lundi 6 mars 2017 Outline The

More information

CS 781 Lecture 9 March 10, 2011 Topics: Local Search and Optimization Metropolis Algorithm Greedy Optimization Hopfield Networks Max Cut Problem Nash

CS 781 Lecture 9 March 10, 2011 Topics: Local Search and Optimization Metropolis Algorithm Greedy Optimization Hopfield Networks Max Cut Problem Nash CS 781 Lecture 9 March 10, 2011 Topics: Local Search and Optimization Metropolis Algorithm Greedy Optimization Hopfield Networks Max Cut Problem Nash Equilibrium Price of Stability Coping With NP-Hardness

More information

Mean field theory of spin glasses: statics and dynamics

Mean field theory of spin glasses: statics and dynamics Mean field theory of spin glasses: statics and dynamics arxiv:0706.0094v1 [cond-mat.dis-nn] 1 Jun 2007 Giorgio Parisi Dipartimento di Fisica, Sezione INFN, SMC-INFM, Università di Roma La Sapienza, Piazzale

More information

Combinatorial Criteria for Uniqueness of Gibbs Measures

Combinatorial Criteria for Uniqueness of Gibbs Measures Combinatorial Criteria for Uniqueness of Gibbs Measures Dror Weitz School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, U.S.A. dror@ias.edu April 12, 2005 Abstract We generalize previously

More information

Fractional exclusion statistics: A generalised Pauli principle

Fractional exclusion statistics: A generalised Pauli principle Fractional exclusion statistics: A generalised Pauli principle M.V.N. Murthy Institute of Mathematical Sciences, Chennai (murthy@imsc.res.in) work done with R. Shankar Indian Academy of Sciences, 27 Nov.

More information

Concentration of Measures by Bounded Size Bias Couplings

Concentration of Measures by Bounded Size Bias Couplings Concentration of Measures by Bounded Size Bias Couplings Subhankar Ghosh, Larry Goldstein University of Southern California [arxiv:0906.3886] January 10 th, 2013 Concentration of Measure Distributional

More information

Stochastic domination in space-time for the supercritical contact process

Stochastic domination in space-time for the supercritical contact process Stochastic domination in space-time for the supercritical contact process Stein Andreas Bethuelsen joint work with Rob van den Berg (CWI and VU Amsterdam) Workshop on Genealogies of Interacting Particle

More information

Some Correlation Inequalities for Ising Antiferromagnets

Some Correlation Inequalities for Ising Antiferromagnets Some Correlation Inequalities for Ising Antiferromagnets David Klein Wei-Shih Yang Department of Mathematics Department of Mathematics California State University University of Colorado Northridge, California

More information

1 The fundamental equation of equilibrium statistical mechanics. 3 General overview on the method of ensembles 10

1 The fundamental equation of equilibrium statistical mechanics. 3 General overview on the method of ensembles 10 Contents EQUILIBRIUM STATISTICAL MECHANICS 1 The fundamental equation of equilibrium statistical mechanics 2 2 Conjugate representations 6 3 General overview on the method of ensembles 10 4 The relation

More information

Large-Deviations and Applications for Learning Tree-Structured Graphical Models

Large-Deviations and Applications for Learning Tree-Structured Graphical Models Large-Deviations and Applications for Learning Tree-Structured Graphical Models Vincent Tan Stochastic Systems Group, Lab of Information and Decision Systems, Massachusetts Institute of Technology Thesis

More information

Dependent percolation: some examples and multi-scale tools

Dependent percolation: some examples and multi-scale tools Dependent percolation: some examples and multi-scale tools Maria Eulália Vares UFRJ, Rio de Janeiro, Brasil 8th Purdue International Symposium, June 22 I. Motivation Classical Ising model (spins ±) in

More information

Polynomial-time classical simulation of quantum ferromagnets

Polynomial-time classical simulation of quantum ferromagnets Polynomial-time classical simulation of quantum ferromagnets Sergey Bravyi David Gosset IBM PRL 119, 100503 (2017) arxiv:1612.05602 Quantum Monte Carlo: a powerful suite of probabilistic classical simulation

More information

Lecture 3: September 10

Lecture 3: September 10 CS294 Markov Chain Monte Carlo: Foundations & Applications Fall 2009 Lecture 3: September 10 Lecturer: Prof. Alistair Sinclair Scribes: Andrew H. Chan, Piyush Srivastava Disclaimer: These notes have not

More information

Random graphs: Random geometric graphs

Random graphs: Random geometric graphs Random graphs: Random geometric graphs Mathew Penrose (University of Bath) Oberwolfach workshop Stochastic analysis for Poisson point processes February 2013 athew Penrose (Bath), Oberwolfach February

More information

The Quantum Adiabatic Algorithm

The Quantum Adiabatic Algorithm The Quantum Adiabatic Algorithm A.P. Young http://physics.ucsc.edu/~peter Work supported by Talk at SMQS-IP2011, Jülich, October 18, 2011 The Quantum Adiabatic Algorithm A.P. Young http://physics.ucsc.edu/~peter

More information

Independence and chromatic number (and random k-sat): Sparse Case. Dimitris Achlioptas Microsoft

Independence and chromatic number (and random k-sat): Sparse Case. Dimitris Achlioptas Microsoft Independence and chromatic number (and random k-sat): Sparse Case Dimitris Achlioptas Microsoft Random graphs W.h.p.: with probability that tends to 1 as n. Hamiltonian cycle Let τ 2 be the moment all

More information

Gossip algorithms for solving Laplacian systems

Gossip algorithms for solving Laplacian systems Gossip algorithms for solving Laplacian systems Anastasios Zouzias University of Toronto joint work with Nikolaos Freris (EPFL) Based on : 1.Fast Distributed Smoothing for Clock Synchronization (CDC 1).Randomized

More information

A = {(x, u) : 0 u f(x)},

A = {(x, u) : 0 u f(x)}, Draw x uniformly from the region {x : f(x) u }. Markov Chain Monte Carlo Lecture 5 Slice sampler: Suppose that one is interested in sampling from a density f(x), x X. Recall that sampling x f(x) is equivalent

More information

arxiv: v1 [cond-mat.stat-mech] 28 Jun 2016

arxiv: v1 [cond-mat.stat-mech] 28 Jun 2016 Basic Ideas to Approach Metastability in Probabilistic Cellular Automata arxiv:1607.01289v1 [cond-mat.stat-mech] 28 Jun 2016 Emilio N.M. Cirillo, Francesca R. Nardi and Cristian Spitoni Abstract Cellular

More information

P653 HW4. Due Sept. 22, Problem 1. Mean Field Dynamics

P653 HW4. Due Sept. 22, Problem 1. Mean Field Dynamics P653 HW4 Due Sept. 22, 2005 Problem 1. Mean Field Dynamics Here we wish to explore a crude, yet generic, model for the time dynamics of the order parameter near a critical point. For concreteness, lets

More information

Lecture V: Multicanonical Simulations.

Lecture V: Multicanonical Simulations. Lecture V: Multicanonical Simulations. 1. Multicanonical Ensemble 2. How to get the Weights? 3. Example Runs (2d Ising and Potts models) 4. Re-Weighting to the Canonical Ensemble 5. Energy and Specific

More information

Stat 535 C - Statistical Computing & Monte Carlo Methods. Arnaud Doucet.

Stat 535 C - Statistical Computing & Monte Carlo Methods. Arnaud Doucet. Stat 535 C - Statistical Computing & Monte Carlo Methods Arnaud Doucet Email: arnaud@cs.ubc.ca 1 Suggested Projects: www.cs.ubc.ca/~arnaud/projects.html First assignement on the web this afternoon: capture/recapture.

More information

Exploring reverse annealing as a tool for hybrid quantum/classical computing

Exploring reverse annealing as a tool for hybrid quantum/classical computing Exploring reverse annealing as a tool for hybrid quantum/classical computing University of Zagreb QuantiXLie Seminar Nicholas Chancellor October 12, 2018 Talk structure 1. Background Quantum computing:

More information

Monte Carlo simulation inspired by computational optimization. Colin Fox Al Parker, John Bardsley MCQMC Feb 2012, Sydney

Monte Carlo simulation inspired by computational optimization. Colin Fox Al Parker, John Bardsley MCQMC Feb 2012, Sydney Monte Carlo simulation inspired by computational optimization Colin Fox fox@physics.otago.ac.nz Al Parker, John Bardsley MCQMC Feb 2012, Sydney Sampling from π(x) Consider : x is high-dimensional (10 4

More information

Time Evolving Block Decimation Algorithm

Time Evolving Block Decimation Algorithm Time Evolving Block Decimation Algorithm Application to bosons on a lattice Jakub Zakrzewski Marian Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Center, Jagiellonian University,

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 3 Luca Trevisan August 31, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 3 Luca Trevisan August 31, 2017 U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 3 Luca Trevisan August 3, 207 Scribed by Keyhan Vakil Lecture 3 In which we complete the study of Independent Set and Max Cut in G n,p random graphs.

More information

Degeneracy Breaking in Some Frustrated Magnets

Degeneracy Breaking in Some Frustrated Magnets Degeneracy Breaking in Some Frustrated Magnets Doron Bergman Greg Fiete Ryuichi Shindou Simon Trebst UCSB Physics KITP UCSB Physics Q Station cond-mat: 0510202 (prl) 0511176 (prb) 0605467 0607210 0608131

More information