fluid flow and Circulatory system

Size: px
Start display at page:

Download "fluid flow and Circulatory system"

Transcription

1 Importance of the physics of fluids fluid flow and Circulatory system Miklós Kellermayer I. Hemodynamics E.g.: What are the characteristics of blood flow in the circulatory system? II. Motion in viscous fluids E.g.: What is the force exerted by a single spermatocyte during its motion? Biophysics of fluid flow and blood circulation Basic principles Types of fluids Types of fluid flow Laws of fluid flow Blood as a fluid; determinants of blood viscosity The circulatory system; blood vessels as elastic tubes uxiliary forces of circulation streamlines Basic principles I. Volumetric flow rate (Q): ΔV Q = ΔV Δt = Δs Δt = v Δs verage velocity: v = Q flow velocity

2 y v y / Δv/Δy Basic principles II. Viscosity (internal friction) = shear force = area of fluid layer = viscosity = flow velocity = distance between fluid layers = shear stress (τ) = velocity gradient (D) Units of viscosity: v y vmin = Δv Δy = τ D Δv vmax (Newton s friction law) 1Pas = 1 Ns = 10P( poise) 2 m Viscosity of distilled water (25 C): 1 mpas (1 centipoise) 1. Ideal frictionless, incompressible ρ = constant, = 0 2. Non-ideal (real) a. Newtonian (viscous) independent of shear stress b. Non-newtonian (anomalous) changes with shear stress Types of fluids D Relationship between velocity gradient and shear stress in real fluids St. Venant τf Newtonian Bingham Casson τ f = flow threshold Viscoelastic materials: combination of viscous and elastic properties (e.g., solution of polymers, macromolecules) Stress-relaxation: decay of stress in rapidly deformed viscoelastic body. Blood is a non-newtonian fluid; it displays viscoelastic properties. τ Model of viscoelastic body - Kelvin-body: spring and dashpot coupled in parallel Types of fluid flow 1. Stationary Volumetric flow rate stays constant (parameters characterizing flow remain unchaned). 2. Laminar luid layers do not mix. 3. Turbulent luid layers mix. laminar flow turbulent flow Laws of flow in ideal fluids I. Continuity equation Osborne Reynolds ( ) laminar Reynolds number (R): R = vrρ R c 2000 v = flow rate (m/s) r = tube radius (m) ρ = density of fluid (kg/m 3 ) = viscosity (Ns/m 2 ) turbulent R 1 v 1 2 v 2 1v1 = 2v2 = constant = cross-sectional area v = flow velocity "When I meet God, I am going to ask him two questions: Why relativity? nd why turbulence? I really believe he will have an answer for the first." (Werner Heisenberg)

3 Laws of flow in ideal fluids II. Bernoulli s law - law of conservation of energy Laws of flow in viscous fluids I. Stokes law Daniel Bernoulli ( ) p ρv2 + ρgh = konst p = static pressure 1 2 ρv2 ρgh = dynamic pressure = hydrostatic pressure = γv = 6rπv Georg Gabriel Stokes ( ) = force γ = drag coefficient (shape factor) v = flow rate r = radius of sphere = viscosity Venturi effect Stokes force Hydrodynamic drag force (Stokes force): = γv = 6rπv Laws of flow in viscous fluids II. Hagen-Poiseuille s law Thermodynamic current Relevant intensive variable (its difference maintains current) Current density Physical law G.H.L. Hagen ( ) J.-L.-M. Poiseuille ( ) Volumetric flow Pressure (p) J V = R2 Δp Hagen-Poiseuille 8 Δx ffects stationary objects in moving fluid (microbead captured in optical trap) ffects objects moving in stationary fluid (moving spermatocytes) Rigid-wall tube p 1 Paraboloid flow profile R p 2 J V = V t = R2 Δp 8 Δx r = 1.6 μm = 1.6 x 10-6 m v = 50 μm/s = 5 x 10-5 m/s = 10-3 Pas r How much force is exerted by a single spermatotyce during its movement? γ = 6rπ = π 10 3 = Ns/m = γv = Ns/ m m /s = N =1.5 pn V t R p x = volume = time = tube radius = viscosity = pressure = tube length x V/t = Q = volumetric vlow rate Δp/Δx = pressure gradient, maintained by p 1 -p 2 = cross-sectional area of tube JV = flow intensity = R 2 π V t = R4 π Δp 8 Δx

4 Medical significance of fluid flow Bernoulli s law: ormation of aneurysm (pathological expansion of blood vessel): Expansion of vessel: diameter increases low rate decreases, accoring to continuity equation Static pressure increases due to Bernulli s law neurysm pregrediates - positive fedback mechanism leading to catastrophy Hagen-Poiseuille s law: V Bifurcating vessel neurysm t = R4 π Δp 8 Δx low intensity, hence the delivered oxygen quantity, may be drastically reduced in certain pathological conditions: constriction of blood vessels (e.g., diabetes, Bürger s disease) change in blood viscosity (e.g., fever, anaemia) Reduction of vessel diameter by half leads to a reduction of volumetric flow by 1/16! Blood: Blood as a fluid 55-60% of body mass is water 42 kg (70 kg body mass) 2/3 intracellular 28 kg 1/3 plasma 4-5 kg 1/3 extracellular 14 kg 2/3 intersticium 9-10 kg verage volume: 5 l verage viscosity: 5 mpas verage density: 1.05 g/cm 3 Composition: % corpuscular, % plasma 1. Hematocrit (htc, φ): Normal range: htc = V cells V total 2. Plasma viscosity Depends on plasma proteins. In paraproteinaemias (e.g. myeloma multiplex or plasmocytoma) the concentration of immunoglobulins is high, leading to increased viscosity. Viscosity of blood as suspension (in the physiologically relevant htc range): s =suspension viscosity, B=empirical constants lg s = + Bφ Plasma protein Normal concentration lbumin g/l 55% % ratio unction maintenance of colloind osmotic pressure, transport Globulins g/l 38% Part of the immune system ibrinogen g/l 7% Blood coagulation

5 ibrinogen, fibrin 47,5 nm ibrinogen: MW = Da In plasma: 2-4 g/l 10 μm verage nearest-neighbor distance 55 nm 3. Plasticity of red blood cells 65% suspension of blood-cell-size particles is rock hard. By contrast, a 95% blood suspension if fluid, with viscosity of ~20 mpas! Deformation of red blood cells: droplet, parachute, arrowhead shapes. 3 μm Red blood cells in fibrin meshwork ibrin polymerized in vitro (M) Extensibility of fluorescently labeled fibrin fibrils Disc-shaped cell with 7-11 μm diameter Deformation of a RBC with optical tweezers ixed RBC maintaining impression (M) 4. ggregation of red blood cells Stack or roleaux formation. More pronounced at low flow rates 5. low rate, velocity gradient 6. Blood vessel diameter (mpas) 5 (mpas) 5 2 Roleaux (stack) V (m/s) Diameter (μm) N.B.: With a decrease of vessel diameter, the anomalous (non-newtonian) behavior of blood becomes more pronounced. xial migration: the red blood cells line up in the axis of the vessel (Bernoulli s law). In the axis the velocity gradient decreases, and near the vessel wall it increases. Increase in velocity gradient decreases apparent viscosity (åhraeus-lindquist effect). 5

6 The vascular system is a closed vessel system returning into itself. unction: Maintenance of environmental parameters of cells ( steady state ) Transport: Gases Metabolites Hormones, signal transmitters Immunoglobulins Heat B. Hemodynamic requirements: Slow (matches diffusion-driven processes) Steady (no fluctuations) Unidirectional luid flow in bifurcating vessel system 1 v 1 2 v 2 1 v 1 Continuity equation 2 v 2 3 v 3 1 v 1 = 2 v 2 = const = cross-sectional area v = flow rate 1 v 1 = Σ () v average = const Σ = total cross-sectional area Structure and physical properties of the vascular system Total crosssectional Diameter area Pressure 100 Hgmm 2500 cm 2 Wall tension and bood pressure Circumferential stress (σ θ) depends on blood pressure: (Young-Laplace - equation) Vessel wall displays non-linear elastic properties low rate 0.33 m/s 0.22 m/s Crosssectional area 2.5 cm m/s orta rteries rterioles Capillaries Veins Pressure on blood vessel wall: "blood pressure". Pressure drop along vessel maintains blood flow. Reason of pressure drop: flow resistance - most of energy is converted to heat. low rate and total cross-sectional area change inversely (based on equation of continuity, v = constant). low rate typically does not exceed the critical (see Reynolds number), and flow remains laminar. (Exceptions: behind aortic valve, constricted vessels, low-viscosity conditions, Korotkoff sound). rterioles (vessels containing smooth muscle, under vegetative innervation) are pressure-regulators: "resistance vessels." Most of blood volume in veins: "capacitance vessels." 8 cm 2 P = blood pressure r = radius of tube t = wall thickness = force l = tube length Wall tension or circumferential stress is the average force exerted circumferentially (perpendicular to both the axis and the radius) in the cylinder wall. Wall tension Volume Determinants of vascular elasticity: Elastin Collagen Smooth muscle Implications of vascular easticity: Storage of potential (elastic) energy Dampening of pressure pulses Constant flow rate

7 Dynamic pressure-changes in the arterial system uxiliary factors of circulation Harvey s experiment (1628) 1. rterial elasticity elastic fibers storage of potential energy 2. Venous valves (Harvey's experiment) On the Circulation of the Blood (1628). Systole Diastole Because of vessel wall elasticity, pressure fluctuations are dampened. 3. Muscle action 4. Negative intrathoracic pressure 5. Up-and-down" movement of atrioventricular plane

BME 419/519 Hernandez 2002

BME 419/519 Hernandez 2002 Vascular Biology 2 - Hemodynamics A. Flow relationships : some basic definitions Q v = A v = velocity, Q = flow rate A = cross sectional area Ohm s Law for fluids: Flow is driven by a pressure gradient

More information

What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube

What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube PHYS 101 Lecture 29x - Viscosity 29x - 1 Lecture 29x Viscosity (extended version) What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube Viscosity We introduced

More information

Arterial Macrocirculatory Hemodynamics

Arterial Macrocirculatory Hemodynamics Arterial Macrocirculatory Hemodynamics 莊漢聲助理教授 Prof. Han Sheng Chuang 9/20/2012 1 Arterial Macrocirculatory Hemodynamics Terminology: Hemodynamics, meaning literally "blood movement" is the study of blood

More information

Chapter 10. Solids and Fluids

Chapter 10. Solids and Fluids Chapter 10 Solids and Fluids Surface Tension Net force on molecule A is zero Pulled equally in all directions Net force on B is not zero No molecules above to act on it Pulled toward the center of the

More information

FORMULA SHEET. General formulas:

FORMULA SHEET. General formulas: FORMULA SHEET You may use this formula sheet during the Advanced Transport Phenomena course and it should contain all formulas you need during this course. Note that the weeks are numbered from 1.1 to

More information

Fluid dynamics - Equation of. continuity and Bernoulli s principle.

Fluid dynamics - Equation of. continuity and Bernoulli s principle. Fluid statics Fluid dynamics - Equation of What is a fluid? Density Pressure Fluid pressure and depth Pascal s principle Buoyancy Archimedes principle continuity and Bernoulli s principle. Lecture 4 Dr

More information

Fluid Mechanics II Viscosity and shear stresses

Fluid Mechanics II Viscosity and shear stresses Fluid Mechanics II Viscosity and shear stresses Shear stresses in a Newtonian fluid A fluid at rest can not resist shearing forces. Under the action of such forces it deforms continuously, however small

More information

LECTURE 1 THE CONTENTS OF THIS LECTURE ARE AS FOLLOWS:

LECTURE 1 THE CONTENTS OF THIS LECTURE ARE AS FOLLOWS: LECTURE 1 THE CONTENTS OF THIS LECTURE ARE AS FOLLOWS: 1.0 INTRODUCTION TO FLUID AND BASIC EQUATIONS 2.0 REYNOLDS NUMBER AND CRITICAL VELOCITY 3.0 APPROACH TOWARDS REYNOLDS NUMBER REFERENCES Page 1 of

More information

Fluid dynamics - viscosity and. turbulent flow

Fluid dynamics - viscosity and. turbulent flow Fluid dynamics - viscosity and Fluid statics turbulent flow What is a fluid? Density Pressure Fluid pressure and depth Pascal s principle Buoyancy Archimedes principle Fluid dynamics Reynolds number Equation

More information

Petroleum Engineering Dept. Fluid Mechanics Second Stage Dr. Ahmed K. Alshara

Petroleum Engineering Dept. Fluid Mechanics Second Stage Dr. Ahmed K. Alshara Continents Chapter 1. Fluid Mechanics -Properties of fluids -Density, specific gravity, specific volume and Viscosity -Newtonian and non Newtonian fluids -Surface tension Compressibility -Pressure -Cavitations

More information

Chapter 9: Solids and Fluids

Chapter 9: Solids and Fluids Chapter 9: Solids and Fluids State of matters: Solid, Liquid, Gas and Plasma. Solids Has definite volume and shape Can be crystalline or amorphous Molecules are held in specific locations by electrical

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2013

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2013 Lecture 1 3/13/13 University of Washington Department of Chemistry Chemistry 53 Winter Quarter 013 A. Definition of Viscosity Viscosity refers to the resistance of fluids to flow. Consider a flowing liquid

More information

31545 Medical Imaging systems

31545 Medical Imaging systems 31545 Medical Imaging systems Lecture 5: Blood flow in the human body Jørgen Arendt Jensen Department of Electrical Engineering (DTU Elektro) Biomedical Engineering Group Technical University of Denmark

More information

CHAPTER 1 Fluids and their Properties

CHAPTER 1 Fluids and their Properties FLUID MECHANICS Gaza CHAPTER 1 Fluids and their Properties Dr. Khalil Mahmoud ALASTAL Objectives of this Chapter: Define the nature of a fluid. Show where fluid mechanics concepts are common with those

More information

Chapter 9. Solids and Fluids

Chapter 9. Solids and Fluids Chapter 9 Solids and Fluids States of Matter Solid Liquid Gas Plasma Solids Have definite volume Have definite shape Molecules are held in specific locations By electrical forces Vibrate about equilibrium

More information

Introduction to Fluid Flow

Introduction to Fluid Flow Introduction to Fluid Flow Learning Outcomes After this lecture you should be able to Explain viscosity and how it changes with temperature Write the continuity equation Define laminar and turbulent flow

More information

MECHANICAL PROPERTIES OF FLUIDS:

MECHANICAL PROPERTIES OF FLUIDS: Important Definitions: MECHANICAL PROPERTIES OF FLUIDS: Fluid: A substance that can flow is called Fluid Both liquids and gases are fluids Pressure: The normal force acting per unit area of a surface is

More information

BERNOULLI EQUATION. The motion of a fluid is usually extremely complex.

BERNOULLI EQUATION. The motion of a fluid is usually extremely complex. BERNOULLI EQUATION The motion of a fluid is usually extremely complex. The study of a fluid at rest, or in relative equilibrium, was simplified by the absence of shear stress, but when a fluid flows over

More information

A connecting tube, which enables the movement of the liquid between two positions

A connecting tube, which enables the movement of the liquid between two positions Chapter 4: Flow In vivo, transportation of materials is controlled by the flow of a fluid such as liquid or gas. When the control of this flow does not work, life activity stagnates. In this chapter, we

More information

Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr.

Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr. Reading Assignments Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr. Sert) Study Set 1 You can find the answers of some of the following

More information

Petroleum Engineering Department Fluid Mechanics Second Stage Assist Prof. Dr. Ahmed K. Alshara

Petroleum Engineering Department Fluid Mechanics Second Stage Assist Prof. Dr. Ahmed K. Alshara Continents Petroleum Engineering Department Fluid Mechanics Second Stage Assist Prof. Dr. Ahmed K. Alshara Chapter 1. Fluid Mechanics -Properties of fluids -Density, specific gravity, specific volume and

More information

Chapter 9. Solids and Fluids. States of Matter. Solid. Liquid. Gas

Chapter 9. Solids and Fluids. States of Matter. Solid. Liquid. Gas Chapter 9 States of Matter Solids and Fluids Solid Liquid Gas Plasma Solids Have definite volume Have definite shape Molecules are held in specific locations By electrical forces Vibrate about equilibrium

More information

Introduction to Micro/Nanofluidics. Date: 2015/03/13. Dr. Yi-Chung Tung. Outline

Introduction to Micro/Nanofluidics. Date: 2015/03/13. Dr. Yi-Chung Tung. Outline Introduction to Micro/Nanofluidics Date: 2015/03/13 Dr. Yi-Chung Tung Outline Introduction to Microfluidics Basic Fluid Mechanics Concepts Equivalent Fluidic Circuit Model Conclusion What is Microfluidics

More information

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m 1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)

More information

Pressure in a fluid P P P P

Pressure in a fluid P P P P Fluids Gases (compressible) and liquids (incompressible) density of gases can change dramatically, while that of liquids much less so Gels, colloids, liquid crystals are all odd-ball states of matter We

More information

In steady flow the velocity of the fluid particles at any point is constant as time passes.

In steady flow the velocity of the fluid particles at any point is constant as time passes. Chapter 10 Fluids Fluids in Motion In steady flow the velocity of the fluid particles at any point is constant as time passes. Unsteady flow exists whenever the velocity of the fluid particles at a point

More information

Hemodynamics II. Aslı AYKAÇ, PhD. NEU Faculty of Medicine Department of Biophysics

Hemodynamics II. Aslı AYKAÇ, PhD. NEU Faculty of Medicine Department of Biophysics Hemodynamics II Aslı AYKAÇ, PhD. NEU Faculty of Medicine Department of Biophysics Laplace s Law Relates the pressure difference across a closed elastic membrane on liquid film to the tension in the membrane

More information

Summary PHY101 ( 2 ) T / Hanadi Al Harbi

Summary PHY101 ( 2 ) T / Hanadi Al Harbi الكمية Physical Quantity القانون Low التعريف Definition الوحدة SI Unit Linear Momentum P = mθ be equal to the mass of an object times its velocity. Kg. m/s vector quantity Stress F \ A the external force

More information

Flow of fluids 1. Prof. Ferenc Bari. Department of Medical Physics and Informatics

Flow of fluids 1. Prof. Ferenc Bari. Department of Medical Physics and Informatics Flow of fluids 1 Prof Ferenc Bari Department of Medical Physics and Informatics 20 th October 2016 Prof Ferenc Bari (SZTE DMI) Flow of fluids 1 20 th October 2016 1 / 71 Contents 1 Overview 2 Gases Overview

More information

좋은아침입니다 (Cho Eun Achim Yip Ni Da) (Jeo Reul Cho Dae Hae Joo

좋은아침입니다 (Cho Eun Achim Yip Ni Da) (Jeo Reul Cho Dae Hae Joo 좋은아침입니다 (Cho Eun Achim Yip Ni Da) 저를초대해주셔서감사합니다 (Jeo Reul Cho Dae Hae Joo Seuh Seo, Kam Sa Hap Ni Da) PLEASE JOIN US 13 TH INTERNATIONAL CONGRESS OF BIORHEOLOGY and 6 TH INTERNATIONAL CONFERENCE ON CLINICAL

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS OPTION B-3: LUIDS Essential Idea: luids cannot be modelled as point particles. Their distinguishable response to compression from solids creates a set

More information

Elec Eng 3BA3: Structure of Biological Materials

Elec Eng 3BA3: Structure of Biological Materials Elec Eng 3BA3: Structure of Biological Materials Page 1 of 12 Day Class Instructor: Dr. I. C. BRUCE Duration of Examination: 3 Hours McMaster University Final Examination December 5, 2008 This examination

More information

Fluids. Fluids in Motion or Fluid Dynamics

Fluids. Fluids in Motion or Fluid Dynamics Fluids Fluids in Motion or Fluid Dynamics Resources: Serway - Chapter 9: 9.7-9.8 Physics B Lesson 3: Fluid Flow Continuity Physics B Lesson 4: Bernoulli's Equation MIT - 8: Hydrostatics, Archimedes' Principle,

More information

Chapter 9 Fluids. Pressure

Chapter 9 Fluids. Pressure Chapter 9 Fluids States of Matter - Solid, liquid, gas. Fluids (liquids and gases) do not hold their shapes. In many cases we can think of liquids as being incompressible. Liquids do not change their volume

More information

Microfluidics 1 Basics, Laminar flow, shear and flow profiles

Microfluidics 1 Basics, Laminar flow, shear and flow profiles MT-0.6081 Microfluidics and BioMEMS Microfluidics 1 Basics, Laminar flow, shear and flow profiles 11.1.2017 Ville Jokinen Outline of the next 3 weeks: Today: Microfluidics 1: Laminar flow, flow profiles,

More information

1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts)

1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts) 1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1 Fluid mechanics Fluid

More information

MECHANICAL PROPERTIES OF FLUIDS

MECHANICAL PROPERTIES OF FLUIDS CHAPTER-10 MECHANICAL PROPERTIES OF FLUIDS QUESTIONS 1 marks questions 1. What are fluids? 2. How are fluids different from solids? 3. Define thrust of a liquid. 4. Define liquid pressure. 5. Is pressure

More information

Chapter 3 Non-Newtonian fluid

Chapter 3 Non-Newtonian fluid Chapter 3 Non-Newtonian fluid 3-1. Introduction: The study of the deformation of flowing fluids is called rheology; the rheological behavior of various fluids is sketchen Figure 3-1. Newtonian fluids,

More information

Chapter 9 Solids and Fluids. Elasticity Archimedes Principle Bernoulli s Equation

Chapter 9 Solids and Fluids. Elasticity Archimedes Principle Bernoulli s Equation Chapter 9 Solids and Fluids Elasticity Archimedes Principle Bernoulli s Equation States of Matter Solid Liquid Gas Plasmas Solids: Stress and Strain Stress = Measure of force felt by material Stress= Force

More information

150A Review Session 2/13/2014 Fluid Statics. Pressure acts in all directions, normal to the surrounding surfaces

150A Review Session 2/13/2014 Fluid Statics. Pressure acts in all directions, normal to the surrounding surfaces Fluid Statics Pressure acts in all directions, normal to the surrounding surfaces or Whenever a pressure difference is the driving force, use gauge pressure o Bernoulli equation o Momentum balance with

More information

Physics 3 Summer 1990 Lab 7 - Hydrodynamics

Physics 3 Summer 1990 Lab 7 - Hydrodynamics Physics 3 Summer 1990 Lab 7 - Hydrodynamics Theory Consider an ideal liquid, one which is incompressible and which has no internal friction, flowing through pipe of varying cross section as shown in figure

More information

Chapter 14. Lecture 1 Fluid Mechanics. Dr. Armen Kocharian

Chapter 14. Lecture 1 Fluid Mechanics. Dr. Armen Kocharian Chapter 14 Lecture 1 Fluid Mechanics Dr. Armen Kocharian States of Matter Solid Has a definite volume and shape Liquid Has a definite volume but not a definite shape Gas unconfined Has neither a definite

More information

PROBLEM SET 6. SOLUTIONS April 1, 2004

PROBLEM SET 6. SOLUTIONS April 1, 2004 Harvard-MIT Division of Health Sciences and Technology HST.54J: Quantitative Physiology: Organ Transport Systems Instructors: Roger Mark and Jose Venegas MASSACHUSETTS INSTITUTE OF TECHNOLOGY Departments

More information

An-Najah National University Civil Engineering Department. Fluid Mechanics. Chapter 1. General Introduction

An-Najah National University Civil Engineering Department. Fluid Mechanics. Chapter 1. General Introduction 1 An-Najah National University Civil Engineering Department Fluid Mechanics Chapter 1 General Introduction 2 What is Fluid Mechanics? Mechanics deals with the behavior of both stationary and moving bodies

More information

Chapter 9. Solids and Fluids (c)

Chapter 9. Solids and Fluids (c) Chapter 9 Solids and Fluids (c) EXAMPLE A small swimming pool has an area of 0 square meters. A wooden 4000-kg statue of density 500 kg/m 3 is then floated on top of the pool. How far does the water rise?

More information

CHAPTER 3. CONVENTIONAL RHEOMETRY: STATE-OF-THE-ART. briefly introduces conventional rheometers. In sections 3.2 and 3.

CHAPTER 3. CONVENTIONAL RHEOMETRY: STATE-OF-THE-ART. briefly introduces conventional rheometers. In sections 3.2 and 3. 30 CHAPTER 3. CONVENTIONAL RHEOMETRY: STATE-OF-THE-ART This chapter reviews literature on conventional rheometries. Section 3.1 briefly introduces conventional rheometers. In sections 3.2 and 3.3, viscometers

More information

Barometer Fluid rises until pressure at A, due its weight, equals atmospheric pressure at B. Unit: mm Hg (millimeters that mercury rises)

Barometer Fluid rises until pressure at A, due its weight, equals atmospheric pressure at B. Unit: mm Hg (millimeters that mercury rises) FLUID MECHANICS The study of the properties of fluids resulting from the action forces. Fluid a liquid, gas, or plasma We will only consider incompressible fluids i.e. liquids Pressure P F A (normal force)

More information

Friction Factors and Drag Coefficients

Friction Factors and Drag Coefficients Levicky 1 Friction Factors and Drag Coefficients Several equations that we have seen have included terms to represent dissipation of energy due to the viscous nature of fluid flow. For example, in the

More information

Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017

Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017 Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017 Objective: Text: To introduce the basic concepts of fluid mechanics and heat transfer necessary for solution of engineering

More information

Final Mock Exam PH 221-1D

Final Mock Exam PH 221-1D Final Mock Exam PH 221-1D April 18, 2015 You will have 2 hours to complete this exam. You must answer 8 questions to make a perfect score of 80. 1 Chapter Concept Summary Equations: Cutnell & Johnson

More information

Nicholas J. Giordano. Chapter 10 Fluids

Nicholas J. Giordano.  Chapter 10 Fluids Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 10 Fluids Fluids A fluid may be either a liquid or a gas Some characteristics of a fluid Flows from one place to another Shape varies according

More information

Design and Modeling of Fluid Power Systems ME 597/ABE Lecture 7

Design and Modeling of Fluid Power Systems ME 597/ABE Lecture 7 Systems ME 597/ABE 591 - Lecture 7 Dr. Monika Ivantysynova MAHA Professor Fluid Power Systems MAHA Fluid Power Research Center Purdue University Content of 6th lecture The lubricating gap as a basic design

More information

Fluid Mechanics Theory I

Fluid Mechanics Theory I Fluid Mechanics Theory I Last Class: 1. Introduction 2. MicroTAS or Lab on a Chip 3. Microfluidics Length Scale 4. Fundamentals 5. Different Aspects of Microfluidcs Today s Contents: 1. Introduction to

More information

Week 8. Topics: Next deadline: Viscous fluid flow (Study guide 14. Sections 12.4 and 12.5.) Bolus flow (Study guide 15. Section 12.6.

Week 8. Topics: Next deadline: Viscous fluid flow (Study guide 14. Sections 12.4 and 12.5.) Bolus flow (Study guide 15. Section 12.6. 8/1 Topics: Week 8 Viscous fluid flow (Study guide 14. Sections 12.4 and 12.5.) Bolus flow (Study guide 15. Section 12.6.) Pulsatile flow (Study guide 15. Section 12.7.) Next deadline: Friday October 31

More information

11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an

11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an Chapter 11 Fluids 11.1 Mass Density Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an important factor that determines its behavior

More information

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer You are assigned to design a fallingcylinder viscometer to measure the viscosity of Newtonian liquids. A schematic

More information

Contents. Preface XIII. 1 General Introduction 1 References 6

Contents. Preface XIII. 1 General Introduction 1 References 6 VII Contents Preface XIII 1 General Introduction 1 References 6 2 Interparticle Interactions and Their Combination 7 2.1 Hard-Sphere Interaction 7 2.2 Soft or Electrostatic Interaction 7 2.3 Steric Interaction

More information

Chapter 9. Solids and Fluids

Chapter 9. Solids and Fluids Chapter 9 Solids and Fluids States of Matter Solid Liquid Gas Plasma Solids Have definite volume Have definite shape Atoms or molecules are held in specific locations By electrical forces Vibrate about

More information

Lecture 3. Properties of Fluids 11/01/2017. There are thermodynamic properties of fluids like:

Lecture 3. Properties of Fluids 11/01/2017. There are thermodynamic properties of fluids like: 11/01/2017 Lecture 3 Properties of Fluids There are thermodynamic properties of fluids like: Pressure, p (N/m 2 ) or [ML -1 T -2 ], Density, ρ (kg/m 3 ) or [ML -3 ], Specific weight, γ = ρg (N/m 3 ) or

More information

Doppler Imaging: The Basics

Doppler Imaging: The Basics Doppler Imaging: The Basics Brian D. Coley, MD, FACR Cincinna< Children s Hospital Medical Center Cincinna

More information

Lab 7: Low Reynolds numbers and Tube Flows

Lab 7: Low Reynolds numbers and Tube Flows Lab 7: Low Reynolds numbers and Tube Flows Bio427 Biomechanics In this lab, we explore two issues related to biological fluid dynamics: flows at low Reynolds numbers and flows within tubes. The former

More information

Lesson 6 Review of fundamentals: Fluid flow

Lesson 6 Review of fundamentals: Fluid flow Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass

More information

Chapter 4 The physical and flow properties of blood and other fluids

Chapter 4 The physical and flow properties of blood and other fluids Chapter 4 The physical and flow properties of blood and other fluids 4. Physical properties of blood Blood is a viscous fluid mixture consisting of plasma and cells. Table 4. summarizes the most important

More information

cos(θ)sin(θ) Alternative Exercise Correct Correct θ = 0 skiladæmi 10 Part A Part B Part C Due: 11:59pm on Wednesday, November 11, 2015

cos(θ)sin(θ) Alternative Exercise Correct Correct θ = 0 skiladæmi 10 Part A Part B Part C Due: 11:59pm on Wednesday, November 11, 2015 skiladæmi 10 Due: 11:59pm on Wednesday, November 11, 015 You will receive no credit for items you complete after the assignment is due Grading Policy Alternative Exercise 1115 A bar with cross sectional

More information

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension forces. 2 Objectives 3 i i 2 1 INTRODUCTION Property:

More information

Shell Balances in Fluid Mechanics

Shell Balances in Fluid Mechanics Shell Balances in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University When fluid flow occurs in a single direction everywhere in a system, shell

More information

Introduction to Turbulence AEEM Why study turbulent flows?

Introduction to Turbulence AEEM Why study turbulent flows? Introduction to Turbulence AEEM 7063-003 Dr. Peter J. Disimile UC-FEST Department of Aerospace Engineering Peter.disimile@uc.edu Intro to Turbulence: C1A Why 1 Most flows encountered in engineering and

More information

Lecture 27 (Walker: ) Fluid Dynamics Nov. 9, 2009

Lecture 27 (Walker: ) Fluid Dynamics Nov. 9, 2009 Physics 111 Lecture 27 (Walker: 15.5-7) Fluid Dynamics Nov. 9, 2009 Midterm #2 - Monday Nov. 16 Chap. 7,Chap. 8 (not 8.5) Chap. 9 (not 9.6, 9.8) Chap. 10, Chap. 11 (not 11.8-9) Chap. 13 (not 13.6-8) Chap.

More information

MULTIPLE-CHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)

MULTIPLE-CHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.) MULTIPLE-CHOICE PROLEMS:(Two marks per answer) (Circle the Letter eside the Most Correct Answer in the Questions elow.) 1. The absolute viscosity µ of a fluid is primarily a function of: a. Density. b.

More information

Part A: 1 pts each, 10 pts total, no partial credit.

Part A: 1 pts each, 10 pts total, no partial credit. Part A: 1 pts each, 10 pts total, no partial credit. 1) (Correct: 1 pt/ Wrong: -3 pts). The sum of static, dynamic, and hydrostatic pressures is constant when flow is steady, irrotational, incompressible,

More information

The principals of rheology In pharmaceutical technology

The principals of rheology In pharmaceutical technology The principals of rheology In pharmaceutical technology Dr. Aleksandar Széchenyi University of Pécs Gyógyszertechnológiai és Biofarmáciai Intézet Institute of Pharmaceutical Technology and Biopharmacy

More information

V/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0

V/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0 UNIT III FLOW THROUGH PIPES 1. List the types of fluid flow. Steady and unsteady flow Uniform and non-uniform flow Laminar and Turbulent flow Compressible and incompressible flow Rotational and ir-rotational

More information

Lecture 2: Hydrodynamics at milli micrometer scale

Lecture 2: Hydrodynamics at milli micrometer scale 1 at milli micrometer scale Introduction Flows at milli and micro meter scales are found in various fields, used for several processes and open up possibilities for new applications: Injection Engineering

More information

ENGINEERING FLUID MECHANICS. CHAPTER 1 Properties of Fluids

ENGINEERING FLUID MECHANICS. CHAPTER 1 Properties of Fluids CHAPTER 1 Properties of Fluids ENGINEERING FLUID MECHANICS 1.1 Introduction 1.2 Development of Fluid Mechanics 1.3 Units of Measurement (SI units) 1.4 Mass, Density, Specific Weight, Specific Volume, Specific

More information

ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts. Flow in Pipes and Ducts. Flow in Pipes and Ducts (cont d)

ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts. Flow in Pipes and Ducts. Flow in Pipes and Ducts (cont d) ME 305 Fluid Mechanics I Flow in Pipes and Ducts Flow in closed conduits (circular pipes and non-circular ducts) are very common. Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared

More information

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 5. FLOW IN PIPES 5.1.3. Pressure and Shear Stress

More information

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1 Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

Steven Burian Civil & Environmental Engineering September 25, 2013

Steven Burian Civil & Environmental Engineering September 25, 2013 Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering September 25, 2013 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session

More information

Physics 207 Lecture 18

Physics 207 Lecture 18 Physics 07, Lecture 8, Nov. 6 MidTerm Mean 58.4 (64.6) Median 58 St. Dev. 6 (9) High 94 Low 9 Nominal curve: (conservative) 80-00 A 6-79 B or A/B 34-6 C or B/C 9-33 marginal 9-8 D Physics 07: Lecture 8,

More information

COURSE NUMBER: ME 321 Fluid Mechanics I. Fluid: Concept and Properties

COURSE NUMBER: ME 321 Fluid Mechanics I. Fluid: Concept and Properties COURSE NUMBER: ME 321 Fluid Mechanics I Fluid: Concept and Properties Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 What is Fluid Mechanics? Fluid mechanics

More information

The standard deviation σ is used for the index of fluctuation.

The standard deviation σ is used for the index of fluctuation. Chapter 2: Unit and Measurement 2.1 Unit and Significant Figures 2.1.1 Unit The relationship between the Celsius (C) and Fahrenheit (F) of temperature is represented by the equation 2.1. F=(9/5)C+32 (2.1)

More information

Fluid Mechanics. Spring 2009

Fluid Mechanics. Spring 2009 Instructor: Dr. Yang-Cheng Shih Department of Energy and Refrigerating Air-Conditioning Engineering National Taipei University of Technology Spring 2009 Chapter 1 Introduction 1-1 General Remarks 1-2 Scope

More information

Microelectromechanical Systems (MEMs) Applications Fluids

Microelectromechanical Systems (MEMs) Applications Fluids ROCHESTER INSTITUTE OF TEHNOLOGY MICROELECTRONIC ENGINEERING Microelectromechanical Systems (MEMs) Applications Fluids Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester,

More information

B.E/B.Tech/M.E/M.Tech : Chemical Engineering Regulation: 2016 PG Specialisation : NA Sub. Code / Sub. Name : CH16304 FLUID MECHANICS Unit : I

B.E/B.Tech/M.E/M.Tech : Chemical Engineering Regulation: 2016 PG Specialisation : NA Sub. Code / Sub. Name : CH16304 FLUID MECHANICS Unit : I Department of Chemical Engineering B.E/B.Tech/M.E/M.Tech : Chemical Engineering Regulation: 2016 PG Specialisation : NA Sub. Code / Sub. Name : CH16304 FLUID MECHANICS Unit : I LP: CH 16304 Rev. No: 00

More information

Chapter 14. Fluid Mechanics

Chapter 14. Fluid Mechanics Chapter 14 Fluid Mechanics States of Matter Solid Has a definite volume and shape Liquid Has a definite volume but not a definite shape Gas unconfined Has neither a definite volume nor shape All of these

More information

Fluid Mechanics Abdusselam Altunkaynak

Fluid Mechanics Abdusselam Altunkaynak Fluid Mechanics Abdusselam Altunkaynak 1. Unit systems 1.1 Introduction Natural events are independent on units. The unit to be used in a certain variable is related to the advantage that we get from it.

More information

Introduction to Marine Hydrodynamics

Introduction to Marine Hydrodynamics 1896 1920 1987 2006 Introduction to Marine Hydrodynamics (NA235) Department of Naval Architecture and Ocean Engineering School of Naval Architecture, Ocean & Civil Engineering First Assignment The first

More information

MEASUREMENT OF VISCOSITY OF LIQUID

MEASUREMENT OF VISCOSITY OF LIQUID MEASUREMENT OF VISCOSITY OF LIQUID Objectives: To measure the viscosity of sample liquids. Apparatus: (i) Glass tube (ii)steel balls, (iii) Retort stand and clamps, (iv) Weighing balance, (v) Screw gauge,

More information

Microscopic Momentum Balance Equation (Navier-Stokes)

Microscopic Momentum Balance Equation (Navier-Stokes) CM3110 Transport I Part I: Fluid Mechanics Microscopic Momentum Balance Equation (Navier-Stokes) Professor Faith Morrison Department of Chemical Engineering Michigan Technological University 1 Microscopic

More information

Table of Contents. Preface... xiii

Table of Contents. Preface... xiii Preface... xiii PART I. ELEMENTS IN FLUID MECHANICS... 1 Chapter 1. Local Equations of Fluid Mechanics... 3 1.1. Forces, stress tensor, and pressure... 4 1.2. Navier Stokes equations in Cartesian coordinates...

More information

Introductory Physics PHYS101

Introductory Physics PHYS101 Introductory Physics PHYS101 Dr Richard H. Cyburt Office Hours Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu TRF 9:30-11:00am

More information

Numerical study of blood fluid rheology in the abdominal aorta

Numerical study of blood fluid rheology in the abdominal aorta Design and Nature IV 169 Numerical study of blood fluid rheology in the abdominal aorta F. Carneiro 1, V. Gama Ribeiro 2, J. C. F. Teixeira 1 & S. F. C. F. Teixeira 3 1 Universidade do Minho, Departamento

More information

PHY121 Physics for the Life Sciences I

PHY121 Physics for the Life Sciences I PHY Physics for the Life Sciences I Lecture 0. Fluid flow: kinematics describing the motion. Fluid flow: dynamics causes and effects, Bernoulli s Equation 3. Viscosity and Poiseuille s Law for narrow tubes

More information

Applied Physics Topics 1. Dr Andrey Varvinskiy Consultant Anaesthetist Torbay Hospital, UK EDAIC Paper B Lead and Examiner

Applied Physics Topics 1. Dr Andrey Varvinskiy Consultant Anaesthetist Torbay Hospital, UK EDAIC Paper B Lead and Examiner Applied Physics Topics 1 Dr Andrey Varvinskiy Consultant Anaesthetist Torbay Hospital, UK EDAIC Paper B Lead and Examiner Conflict of interest declaration WHAT DECLARATION Grants/research support/p.i.

More information

Day 24: Flow around objects

Day 24: Flow around objects Day 24: Flow around objects case 1) fluid flowing around a fixed object (e.g. bridge pier) case 2) object travelling within a fluid (cars, ships planes) two forces are exerted between the fluid and the

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY J/2.792J/HST542J: Quantitative Physiology: Organ Transport Systems PHYSIOLOGICAL FLUID MECHANICS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY J/2.792J/HST542J: Quantitative Physiology: Organ Transport Systems PHYSIOLOGICAL FLUID MECHANICS Harvard-MIT Division of Health Sciences and Technology HST.542J: Quantitative Physiology: Organ Transport Systems Instructor: Roger Mark c Roger G. Mark, 2003 (adapted from original notes by Prof. Roger

More information

Analysis and Simulation of Blood Flow in MATLAB

Analysis and Simulation of Blood Flow in MATLAB Analysis and Simulation of Blood Flow in MATLAB Jill Mercik and Ryan Banci Advisor: Prof. Yanlai Chen Mathematics Department University of Massachusetts Dartmouth December 19, 2011 1 Contents 1 Introduction

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition

Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition C. Pozrikidis m Springer Contents Preface v 1 Introduction to Kinematics 1 1.1 Fluids and solids 1 1.2 Fluid parcels and flow

More information

AGITATION AND AERATION

AGITATION AND AERATION AGITATION AND AERATION Although in many aerobic cultures, gas sparging provides the method for both mixing and aeration - it is important that these two aspects of fermenter design be considered separately.

More information