CHAPTER 3. CONVENTIONAL RHEOMETRY: STATE-OF-THE-ART. briefly introduces conventional rheometers. In sections 3.2 and 3.

Size: px
Start display at page:

Download "CHAPTER 3. CONVENTIONAL RHEOMETRY: STATE-OF-THE-ART. briefly introduces conventional rheometers. In sections 3.2 and 3."

Transcription

1 30 CHAPTER 3. CONVENTIONAL RHEOMETRY: STATE-OF-THE-ART This chapter reviews literature on conventional rheometries. Section 3.1 briefly introduces conventional rheometers. In sections 3.2 and 3.3, viscometers commonly used for the viscosity measurements of fluids, which have been used for hemorheology studies, are demonstrated. Section 3.4 provides conventional methods of measuring yield stresses of fluids. Section 3.5 presents the drawbacks of conventional viscometers for clinical applications Introduction Numerous types of rheometers have been used to measure the viscosity and yield stress of materials [Tanner, 1985; Ferguson and Kemblowski, 1991; Macosko, 1994]. In the present study, rheometer refers to a device that can measure both viscosity and yield stress of a material, whereas viscometer can measure only the viscosity of the material. In addition, only shear viscometers will be discussed in the study since the other type, extensional viscometers, are not very applicable to relatively low viscous fluids, such as water and whole blood. Typically, shear viscometers can be divided into two groups [Macosko, 1994]: drag flows, in which shear is generated between a moving and a stationary solid surface, and pressure-driven flows, in which shear is generated by a pressure difference over a capillary tube. The commonly utilized members of these groups are

2 31 shown in Fig Numerous techniques have been developed for determining the yield stress of fluids both directly and indirectly. Most of these viscometers can produce viscosity measurements at a specified, constant shear rate. Therefore, in order to measure the viscosity over a range of shear rates, one needs to repeat the measurement by varying either the pressure in the reservoir tank of capillary tube viscometers, the rotating speed of the cone or cup in rotating viscometers, or the density of the falling objects. Such operations make viscosity measurements difficult and labor intensive. In addition, these viscometers require anticoagulants in blood to prevent blood clotting. Hence, the viscosity results include the effects of anticoagulants, which may increase or decrease blood viscosity depending on the type of anticoagulant [Rosenblum, 1968; Crouch et al., 1986; Reinhart et al., 1990; Kamaneva et al., 1994]. Drag-flow type of viscometers includes a falling object (ball or cylinder) viscometer and a rotational viscometer. However, the falling object viscometer is not very convenient to use for clinical applications. In the case of the falling object viscometer, the relatively large amount of a test fluid is required for the viscosity measurement. In addition, since the testing fluid is at a stationary state initially, the type of viscometer is not very applicable to a thixotropic fluid like whole blood. The principle of the falling object viscometer is provided in Appendix B. For the yield measurement of blood, most researchers have used indirect methods rather than direct methods for practical reasons [Nguyen and Boger, 1983; de Kee et al., 1986; Magnin and Piau, 1990]. Thus, the details of direct methods will

3 32 not be discussed in this chapter. As indirect methods, data extrapolation and extrapolation using constitutive models are introduced and discussed in this chapter.

4 33 Rheometers Viscosity Measurements Yield Stress Measurements Drag Flows Pressure- Driven Flows Indirect Methods Direct Methods Capillary- Tube Viscometer Data Extrapolation Extrapolation using Constitutive Models Falling/ Rolling Object Viscometer Rotational Viscometer Fig Rheometers.

5 Rotational Viscometer In a rotational viscometer, the fluid sample is sheared as a result of the rotation of a cylinder or cone. The shearing occurs in a narrow gap between two surfaces, usually one rotating and the other stationary. Two frequently used geometries are Couette (Fig. 3-2) and cone-and-plate (Fig. 3-3) Rotational Coaxial-Cylinder (Couette Type) In a coaxial-cylinder system, the inner cylinder is often referred to as bob, and the external one as cup. The shear rate is determined by geometrical dimensions and the speed of rotation. The shear stress is calculated from the torque and the geometrical dimensions. By changing the speed of the rotating element, one is able to collect different torques, which are used for the determination of the shear stressshear rate curve. Figure 3-2 shows a typical coaxial-cylinder system that has a fluid Ri confined within a narrow gap ( ) between the inner cylinder rotating at Ω R o and the stationary outer cylinder. Once the torque exerting on either inner or outer cylinder is measured, the shear stress and shear rate can be calculated as follow [Macosko, 1994]: M i M o τ ( Ri ) = or τ ( R 2 o ) = (3-1) 2 2πR H 2πR H i o

6 35 ΩR Ri & γ ( Ri ) & γ ( Ro ) = when 1 > R R R o i o (3-2) where R i and R o = radii of inner and outer cylinders, respectively R = R i + R o 2 M i and M o = torques exerting on inner and outer cylinders, respectively H = height of inner cylinder Ω = angular velocity Cone-and-Plate The common feature of a cone-and-plate viscometer is that the fluid is sheared between a flat plate and a cone with a low angle; see Fig The cone-and-plate system produces a flow in which the shear rate is very nearly uniform. Let s consider a fluid, which is contained in the gap between a plate and a cone with an angle of β. Typically, the gap angle, β, is very small ( o 4 ). The shear rate of the fluid depends on the gap angle, β, and the linear speed of the plate. Assuming that the cone is stationary and the plate rotates with a constant angular velocity of Ω, the shear stress and shear rate can be calculated from experimentally measured torque, M, and given geometric dimensions (see Fig. 3-3) as follows [Macosko, 1994]: 3M τ = and 3 2πR Ω & γ =. (3-3) β

7 36 Ω R i H R o Fig Schematic diagram of a concentric cylinder viscometer.

8 37 Torque measurement device Fluid Cone R β Plate Ω Fig Schematic diagram of a cone-and-plate viscometer.

9 Capillary-Tube Viscometer The principle of a capillary tube viscometer is based on the Hagen-Poiseuille Equation which is valid for Newtonian fluids. Basically, one needs to measure both pressure drop and flow rate independently in order to measure the viscosity with the capillary tube viscometer. Since the viscosity of a Newtonian fluid does not vary with flow or shear, one needs to have one measurement at any flow velocity. However, for non-newtonian fluids, it is more complicated because the viscosity varies with flow velocity (or shear rate). In a capillary-tube viscometer, the fluid is forced through a cylindrical capillary tube with a smooth inner surface. The flow parameters have to be chosen in such a way that the flow may be regarded as steady-state, isothermal, and laminar. Knowing the dimensions of the capillary tube (i.e., its inner diameter and length), one can determine the functional dependence between the volumetric flow rate and the pressure drop due to friction. If the measurements are carried out so that it is possible to establish this dependence for various values of pressure drop or flow rate, then one is able to determine the flow curve of the fluid. For non-newtonian fluids, since the viscosity varies with shear rate, one needs to vary the pressure in the reservoir in order to change the shear rate, a procedure that is highly time-consuming. After each run, the reservoir pressure should be reset to a new value to obtain the relation between flow rate and pressure drop. In order to determine the flow curve of a non-newtonian fluid, one needs to establish the functional dependence of shear stress on shear rate in a wide range of these variables.

10 39 Figure 3-4 shows the schematic diagram of a typical capillary-tube viscometer, which has the capillary tube with an inner radius of R c and a length of L c. It is assumed that the ratio of the capillary length to its inner radius is so large that one may neglect the so-called end effects occurring in the entrance and exit regions of the capillary tube. Then, the shear stress at the tube wall can be obtained as follows: r P c τ = (3-4) 2L c R P c c τ w = (3-5) 2Lc where τ and τ w = shear stresses at distance r and at tube wall, respectively r = distance from the capillary axis P c = pressure drop across a capillary tube. It is of note that the shear stress distribution is valid for fluids of any rheological properties. In the case of a Newtonian fluid, the shear rate at tube wall can be expressed by taking advantage of the well-known Hagen-Poiseuille Equation as: γ& = 4Q 4V w πr R (3-6) = 3 c c where γ& w = wall shear rate 4 π Rc Pc Q = 8 µ L c = πr 2 c V = volumetric flow rate (Hagen-Poiseuille Equation) V = mean velocity.

11 40 Compressed air Air Test fluid Capillary tube Reservoir tank L c 2R c Collected test fluid Balance Fig Schematic diagram of a capillary-tube viscometer.

12 Yield Stress Measurement Whether yield stress is a true material property or not is still a controversial issue [Barnes and Walters, 1985]. However, there is generally an acceptance of its practical usefulness in engineering design and operation of processes where handling and transport of industrial suspensions are involved. The minimum pump pressure required to start a slurry pipeline, the leveling and holding ability of paint, and the entrapment of air in thick pastes are typical problems where the knowledge of the yield stress is essential. Numerous techniques have been developed for determining the yield stress both directly and indirectly based on the general definition of the yield stress as the stress limit between flow and non-flow conditions. Indirect methods simply involve the extrapolation of shear stress-shear rate data to zero shear rate with or without the help of a rheological model. Direct measurements generally rely on some independent assessment of yield stress as the critical shear stress at which the fluid yields or starts to flow. The value obtained by the extrapolation of a flow curve is known as extrapolated or apparent yield stress, whereas yield stress measured directly, usually under a near static condition, is termed static or true yield value.

13 Indirect Method Indirect determination of the yield stress simply involves the extrapolation of experimental shear stress-shear rate data at zero shear rate (see Fig. 3-5). The extrapolation may be performed graphically or numerically, or can be fitted to a suitable rheological model representing the fluid and the yield stress parameter in the model is determined Direct Data Extrapolation One of most common procedures is to extend the flow curve at low shear rates to zero shear rate, and take the shear stress intercept as the yield stress value. The technique is relatively straightforward only if the shear stress-shear rate data are linear. With nonlinear flow curves, as shown in Fig. 3-5, the data may have to be fitted to a polynomial equation followed by the extrapolation of the resulting curve fit to zero shear rate. The yield stress value obtained obviously depends on the lowest shear rate data available and used in the extrapolation. This shear rate dependence of the extrapolated yield stress has been demonstrated by Barnes and Walters (1985) with a well-known yield stress fluid, Carbopol (carboxylpolymethylene). They concluded that this fluid would have no detectable yield stress even if measurement was made at very low shear rates of 10-5 s -1 or less. This finding should be viewed with caution, however, since virtually all viscometric instruments suffer wall slip and

14 43 other defects which tend to be more pronounced at low shear rates especially with yield stress fluids and particulate systems [Wildermuth and Williams, 1985; Magnin and Piau, 1990]. Thus, it is imperative that some checking procedure should be carried out to ascertain the reliability of the low shear rate data before extrapolation is made Extrapolation Using Constitutive Models A more convenient extrapolation technique is to approximate the experimental data with one of the viscoplastic flow models. Many workers appear to prefer the Bingham model which postulates a linear relationship between shear stress and shear rate. However, since a large number of yield stress fluids including suspensions are not Bingham plastic except at very high shear rates, the use of the Bingham plastic model can lead to unnecessary overprediction of the yield stress as shown in Fig. 3-5 [Nguyen and Boger, 1983; de Kee et al., 1986]. Extrapolation by means of nonlinear 1 1 Casson model can be used from a linear plot of τ 2 2 versus γ&. The application of Herschel-Bulkley model is less certain although systematic procedures for determining the yield stress value and the other model parameters are available [Heywood and Cheng, 1984]. Even with the most suitable model and appropriate technique, the yield stress value obtained cannot be regarded as an absolute material property because its accuracy depends on the model used and the range and reliability of the experimental

15 44 data available. Several studies have shown that a given fluid can be described equally well by more than one model and hence can have different yield stress values [Keentok, 1982; Nguyen and Boger, 1983; Uhlherr, 1986] Direct Method Various techniques have been introduced for measuring the yield stress directly and independently of shear stress-shear rate data. Although the general principle of the yield stress as the stress limit between flow and non-flow conditions is often used, the specific criterion employed for defining the yield stress seems to vary among these techniques. Furthermore, each technique appears to have its own limitations and sensitivity so that no single technique can be considered versatile or accurate enough to cover the whole range of yield stress and fluid characteristics. Usually, the direct methods are used for fluids having yield stresses of greater than approximately 10 Pa [Nguyen and Boger, 1983]. Therefore, as mentioned earlier, the direct method is not very convenient to use for the yield stress measurement of blood since the yield stress of human blood is approximately 1 to 30 mpa [Picart et al., 1998].

16 Fig Determination of yield stress by extrapolation [Nguyen and Boger, 1983]. 45

17 Problems with Conventional Viscometers for Clinical Applications Problems with Rotational Viscometers Over the years, rotational viscometers have been the standard in clinical studies investigating rheological properties of blood and other body fluids. Despite their popularity, rotational viscometers have some drawbacks that limit their clinical applicability in measuring whole blood viscosity. They include the need to calibrate a torque-measuring sensor, handling of blood, surface tensions effects, and the range of reliability. The torque-measuring sensor can be a conventional spring or a more sophisticated electronic transducer. In either case, the sensor requires a periodic calibration because repeated use of the sensor can alter its spring constant. The calibration procedure is often carried out at manufacturer s laboratory because it requires an extremely careful and elaborate protocol, requiring the viscometer unit to be returned for service. Another concern is the need to work with contaminated blood specimens. After each measurement, the blood sample must be removed from the test section, and the test section must be cleaned manually. Not only is this procedure timeconsuming, but also it poses a potential risk for contact with contaminated blood. Surface tension effects arise in the use of the coaxial-cylinder viscometer because surface tension is relatively high for blood and macromolecular solutions. The contact area between the blood and an inner cylinder is not uniform along the

18 47 periphery. The bob (inner cylinder) is pulled in different directions and revealed in fluctuating torque readings, introducing serious errors in viscosity measurement. Another inherent difficulty in measuring whole blood viscosity using rotational viscometers is the limited shear rate range. In the extremes of the reputed range (whether high shear or low shear, depending on the instrument), the detected torque values do not have sufficient accuracy. Usually, manufacturers recommend discarding viscosity data if the torque is less than 10% of the maximum value of the sensor. This restriction is a major concern. For example, in the case of Brookfield rotational viscometer, the minimum shear rate is often limited at approximately s -1 due to the 10% restriction. There are other clinical, practical considerations in using the rotational viscometer. For example, it is usually necessary to treat the blood sample with a measurable amount of anticoagulant, such as ethylenediaminetetraacetic acid (EDTA) or heparin, to prevent coagulation during viscosity measurements. The reason for this is that the contact area among blood, rotational viscometer component, and air is relatively large for the size of the blood sample, and it usually takes a relatively long time to complete viscosity measurements over a range of shear rates. Treating blood with such anticoagulants results in an altered sample, and subsequent viscosity measurements do not reflect the intrinsic values of unadulterated blood.

19 Problems with Capillary-Tube Viscometers There are some drawbacks in the use of conventional capillary-tube viscometers for clinical applications. The range of shear rate is limited to high shears over 100 s -1. Although one can produce viscosity data at lower shear rates below 100 s -1 with a sophisticated vacuum system, the capillary tube system is basically designed and operated to obtain viscosity at the high shear range. Since it is essential to obtain blood viscosity at low shear rates below 10 s -1, the traditional capillary tube viscometer is not suitable for measuring the viscosity at low shear rates. However, capillary-tube viscometer is simple in its design and uses gravity field to drive test fluid such that there is no need for calibration. It takes a relatively long time to complete viscosity measurements over a range of shear rates because at each shear rate, a sufficient quantity of a fluid sample must be collected for an accurate measurement of flow velocity. After the measurement at one shear rate, the pressure at the reservoir tank must be readjusted to either increase or decrease shear rate. Then, the next shear rate case resumes. Thus, anticoagulants must be added to whole blood for the viscosity measurement over a range of shear rates.

Rotational viscometers

Rotational viscometers 42 Non-Newtonian Flow in the Process Industries Rotational viscometers Due to their relative importance as tools for the rheological characterisation of non-newtonian fluid behaviour, we concentrate on

More information

Rheometry. II.1 Introduction

Rheometry. II.1 Introduction II Rheometry II.1 Introduction Structured materials are generally composed of microstructures dispersed in a homogeneous phase [30]. These materials usually have a yield stress, i.e. a threshold stress

More information

Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr.

Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr. Reading Assignments Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr. Sert) Study Set 1 You can find the answers of some of the following

More information

Modelling of dispersed, multicomponent, multiphase flows in resource industries Section 4: Non-Newtonian fluids and rheometry (PART 1)

Modelling of dispersed, multicomponent, multiphase flows in resource industries Section 4: Non-Newtonian fluids and rheometry (PART 1) Modelling of dispersed, multicomponent, multiphase flows in resource industries Section 4: Non-Newtonian fluids and rheometry (PART 1) Globex Julmester 2017 Lecture #3 05 July 2017 Agenda Lecture #3 Section

More information

Rheology of strongly sedimenting magnetite suspensions

Rheology of strongly sedimenting magnetite suspensions ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 13, 05 Rheology of strongly sedimenting magnetite suspensions Jan Gustafsson1, Martti Toivakka1, and Kari K. Koskinen2 1 Laboratory of Paper Coating

More information

(2.1) Is often expressed using a dimensionless drag coefficient:

(2.1) Is often expressed using a dimensionless drag coefficient: 1. Introduction Multiphase materials occur in many fields of natural and engineering science, industry, and daily life. Biological materials such as blood or cell suspensions, pharmaceutical or food products,

More information

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer You are assigned to design a fallingcylinder viscometer to measure the viscosity of Newtonian liquids. A schematic

More information

Measuring rheological properties using a slotted plate device

Measuring rheological properties using a slotted plate device Korea-Australia Rheology Journal Vol. 19, No. 2, August 2007 pp. 75-80 Measuring rheological properties using a slotted plate device Daniel De Kee 1, Young Dae Kim* and Q. Dzuy Nguyen 2 Faculty of Applied

More information

10.52 Mechanics of Fluids Spring 2006 Problem Set 3

10.52 Mechanics of Fluids Spring 2006 Problem Set 3 10.52 Mechanics of Fluids Spring 2006 Problem Set 3 Problem 1 Mass transfer studies involving the transport of a solute from a gas to a liquid often involve the use of a laminar jet of liquid. The situation

More information

Shell Balances in Fluid Mechanics

Shell Balances in Fluid Mechanics Shell Balances in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University When fluid flow occurs in a single direction everywhere in a system, shell

More information

How to measure the shear viscosity properly?

How to measure the shear viscosity properly? testxpo Fachmesse für Prüftechnik 10.-13.10.2016 How to measure the shear viscosity properly? M p v Rotation Capillary Torsten Remmler, Malvern Instruments Outline How is the Shear Viscosity defined? Principle

More information

Viscosity and Polymer Melt Flow. Rheology-Processing / Chapter 2 1

Viscosity and Polymer Melt Flow. Rheology-Processing / Chapter 2 1 Viscosity and Polymer Melt Flow Rheology-Processing / Chapter 2 1 Viscosity: a fluid property resistance to flow (a more technical definition resistance to shearing) Remember that: τ μ du dy shear stress

More information

Wavelet-vaguelette decomposition and its application to rheometry

Wavelet-vaguelette decomposition and its application to rheometry Wavelet-vaguelette decomposition and its application to rheometry Christophe Ancey École Polytechnique Fédérale de Lausanne WavE 2006 conference, July 12 2006 christophe.ancey@epfl.ch Wavelet-vaguelette

More information

Contents. Preface XIII. 1 General Introduction 1 References 6

Contents. Preface XIII. 1 General Introduction 1 References 6 VII Contents Preface XIII 1 General Introduction 1 References 6 2 Interparticle Interactions and Their Combination 7 2.1 Hard-Sphere Interaction 7 2.2 Soft or Electrostatic Interaction 7 2.3 Steric Interaction

More information

Fluid Mechanics II Viscosity and shear stresses

Fluid Mechanics II Viscosity and shear stresses Fluid Mechanics II Viscosity and shear stresses Shear stresses in a Newtonian fluid A fluid at rest can not resist shearing forces. Under the action of such forces it deforms continuously, however small

More information

Experimental setup. Chapter Rheometer

Experimental setup. Chapter Rheometer 21 Chapter 2 Experimental setup The current experiments are designed to examine the effect of volume fraction and Stokes number (and equivalently the Reynolds number) at shear rates sufficiently high enough

More information

150A Review Session 2/13/2014 Fluid Statics. Pressure acts in all directions, normal to the surrounding surfaces

150A Review Session 2/13/2014 Fluid Statics. Pressure acts in all directions, normal to the surrounding surfaces Fluid Statics Pressure acts in all directions, normal to the surrounding surfaces or Whenever a pressure difference is the driving force, use gauge pressure o Bernoulli equation o Momentum balance with

More information

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics REE 307 - Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics 1. Is the following flows physically possible, that is, satisfy the continuity equation? Substitute the expressions for

More information

Corrections to flow data in polymer melts

Corrections to flow data in polymer melts Corrections to flow data in polymer melts Narongrit Sombatsompop Polymer PROcessing and Flow (P-PROF) Materials Technology, School of Energy & Materials King Mongkut s University of Technology Thonburi

More information

RHEOLOGY Principles, Measurements, and Applications. Christopher W. Macosko

RHEOLOGY Principles, Measurements, and Applications. Christopher W. Macosko RHEOLOGY Principles, Measurements, and Applications I -56081-5'79~5 1994 VCH Publishers. Inc. New York Part I. CONSTITUTIVE RELATIONS 1 1 l Elastic Solid 5 1.1 Introduction 5 1.2 The Stress Tensor 8 1.2.1

More information

Liquid fuels viscosity (non-newtonian fluids)

Liquid fuels viscosity (non-newtonian fluids) Liquid fuels viscosity (non-newtonian fluids) Introduction Viscosity is an important parameter when preparing liquid fuels for combustion as it determines how much drag the fuel experiences when passing

More information

Final Polymer Processing

Final Polymer Processing 030319 Final Polymer Processing I) Blow molding is used to produce plastic bottles and a blow molding machine was seen during the Equistar tour. In blow molding a tubular parison is produced by extrusion

More information

Exercise: concepts from chapter 10

Exercise: concepts from chapter 10 Reading:, Ch 10 1) The flow of magma with a viscosity as great as 10 10 Pa s, let alone that of rock with a viscosity of 10 20 Pa s, is difficult to comprehend because our common eperience is with s like

More information

CH5716 Processing of Materials

CH5716 Processing of Materials CH5716 Processing of Materials Ceramic Thick Film Processing Lecture MC5 Slurry Characterisation Specific Surface Area Powder size & specific surface area (area per unit wt) closely related As particle

More information

MECHANICAL CHARACTERISTICS OF STARCH BASED ELECTRORHEOLOGICAL FLUIDS

MECHANICAL CHARACTERISTICS OF STARCH BASED ELECTRORHEOLOGICAL FLUIDS 8 th International Machine Design and Production Conference 427 September 9-11, 1998 Ankara TURKEY ABSTRACT MECHANICAL CHARACTERISTICS OF STARCH BASED ELECTRORHEOLOGICAL FLUIDS E. R. TOPCU * and S. KAPUCU

More information

Resistance Coefficients for Non-Newtonian Flows in Pipe Fittings

Resistance Coefficients for Non-Newtonian Flows in Pipe Fittings Resistance Coefficients for Non-Newtonian Flows in Pipe Fittings Veruscha Fester 1, Paul Slatter 2 and Neil Alderman 3 7 1 Cape Peninsula University of Technology, 2 Royal Melbourne Institute of Technology,

More information

Homework of chapter (1) (Solution)

Homework of chapter (1) (Solution) بسم اهلل الرمحن الرحيم The Islamic University of Gaza, Civil Engineering Department, Fluid mechanics-discussion, Instructor: Dr. Khalil M. Al Astal T.A: Eng. Mohammed H El Nazli Eng. Sarah R Rostom First

More information

INTRODUCTION TO FLUID MECHANICS June 27, 2013

INTRODUCTION TO FLUID MECHANICS June 27, 2013 INTRODUCTION TO FLUID MECHANICS June 27, 2013 PROBLEM 3 (1 hour) A perfect liquid of constant density ρ and constant viscosity µ fills the space between two infinite parallel walls separated by a distance

More information

Continuous Flow Rheometry for Settling Slurries

Continuous Flow Rheometry for Settling Slurries Continuous Flow Rheometry for Settling Slurries by Timothy James AKROYD Thesis submitted for the degree of Doctor of Philosophy School of Chemical Engineering Faculty of Engineering, Computer and Mathematical

More information

WASTEWATER SLUDGE PIPELINE PREDICTIONS USING CONVENTIONAL VISCOMETRY AND ULTRASOUND BASED RHEOMETRY

WASTEWATER SLUDGE PIPELINE PREDICTIONS USING CONVENTIONAL VISCOMETRY AND ULTRASOUND BASED RHEOMETRY 18th International Conference on TRANSPORT AND SEDIMENTATION OF SOLID PARTICLES 11-15 September 2017, Prague, Czech Republic ISSN 0867-7964 ISBN 978-83-7717-269-8 WASTEWATER SLUDGE PIPELINE PREDICTIONS

More information

Viscosity * Desmond Schipper Andrew R. Barron. 1 Introduction

Viscosity * Desmond Schipper Andrew R. Barron. 1 Introduction OpenStax-CNX module: m50215 1 Viscosity * Desmond Schipper Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract This module discusses

More information

Lecture 2. Simple shear devices. Simple shear devices 2. Simple shear devices 3. Moving plate. Velocity V. Force F. Area A. height h.

Lecture 2. Simple shear devices. Simple shear devices 2. Simple shear devices 3. Moving plate. Velocity V. Force F. Area A. height h. Lecture 2 Rheometry Simple shear devices Steady shear viscosity Normal stresses Oscillating shear Extensional viscosity Scalings Nondimensional parameter Simple shear devices Conceptual device for simple

More information

Polymerization Technology Laboratory Course

Polymerization Technology Laboratory Course Polymerization Technology Laboratory Course Viscometry/Rheometry Tasks 1. Comparison of the flow behavior of polystyrene- solution and dispersion systems 2. Determination of the flow behaviour of polyvinylalcohol

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2013

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2013 Lecture 1 3/13/13 University of Washington Department of Chemistry Chemistry 53 Winter Quarter 013 A. Definition of Viscosity Viscosity refers to the resistance of fluids to flow. Consider a flowing liquid

More information

BSL Transport Phenomena 2e Revised: Chapter 2 - Problem 2B.11 Page 1 of 5

BSL Transport Phenomena 2e Revised: Chapter 2 - Problem 2B.11 Page 1 of 5 BS Transport Phenomena 2e Revised: Chapter 2 - Problem 2B11 Page 1 of 5 Problem 2B11 The cone-and-plate viscometer (see Fig 2B11 A cone-and-plate viscometer consists of a flat plate and an inverted cone,

More information

Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017

Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017 Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017 Objective: Text: To introduce the basic concepts of fluid mechanics and heat transfer necessary for solution of engineering

More information

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering) Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.

More information

On the Rheological Parameters Governing Oilwell Cement Slurry Stability

On the Rheological Parameters Governing Oilwell Cement Slurry Stability ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 12, 2004 On the Rheological Parameters Governing Oilwell Cement Slurry Stability Roni Gandelman, Cristiane Miranda, Kleber Teixeira, André L. Martins

More information

2 Navier-Stokes Equations

2 Navier-Stokes Equations 1 Integral analysis 1. Water enters a pipe bend horizontally with a uniform velocity, u 1 = 5 m/s. The pipe is bended at 90 so that the water leaves it vertically downwards. The input diameter d 1 = 0.1

More information

Shear flow curve in mixing systems A simplified approach

Shear flow curve in mixing systems A simplified approach Author manuscript, published in "Chemical Engineering Science 63, 24 (2008) 5887-5890" DOI : 10.1016/j.ces.2008.08.019 Shear flow curve in mixing systems A simplified approach Patrice Estellé *, Christophe

More information

Rheometer: Procedure: Part A: Viscosity v Time

Rheometer: Procedure: Part A: Viscosity v Time Rheometer A fluid is defined as a substance that deforms continuously under the action of a shear stress, no matter how small the shear stress may be. Without shear stress, there will be no deformation.

More information

AN014e. Non-standard geomtries for rheological characterization of complex fluids. A. Franck, TA Instruments Germany

AN014e. Non-standard geomtries for rheological characterization of complex fluids. A. Franck, TA Instruments Germany Non-standard geomtries for rheological characterization of complex fluids A. Franck, TA Instruments Germany AN14e Keywords: systemic rheology, rheo-reactor, s, product formulation, s, bitumen, Couette

More information

1.060 Engineering Mechanics II Spring Problem Set 1

1.060 Engineering Mechanics II Spring Problem Set 1 1.060 Engineering Mechanics II Spring 2006 Due on Tuesday, February 21st Problem Set 1 Important note: Please start a new sheet of paper for each problem in the problem set. Write the names of the group

More information

Fluid Mechanics Qualifying Examination Sample Exam 2

Fluid Mechanics Qualifying Examination Sample Exam 2 Fluid Mechanics Qualifying Examination Sample Exam 2 Allotted Time: 3 Hours The exam is closed book and closed notes. Students are allowed one (double-sided) formula sheet. There are five questions on

More information

ME332 FLUID MECHANICS LABORATORY (PART II)

ME332 FLUID MECHANICS LABORATORY (PART II) ME332 FLUID MECHANICS LABORATORY (PART II) Mihir Sen Department of Aerospace and Mechanical Engineering University of Notre Dame Notre Dame, IN 46556 Version: April 2, 2002 Contents Unit 5: Momentum transfer

More information

An-Najah National University Civil Engineering Department. Fluid Mechanics. Chapter 1. General Introduction

An-Najah National University Civil Engineering Department. Fluid Mechanics. Chapter 1. General Introduction 1 An-Najah National University Civil Engineering Department Fluid Mechanics Chapter 1 General Introduction 2 What is Fluid Mechanics? Mechanics deals with the behavior of both stationary and moving bodies

More information

What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube

What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube PHYS 101 Lecture 29x - Viscosity 29x - 1 Lecture 29x Viscosity (extended version) What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube Viscosity We introduced

More information

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1 Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts)

1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts) 1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1 Fluid mechanics Fluid

More information

1912 MEASUREMENT OF HARDNESS OF SEMISOLIDS

1912 MEASUREMENT OF HARDNESS OF SEMISOLIDS BRIEFING 1912 Measurement of Hardness of Semisolids. This proposed new chapter summarizes the mathematical models used to quantify the viscoelastic properties of semisolids, as well as the most common

More information

CESSATION OF VISCOPLASTIC POISEUILLE FLOW IN A RECTANGULAR DUCT WITH WALL SLIP

CESSATION OF VISCOPLASTIC POISEUILLE FLOW IN A RECTANGULAR DUCT WITH WALL SLIP 8 th GRACM International Congress on Computational Mechanics Volos, 2 July 5 July 205 CESSATION OF VISCOPLASTIC POISEUILLE FLOW IN A RECTANGULAR DUCT WITH WALL SLIP Yiolanda Damianou, George Kaoullas,

More information

Fluid Mechanics. Spring 2009

Fluid Mechanics. Spring 2009 Instructor: Dr. Yang-Cheng Shih Department of Energy and Refrigerating Air-Conditioning Engineering National Taipei University of Technology Spring 2009 Chapter 1 Introduction 1-1 General Remarks 1-2 Scope

More information

Fluids and their Properties

Fluids and their Properties Chapter (1) Fluids and their Properties Dr. KHALIL MAHMOUD ALASTAL Eng.Mohammed AbuRahma Eng.Reem Sbaih 2017 Newton s Law of Viscosity: - / Non-Newtonian Fluids: - Mass Density: - / Specific weight: -

More information

An Adjustable Gap In-Line Rheometer

An Adjustable Gap In-Line Rheometer An Adjustable Gap In-Line Rheometer By D. M. Kalyon, H. Gokturk and I. Boz Highly Filled Materials Institute Hoboken, NJ 07030 Introduction The rheological behavior of polymer melts, and structured fluids

More information

MM303 FLUID MECHANICS I PROBLEM SET 1 (CHAPTER 2) FALL v=by 2 =-6 (1/2) 2 = -3/2 m/s

MM303 FLUID MECHANICS I PROBLEM SET 1 (CHAPTER 2) FALL v=by 2 =-6 (1/2) 2 = -3/2 m/s MM303 FLUID MECHANICS I PROBLEM SET 1 (CHAPTER ) FALL 018 1) For the velocity fields given below, determine: i) Whether the flow field is one-, two-, or three-dimensional, and why. ii) Whether the flow

More information

Lecture 7: Rheology and milli microfluidic

Lecture 7: Rheology and milli microfluidic 1 and milli microfluidic Introduction In this chapter, we come back to the notion of viscosity, introduced in its simplest form in the chapter 2. We saw that the deformation of a Newtonian fluid under

More information

Comments on Use of Reference Fluid to Verify DSR

Comments on Use of Reference Fluid to Verify DSR Comments on Use of Reference Fluid to Verify DSR David Anderson Professor Emeritus Penn State FHWA Asphalt Binder Expert Task Group Baton Rouge, LA September 16-17, 2014 Reference fluid how and why? Used

More information

Non Newtonian Fluid Dynamics

Non Newtonian Fluid Dynamics PDHonline Course M417 (3 PDH) Non Newtonian Fluid Dynamics Instructor: Paul G. Conley, PE 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org

More information

Modelling of dispersed, multicomponent, multiphase flows in resource industries. Section 3: Examples of analyses conducted for Newtonian fluids

Modelling of dispersed, multicomponent, multiphase flows in resource industries. Section 3: Examples of analyses conducted for Newtonian fluids Modelling of dispersed, multicomponent, multiphase flows in resource industries Section 3: Examples of analyses conducted for Newtonian fluids Globex Julmester 017 Lecture # 04 July 017 Agenda Lecture

More information

Chapter 6 Molten State

Chapter 6 Molten State Chapter 6 Molten State Rheology ( 流變學 ) study of flow and deformation of (liquid) fluids constitutive (stress-strain) relation of fluids shear flow shear rate ~ dγ/dt ~ velocity gradient dv 1 = dx 1 /dt

More information

R09. d water surface. Prove that the depth of pressure is equal to p +.

R09. d water surface. Prove that the depth of pressure is equal to p +. Code No:A109210105 R09 SET-1 B.Tech II Year - I Semester Examinations, December 2011 FLUID MECHANICS (CIVIL ENGINEERING) Time: 3 hours Max. Marks: 75 Answer any five questions All questions carry equal

More information

Fluid Flow. Fundamentals of Rheology. Rheology is the science of deformation and flow. Food rheology is the material science of food

Fluid Flow. Fundamentals of Rheology. Rheology is the science of deformation and flow. Food rheology is the material science of food Fluid Flow Outline Fundamentals and applications of rheology Shear stress and shear rate Viscosity and types of viscometers Rheological classification of fluids Apparent viscosity Effect of temperature

More information

Microfluidics 1 Basics, Laminar flow, shear and flow profiles

Microfluidics 1 Basics, Laminar flow, shear and flow profiles MT-0.6081 Microfluidics and BioMEMS Microfluidics 1 Basics, Laminar flow, shear and flow profiles 11.1.2017 Ville Jokinen Outline of the next 3 weeks: Today: Microfluidics 1: Laminar flow, flow profiles,

More information

Lab 7: Low Reynolds numbers and Tube Flows

Lab 7: Low Reynolds numbers and Tube Flows Lab 7: Low Reynolds numbers and Tube Flows Bio427 Biomechanics In this lab, we explore two issues related to biological fluid dynamics: flows at low Reynolds numbers and flows within tubes. The former

More information

CHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude.

CHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. CHARACTERISTIC OF FLUIDS A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. In a fluid at rest, normal stress is called pressure. 1 Dimensions,

More information

COURSE NUMBER: ME 321 Fluid Mechanics I. Fluid: Concept and Properties

COURSE NUMBER: ME 321 Fluid Mechanics I. Fluid: Concept and Properties COURSE NUMBER: ME 321 Fluid Mechanics I Fluid: Concept and Properties Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 What is Fluid Mechanics? Fluid mechanics

More information

This chapter is a study of the shear stress as a function of the shear rate for Newtonian and non-newtonian biological materials.

This chapter is a study of the shear stress as a function of the shear rate for Newtonian and non-newtonian biological materials. Lecture 10 and Flow (Ch. 6) This chapter is a study of the shear stress as a function of the shear rate for Newtonian and non-newtonian biological materials. 1 Lecture 10 and Flow (Ch. 6) When a fluid

More information

MODIFICATION OF THE CONCRETE RHEOMETER TO DETERMINE RHEOLOGICAL PARAMETERS OF SELF- CONSOLIDATING CONCRETE VANE DEVICE

MODIFICATION OF THE CONCRETE RHEOMETER TO DETERMINE RHEOLOGICAL PARAMETERS OF SELF- CONSOLIDATING CONCRETE VANE DEVICE MODIFICATION OF THE CONCETE HEOMETE TO DETEMINE HEOLOGICAL PAAMETES OF SELF- CONSOLIDATING CONCETE VANE DEVICE Ammar Yahia and Kamal H. Khayat Department of Civil Engineering, Université de Sherbrooke,

More information

Chapter 3 Non-Newtonian fluid

Chapter 3 Non-Newtonian fluid Chapter 3 Non-Newtonian fluid 3-1. Introduction: The study of the deformation of flowing fluids is called rheology; the rheological behavior of various fluids is sketchen Figure 3-1. Newtonian fluids,

More information

Contents. I Introduction 1. Preface. xiii

Contents. I Introduction 1. Preface. xiii Contents Preface xiii I Introduction 1 1 Continuous matter 3 1.1 Molecules................................ 4 1.2 The continuum approximation.................... 6 1.3 Newtonian mechanics.........................

More information

Table of Contents. Preface... xiii

Table of Contents. Preface... xiii Preface... xiii PART I. ELEMENTS IN FLUID MECHANICS... 1 Chapter 1. Local Equations of Fluid Mechanics... 3 1.1. Forces, stress tensor, and pressure... 4 1.2. Navier Stokes equations in Cartesian coordinates...

More information

Disruptive shear stress measurements of fibre suspension using ultrasound Doppler techniques

Disruptive shear stress measurements of fibre suspension using ultrasound Doppler techniques Disruptive shear stress measurements of fibre suspension using ultrasound Doppler techniques Pasi Raiskinmäki 1 and Markku Kataja 1 1 VTT PROCESSES, Pulp and Paper Industry, P.O.Box 163, FI-411 JYVÄSKYLÄ,

More information

Particle charge and Rheology

Particle charge and Rheology Particle charge and Dispersions i in liquids: id suspensions, emulsions, and foams ACS National Meeting March 21 22, 2009 Salt Lake City 1 Electro-osmosis and electrophoresis Voltaic reports the pile in

More information

What we know about Fluid Mechanics. What we know about Fluid Mechanics

What we know about Fluid Mechanics. What we know about Fluid Mechanics What we know about Fluid Mechanics 1. Survey says. 3. Image from: www.axs.com 4. 5. 6. 1 What we know about Fluid Mechanics 1. MEB (single input, single output, steady, incompressible, no rxn, no phase

More information

Design and Modeling of Fluid Power Systems ME 597/ABE Lecture 7

Design and Modeling of Fluid Power Systems ME 597/ABE Lecture 7 Systems ME 597/ABE 591 - Lecture 7 Dr. Monika Ivantysynova MAHA Professor Fluid Power Systems MAHA Fluid Power Research Center Purdue University Content of 6th lecture The lubricating gap as a basic design

More information

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m 1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)

More information

Introduction to Viscometry and Rheology, Basics, Rotational Testing. Basic Seminar Applied Rheology

Introduction to Viscometry and Rheology, Basics, Rotational Testing. Basic Seminar Applied Rheology Introduction to Viscometry and Rheology, Basics, Rotational Testing Basic Seminar Applied Rheology Contents Definition of basic rheological parameters Viscosity and elasticity Deformation, shear stress

More information

Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment:

Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment: 7 STEADY FLOW IN PIPES 7.1 Reynolds Number Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment: Laminar flow Turbulent flow Reynolds apparatus

More information

MECHANICAL PROPERTIES

MECHANICAL PROPERTIES MECHANICAL PROPERTIES Rheology S.C. BAYNE, 1 J.Y. Thompson 2 1 University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078 sbayne@umich.edu 2 Nova Southeastern College of Dental Medicine, Ft.

More information

Effect of Temperature and Pressure on Rheological Measurements of Cement Slurries

Effect of Temperature and Pressure on Rheological Measurements of Cement Slurries ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 22, 2014 Effect of Temperature and Pressure on Rheological Measurements of Cement Slurries Kristján Friðrik Alexandersson 1 and Sunna Ólafsdóttir

More information

VIRTUAL INSTRUMENTATION SOFTWARE FOR THE RHEOLOGICAL PROPERTIES OF THE NON-NEWTONIAN FLUIDS

VIRTUAL INSTRUMENTATION SOFTWARE FOR THE RHEOLOGICAL PROPERTIES OF THE NON-NEWTONIAN FLUIDS VIRTUAL INSTRUMENTATION SOFTWARE FOR THE RHEOLOGICAL PROPERTIES OF THE NON-NEWTONIAN FLUIDS Eng. Irina Radulescu, S.C. I.C.T.C.M. S.A. Bucharest, ROMANIA Dr. eng. Alexandru V. Radulescu, University POLITEHNICA

More information

Measuring the rheology of thermoplastic polymer melts

Measuring the rheology of thermoplastic polymer melts Measuring the rheology of thermoplastic polymer melts Using rotational and capillary rheometry to characterize polymer melts RHEOLOGY AND VISCOSITY Introduction Rheology is the science of studying the

More information

Novel method for on-line rheology measurement in manufacturing of non- Newtonian liquids

Novel method for on-line rheology measurement in manufacturing of non- Newtonian liquids Novel method for on-line rheology measurement in manufacturing of non- Newtonian liquids Fridolin Okkels, Anders L. Østergård, Mohammad Amin Mohammadifar 2 Fluidan ApS, Kgs. Lyngby, Denmark 2 National

More information

Rheological Measurements of Cementitious Suspensions Using a Grooved Measuring Device

Rheological Measurements of Cementitious Suspensions Using a Grooved Measuring Device ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 17, 2009 Rheological Measurements of Cementitious Suspensions Using a Grooved Measuring Device Helge Hodne 1, Arild Saasen 1,2, and Jone Haugland

More information

Introduction to Rheology Basics

Introduction to Rheology Basics Introduction to Rheology Basics RheoTec Messtechnik GmbH Phone: ++49 (035205) 5967-0 Schutterwaelder Strasse 23 Fax: ++49 (035205) 5967-30 D-01458 Ottendorf-Okrilla E-mail: info@rheotec.de Germany Internet:

More information

Manual. Low Shear Viscometer LS 300. prorheo GmbH Bahnhofstr Althengstett Tel

Manual. Low Shear Viscometer LS 300. prorheo GmbH Bahnhofstr Althengstett Tel Manual Low Shear Viscometer LS 300 prorheo GmbH Bahnhofstr. 38 75382 Althengstett Tel. +49-7051-92489-0 Office@proRheo.de www.prorheo.de 1. Introduction... 3 1.1. Measuring system... 3 1.2. Principle of

More information

Handle Food Samples with Care for Reliable Rheological Results

Handle Food Samples with Care for Reliable Rheological Results Handle Food Samples with Care for Reliable Rheological Results Dr. Klaus Oldörp The world leader in serving science Overview Food and rheology Sample handling before the measurement The right measuring

More information

2. FLUID-FLOW EQUATIONS SPRING 2019

2. FLUID-FLOW EQUATIONS SPRING 2019 2. FLUID-FLOW EQUATIONS SPRING 2019 2.1 Introduction 2.2 Conservative differential equations 2.3 Non-conservative differential equations 2.4 Non-dimensionalisation Summary Examples 2.1 Introduction Fluid

More information

AADE-03-NTCE-35. Once the yield stress has been exceeded, the fluid displays viscous flow characteristics.

AADE-03-NTCE-35. Once the yield stress has been exceeded, the fluid displays viscous flow characteristics. AADE-03-NTCE-35 Drilling Fluid Yield Stress: Measurement Techniques for Improved Understanding of Critical Drilling Fluid Parameters David Power and Mario Zamora, M-I L.L.C. Copyright 2003 AADE Technical

More information

On the effects of Non-Newtonian fluids above the ribbing instability

On the effects of Non-Newtonian fluids above the ribbing instability On the effects of Non-Newtonian fluids above the ribbing instability L. Pauchard, F. Varela LÓpez*, M. Rosen*, C. Allain, P. Perrot** and M. Rabaud Laboratoire FAST, Bât. 502, Campus Universitaire, 91405

More information

Friction Factors and Drag Coefficients

Friction Factors and Drag Coefficients Levicky 1 Friction Factors and Drag Coefficients Several equations that we have seen have included terms to represent dissipation of energy due to the viscous nature of fluid flow. For example, in the

More information

Fluid Dynamics for Ocean and Environmental Engineering Homework #2 Viscous Flow

Fluid Dynamics for Ocean and Environmental Engineering Homework #2 Viscous Flow OCEN 678-600 Fluid Dynamics for Ocean and Environmental Engineering Homework #2 Viscous Flow Date distributed : 9.18.2005 Date due : 9.29.2005 at 5:00 pm Return your solution either in class or in my mail

More information

Modeling of Anisotropic Polymers during Extrusion

Modeling of Anisotropic Polymers during Extrusion Modeling of Anisotropic Polymers during Extrusion Modified on Friday, 01 May 2015 10:38 PM by mpieler Categorized as: Paper of the Month Modeling of Anisotropic Polymers during Extrusion Arash Ahmadzadegan,

More information

GENERALIZED NEWTONIAN FLUIDS AS LUBRICANTS IN THE HYDRODYNAMIC CONICAL BEARINGS A CFD ANALYSIS

GENERALIZED NEWTONIAN FLUIDS AS LUBRICANTS IN THE HYDRODYNAMIC CONICAL BEARINGS A CFD ANALYSIS Journal of KONES Powertrain and Transport, Vol. 23, No. 2 2016 GENERALIZED NEWTONIAN FLUIDS AS LUBRICANTS IN THE HYDRODYNAMIC CONICAL BEARINGS A CFD ANALYSIS Adam Czaban Gdynia Maritime University, Faculty

More information

Les Houches School of Foam: Rheology of Complex Fluids

Les Houches School of Foam: Rheology of Complex Fluids Les Houches School of Foam: Rheology of Complex Fluids Andrew Belmonte The W. G. Pritchard Laboratories Department of Mathematics, Penn State University 1 Fluid Dynamics (tossing a coin) Les Houches Winter

More information

ME 309 Fluid Mechanics Fall 2010 Exam 2 1A. 1B.

ME 309 Fluid Mechanics Fall 2010 Exam 2 1A. 1B. Fall 010 Exam 1A. 1B. Fall 010 Exam 1C. Water is flowing through a 180º bend. The inner and outer radii of the bend are 0.75 and 1.5 m, respectively. The velocity profile is approximated as C/r where C

More information

Performance evaluation of different model mixers by numerical simulation

Performance evaluation of different model mixers by numerical simulation Journal of Food Engineering 71 (2005) 295 303 www.elsevier.com/locate/jfoodeng Performance evaluation of different model mixers by numerical simulation Chenxu Yu, Sundaram Gunasekaran * Food and Bioprocess

More information

Collapse of a cylinder of Bingham fluid

Collapse of a cylinder of Bingham fluid ANZIAM J. 42 (E) ppc499 C517, 2000 C499 Collapse of a cylinder of Bingham fluid Malcolm R. Davidson N. Hasan Khan Y. Leong Yeow (Received 7 August 2000) Abstract The Slump Test is a simple method of measuring

More information

A calibration method for a new type of rheometer

A calibration method for a new type of rheometer ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL 14, 2006 A calibration method for a new type of rheometer C Salas-Bringas 1, WK Jeksrud 1, O-I Lekang 1 and RB Schüller 2 1 Dep of Mathematical Sciences

More information

DESIGN OF ATOMIZERS AND BURNERS FOR COAL-WATER SLURRY COMBUSTION. Grant Number: DE-FG22-95PC95105 Progress Report for Period 1/1/97-3/31/97

DESIGN OF ATOMIZERS AND BURNERS FOR COAL-WATER SLURRY COMBUSTION. Grant Number: DE-FG22-95PC95105 Progress Report for Period 1/1/97-3/31/97 DESIGN OF ATOMIZERS AND BURNERS FOR COAL-WATER SLURRY COMBUSTION Grant Number: DE-FG22-95PC95105 Progress Report for Period 1/1/97-3/31/97 A. Mansour, and N. Chigier Spray Systems Technology Center Dept.

More information