EE 230 Lecture 43. Data Converters

Size: px
Start display at page:

Download "EE 230 Lecture 43. Data Converters"

Transcription

1 EE 230 Lecture 43 Data Converters

2 Review from Last Time: Amplitude Quantization Unwanted signals in the output of a system are called noise. Distortion Smooth nonlinearities Frequency attenuation Large Abrupt Nonlinearities Signals coming from other sources Movement of carriers in devices Interference from electrical coupling Interference from radiating sources Undesired outputs inherent in the data conversion process itself

3 Review from Last Time: Characterization of Quantization Noise Sinusoidal excitation Consider an ADC (cloced) Theorem: If n(t) is a random process, then 2 2 V σ + µ RMS provided that the RMS value is measured over a large interval where the parameters σ and μ are the standard deviation and the mean of <n(t)> This theorem can thus be represented as V RMS t1 + T 1 L 2() 2 2 n t dt σ + µ T t1 L where T is the sampling interval and T L is a large interval

4 Review from Last Time: Characterization of Quantization Noise Saw tooth excitation Sinusoidal excitation X IN X IN X REF X REF t t SNR =2 n SNR = 602. n db XQ-RMS X LSB 12 SNR = n SNR = 602. n db Although derived for an ADC, same expressions apply for DAC SNR for saw tooth and for triangle excitations are the same SNR for sinusoidal excitation larger than that for saw tooth by 1.76dB SNR will decrease if input is not full-scale Equivalent Number of Bits (ENOB) often given relative to quantization noise SNR db Remember quantization noise is inherent in an ideal data converter!

5 Review from Last Time: Equivalent Number of Bits (ENOB) ENOB = SNR ENOB = SNDR These definitions of ENOB are based upon noise or noise and distortion Some other definitions of ENOB are used as well e.g. if one is only interested in distortion, an ENOB based upon distortion can be defined. ENOB is useful for determining whether the number of bits really being specified is really useful

6 Engineering Issues for Using Data Converters 1. Inherent with Data Conversion Process Amplitude Quantization Time Quantization (Present even with Ideal Data Converters) 2. Nonideal Components Uneven steps Offsets Gain errors Response Time Noise (Present to some degree in all physical Data Converters) How do these issues ultimately impact performance?

7 Nonideal Transfer Characteristics Uneven Steps X OUT Nonideal Transfer Characteristics of DAC Ideal Transfer Characteristic Line X IN

8 Nonideal Transfer Characteristics Uneven Steps X OUT Nonideal Transfer Characteristics of DAC X OUT Nonideal Transfer Characteristics of DAC Ideal Transfer Characteristic Line Ideal Transfer Characteristic Line X IN X IN Actual transfer characteristics can vary considerably from one device to another

9 Nonideal Transfer Characteristics Uneven Steps X OUT Nonideal Transfer Characteristics of DAC Ideal Transfer Characteristic Line X IN This is termed a nonlinearity in the data converter Linearity metrics (specifications) include, DNL, THD and SFDR

10 Characterization of Nonlinearities X OUT Nonideal Transfer Characteristics of DAC End Point End Point X IN End points are the outputs at the two extreme Boolean inputs

11 Characterization of Nonlinearities End point fit line

12 Characterization of Nonlinearities Linearity metrics: DNL THD SFDR Integral Nonlinearity () Measure of worst-case deviation from linear Define the at any input code by: =X ( ) -X ( ) OUT FIT

13 Integral Nonlinearity () Linearity metrics: DNL THD SFDR Define the by: { } = max 1 N

14 Integral Nonlinearity () { } = max 1 N Often expressed in LSB: where LSB = X LSBF ( ) ( ) X N -X 1 OUT OUT X = LSBF N-1 Linearity metrics: DNL THD SFDR

15 Integral Nonlinearity () { } = max 1 N Often expressed in LSB: where LSB = X LSBF ( ) ( ) X N -X 1 OUT OUT X = LSBF N-1 Linearity metrics: DNL THD SFDR but ( ) ( ) X N -X 1 X X = LSBF N-1 2 OUT OUT REF n LSB n 2 X REF

16 Characterization of Nonlinearities Linearity metrics: DNL THD SFDR Differential Nonlinearity (DNL) Measure of worst-case resolving capabilities Define the DNL at any input code by: ( ) ( ) DNL =X ()-X -1 -X X ()-X -1 -X OUT OUT LSBF OUT OUT LSB

17 Differential Nonlinearity (DNL) Linearity metrics: DNL THD SFDR Often expressed in LSB DNL LSB ( ) DNL X ()-X -1 -X OUT OUT LSB { } DNL = max DNL LSBF 1< N DNL = DNL 2 LSB X n DNL X REF

18 Characterization of Nonlinearities IN OUT Linearity metrics: DNL THD SFDR LK IN OUT LK Linearity Metrics for ADC and DAC are Analogous to Each Other

19 Integral Nonlinearity () Linearity metrics: DNL THD SFDR

20 Integral Nonlinearity () Linearity metrics: DNL THD SFDR

21 Integral Nonlinearity () Linearity metrics: DNL THD SFDR =X ( ) -X ( ) TRAN FIT () TRAN X ()=X 1 + FIT TRAN N-2 N-2 ( ) ( 1) -1 X N-1 -X TRAN

22 Integral Nonlinearity () Linearity metrics: DNL THD SFDR =X ( ) -X ( ) TRAN FIT { } = max 1 N LSB = X LSBF LSB n 2 X REF

23 Differential Nonlinearity (DNL) Linearity metrics: DNL THD SFDR DNL X ()-X -1 -X ( ) TRANS TRANS LSB { } DNL = max DNL 1< N

24 Equivalent Number of Bits -ENOB (based upon linearity) Generally expect to be less than ½ LSB If larger than ½ LSB, effective resolution is less than specified resolution

25 Equivalent Number of Bits -ENOB (based upon linearity) If ν is the in LSB log ENOB = n-1 log ν 2 ν res n n-1 n-2 n-3 n-4 n-5

26 Spectral Characterization Linearity metrics: DNL THD SFDR X IN n DAC X OUT C LK IN M ( ) X=Xsinωt+θ If nonlinearities present, X OUT given by OUT ( γ ) + ( + γ ) X =A +Asin ωt+θ+ A sin ωt+θ = 2

27 Spectral Characterization IN M ( ) X=Xsinωt+θ OUT ( γ ) + ( + γ ) X =A +Asin ωt+θ+ A sin ωt+θ = 2 THD A, >1 are all spectral distortion components Generally only first few terms are large enough to represent significant distortion = = 2 A A THD db = 10log 2 A = A1 1 1 SFDR= db 10 max { A } max{ A } 1< A SFDR =20log 1< A

28 Spectral Characterization IN M ( ) X=Xsinωt+θ OUT ( γ ) + ( + γ ) X =A +Asin ωt+θ+ A sin ωt+θ = 2 Generally X M is chosen nearly full-scale and input is offset by X REF /2 X X 2 2 ( ) REF REF X= + ε sinωt+θ IN Direct measurement of A terms not feasible A generally calculated from a large number of samples of X OUT (t)

29 Spectral Characterization IN M ( ) X=Xsinωt+θ OUT ( γ ) + ( + γ ) X =A +Asin ωt+θ+ A sin ωt+θ Key theorem useful for spectral characterization = 2 Theorem: If a periodic signal x(t) with period T=1/f is band-limited to frequency hf and if the signal is sampled N times over an integral number of periods, N P, then where ( ) 2 A = X mn +1 m P N N 1 X = 1 the sampling period. ( ) for 0 m h-1 x T S is the DFT of the sampled sequence ( ) N 1 = 1 where T S is T N T= S N P

30 Spectral Characterization IN M ( ) X=Xsinωt+θ OUT ( γ ) + ( + γ ) X =A +Asin ωt+θ+ A sin ωt+θ Key theorem useful for spectral characterization = 2 Theorem: If a periodic signal x(t) with period T=1/f is band-limited to frequency hf and if the signal is sampled N times over an integral number of periods, N P, then where ( ) 2 A = X mn +1 m P N N 1 X = 1 the sampling period. ( ) for 0 m h-1 x T S is the DFT of the sampled sequence ( ) N 1 = 1 where T S is This theorem is usually not stated although widely used Often this theorem is misunderstood or misused If hypothesis not exactly satisfied, major problems with trying to use this theorem

31 Spectral Characterization IN M ( ) X=Xsinωt+θ OUT ( γ ) + ( + γ ) X =A +Asin ωt+θ+ A sin ωt+θ Key theorem useful for spectral characterization = 2 Theorem: If a periodic signal x(t) with period T=1/f is band-limited to frequency hf and if the signal is sampled N times over an integral number of periods, N P, then where ( ) 2 A = X mn +1 m P N N 1 X = 1 the sampling period. ( ) for 0 m h-1 x T S is the DFT of the sampled sequence ( ) N 1 = 1 where T S is This theorem is usually not stated although widely used Often this theorem is misunderstood or misused If hypothesis not exactly satisfied, major problems with trying to use this theorem

32 Spectral Characterization Key theorem useful for spectral characterization Theorem: If a periodic signal x(t) with period T=1/f is band-limited to frequency hf and if the signal is sampled N times over an integral number of periods, N P, then where ( ) 2 A = X mn +1 m P N N 1 X = 1 the sampling period. ( ) for 0 m h-1 x T S is the DFT of the sampled sequence ( ) N 1 = 1 where T S is Usually N p is a prime number (e.g. 11, 21, 29, 31) If N is a power of 2, the Fast Fourier Transform (FFT) is a computationally efficient method for calculating the DFT Often N=4096, 65,536, FFT is available in Matlab and as subroutines for C++

33 Spectral Characterization Key theorem useful for spectral characterization Theorem: If a periodic signal x(t) with period T=1/f is band-limited to frequency hf and if the signal is sampled N times over an integral number of periods, N P, then where ( ) 2 A = X mn +1 m P N N 1 X = 1 the sampling period. ( ) for 0 m h-1 x T S is the DFT of the sampled sequence ( ) N 1 = 1 where T S is A 0, A 1, A 2, A 3, are the magnitudes of the DFT elements X(0), X(N P +1), X(2N P +1), X(3N P +1), respectively

34 Spectral Characterization

35 Spectral Characterization Χ( ) N P +1 2N P +1 3N P +1 4N P +1

EE 230 Lecture 40. Data Converters. Amplitude Quantization. Quantization Noise

EE 230 Lecture 40. Data Converters. Amplitude Quantization. Quantization Noise EE 230 Lecture 40 Data Converters Amplitude Quantization Quantization Noise Review from Last Time: Time Quantization Typical ADC Environment Review from Last Time: Time Quantization Analog Signal Reconstruction

More information

EE 435. Lecture 28. Data Converters Linearity INL/DNL Spectral Performance

EE 435. Lecture 28. Data Converters Linearity INL/DNL Spectral Performance EE 435 Lecture 8 Data Converters Linearity INL/DNL Spectral Performance Performance Characterization of Data Converters Static characteristics Resolution Least Significant Bit (LSB) Offset and Gain Errors

More information

EE 435. Lecture 29. Data Converters. Linearity Measures Spectral Performance

EE 435. Lecture 29. Data Converters. Linearity Measures Spectral Performance EE 435 Lecture 9 Data Converters Linearity Measures Spectral Performance Linearity Measurements (testing) Consider ADC V IN (t) DUT X IOUT V REF Linearity testing often based upon code density testing

More information

EE 435. Lecture 26. Data Converters. Data Converter Characterization

EE 435. Lecture 26. Data Converters. Data Converter Characterization EE 435 Lecture 26 Data Converters Data Converter Characterization . Review from last lecture. Data Converter Architectures n DAC R-2R (4-bits) R R R R V OUT 2R 2R 2R 2R R d 3 d 2 d 1 d 0 V REF By superposition:

More information

EE 435. Lecture 32. Spectral Performance Windowing

EE 435. Lecture 32. Spectral Performance Windowing EE 435 Lecture 32 Spectral Performance Windowing . Review from last lecture. Distortion Analysis T 0 T S THEOREM?: If N P is an integer and x(t) is band limited to f MAX, then 2 Am Χ mnp 1 0 m h N and

More information

EE 435. Lecture 26. Data Converters. Differential Nonlinearity Spectral Performance

EE 435. Lecture 26. Data Converters. Differential Nonlinearity Spectral Performance EE 435 Lecture 26 Data Converters Differential Nonlinearity Spectral Performance . Review from last lecture. Integral Nonlinearity (DAC) Nonideal DAC INL often expressed in LSB INL = X k INL= max OUT OF

More information

EE 435. Lecture 30. Data Converters. Spectral Performance

EE 435. Lecture 30. Data Converters. Spectral Performance EE 435 Lecture 30 Data Converters Spectral Performance . Review from last lecture. INL Often Not a Good Measure of Linearity Four identical INL with dramatically different linearity X OUT X OUT X REF X

More information

EE 435. Lecture 26. Data Converters. Data Converter Characterization

EE 435. Lecture 26. Data Converters. Data Converter Characterization EE 435 Lecture 26 Data Converters Data Converter Characterization . Review from last lecture. Data Converter Architectures Large number of different circuits have been proposed for building data converters

More information

EE 505 Lecture 10. Spectral Characterization. Part 2 of 2

EE 505 Lecture 10. Spectral Characterization. Part 2 of 2 EE 505 Lecture 10 Spectral Characterization Part 2 of 2 Review from last lecture Spectral Analysis If f(t) is periodic f(t) alternately f(t) = = A A ( kω t + ) 0 + Aksin θk k= 1 0 + a ksin t k= 1 k= 1

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Processing Pro. Mark Fowler Note Set #14 Practical A-to-D Converters and D-to-A Converters Reading Assignment: Sect. 6.3 o Proakis & Manolakis 1/19 The irst step was to see that

More information

Distortion Analysis T

Distortion Analysis T EE 435 Lecture 32 Spectral Performance Windowing Spectral Performance of Data Converters - Time Quantization - Amplitude Quantization Quantization Noise . Review from last lecture. Distortion Analysis

More information

EE 435. Lecture 36. Quantization Noise ENOB Absolute and Relative Accuracy DAC Design. The String DAC

EE 435. Lecture 36. Quantization Noise ENOB Absolute and Relative Accuracy DAC Design. The String DAC EE 435 Lecture 36 Quantization Noise ENOB Absolute and elative Accuracy DAC Design The String DAC . eview from last lecture. Quantization Noise in ADC ecall: If the random variable f is uniformly distributed

More information

Lecture 340 Characterization of DACs and Current Scaling DACs (5/1/10) Page 340-1

Lecture 340 Characterization of DACs and Current Scaling DACs (5/1/10) Page 340-1 Lecture 34 Characterization of DACs and Current Scaling DACs (5//) Page 34 LECTURE 34 CHARACTERZATON OF DACS AND CURRENT SCALNG DACS LECTURE ORGANZATON Outline ntroduction Static characterization of DACs

More information

Data Converter Fundamentals

Data Converter Fundamentals Data Converter Fundamentals David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 33 Introduction Two main types of converters Nyquist-Rate Converters Generate output

More information

EE 505 Lecture 7. Spectral Performance of Data Converters - Time Quantization - Amplitude Quantization Clock Jitter Statistical Circuit Modeling

EE 505 Lecture 7. Spectral Performance of Data Converters - Time Quantization - Amplitude Quantization Clock Jitter Statistical Circuit Modeling EE 505 Lecture 7 Spectral Performance of Data Converters - Time Quantization - Amplitude Quantization Clock Jitter Statistical Circuit Modeling . Review from last lecture. MatLab comparison: 512 Samples

More information

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals 1. Sampling and Reconstruction 2. Quantization 1 1. Sampling & Reconstruction DSP must interact with an analog world: A to D D to A x(t)

More information

Acoustic Research Institute ARI

Acoustic Research Institute ARI Austrian Academy of Sciences Acoustic Research Institute ARI System Identification in Audio Engineering P. Majdak piotr@majdak.com Institut für Schallforschung, Österreichische Akademie der Wissenschaften;

More information

Sistemas de Aquisição de Dados. Mestrado Integrado em Eng. Física Tecnológica 2016/17 Aula 3, 3rd September

Sistemas de Aquisição de Dados. Mestrado Integrado em Eng. Física Tecnológica 2016/17 Aula 3, 3rd September Sistemas de Aquisição de Dados Mestrado Integrado em Eng. Física Tecnológica 2016/17 Aula 3, 3rd September The Data Converter Interface Analog Media and Transducers Signal Conditioning Signal Conditioning

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing EE123 Digital Signal Processing Lecture 19 Practical ADC/DAC Ideal Anti-Aliasing ADC A/D x c (t) Analog Anti-Aliasing Filter HLP(jΩ) sampler t = nt x[n] =x c (nt ) Quantizer 1 X c (j ) and s < 2 1 T X

More information

Slide Set Data Converters. Background Elements

Slide Set Data Converters. Background Elements 0 Slide Set Data Converters Background Elements 1 Introduction Summary The Ideal Data Converter Sampling Amplitude Quantization Quantization Noise kt/c Noise Discrete and Fast Fourier Transforms The D/A

More information

Summary Last Lecture

Summary Last Lecture EE247 Lecture 19 ADC Converters Sampling (continued) Sampling switch charge injection & clock feedthrough Complementary switch Use of dummy device Bottom-plate switching Track & hold T/H circuits T/H combined

More information

Lecture 4, Noise. Noise and distortion

Lecture 4, Noise. Noise and distortion Lecture 4, Noise Noise and distortion What did we do last time? Operational amplifiers Circuit-level aspects Simulation aspects Some terminology Some practical concerns Limited current Limited bandwidth

More information

E4702 HW#4-5 solutions by Anmo Kim

E4702 HW#4-5 solutions by Anmo Kim E70 HW#-5 solutions by Anmo Kim (ak63@columbia.edu). (P3.7) Midtread type uniform quantizer (figure 3.0(a) in Haykin) Gaussian-distributed random variable with zero mean and unit variance is applied to

More information

CMPT 889: Lecture 3 Fundamentals of Digital Audio, Discrete-Time Signals

CMPT 889: Lecture 3 Fundamentals of Digital Audio, Discrete-Time Signals CMPT 889: Lecture 3 Fundamentals of Digital Audio, Discrete-Time Signals Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University October 6, 2005 1 Sound Sound waves are longitudinal

More information

EE 505. Lecture 27. ADC Design Pipeline

EE 505. Lecture 27. ADC Design Pipeline EE 505 Lecture 7 AD Design Pipeline Review Sampling Noise V n5 R S5 dv REF V n4 R S4 V ns V ns β= + If the ON impedance of the switches is small and it is assumed that = =, it can be shown that Vˆ IN-RMS

More information

ELEN 610 Data Converters

ELEN 610 Data Converters Spring 04 S. Hoyos - EEN-60 ELEN 60 Data onverters Sebastian Hoyos Texas A&M University Analog and Mixed Signal Group Spring 04 S. Hoyos - EEN-60 Electronic Noise Signal to Noise ratio SNR Signal Power

More information

Application Note AN37. Noise Histogram Analysis. by John Lis

Application Note AN37. Noise Histogram Analysis. by John Lis AN37 Application Note Noise Histogram Analysis by John Lis NOISELESS, IDEAL CONVERTER OFFSET ERROR σ RMS NOISE HISTOGRAM OF SAMPLES PROBABILITY DISTRIBUTION FUNCTION X PEAK-TO-PEAK NOISE Crystal Semiconductor

More information

EE 435. Lecture 31. Absolute and Relative Accuracy DAC Design. The String DAC

EE 435. Lecture 31. Absolute and Relative Accuracy DAC Design. The String DAC EE 435 Lecure 3 Absolue and Relaive Accuracy DAC Design The Sring DAC . Review from las lecure. DFT Simulaion from Malab Quanizaion Noise DACs and ADCs generally quanize boh ampliude and ime If convering

More information

A novel Capacitor Array based Digital to Analog Converter

A novel Capacitor Array based Digital to Analog Converter Chapter 4 A novel Capacitor Array based Digital to Analog Converter We present a novel capacitor array digital to analog converter(dac architecture. This DAC architecture replaces the large MSB (Most Significant

More information

SNR Calculation and Spectral Estimation [S&T Appendix A]

SNR Calculation and Spectral Estimation [S&T Appendix A] SR Calculation and Spectral Estimation [S&T Appendix A] or, How not to make a mess of an FFT Make sure the input is located in an FFT bin 1 Window the data! A Hann window works well. Compute the FFT 3

More information

EE 505 Lecture 8. Clock Jitter Statistical Circuit Modeling

EE 505 Lecture 8. Clock Jitter Statistical Circuit Modeling EE 505 Lecture 8 Clock Jitter Statistical Circuit Modeling Spectral Characterization of Data Converters Distortion Analysis Time Quantization Effects of DACs of ADCs Amplitude Quantization Effects of DACs

More information

Oversampling Converters

Oversampling Converters Oversampling Converters David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 56 Motivation Popular approach for medium-to-low speed A/D and D/A applications requiring

More information

EE 521: Instrumentation and Measurements

EE 521: Instrumentation and Measurements Aly El-Osery Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA September 23, 2009 1 / 18 1 Sampling 2 Quantization 3 Digital-to-Analog Converter 4 Analog-to-Digital Converter

More information

INTRODUCTION TO DELTA-SIGMA ADCS

INTRODUCTION TO DELTA-SIGMA ADCS ECE37 Advanced Analog Circuits INTRODUCTION TO DELTA-SIGMA ADCS Richard Schreier richard.schreier@analog.com NLCOTD: Level Translator VDD > VDD2, e.g. 3-V logic? -V logic VDD < VDD2, e.g. -V logic? 3-V

More information

In this Lecture. Frequency domain analysis

In this Lecture. Frequency domain analysis In this Lecture Frequency domain analysis Introduction In most cases we want to know the frequency content of our signal Why? Most popular analysis in frequency domain is based on work of Joseph Fourier

More information

Signals, Instruments, and Systems W5. Introduction to Signal Processing Sampling, Reconstruction, and Filters

Signals, Instruments, and Systems W5. Introduction to Signal Processing Sampling, Reconstruction, and Filters Signals, Instruments, and Systems W5 Introduction to Signal Processing Sampling, Reconstruction, and Filters Acknowledgments Recapitulation of Key Concepts from the Last Lecture Dirac delta function (

More information

EE 5345 Biomedical Instrumentation Lecture 12: slides

EE 5345 Biomedical Instrumentation Lecture 12: slides EE 5345 Biomedical Instrumentation Lecture 1: slides 4-6 Carlos E. Davila, Electrical Engineering Dept. Southern Methodist University slides can be viewed at: http:// www.seas.smu.edu/~cd/ee5345.html EE

More information

Sistemas de Aquisição de Dados. Mestrado Integrado em Eng. Física Tecnológica 2015/16 Aula 6-26 de Outubro

Sistemas de Aquisição de Dados. Mestrado Integrado em Eng. Física Tecnológica 2015/16 Aula 6-26 de Outubro Sistemas de Aquisição de Dados Mestrado Integrado em Eng. Física Tecnológica 2015/16 Aula 6-26 de Outubro Flash Decoder Thermometer code Wired NOR based decoder 2 Successive Approximation ADC (SAR) CONVERT

More information

Analog Digital Sampling & Discrete Time Discrete Values & Noise Digital-to-Analog Conversion Analog-to-Digital Conversion

Analog Digital Sampling & Discrete Time Discrete Values & Noise Digital-to-Analog Conversion Analog-to-Digital Conversion Analog Digital Sampling & Discrete Time Discrete Values & Noise Digital-to-Analog Conversion Analog-to-Digital Conversion 6.082 Fall 2006 Analog Digital, Slide Plan: Mixed Signal Architecture volts bits

More information

Audio /Video Signal Processing. Lecture 2, Quantization, SNR Gerald Schuller, TU Ilmenau

Audio /Video Signal Processing. Lecture 2, Quantization, SNR Gerald Schuller, TU Ilmenau Audio /Video Signal Processing Lecture 2, Quantization, SNR Gerald Schuller, TU Ilmenau Quantization Signal to Noise Ratio (SNR). Assume we have a A/D converter with a quantizer with a certain number of

More information

Higher-Order Σ Modulators and the Σ Toolbox

Higher-Order Σ Modulators and the Σ Toolbox ECE37 Advanced Analog Circuits Higher-Order Σ Modulators and the Σ Toolbox Richard Schreier richard.schreier@analog.com NLCOTD: Dynamic Flip-Flop Standard CMOS version D CK Q Q Can the circuit be simplified?

More information

E : Lecture 1 Introduction

E : Lecture 1 Introduction E85.2607: Lecture 1 Introduction 1 Administrivia 2 DSP review 3 Fun with Matlab E85.2607: Lecture 1 Introduction 2010-01-21 1 / 24 Course overview Advanced Digital Signal Theory Design, analysis, and implementation

More information

The information loss in quantization

The information loss in quantization The information loss in quantization The rough meaning of quantization in the frame of coding is representing numerical quantities with a finite set of symbols. The mapping between numbers, which are normally

More information

DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY UNIVERSITY OF TRENTO DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY 38050 Povo Trento Italy, Via Sommarive 14 http://www.dit.unitn.it A RISKS ASSESSMENT AND CONFORMANCE TESTING OF ANALOG-TO-DIGITAL

More information

EE247 Lecture 16. Serial Charge Redistribution DAC

EE247 Lecture 16. Serial Charge Redistribution DAC EE47 Lecture 16 D/A Converters D/A examples Serial charge redistribution DAC Practical aspects of current-switch DACs Segmented current-switch DACs DAC self calibration techniques Current copiers Dynamic

More information

Research Article Linearity Analysis on a Series-Split Capacitor Array for High-Speed SAR ADCs

Research Article Linearity Analysis on a Series-Split Capacitor Array for High-Speed SAR ADCs Hindawi Publishing Corporation LSI Design olume 1, Article ID 76548, 8 pages doi:1.1155/1/76548 Research Article Linearity Analysis on a Series-Split Capacitor Array for High-Speed SAR ADCs Yan Zhu, 1

More information

Computational Methods CMSC/AMSC/MAPL 460. Fourier transform

Computational Methods CMSC/AMSC/MAPL 460. Fourier transform Computational Methods CMSC/AMSC/MAPL 460 Fourier transform Ramani Duraiswami, Dept. of Computer Science Several slides from Prof. Healy s course at UMD Fourier Methods Fourier analysis ( harmonic analysis

More information

EE 230 Lecture 20. Nonlinear Op Amp Applications. The Comparator Nonlinear Analysis Methods

EE 230 Lecture 20. Nonlinear Op Amp Applications. The Comparator Nonlinear Analysis Methods EE 230 Lecture 20 Nonlinear Op Amp Applications The Comparator Nonlinear Analysis Methods Quiz 14 What is the major purpose of compensation when designing an operatinal amplifier? And the number is? 1

More information

EE 230. Lecture 4. Background Materials

EE 230. Lecture 4. Background Materials EE 230 Lecture 4 Background Materials Transfer Functions Test Equipment in the Laboratory Quiz 3 If the input to a system is a sinusoid at KHz and if the output is given by the following expression, what

More information

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis SEISMIC WAVE PROPAGATION Lecture 2: Fourier Analysis Fourier Series & Fourier Transforms Fourier Series Review of trigonometric identities Analysing the square wave Fourier Transform Transforms of some

More information

High-Speed, High-Resolution, Radiation-Tolerant SAR ADC for Particle Physics Experiments

High-Speed, High-Resolution, Radiation-Tolerant SAR ADC for Particle Physics Experiments Erik Jonsson School of Engineering & Computer Science High-Speed, High-Resolution, Radiation-Tolerant SAR ADC for Particle Physics Experiments Yun Chiu Erik Jonsson Distinguished Professor Texas Analog

More information

A Modeling Environment for the Simulation and Design of Charge Redistribution DACs Used in SAR ADCs

A Modeling Environment for the Simulation and Design of Charge Redistribution DACs Used in SAR ADCs 204 UKSim-AMSS 6th International Conference on Computer Modelling and Simulation A Modeling Environment for the Simulation and Design of Charge Redistribution DACs Used in SAR ADCs Stefano Brenna, Andrea

More information

J.-M Friedt. FEMTO-ST/time & frequency department. slides and references at jmfriedt.free.fr.

J.-M Friedt. FEMTO-ST/time & frequency department. slides and references at jmfriedt.free.fr. FEMTO-ST/time & frequency department jmfriedt@femto-st.fr slides and references at jmfriedt.free.fr February 21, 2018 1 / 17 Basics ADC: discrete time (aliasing) and discrete levels (quantization) V =

More information

Topic 7. Convolution, Filters, Correlation, Representation. Bryan Pardo, 2008, Northwestern University EECS 352: Machine Perception of Music and Audio

Topic 7. Convolution, Filters, Correlation, Representation. Bryan Pardo, 2008, Northwestern University EECS 352: Machine Perception of Music and Audio Topic 7 Convolution, Filters, Correlation, Representation Short time Fourier Transform Break signal into windows Calculate DFT of each window The Spectrogram spectrogram(y,1024,512,1024,fs,'yaxis'); A

More information

DCSP-2: Fourier Transform

DCSP-2: Fourier Transform DCSP-2: Fourier Transform Jianfeng Feng Department of Computer Science Warwick Univ., UK Jianfeng.feng@warwick.ac.uk http://www.dcs.warwick.ac.uk/~feng/dcsp.html Data transmission Channel characteristics,

More information

Fourier Analysis of Signals Using the DFT

Fourier Analysis of Signals Using the DFT Fourier Analysis of Signals Using the DFT ECE 535 Lecture April 29, 23 Overview: Motivation Many applications require analyzing the frequency content of signals Speech processing study resonances of vocal

More information

Oversampled A/D Conversion using Alternate Projections

Oversampled A/D Conversion using Alternate Projections Oversampled A/D Conversion using Alternate Projections Nguyen T.Thao and Martin Vetterli Department of Electrical Engineering and Center for Telecommunications Research Columbia University, New York, NY

More information

Experimental verification of different models of the ADC transfer function. Petr Suchanek, David Slepicka, Vladimir Haasz

Experimental verification of different models of the ADC transfer function. Petr Suchanek, David Slepicka, Vladimir Haasz Experimental verification of different models of the ADC transfer function Petr Suchanek, David Slepicka, Vladimir Haasz Czech Technical University in Prague, Faculty of Electrical Engineering Technická,

More information

Random signals II. ÚPGM FIT VUT Brno,

Random signals II. ÚPGM FIT VUT Brno, Random signals II. Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz 1 Temporal estimate of autocorrelation coefficients for ergodic discrete-time random process. ˆR[k] = 1 N N 1 n=0 x[n]x[n + k],

More information

AN ABSTRACT OF THE THESIS OF

AN ABSTRACT OF THE THESIS OF AN ABSTRACT OF THE THESIS OF Madhulatha Bonu for the degree of Master of Science in Electrical and Computer Engineering presented on November 8, 006. Title: Noise Coupling Techniques in Multi-Cell Delta-Sigma

More information

ETSF15 Analog/Digital. Stefan Höst

ETSF15 Analog/Digital. Stefan Höst ETSF15 Analog/Digital Stefan Höst Physical layer Analog vs digital Sampling, quantisation, reconstruction Modulation Represent digital data in a continuous world Disturbances Noise and distortion Synchronization

More information

Correlator I. Basics. Chapter Introduction. 8.2 Digitization Sampling. D. Anish Roshi

Correlator I. Basics. Chapter Introduction. 8.2 Digitization Sampling. D. Anish Roshi Chapter 8 Correlator I. Basics D. Anish Roshi 8.1 Introduction A radio interferometer measures the mutual coherence function of the electric field due to a given source brightness distribution in the sky.

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 4 Digital Signal Processing Pro. Mark Fowler ote Set # Using the DFT or Spectral Analysis o Signals Reading Assignment: Sect. 7.4 o Proakis & Manolakis Ch. 6 o Porat s Book /9 Goal o Practical Spectral

More information

Lecture 5. The Digital Fourier Transform. (Based, in part, on The Scientist and Engineer's Guide to Digital Signal Processing by Steven Smith)

Lecture 5. The Digital Fourier Transform. (Based, in part, on The Scientist and Engineer's Guide to Digital Signal Processing by Steven Smith) Lecture 5 The Digital Fourier Transform (Based, in part, on The Scientist and Engineer's Guide to Digital Signal Processing by Steven Smith) 1 -. 8 -. 6 -. 4 -. 2-1 -. 8 -. 6 -. 4 -. 2 -. 2. 4. 6. 8 1

More information

Digital Signal Processing 2/ Advanced Digital Signal Processing Lecture 3, SNR, non-linear Quantisation Gerald Schuller, TU Ilmenau

Digital Signal Processing 2/ Advanced Digital Signal Processing Lecture 3, SNR, non-linear Quantisation Gerald Schuller, TU Ilmenau Digital Signal Processing 2/ Advanced Digital Signal Processing Lecture 3, SNR, non-linear Quantisation Gerald Schuller, TU Ilmenau What is our SNR if we have a sinusoidal signal? What is its pdf? Basically

More information

INTRODUCTION TO DELTA-SIGMA ADCS

INTRODUCTION TO DELTA-SIGMA ADCS ECE1371 Advanced Analog Circuits Lecture 1 INTRODUCTION TO DELTA-SIGMA ADCS Richard Schreier richard.schreier@analog.com Trevor Caldwell trevor.caldwell@utoronto.ca Course Goals Deepen understanding of

More information

Extremely small differential non-linearity in a DMOS capacitor based cyclic ADC for CMOS image sensors

Extremely small differential non-linearity in a DMOS capacitor based cyclic ADC for CMOS image sensors Extremely small differential non-linearity in a DMOS capacitor based cyclic ADC for CMOS image sensors Zhiheng Wei 1a), Keita Yasutomi ) and Shoji Kawahito b) 1 Graduate School of Science and Technology,

More information

Slide Set Data Converters. Digital Enhancement Techniques

Slide Set Data Converters. Digital Enhancement Techniques 0 Slide Set Data Converters Digital Enhancement Techniques Introduction Summary Error Measurement Trimming of Elements Foreground Calibration Background Calibration Dynamic Matching Decimation and Interpolation

More information

Analysis of Finite Wordlength Effects

Analysis of Finite Wordlength Effects Analysis of Finite Wordlength Effects Ideally, the system parameters along with the signal variables have infinite precision taing any value between and In practice, they can tae only discrete values within

More information

Second and Higher-Order Delta-Sigma Modulators

Second and Higher-Order Delta-Sigma Modulators Second and Higher-Order Delta-Sigma Modulators MEAD March 28 Richard Schreier Richard.Schreier@analog.com ANALOG DEVICES Overview MOD2: The 2 nd -Order Modulator MOD2 from MOD NTF (predicted & actual)

More information

Radar Systems Engineering Lecture 3 Review of Signals, Systems and Digital Signal Processing

Radar Systems Engineering Lecture 3 Review of Signals, Systems and Digital Signal Processing Radar Systems Engineering Lecture Review of Signals, Systems and Digital Signal Processing Dr. Robert M. O Donnell Guest Lecturer Radar Systems Course Review Signals, Systems & DSP // Block Diagram of

More information

PARALLEL DIGITAL-ANALOG CONVERTERS

PARALLEL DIGITAL-ANALOG CONVERTERS CMOS Analog IC Design Page 10.2-1 10.2 - PARALLEL DIGITAL-ANALOG CONVERTERS CLASSIFICATION OF DIGITAL-ANALOG CONVERTERS CMOS Analog IC Design Page 10.2-2 CURRENT SCALING DIGITAL-ANALOG CONVERTERS GENERAL

More information

Introduction to Biomedical Engineering

Introduction to Biomedical Engineering Introduction to Biomedical Engineering Biosignal processing Kung-Bin Sung 6/11/2007 1 Outline Chapter 10: Biosignal processing Characteristics of biosignals Frequency domain representation and analysis

More information

Chapter 2: Problem Solutions

Chapter 2: Problem Solutions Chapter 2: Problem Solutions Discrete Time Processing of Continuous Time Signals Sampling à Problem 2.1. Problem: Consider a sinusoidal signal and let us sample it at a frequency F s 2kHz. xt 3cos1000t

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino - ICT School Analog and Telecommunication Electronics D3 - A/D converters» Error taxonomy» ADC parameters» Structures and taxonomy» Mixed converters» Origin of errors 12/05/2011-1

More information

A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 2013

A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 2013 A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 2013 Lecture 26 Localization/Matched Filtering (continued) Prewhitening Lectures next week: Reading Bases, principal

More information

Digital to Analog Converters I

Digital to Analog Converters I Advanced Analog Building Blocks 2 Digital to Analog Converters I Albert Comerma (PI) (comerma@physi.uni-heidelberg.de) Course web WiSe 2017 DAC parameters DACs parameters DACs non ideal effects DACs performance

More information

FORMAL DEFINITION AND PROPERTIES OF FEB-BASED ENOB OF INTELLIGENT CYCLIC ADC. Keywords: A/D resolution, ENOB, intelligent cyclic A/D converters

FORMAL DEFINITION AND PROPERTIES OF FEB-BASED ENOB OF INTELLIGENT CYCLIC ADC. Keywords: A/D resolution, ENOB, intelligent cyclic A/D converters METROLOGY AND MEASUREMENT SYSTEMS VOL. XV, NUMBER 3 (2008) ANATOLIY A. PLATONOV, ŁUKASZ MAłKIEWICZ, KONRAD JĘDRZEJEWSKI Warsaw University of Technology Faculty of Electronics and Information Technology,

More information

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10 Digital Band-pass Modulation PROF. MICHAEL TSAI 211/11/1 Band-pass Signal Representation a t g t General form: 2πf c t + φ t g t = a t cos 2πf c t + φ t Envelope Phase Envelope is always non-negative,

More information

System Modeling and Identification CHBE 702 Korea University Prof. Dae Ryook Yang

System Modeling and Identification CHBE 702 Korea University Prof. Dae Ryook Yang System Modeling and Identification CHBE 702 Korea University Prof. Dae Ryook Yang 1-1 Course Description Emphases Delivering concepts and Practice Programming Identification Methods using Matlab Class

More information

Q. 1 Q. 25 carry one mark each.

Q. 1 Q. 25 carry one mark each. GATE 5 SET- ELECTRONICS AND COMMUNICATION ENGINEERING - EC Q. Q. 5 carry one mark each. Q. The bilateral Laplace transform of a function is if a t b f() t = otherwise (A) a b s (B) s e ( a b) s (C) e as

More information

CS6956: Wireless and Mobile Networks Lecture Notes: 2/4/2015

CS6956: Wireless and Mobile Networks Lecture Notes: 2/4/2015 CS6956: Wireless and Mobile Networks Lecture Notes: 2/4/2015 [Most of the material for this lecture has been taken from the Wireless Communications & Networks book by Stallings (2 nd edition).] Effective

More information

Seminar: D. Jeon, Energy-efficient Digital Signal Processing Hardware Design Mon Sept 22, 9:30-11:30am in 3316 EECS

Seminar: D. Jeon, Energy-efficient Digital Signal Processing Hardware Design Mon Sept 22, 9:30-11:30am in 3316 EECS EECS 452 Lecture 6 Today: Announcements: Rounding and quantization Analog to digital conversion Lab 3 starts next week Hw3 due on tuesday Project teaming meeting: today 7-9PM, Dow 3150 My new office hours:

More information

Principles of Communications

Principles of Communications Principles of Communications Weiyao Lin, PhD Shanghai Jiao Tong University Chapter 4: Analog-to-Digital Conversion Textbook: 7.1 7.4 2010/2011 Meixia Tao @ SJTU 1 Outline Analog signal Sampling Quantization

More information

ECEN 610 Mixed-Signal Interfaces

ECEN 610 Mixed-Signal Interfaces ECEN 610 Mixed-Signal Interfaces Sebastian Hoyos Texas A&M University Analog and Mixed Signal Group Spring 014 S. Hoyos-ECEN-610 1 Sample-and-Hold Spring 014 S. Hoyos-ECEN-610 ZOH vs. Track-and-Hold V(t)

More information

Measurement and Instrumentation. Sampling, Digital Devices, and Data Acquisition

Measurement and Instrumentation. Sampling, Digital Devices, and Data Acquisition 2141-375 Measurement and Instrumentation Sampling, Digital Devices, and Data Acquisition Basic Data Acquisition System Analog Form Analog Form Digital Form Display Physical varialble Sensor Signal conditioning

More information

Digital Signal Processing

Digital Signal Processing COMP ENG 4TL4: Digital Signal Processing Notes for Lecture #3 Wednesday, September 10, 2003 1.4 Quantization Digital systems can only represent sample amplitudes with a finite set of prescribed values,

More information

Signal Modeling Techniques in Speech Recognition. Hassan A. Kingravi

Signal Modeling Techniques in Speech Recognition. Hassan A. Kingravi Signal Modeling Techniques in Speech Recognition Hassan A. Kingravi Outline Introduction Spectral Shaping Spectral Analysis Parameter Transforms Statistical Modeling Discussion Conclusions 1: Introduction

More information

SPEECH ANALYSIS AND SYNTHESIS

SPEECH ANALYSIS AND SYNTHESIS 16 Chapter 2 SPEECH ANALYSIS AND SYNTHESIS 2.1 INTRODUCTION: Speech signal analysis is used to characterize the spectral information of an input speech signal. Speech signal analysis [52-53] techniques

More information

Analog to Digital Converters (ADCs)

Analog to Digital Converters (ADCs) Analog to Digital Converters (ADCs) Note: Figures are copyrighted Proakis & Manolakis, Digital Signal Processing, 4 th Edition, Pearson Publishers. Embedded System Design A Unified HW Approach, Vahid/Givargis,

More information

ACCURATE MAGNETIC FLUX MEASUREMENTS IN ELECTROMAGNETIC RAIL LAUNCHERS

ACCURATE MAGNETIC FLUX MEASUREMENTS IN ELECTROMAGNETIC RAIL LAUNCHERS Progress In Electromagnetics Research C, Vol. 40, 243 256, 203 ACCURATE MAGNETIC FLUX MEASUREMENTS IN ELECTROMAGNETIC RAIL LAUNCHERS Roberto Ferrero, Mirko Marracci, and Bernardo Tellini * Department of

More information

Coverage: through entire course material (updated July 18, 2017) Terminology/miscellaneous. for a linear instrument:

Coverage: through entire course material (updated July 18, 2017) Terminology/miscellaneous. for a linear instrument: Boston University ME 310: Summer 017 Course Notes Prof. C. Farny DISCLAIMER: This document is meant to serve as a reference and an overview, and not an exclusive study guide for the course. Coverage: through

More information

Roundoff Noise in Digital Feedback Control Systems

Roundoff Noise in Digital Feedback Control Systems Chapter 7 Roundoff Noise in Digital Feedback Control Systems Digital control systems are generally feedback systems. Within their feedback loops are parts that are analog and parts that are digital. At

More information

8-bit 50ksps ULV SAR ADC

8-bit 50ksps ULV SAR ADC 8-bit 50ksps ULV SAR ADC Fredrik Hilding Rosenberg Master of Science in Electronics Submission date: June 2015 Supervisor: Trond Ytterdal, IET Norwegian University of Science and Technology Department

More information

A Nonuniform Quantization Scheme for High Speed SAR ADC Architecture

A Nonuniform Quantization Scheme for High Speed SAR ADC Architecture A Nonuniform Quantization Scheme for High Speed SAR ADC Architecture Youngchun Kim Electrical and Computer Engineering The University of Texas Wenjuan Guo Intel Corporation Ahmed H Tewfik Electrical and

More information

Introduction to Digital Signal Processing

Introduction to Digital Signal Processing Introduction to Digital Signal Processing 1.1 What is DSP? DSP is a technique of performing the mathematical operations on the signals in digital domain. As real time signals are analog in nature we need

More information

8/19/16. Fourier Analysis. Fourier analysis: the dial tone phone. Fourier analysis: the dial tone phone

8/19/16. Fourier Analysis. Fourier analysis: the dial tone phone. Fourier analysis: the dial tone phone Patrice Koehl Department of Biological Sciences National University of Singapore http://www.cs.ucdavis.edu/~koehl/teaching/bl5229 koehl@cs.ucdavis.edu Fourier analysis: the dial tone phone We use Fourier

More information

!Sketch f(t) over one period. Show that the Fourier Series for f(t) is as given below. What is θ 1?

!Sketch f(t) over one period. Show that the Fourier Series for f(t) is as given below. What is θ 1? Second Year Engineering Mathematics Laboratory Michaelmas Term 998 -M L G Oldfield 30 September, 999 Exercise : Fourier Series & Transforms Revision 4 Answer all parts of Section A and B which are marked

More information

HARMONIC WAVELET TRANSFORM SIGNAL DECOMPOSITION AND MODIFIED GROUP DELAY FOR IMPROVED WIGNER- VILLE DISTRIBUTION

HARMONIC WAVELET TRANSFORM SIGNAL DECOMPOSITION AND MODIFIED GROUP DELAY FOR IMPROVED WIGNER- VILLE DISTRIBUTION HARMONIC WAVELET TRANSFORM SIGNAL DECOMPOSITION AND MODIFIED GROUP DELAY FOR IMPROVED WIGNER- VILLE DISTRIBUTION IEEE 004. All rights reserved. This paper was published in Proceedings of International

More information

EE 435. Lecture 25. Data Converters. Architectures. Characterization

EE 435. Lecture 25. Data Converters. Architectures. Characterization EE 435 Lecture 5 Data Coverters Architectures Characterizatio . eview from last lecture. Data Coverters Types: A/D (Aalog to Digital) Coverts Aalog Iput to a Digital Output D/A (Digital to Aalog) Coverts

More information