INTRODUCTION TO DELTA-SIGMA ADCS

Size: px
Start display at page:

Download "INTRODUCTION TO DELTA-SIGMA ADCS"

Transcription

1 ECE37 Advanced Analog Circuits INTRODUCTION TO DELTA-SIGMA ADCS Richard Schreier NLCOTD: Level Translator VDD > VDD2, e.g. 3-V logic? -V logic VDD < VDD2, e.g. -V logic? 3-V logic Constraints: CMOS -V and 3-V devices no static current ECE37 2

2 Highlights (i.e. What you will learn today) st -order modulator (MOD) Structure and theory of operation 2 Inherent linearity of binary modulators 3 Inherent anti-aliasing of continuous-time modulators 4 2 nd -order modulator (MOD2) 5 Good FFT practice ECE37 3. Background (Stuff you already know) The SQNR * of an ideal n-bit ADC with a full-scale sine-wave input is (6.2n +.76) db 6 db = bit. The PSD at the output of a linear system is the product of the input s PSD and the squared magnitude of the system s frequency response i.e. X H(z) Y Syy () f = He ( j 2πf ) 2 S xx () f The power in any frequency band is the integral of the PSD over that band *. SQNR = Signal-to-Quantization-Noise Ratio ECE37 4

3 . What is Σ? Σ is NOT a fraternity Simplified Σ ADC structure: Analog In Loop Filter Coarse ADC Digital Out (to digital filter) DAC Key features: coarse quantization, filtering, feedback and oversampling Quantization is often quite coarse ( bit!), but the effective resolution can still be as high as 22 bits. ECE37 5 What is Oversampling? Oversampling is sampling faster than required by the Nyquist criterion For a lowpass signal containing energy in the frequency range (, f B ), the minimum sample rate required for perfect reconstruction is f s = 2f B. The oversampling ratio is OSR f s ( 2f B ) For a regular ADC, OSR 2 3 To make the anti-alias filter (AAF) feasible For a Σ ADC, OSR 3 To get adequate quantization noise suppression. Signals between and ~ are removed digitally. f B ECE37 6 f s

4 Oversampling Simplifies AAF OSR ~ : Desired Signal Undesired Signals OSR = 3: f s 2 f First alias band is very close Wide transition band f s 2 f Alias far away ECE37 7 How Does A Σ ADC Work? Coarse quantization lots of quantization error. So how can a Σ ADC achieve 22-bit resolution? A Σ ADC spectrally separates the quantization error from the signal through noise-shaping analog input u Σ v Decimation w digital ADC Filter output s n@2f B desired signal t undesired signals f B f s 2 f s 2 f B shaped noise Nyquist-rate PCM Data ECE37 8 t f B

5 digital input (interpolated) A Σ DAC System u v Reconstruction signal Σ Modulator analog Filter output s shaped noise analog output f B f s 2 f B f s 2 f B f s Mathematically similar to an ADC system Except that now the modulator is digital and drives a low-resolution DAC, and that the out-of-band noise is handled by an analog reconstruction filter. t w ECE37 9 Why Do It The Σ Way? ADC: Simplified Anti-Alias Filter Since the input is oversampled, only very high frequencies alias to the passband. A simple RC section often suffices. If a continuous-time loop filter is used, the anti-alias filter can often be eliminated altogether. DAC: Simplified Reconstruction Filter The nearby images present in Nyquist-rate reconstruction can be removed digitally. + Inherent Linearity Simple structures can yield very high SNR. + Robust Implementation Σ tolerates sizable component errors. ECE37

6 2. MOD: st -Order Σ Modulator [Ch. 2 of Schreier & Temes] U z - Σ z - V Y DAC Q ECE37 V Quantizer (-bit) v Feedback DAC v Since two points define a line, a binary DAC is inherently linear. y v MOD Analysis Exact analysis is intractable for all but the simplest inputs, so treat the quantizer as an additive noise source: U z - Y V(z) = Y(z) + E(z) z - Y(z) = ( U(z) z - V(z) ) / ( z - ) ( z - ) V(z) = U(z) z - V(z) + ( z - )E(z) Q V Y E V V(z) = U(z) + ( z )E(z) ECE37 2

7 The Noise Transfer Function (NTF) In general, V(z) = STF(z) U(z) + NTF(z) E(z) For MOD, NTF(z) = z The quantization noise has spectral shape! Poles & zeros: 4 3 NTF e j 2πf ( ) 2 2 ω 2 for ω « Normalized Frequency (f /f s ) The total noise power increases, but the noise power at low frequencies is reduced ECE37 3 In-band Quant. Noise Power Assume that e is white with power σ2 e i.e. S ee ( ω) = σ 2 e π The in-band quantization noise power is IQNP = ω B H( e jω ) 2 S ee ( ω)dω π π 2 σ2 Since OSR e, IQNP = ( OSR) ω B 3 3 For MOD, an octave increase in OSR increases SQNR by 9 db.5-bit/octave SQNR-OSR trade-off. σ e 2 ω B ω π 2 dω ECE37 4

8 A Simulation of MOD dbfs/nbw Full-scale test tone SQNR = 55 OSR = 28 Shaped Noise 8 2 db/decade 3 2 Normalized Frequency NBW = 5.7x 6 ECE37 5 CT Implementation of MOD R i /R f sets the full-scale; C is arbitrary Also observe that an input at f s is rejected by the integrator inherent anti-aliasing Integrator R f C Latched Comparator R i u y clock D Q DFF CK QB v ECE37 6

9 MOD-CT Waveforms u = u =.6 v v y y Time Time With u=, v alternates between + and With u>, y drifts upwards; v contains consecutive +s to counteract this drift ECE37 7 MOD-CT STF = Recall z = e s z s s-plane ω s = 2kπi σ Pole-zero s = ECE37 8

10 MOD-CT Frequency Responses NTF = z db 2 STF = z s 3 4 Quant. Noise Notch Inherent Anti-Aliasing Frequency (Hz) ECE37 9 Summary Σ works by spectrally separating the quantization noise from the signal Requires oversampling. OSR f s ( 2f B ). Noise-shaping is achieved by the use of filtering and feedback A binary DAC is inherently linear, and thus a binary Σ modulator is too MOD has NTF (z) = z Arbitrary accuracy for DC inputs..5 bit/octave SQNR-OSR trade-off. MOD-CT has inherent anti-aliasing ECE37 2

11 3V V: 3V NLCOTD V V 3V 3V V 3V: 3V 3V 3V 3V ECE MOD2: 2 nd -Order Σ Modulator [Ch. 3 of Schreier & Temes] Replace the quantizer in MOD with another copy of MOD in a recursive fashion: U E Q E V z - z - z - z - V(z) = U(z) + ( z )E (z), E (z) = ( z )E(z) V(z) = U(z) + ( z ) 2 E(z) ECE37 22

12 U Simplified Block Diagrams z z z Q E V NTF( z) = ( z ) 2 STF( z) = z E U z z Q V - -2 NTF z ( ) = ( z ) 2 STF( z) = z 2 ECE37 23 NTF Comparison NTF ( e j2πf ) (db) MOD MOD2 MOD2 has twice as much attenuation as MOD at all frequencies 3 2 Normalized Frequency ECE37 24

13 In-band Quant. Noise Power For MOD2, As before, IQNP = H( e jω ) 2 S ee ( ω)dω and S ee ( ω) = σ 2 e π So now IQNP He ( jω ) 2 ω 4 = ω B π 4 σ e ( OSR) 5 5 With binary quantization to ±, = 2 and thus σ2 e = 2 2 = 3. An octave increase in OSR increases MOD2 s SQNR by 5 db (2.5 bits) ECE37 25 Simulation Example Input at 75% of FullScale Sample number ECE37 26

14 dbfs/nbw Simulated MOD2 PSD Input at 5% of FullScale SQNR = 86 OSR = 28 Simulated spectrum (smoothed) 4 db/decade Theoretical PSD (k = ) NBW = Normalized Frequency ECE SQNR vs. Input Amplitude MOD & OSR = 256 SQNR (db) Predicted SQNR MOD2 Simulated SQNR MOD Input Amplitude (dbfs) ECE37 28

15 2 SQNR vs. OSR SQNR (db) MOD2 (Theoretical curve assumes -3 dbfs input) MOD (Theoretical curve assumes dbfs input) 2 Predictions for MOD2 are optimistic. Behavior of MOD is erratic ECE37 29 Audio Demo: MOD vs. MOD2 [dsdemo4] Sine Wave Slow Ramp Speech MOD MOD2 ECE37 3

16 MOD + MOD2 Summary Σ ADCs rely on filtering and feedback to achieve high SNR despite coarse quantization They also rely on digital signal processing. Σ ADCs need to be followed by a digital decimation filter and Σ DACs need to be preceded by a digital interpolation filter. Oversampling eases analog filtering requirements Anti-alias filter in an ADC; image filter in a DAC. Binary quantization yields inherent linearity MOD2 is better than MOD 5 db/octave vs. 9 db/octave SQNR-OSR trade-off. Quantization noise more white. Higher-order modulators are even better. ECE Good FFT Practice [Appendix A of Schreier & Temes] Use coherent sampling I.e. have an integer number of cycles in the record. Use windowing A Hann window works well. Use enough points Recommend N = 64 OSR. Scale (and smooth) the spectrum A full-scale sine wave should yield a -dbfs peak. State the noise bandwidth wn ( ) = ( cos( 2πn N) ) 2 For a Hann window, NBW =.5 N. N ECE37 32

17 Coherent vs. Incoherent Sampling db Incoherent Coherent Normalized Frequency Coherent sampling: only one non-zero FFT bin Incoherent sampling: spectral leakage ECE37 33 db Windowing Σ data is usually not periodic Just because the input repeats does not mean that the output does too! A finite-length data record = an infinite record multiplied by a rectangular window: wn ( ) =, n < N Windowing is unavoidable. Multiplication in time is convolution in frequency Frequency response of a 32-point rectangular window: Slow roll-off out-of-band Q. noise may appear in-band ECE37 34

18 4 2 Example Spectral Disaster Rectangular window, N = 256 Out-of-band quantization noise obscures the notch! db Normalized Frequency, f Actual Σ spectrum W( f) w 2 Windowed spectrum ECE37 35 Window Comparison (N = 6) (db) Wf () W ( ) Rectangular Hann Hann Normalized Frequency, f ECE37 36

19 Window Properties Window Rectangular Hann wn ( ), n =,,, N ( wn ( ) = otherwise) Number of non-zero FFT bins w 2 2 = wn ( ) 2 W ( ) = wn ( ) NBW = w W ( ) 2 2πn cos N Hann 2 2πn cos N N 3N/8 35N/28 N N/2 3N/8 /N.5/N 35/8N. MATLAB s hann function causes spectral leakage of tones located in FFT bins unless you add the optional argument periodic. ECE37 37 Window Length, N Need to have enough in-band noise bins to Make the number of signal bins a small fraction of the total number of in-band bins <2% signal bins >5 in-band bins N > 3 OSR 2 Make the SNR repeatable N = 3 OSR yields std. dev. ~.4 db. N = 64 OSR yields std. dev. ~. db. N = 256 OSR yields std. dev. ~.5 db. N = 64 OSR is recommended ECE37 38

20 FFT Scaling The FFT implemented in MATLAB is X M k + N ( ) = x M ( n + )e j n = If xn ( ) = Asin( 2πfn N), then Xk ( ) = πkn N AN , k = f or N f 2, otherwise Need to divide FFT by ( N 2) to get A.. f is an integer in (, N 2). I ve defined Xk ( ) X M ( k + ), xn ( ) x M ( n + ) since Matlab indexes from rather than. ECE37 39 x The Need For Smoothing The FFT can be interpreted as taking sample from the outputs of N complex FIR filters: h ( n) h ( n) h k ( n) y ( N) = X ( ) y ( N) = X( ) y k ( N) = X( k) h k ( n) e j 2πk n = N, n < N, otherwise h N ( n) y N ( N) = X( N ) an FFT yields a high-variance spectral estimate ECE37 4

21 How To Do Smoothing Average multiple FFTs Implemented by MATLAB s psd() function 2 Take one big FFT and filter the spectrum Implemented by the Σ Toolbox s logsmooth() function logsmooth() averages an exponentially-increasing number of bins in order to reduce the density of points in the high-frequency regime and make a nice log-frequency plot ECE37 4 Raw and Smoothed Spectra 2 4 dbfs 6 8 Raw FFT logsmooth 2 2 Normalized Frequency ECE37 42

22 Simulation vs. Theory (MOD2) Simulated Spectrum NTF = Theoretical Q. Noise? dbfs Slight Discrepancy (~4 db) Normalized Frequency ECE37 43 What Went Wrong? We normalized the spectrum so that a full-scale sine wave (which has a power of.5) comes out at db (whence the dbfs units) We need to do the same for the error signal. i.e. use S ee () f = 4 3. But this makes the discrepancy 3 db worse. 2 We tried to plot a power spectral density together with something that we want to interpret as a power spectrum Sine-wave components are located in individual FFT bins, but broadband signals like noise have their power spread over all FFT bins! The noise floor depends on the length of the FFT. ECE37 44

23 Spectrum of a Sine Wave + Noise ( dbfs ) Ŝ x () f 2 3 N = 2 6 N = 2 8 N = 2 N = 2 2 dbfs Sine Wave dbfs Noise SNR = db 3 db/ octave Normalized Frequency, f ECE37 45 Observations The power of the sine wave is given by the height of its spectral peak The power of the noise is spread over all bins The greater the number of bins, the less power there is in any one bin. Doubling N reduces the power per bin by a factor of 2 (i.e. 3 db) But the total integrated noise power does not change. ECE37 46

24 So How Do We Handle Noise? Recall that an FFT is like a filter bank The longer the FFT, the narrower the bandwidth of each filter and thus the lower the power at each output We need to know the noise bandwidth (NBW) of the filters in order to convert the power in each bin (filter output) to a power density For a filter with frequency response Hf (), NBW = Hf () 2 df Hf ( ) 2 NBW f Hf () f ECE37 47 FFT Noise Bandwidth Rectangular Window h k ( n) = exp j 2πk n, N H k () f = h k ( n) exp( j 2πfn) n = N k f = ----, H N k ( f ) = = N H k () f 2 = h k ( n) 2 = N n = N [Parseval] H k () f 2 df N NBW = = = H k ( f ) 2 N N ECE37 48

25 2 2 Better Spectral Plot Simulated Spectrum Theoretical Q. Noise dbfs/nbw passband for OSR = 28 NBW =.5 / N = Normalized Frequency 4 -- NTF() f 3 2 NBW N = 2 6 ECE37 49

INTRODUCTION TO DELTA-SIGMA ADCS

INTRODUCTION TO DELTA-SIGMA ADCS ECE1371 Advanced Analog Circuits Lecture 1 INTRODUCTION TO DELTA-SIGMA ADCS Richard Schreier richard.schreier@analog.com Trevor Caldwell trevor.caldwell@utoronto.ca Course Goals Deepen understanding of

More information

Higher-Order Modulators: MOD2 and MODN

Higher-Order Modulators: MOD2 and MODN ECE37 Advanced Analog Circuits Lecture 2 Higher-Order Modulators: MOD2 and MODN Richard Schreier richard.schreier@analog.com Trevor Caldwell trevor.caldwell@utoronto.ca Course Goals Deepen understanding

More information

Higher-Order Σ Modulators and the Σ Toolbox

Higher-Order Σ Modulators and the Σ Toolbox ECE37 Advanced Analog Circuits Higher-Order Σ Modulators and the Σ Toolbox Richard Schreier richard.schreier@analog.com NLCOTD: Dynamic Flip-Flop Standard CMOS version D CK Q Q Can the circuit be simplified?

More information

Second and Higher-Order Delta-Sigma Modulators

Second and Higher-Order Delta-Sigma Modulators Second and Higher-Order Delta-Sigma Modulators MEAD March 28 Richard Schreier Richard.Schreier@analog.com ANALOG DEVICES Overview MOD2: The 2 nd -Order Modulator MOD2 from MOD NTF (predicted & actual)

More information

SNR Calculation and Spectral Estimation [S&T Appendix A]

SNR Calculation and Spectral Estimation [S&T Appendix A] SR Calculation and Spectral Estimation [S&T Appendix A] or, How not to make a mess of an FFT Make sure the input is located in an FFT bin 1 Window the data! A Hann window works well. Compute the FFT 3

More information

Oversampling Converters

Oversampling Converters Oversampling Converters David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 56 Motivation Popular approach for medium-to-low speed A/D and D/A applications requiring

More information

EXAMPLE DESIGN PART 1

EXAMPLE DESIGN PART 1 ECE37 Advanced Analog Circuits Lecture 3 EXAMPLE DESIGN PART Richard Schreier richard.schreier@analog.com Trevor Caldwell trevor.caldwell@utoronto.ca Course Goals Deepen understanding of CMOS analog circuit

More information

EXAMPLE DESIGN PART 1

EXAMPLE DESIGN PART 1 EE37 Advanced Analog ircuits Lecture 3 EXAMPLE DESIGN PART Richard Schreier richard.schreier@analog.com Trevor aldwell trevor.caldwell@utoronto.ca ourse Goals Deepen understanding of MOS analog circuit

More information

Course Goals ADVANCED Σ. Highlights (i.e. What you will learn today) Review: SQNR vs. OSR. Review: MOD1 & MOD2

Course Goals ADVANCED Σ. Highlights (i.e. What you will learn today) Review: SQNR vs. OSR. Review: MOD1 & MOD2 ECE37 Adanced Analog Circuits Lecture 5 ADANCED Σ Richard Schreier richard.schreier@analog.com Treor Caldwell treor.caldwell@utoronto.ca Course Goals Deepen understanding of CMOS analog circuit design

More information

EXAMPLE DESIGN PART 1

EXAMPLE DESIGN PART 1 EE37 Advanced Analog ircuits Lecture EXAMPLE DESIGN PART Richard Schreier richard.schreier@analog.com Trevor aldwell trevor.caldwell@utoronto.ca ourse Goals Deepen understanding of MOS analog circuit design

More information

Analog Digital Sampling & Discrete Time Discrete Values & Noise Digital-to-Analog Conversion Analog-to-Digital Conversion

Analog Digital Sampling & Discrete Time Discrete Values & Noise Digital-to-Analog Conversion Analog-to-Digital Conversion Analog Digital Sampling & Discrete Time Discrete Values & Noise Digital-to-Analog Conversion Analog-to-Digital Conversion 6.082 Fall 2006 Analog Digital, Slide Plan: Mixed Signal Architecture volts bits

More information

EE 521: Instrumentation and Measurements

EE 521: Instrumentation and Measurements Aly El-Osery Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA September 23, 2009 1 / 18 1 Sampling 2 Quantization 3 Digital-to-Analog Converter 4 Analog-to-Digital Converter

More information

EXAMPLE DESIGN PART 2

EXAMPLE DESIGN PART 2 ECE37 Advanced Analog Circuits Lecture 4 EXAMPLE DESIGN PART 2 Richard Schreier richard.schreier@analog.com Trevor Caldwell trevor.caldwell@utoronto.ca Course Goals Deepen understanding of CMOS analog

More information

Fourier Analysis of Signals Using the DFT

Fourier Analysis of Signals Using the DFT Fourier Analysis of Signals Using the DFT ECE 535 Lecture April 29, 23 Overview: Motivation Many applications require analyzing the frequency content of signals Speech processing study resonances of vocal

More information

EXAMPLE DESIGN PART 2

EXAMPLE DESIGN PART 2 ECE37 Advanced Analog Circuits Lecture 3 EXAMPLE DESIGN PART 2 Richard Schreier richard.schreier@analog.com Trevor Caldwell trevor.caldwell@utoronto.ca Course Goals Deepen understanding of CMOS analog

More information

EXAMPLE DESIGN PART 1

EXAMPLE DESIGN PART 1 EE37 Advanced Analog ircuits Lecture EXAMPLE DESIGN PART Richard Schreier richard.schreier@analog.com Trevor aldwell trevor.caldwell@utoronto.ca ourse Goals Deepen understanding of MOS analog circuit design

More information

An Anti-Aliasing Multi-Rate Σ Modulator

An Anti-Aliasing Multi-Rate Σ Modulator An Anti-Aliasing Multi-Rate Σ Modulator Anthony Chan Carusone Depart. of Elec. and Comp. Eng. University of Toronto, Canada Franco Maloberti Department of Electronics University of Pavia, Italy May 6,

More information

Slide Set Data Converters. Digital Enhancement Techniques

Slide Set Data Converters. Digital Enhancement Techniques 0 Slide Set Data Converters Digital Enhancement Techniques Introduction Summary Error Measurement Trimming of Elements Foreground Calibration Background Calibration Dynamic Matching Decimation and Interpolation

More information

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals 1. Sampling and Reconstruction 2. Quantization 1 1. Sampling & Reconstruction DSP must interact with an analog world: A to D D to A x(t)

More information

Multirate signal processing

Multirate signal processing Multirate signal processing Discrete-time systems with different sampling rates at various parts of the system are called multirate systems. The need for such systems arises in many applications, including

More information

Chirp Transform for FFT

Chirp Transform for FFT Chirp Transform for FFT Since the FFT is an implementation of the DFT, it provides a frequency resolution of 2π/N, where N is the length of the input sequence. If this resolution is not sufficient in a

More information

Distortion Analysis T

Distortion Analysis T EE 435 Lecture 32 Spectral Performance Windowing Spectral Performance of Data Converters - Time Quantization - Amplitude Quantization Quantization Noise . Review from last lecture. Distortion Analysis

More information

Sensors. Chapter Signal Conditioning

Sensors. Chapter Signal Conditioning Chapter 2 Sensors his chapter, yet to be written, gives an overview of sensor technology with emphasis on how to model sensors. 2. Signal Conditioning Sensors convert physical measurements into data. Invariably,

More information

AN ABSTRACT OF THE THESIS OF

AN ABSTRACT OF THE THESIS OF AN ABSTRACT OF THE THESIS OF Madhulatha Bonu for the degree of Master of Science in Electrical and Computer Engineering presented on November 8, 006. Title: Noise Coupling Techniques in Multi-Cell Delta-Sigma

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing EE123 Digital Signal Processing Lecture 19 Practical ADC/DAC Ideal Anti-Aliasing ADC A/D x c (t) Analog Anti-Aliasing Filter HLP(jΩ) sampler t = nt x[n] =x c (nt ) Quantizer 1 X c (j ) and s < 2 1 T X

More information

Introduction to Digital Signal Processing

Introduction to Digital Signal Processing Introduction to Digital Signal Processing 1.1 What is DSP? DSP is a technique of performing the mathematical operations on the signals in digital domain. As real time signals are analog in nature we need

More information

[ ], [ ] [ ] [ ] = [ ] [ ] [ ]{ [ 1] [ 2]

[ ], [ ] [ ] [ ] = [ ] [ ] [ ]{ [ 1] [ 2] 4. he discrete Fourier transform (DF). Application goal We study the discrete Fourier transform (DF) and its applications: spectral analysis and linear operations as convolution and correlation. We use

More information

Simulation, and Overload and Stability Analysis of Continuous Time Sigma Delta Modulator

Simulation, and Overload and Stability Analysis of Continuous Time Sigma Delta Modulator UNLV Theses, Dissertations, Professional Papers, and Capstones 1-1-014 Simulation, and Overload and Stability Analysis of Continuous Time Sigma Delta Modulator Kyung Kang University of Nevada, Las Vegas,

More information

Digital Signal Processing

Digital Signal Processing Digital Signal Processing Introduction Moslem Amiri, Václav Přenosil Embedded Systems Laboratory Faculty of Informatics, Masaryk University Brno, Czech Republic amiri@mail.muni.cz prenosil@fi.muni.cz February

More information

Cast of Characters. Some Symbols, Functions, and Variables Used in the Book

Cast of Characters. Some Symbols, Functions, and Variables Used in the Book Page 1 of 6 Cast of Characters Some s, Functions, and Variables Used in the Book Digital Signal Processing and the Microcontroller by Dale Grover and John R. Deller ISBN 0-13-081348-6 Prentice Hall, 1998

More information

Signals, Instruments, and Systems W5. Introduction to Signal Processing Sampling, Reconstruction, and Filters

Signals, Instruments, and Systems W5. Introduction to Signal Processing Sampling, Reconstruction, and Filters Signals, Instruments, and Systems W5 Introduction to Signal Processing Sampling, Reconstruction, and Filters Acknowledgments Recapitulation of Key Concepts from the Last Lecture Dirac delta function (

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Processing Pro. Mark Fowler Note Set #14 Practical A-to-D Converters and D-to-A Converters Reading Assignment: Sect. 6.3 o Proakis & Manolakis 1/19 The irst step was to see that

More information

UNIVERSITY OF OSLO. Faculty of mathematics and natural sciences. Forslag til fasit, versjon-01: Problem 1 Signals and systems.

UNIVERSITY OF OSLO. Faculty of mathematics and natural sciences. Forslag til fasit, versjon-01: Problem 1 Signals and systems. UNIVERSITY OF OSLO Faculty of mathematics and natural sciences Examination in INF3470/4470 Digital signal processing Day of examination: December 1th, 016 Examination hours: 14:30 18.30 This problem set

More information

Discrete Fourier Transform

Discrete Fourier Transform Discrete Fourier Transform Virtually all practical signals have finite length (e.g., sensor data, audio records, digital images, stock values, etc). Rather than considering such signals to be zero-padded

More information

E : Lecture 1 Introduction

E : Lecture 1 Introduction E85.2607: Lecture 1 Introduction 1 Administrivia 2 DSP review 3 Fun with Matlab E85.2607: Lecture 1 Introduction 2010-01-21 1 / 24 Course overview Advanced Digital Signal Theory Design, analysis, and implementation

More information

Multimedia Signals and Systems - Audio and Video. Signal, Image, Video Processing Review-Introduction, MP3 and MPEG2

Multimedia Signals and Systems - Audio and Video. Signal, Image, Video Processing Review-Introduction, MP3 and MPEG2 Multimedia Signals and Systems - Audio and Video Signal, Image, Video Processing Review-Introduction, MP3 and MPEG2 Kunio Takaya Electrical and Computer Engineering University of Saskatchewan December

More information

UNIVERSITY OF TRENTO IN-BAND POWER ESTIMATION OF WINDOWED DELTA-SIGMA SHAPED NOISE. Emilia Nunzi, Paolo Carbone, Dario Petri.

UNIVERSITY OF TRENTO IN-BAND POWER ESTIMATION OF WINDOWED DELTA-SIGMA SHAPED NOISE. Emilia Nunzi, Paolo Carbone, Dario Petri. UIVERSITY OF TRETO DEPARTMET OF IFORMATIO AD COMMUICATIO TECHOLOGY 85 Povo Trento (Italy, Via Sommarive 14 http://www.dit.unitn.it I-BAD POWER ESTIMATIO OF WIDOWED DELTA-SIGMA SHAPED OISE Emilia unzi,

More information

UNIVERSITY OF OSLO. Please make sure that your copy of the problem set is complete before you attempt to answer anything.

UNIVERSITY OF OSLO. Please make sure that your copy of the problem set is complete before you attempt to answer anything. UNIVERSITY OF OSLO Faculty of mathematics and natural sciences Examination in INF3470/4470 Digital signal processing Day of examination: December 9th, 011 Examination hours: 14.30 18.30 This problem set

More information

Chapter 7: IIR Filter Design Techniques

Chapter 7: IIR Filter Design Techniques IUST-EE Chapter 7: IIR Filter Design Techniques Contents Performance Specifications Pole-Zero Placement Method Impulse Invariant Method Bilinear Transformation Classical Analog Filters DSP-Shokouhi Advantages

More information

Radar Systems Engineering Lecture 3 Review of Signals, Systems and Digital Signal Processing

Radar Systems Engineering Lecture 3 Review of Signals, Systems and Digital Signal Processing Radar Systems Engineering Lecture Review of Signals, Systems and Digital Signal Processing Dr. Robert M. O Donnell Guest Lecturer Radar Systems Course Review Signals, Systems & DSP // Block Diagram of

More information

CMPT 889: Lecture 3 Fundamentals of Digital Audio, Discrete-Time Signals

CMPT 889: Lecture 3 Fundamentals of Digital Audio, Discrete-Time Signals CMPT 889: Lecture 3 Fundamentals of Digital Audio, Discrete-Time Signals Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University October 6, 2005 1 Sound Sound waves are longitudinal

More information

Chapter 2: The Fourier Transform

Chapter 2: The Fourier Transform EEE, EEE Part A : Digital Signal Processing Chapter Chapter : he Fourier ransform he Fourier ransform. Introduction he sampled Fourier transform of a periodic, discrete-time signal is nown as the discrete

More information

ETSF15 Analog/Digital. Stefan Höst

ETSF15 Analog/Digital. Stefan Höst ETSF15 Analog/Digital Stefan Höst Physical layer Analog vs digital Sampling, quantisation, reconstruction Modulation Represent digital data in a continuous world Disturbances Noise and distortion Synchronization

More information

1 1.27z z 2. 1 z H 2

1 1.27z z 2. 1 z H 2 E481 Digital Signal Processing Exam Date: Thursday -1-1 16:15 18:45 Final Exam - Solutions Dan Ellis 1. (a) In this direct-form II second-order-section filter, the first stage has

More information

Chapter 12 Variable Phase Interpolation

Chapter 12 Variable Phase Interpolation Chapter 12 Variable Phase Interpolation Contents Slide 1 Reason for Variable Phase Interpolation Slide 2 Another Need for Interpolation Slide 3 Ideal Impulse Sampling Slide 4 The Sampling Theorem Slide

More information

II. Nonparametric Spectrum Estimation for Stationary Random Signals - Non-parametric Methods -

II. Nonparametric Spectrum Estimation for Stationary Random Signals - Non-parametric Methods - II. onparametric Spectrum Estimation for Stationary Random Signals - on-parametric Methods - - [p. 3] Periodogram - [p. 12] Periodogram properties - [p. 23] Modified periodogram - [p. 25] Bartlett s method

More information

DSP Design Lecture 2. Fredrik Edman.

DSP Design Lecture 2. Fredrik Edman. DSP Design Lecture Number representation, scaling, quantization and round-off Noise Fredrik Edman fredrik.edman@eit.lth.se Representation of Numbers Numbers is a way to use symbols to describe and model

More information

Discrete-Time Fourier Transform

Discrete-Time Fourier Transform Discrete-Time Fourier Transform Chapter Intended Learning Outcomes: (i) (ii) (iii) Represent discrete-time signals using discrete-time Fourier transform Understand the properties of discrete-time Fourier

More information

Introduction to Biomedical Engineering

Introduction to Biomedical Engineering Introduction to Biomedical Engineering Biosignal processing Kung-Bin Sung 6/11/2007 1 Outline Chapter 10: Biosignal processing Characteristics of biosignals Frequency domain representation and analysis

More information

Data Converter Fundamentals

Data Converter Fundamentals Data Converter Fundamentals David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 33 Introduction Two main types of converters Nyquist-Rate Converters Generate output

More information

EE 230 Lecture 40. Data Converters. Amplitude Quantization. Quantization Noise

EE 230 Lecture 40. Data Converters. Amplitude Quantization. Quantization Noise EE 230 Lecture 40 Data Converters Amplitude Quantization Quantization Noise Review from Last Time: Time Quantization Typical ADC Environment Review from Last Time: Time Quantization Analog Signal Reconstruction

More information

Lecture 3 - Design of Digital Filters

Lecture 3 - Design of Digital Filters Lecture 3 - Design of Digital Filters 3.1 Simple filters In the previous lecture we considered the polynomial fit as a case example of designing a smoothing filter. The approximation to an ideal LPF can

More information

7.1 Sampling and Reconstruction

7.1 Sampling and Reconstruction Haberlesme Sistemlerine Giris (ELE 361) 6 Agustos 2017 TOBB Ekonomi ve Teknoloji Universitesi, Guz 2017-18 Dr. A. Melda Yuksel Turgut & Tolga Girici Lecture Notes Chapter 7 Analog to Digital Conversion

More information

LAB 6: FIR Filter Design Summer 2011

LAB 6: FIR Filter Design Summer 2011 University of Illinois at Urbana-Champaign Department of Electrical and Computer Engineering ECE 311: Digital Signal Processing Lab Chandra Radhakrishnan Peter Kairouz LAB 6: FIR Filter Design Summer 011

More information

DIGITAL SIGNAL PROCESSING UNIT III INFINITE IMPULSE RESPONSE DIGITAL FILTERS. 3.6 Design of Digital Filter using Digital to Digital

DIGITAL SIGNAL PROCESSING UNIT III INFINITE IMPULSE RESPONSE DIGITAL FILTERS. 3.6 Design of Digital Filter using Digital to Digital DIGITAL SIGNAL PROCESSING UNIT III INFINITE IMPULSE RESPONSE DIGITAL FILTERS Contents: 3.1 Introduction IIR Filters 3.2 Transformation Function Derivation 3.3 Review of Analog IIR Filters 3.3.1 Butterworth

More information

Digital Speech Processing Lecture 10. Short-Time Fourier Analysis Methods - Filter Bank Design

Digital Speech Processing Lecture 10. Short-Time Fourier Analysis Methods - Filter Bank Design Digital Speech Processing Lecture Short-Time Fourier Analysis Methods - Filter Bank Design Review of STFT j j ˆ m ˆ. X e x[ mw ] [ nˆ m] e nˆ function of nˆ looks like a time sequence function of ˆ looks

More information

L6: Short-time Fourier analysis and synthesis

L6: Short-time Fourier analysis and synthesis L6: Short-time Fourier analysis and synthesis Overview Analysis: Fourier-transform view Analysis: filtering view Synthesis: filter bank summation (FBS) method Synthesis: overlap-add (OLA) method STFT magnitude

More information

EE 435. Lecture 32. Spectral Performance Windowing

EE 435. Lecture 32. Spectral Performance Windowing EE 435 Lecture 32 Spectral Performance Windowing . Review from last lecture. Distortion Analysis T 0 T S THEOREM?: If N P is an integer and x(t) is band limited to f MAX, then 2 Am Χ mnp 1 0 m h N and

More information

Chap 4. Sampling of Continuous-Time Signals

Chap 4. Sampling of Continuous-Time Signals Digital Signal Processing Chap 4. Sampling of Continuous-Time Signals Chang-Su Kim Digital Processing of Continuous-Time Signals Digital processing of a CT signal involves three basic steps 1. Conversion

More information

Slide Set Data Converters. High-Order, CT Σ Converters and Σ DAC

Slide Set Data Converters. High-Order, CT Σ Converters and Σ DAC 0 lide et Data Converters High-Order, CT Σ Converters and Σ DAC 1 NR Enhancement ummary High Order Noise haping Continuos-Time Σ Modulators Band-Pass Σ Modulators Oversampling DAC 2 NR Enhancement Many

More information

Correlator I. Basics. Chapter Introduction. 8.2 Digitization Sampling. D. Anish Roshi

Correlator I. Basics. Chapter Introduction. 8.2 Digitization Sampling. D. Anish Roshi Chapter 8 Correlator I. Basics D. Anish Roshi 8.1 Introduction A radio interferometer measures the mutual coherence function of the electric field due to a given source brightness distribution in the sky.

More information

Error Spectrum Shaping and Vector Quantization. Jon Dattorro Christine Law

Error Spectrum Shaping and Vector Quantization. Jon Dattorro Christine Law Error Spectrum Shaping and Vector Quantization Jon Dattorro Christine Law in partial fulfillment of the requirements for EE392c Stanford University Autumn 1997 0. Introduction We view truncation noise

More information

CITY UNIVERSITY LONDON. MSc in Information Engineering DIGITAL SIGNAL PROCESSING EPM746

CITY UNIVERSITY LONDON. MSc in Information Engineering DIGITAL SIGNAL PROCESSING EPM746 No: CITY UNIVERSITY LONDON MSc in Information Engineering DIGITAL SIGNAL PROCESSING EPM746 Date: 19 May 2004 Time: 09:00-11:00 Attempt Three out of FIVE questions, at least One question from PART B PART

More information

Class of waveform coders can be represented in this manner

Class of waveform coders can be represented in this manner Digital Speech Processing Lecture 15 Speech Coding Methods Based on Speech Waveform Representations ti and Speech Models Uniform and Non- Uniform Coding Methods 1 Analog-to-Digital Conversion (Sampling

More information

! Introduction. ! Discrete Time Signals & Systems. ! Z-Transform. ! Inverse Z-Transform. ! Sampling of Continuous Time Signals

! Introduction. ! Discrete Time Signals & Systems. ! Z-Transform. ! Inverse Z-Transform. ! Sampling of Continuous Time Signals ESE 531: Digital Signal Processing Lec 25: April 24, 2018 Review Course Content! Introduction! Discrete Time Signals & Systems! Discrete Time Fourier Transform! Z-Transform! Inverse Z-Transform! Sampling

More information

Lecture 5. The Digital Fourier Transform. (Based, in part, on The Scientist and Engineer's Guide to Digital Signal Processing by Steven Smith)

Lecture 5. The Digital Fourier Transform. (Based, in part, on The Scientist and Engineer's Guide to Digital Signal Processing by Steven Smith) Lecture 5 The Digital Fourier Transform (Based, in part, on The Scientist and Engineer's Guide to Digital Signal Processing by Steven Smith) 1 -. 8 -. 6 -. 4 -. 2-1 -. 8 -. 6 -. 4 -. 2 -. 2. 4. 6. 8 1

More information

Low-Noise Sigma-Delta Capacitance-to-Digital Converter for Sub-pF Capacitive Sensors with Integrated Dielectric Loss Measurement

Low-Noise Sigma-Delta Capacitance-to-Digital Converter for Sub-pF Capacitive Sensors with Integrated Dielectric Loss Measurement Low-Noise Sigma-Delta Capacitance-to-Digital Converter for Sub-pF Capacitive Sensors with Integrated Dielectric Loss Measurement Markus Bingesser austriamicrosystems AG Rietstrasse 4, 864 Rapperswil, Switzerland

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

REAL TIME DIGITAL SIGNAL PROCESSING

REAL TIME DIGITAL SIGNAL PROCESSING REAL TIME DIGITAL SIGNAL PROCESSING www.electron.frba.utn.edu.ar/dplab Digital Filters FIR and IIR. Design parameters. Implementation types. Constraints. Filters: General classification Filters: General

More information

UNIT 1. SIGNALS AND SYSTEM

UNIT 1. SIGNALS AND SYSTEM Page no: 1 UNIT 1. SIGNALS AND SYSTEM INTRODUCTION A SIGNAL is defined as any physical quantity that changes with time, distance, speed, position, pressure, temperature or some other quantity. A SIGNAL

More information

EE 230 Lecture 43. Data Converters

EE 230 Lecture 43. Data Converters EE 230 Lecture 43 Data Converters Review from Last Time: Amplitude Quantization Unwanted signals in the output of a system are called noise. Distortion Smooth nonlinearities Frequency attenuation Large

More information

Chapter 10 Applications in Communications

Chapter 10 Applications in Communications Chapter 10 Applications in Communications School of Information Science and Engineering, SDU. 1/ 47 Introduction Some methods for digitizing analog waveforms: Pulse-code modulation (PCM) Differential PCM

More information

Lab 4: Quantization, Oversampling, and Noise Shaping

Lab 4: Quantization, Oversampling, and Noise Shaping Lab 4: Quantization, Oversampling, and Noise Shaping Due Friday 04/21/17 Overview: This assignment should be completed with your assigned lab partner(s). Each group must turn in a report composed using

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

Information and Communications Security: Encryption and Information Hiding

Information and Communications Security: Encryption and Information Hiding Short Course on Information and Communications Security: Encryption and Information Hiding Tuesday, 10 March Friday, 13 March, 2015 Lecture 5: Signal Analysis Contents The complex exponential The complex

More information

Fourier Series Representation of

Fourier Series Representation of Fourier Series Representation of Periodic Signals Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Outline The response of LIT system

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC2314- DIGITAL SIGNAL PROCESSING UNIT I INTRODUCTION PART A

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC2314- DIGITAL SIGNAL PROCESSING UNIT I INTRODUCTION PART A DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC2314- DIGITAL SIGNAL PROCESSING UNIT I INTRODUCTION PART A Classification of systems : Continuous and Discrete

More information

FROM ANALOGUE TO DIGITAL

FROM ANALOGUE TO DIGITAL SIGNALS AND SYSTEMS: PAPER 3C1 HANDOUT 7. Dr David Corrigan 1. Electronic and Electrical Engineering Dept. corrigad@tcd.ie www.mee.tcd.ie/ corrigad FROM ANALOGUE TO DIGITAL To digitize signals it is necessary

More information

Review: Continuous Fourier Transform

Review: Continuous Fourier Transform Review: Continuous Fourier Transform Review: convolution x t h t = x τ h(t τ)dτ Convolution in time domain Derivation Convolution Property Interchange the order of integrals Let Convolution Property By

More information

Finite Word Length Effects and Quantisation Noise. Professors A G Constantinides & L R Arnaut

Finite Word Length Effects and Quantisation Noise. Professors A G Constantinides & L R Arnaut Finite Word Length Effects and Quantisation Noise 1 Finite Word Length Effects Finite register lengths and A/D converters cause errors at different levels: (i) input: Input quantisation (ii) system: Coefficient

More information

Effect of Clock Jitter Error on the Performance Degradation of Multi-bit Continuous-Time Σ Modulators With NRZ DAC

Effect of Clock Jitter Error on the Performance Degradation of Multi-bit Continuous-Time Σ Modulators With NRZ DAC Effect of Clock Jitter Error on the Performance Degradation of Multi-bit Continuous-Time Σ Modulators With NRZ R. Tortosa, J.M. de la Rosa, A. Rodríguez-Vázquez and F.V. Fernández Instituto de Microelectrónica

More information

Optimal design of discrete-time delta sigma modulators

Optimal design of discrete-time delta sigma modulators UNLV Theses, Dissertations, Professional Papers, and Capstones 2009 Optimal design of discrete-time delta sigma modulators Matthew Edward Jackson University of Nevada Las Vegas Follow this and additional

More information

Multidimensional digital signal processing

Multidimensional digital signal processing PSfrag replacements Two-dimensional discrete signals N 1 A 2-D discrete signal (also N called a sequence or array) is a function 2 defined over thex(n set 1 of, n 2 ordered ) pairs of integers: y(nx 1,

More information

(Refer Slide Time: 01:28 03:51 min)

(Refer Slide Time: 01:28 03:51 min) Digital Signal Processing Prof. S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture 40 FIR Design by Windowing This is the 40 th lecture and our topic for

More information

Fundamentals of PLLs (III)

Fundamentals of PLLs (III) Phase-Locked Loops Fundamentals of PLLs (III) Ching-Yuan Yang National Chung-Hsing University Department of Electrical Engineering Phase transfer function in linear model i (s) Kd e (s) Open-loop transfer

More information

VALLIAMMAI ENGINEERING COLLEGE. SRM Nagar, Kattankulathur DEPARTMENT OF INFORMATION TECHNOLOGY. Academic Year

VALLIAMMAI ENGINEERING COLLEGE. SRM Nagar, Kattankulathur DEPARTMENT OF INFORMATION TECHNOLOGY. Academic Year VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur- 603 203 DEPARTMENT OF INFORMATION TECHNOLOGY Academic Year 2016-2017 QUESTION BANK-ODD SEMESTER NAME OF THE SUBJECT SUBJECT CODE SEMESTER YEAR

More information

Measurement and Instrumentation. Sampling, Digital Devices, and Data Acquisition

Measurement and Instrumentation. Sampling, Digital Devices, and Data Acquisition 2141-375 Measurement and Instrumentation Sampling, Digital Devices, and Data Acquisition Basic Data Acquisition System Analog Form Analog Form Digital Form Display Physical varialble Sensor Signal conditioning

More information

EE422G Homework #9 Solution

EE422G Homework #9 Solution EE4G Homework #9 Solution. (3 points) Sampling and Reconstruction a) Given the following discrete-time input x(n), sketch the outputs reconstructed continuous signal y(t) using Sample-And-Hold and Linear

More information

SPEECH ANALYSIS AND SYNTHESIS

SPEECH ANALYSIS AND SYNTHESIS 16 Chapter 2 SPEECH ANALYSIS AND SYNTHESIS 2.1 INTRODUCTION: Speech signal analysis is used to characterize the spectral information of an input speech signal. Speech signal analysis [52-53] techniques

More information

Basic Multi-rate Operations: Decimation and Interpolation

Basic Multi-rate Operations: Decimation and Interpolation 1 Basic Multirate Operations 2 Interconnection of Building Blocks 1.1 Decimation and Interpolation 1.2 Digital Filter Banks Basic Multi-rate Operations: Decimation and Interpolation Building blocks for

More information

6.003: Signals and Systems. Sampling and Quantization

6.003: Signals and Systems. Sampling and Quantization 6.003: Signals and Systems Sampling and Quantization December 1, 2009 Last Time: Sampling and Reconstruction Uniform sampling (sampling interval T ): x[n] = x(nt ) t n Impulse reconstruction: x p (t) =

More information

Signal Processing Using Short Word-Length

Signal Processing Using Short Word-Length Signal Processing Using Short Word-Length A Thesis Submitted in Fulfillment of the Requirements for the Degree of Doctor of Philosophy Amin Z. Sadik School of Electrical and Computer Engineering Science,

More information

Analog to Digital Converters (ADCs)

Analog to Digital Converters (ADCs) Analog to Digital Converters (ADCs) Note: Figures are copyrighted Proakis & Manolakis, Digital Signal Processing, 4 th Edition, Pearson Publishers. Embedded System Design A Unified HW Approach, Vahid/Givargis,

More information

Each problem is worth 25 points, and you may solve the problems in any order.

Each problem is worth 25 points, and you may solve the problems in any order. EE 120: Signals & Systems Department of Electrical Engineering and Computer Sciences University of California, Berkeley Midterm Exam #2 April 11, 2016, 2:10-4:00pm Instructions: There are four questions

More information

AN ADAPTIVE ALGORITHM TO EVALUATE CLOCK PERFORMANCE IN REAL TIME*

AN ADAPTIVE ALGORITHM TO EVALUATE CLOCK PERFORMANCE IN REAL TIME* AN ADAPTIVE ALGORITHM TO EVALUATE CLOCK PERFORMANCE IN REAL TIME* Dr. James A. Barnes Austron Boulder, Co. Abstract Kalman filters and ARIMA models provide optimum control and evaluation techniques (in

More information

Direct-Sequence Spread-Spectrum

Direct-Sequence Spread-Spectrum Chapter 3 Direct-Sequence Spread-Spectrum In this chapter we consider direct-sequence spread-spectrum systems. Unlike frequency-hopping, a direct-sequence signal occupies the entire bandwidth continuously.

More information

Tutorial Sheet #2 discrete vs. continuous functions, periodicity, sampling

Tutorial Sheet #2 discrete vs. continuous functions, periodicity, sampling 2.39 utorial Sheet #2 discrete vs. continuous functions, periodicity, sampling We will encounter two classes of signals in this class, continuous-signals and discrete-signals. he distinct mathematical

More information

Filter Banks II. Prof. Dr.-Ing. G. Schuller. Fraunhofer IDMT & Ilmenau University of Technology Ilmenau, Germany

Filter Banks II. Prof. Dr.-Ing. G. Schuller. Fraunhofer IDMT & Ilmenau University of Technology Ilmenau, Germany Filter Banks II Prof. Dr.-Ing. G. Schuller Fraunhofer IDMT & Ilmenau University of Technology Ilmenau, Germany Page Modulated Filter Banks Extending the DCT The DCT IV transform can be seen as modulated

More information

Feature extraction 2

Feature extraction 2 Centre for Vision Speech & Signal Processing University of Surrey, Guildford GU2 7XH. Feature extraction 2 Dr Philip Jackson Linear prediction Perceptual linear prediction Comparison of feature methods

More information

Order Tracking Analysis

Order Tracking Analysis 1. Introduction Order Tracking Analysis Jaafar Alsalaet College of Engineering-University of Basrah Mostly, dynamic forces excited in a machine are related to the rotation speed; hence, it is often preferred

More information