EE 230 Lecture 40. Data Converters. Amplitude Quantization. Quantization Noise

Size: px
Start display at page:

Download "EE 230 Lecture 40. Data Converters. Amplitude Quantization. Quantization Noise"

Transcription

1 EE 230 Lecture 40 Data Converters Amplitude Quantization Quantization Noise

2 Review from Last Time: Time Quantization Typical ADC Environment

3 Review from Last Time: Time Quantization Analog Signal Reconstruction Smoothing filter removes some of the discontinuities in the output of the zero-order hold

4 Review from Last Time: Track and Hold Ф TH IN OUT

5 Review from Last Time: Amplitude Quantization Analog Signals at output of DAC are quantized Digital Signals at output of ADC are quantized t Desired Quantized

6 Review from Last Time: Amplitude Quantization Unwanted signals in the output of a system are called noise. Distortion Smooth nonlinearities Frequency attenuation Large Abrupt Nonlinearities Signals coming from other sources Movement of carriers in devices Interference from electrical coupling Interference from radiating sources Undesired outputs inherent in the data conversion process itself

7 Review from Last Time: Amplitude Quantization How big is the quantization noise characterized?

8 Amplitude Quantization Characterization of Quantization Noise Quantization noise is usually specified in terms of the rms value of the quantization error expressed relative to the LSB For convenience, consider the quantization noise for the following two waveforms that are as large as possible without without exceeding the input or output range of the data converter a) triangle or saw tooth b) sinusoidal

9 Amplitude Quantization Characterization of Quantization Noise Quantization noise is usually specified in terms of the rms value of the quantization error expressed relative to the LSB For convenience, consider the quantization noise for the following two waveforms that are as large as possible without without exceeding the input or output range of the data converter a) triangle or saw tooth b) sinusoidal

10 Characterization of Quantization Noise Saw tooth excitation Consider an ADC (flash) OUT IN REF Assume first transition at REF /(2 (n+1) )

11 Characterization of Quantization Noise Saw tooth excitation QE t LSB

12 Characterization of Quantization Noise Saw tooth excitation Error waveform:

13 Characterization of Quantization Noise Saw tooth excitation Error waveform:

14 Characterization of Quantization Noise Saw tooth excitation Error waveform:

15 Characterization of Quantization Noise Saw tooth excitation Error waveform: Since x QE (t) is periodic, the QRMS can be obtained by integrating x QE2 (t) over one period 1 t 2 2 x () t dt QRMS = T t1 QE

16 Characterization of Quantization Noise Saw tooth excitation without loss of generality, can shift time axis so that QE is symmetric to the origin, thus T 2 t = 1 2 LSB x () t = t QE T t = T 2 for t 1 < t < t 2, can express QE as thus t2 T () / QE T t1 T T / 2 T 2 2 LSB 2 = x t dt = t dt QRMS QRMS T / 2 T / 2 2 t LSB LSB lsb 3 t dt 3 T T / 2 T 3 T / 2 12 = = =

17 Characterization of Quantization Noise Saw tooth excitation = QRMS lsb 12 QRMS 1 3 lsb Is this quantization noise signal small or large? Whether this is viewed as being large or small depends upon how the noise relates to the signal!

18 Signal to Noise Ratio Signal SNR= Noise Signal and Noise are generally expressed in terms of their RMS current or voltage values SNR= SIG-RMS NOISE-RMS Or, sometimes in terms of their Power values assumed driving resistive loads P SNR = P P SIG-RMS Thus SNR = P 2 2 SIG-RMS NOISE-RMS NOISE-RMS = SNR 2

19 Signal to Noise Ratio Signal and Noise often expressed in db But SNR =20log SNR db 10 =10log P-dB 10 P P SIG-RMS NOISE-RMS SIG NOISE 2 SIG-RMS SIG-RMS SNR =10log 20log =SNR 2 = NOISE-RMS NOISE-RMS P-dB db SNR P-dB =SNR Often subscripts are dropped and will not cause a problem if in db SNR = SNR P-dB db =SNR db

20 Characterization of Quantization Noise Saw tooth excitation = QRMS lsb 12 What is the SNR of a data converter? SNR= SIG-RMS NOISE-RMS What is SIG-RMS?

21 Characterization of Quantization Noise Saw tooth excitation lsb SIG-RMS = SNR= QRMS 12 What is SIG-RMS? NOISE-RMS IN REF t = SIG RMS REF 12

22 Characterization of Quantization Noise Saw tooth excitation = but QRMS = LSB SNR = 1 2 lsb 12 n 2 REF 12 SNR= LSB 12 REF n = SIG RMS = REF LSB REF 12 Thus, the SNR for a data converter due to only the quantization noise is SNR = nlog 2 = 6. 02n db 10 or ( )

23 Characterization of Quantization Noise Saw tooth excitation SNR for a data converter due to only the quantization noise: SNR = 1 2 n SNR = 602. n db

24 Amplitude Quantization Characterization of Quantization Noise Quantization noise is usually specified in terms of the rms value of the quantization error expressed relative to the LSB For convenience, consider the quantization noise for the following two waveforms that are as large as possible without without exceeding the input or output range of the data converter a) triangle or saw tooth b) sinusoidal

25 Characterization of Quantization Noise Sinusoidal excitation IN Consider an ADC REF t Quantization noise is difficult to analytically characterize OUT 7 REF/8 3 REF/4 5 REF/8 REF/2 3 REF/8 REF/4 REF/8 0 t Still need RMS value of QE (t) QE t Will consider error in interpreted output LSB

26 Characterization of Quantization Noise Sinusoidal excitation Consider an ADC Will consider error in interpreted output QE LSB

27 Characterization of Quantization Noise Sinusoidal excitation Consider an ADC (clocked) Theorem: If n(t) is a random process, then 2 2 V σ + μ RMS provided that the RMS value is measured over a large interval where the parameters σ and μ are the standard deviation and the mean of <n(kt)> This theorem can thus be represented as V RMS t1 + T 1 L 2() 2 2 n t dt σ + μ T t1 L where T is the sampling interval and T L is a large interval

28 Characterization of Quantization Noise Sinusoidal excitation Consider an ADC The quantization noise samples of the ADC output are approximately uniformly distributed between in the interval [- LSB /2, LSB /2] <n(kt)> ~ U[- LSB /2, LSB /2] A random variable that is U[a,b] has distribution parameters μ and σ given by A + B B - A μ = σ = 2 12 thus, the random variable n(kt) has distribution parameters LSB μ = 0 σ = 12

29 Characterization of Quantization Noise Sinusoidal excitation μ = Consider an ADC n(kt) parameters 0 σ = LSB 12 It thus follows form the previous Theorem that 2 2 σ + μ Q-RMS 2 σ = σ Q-RMS Q-RMS LSB 12 Note that this is the same quantization noise voltage as was obtained with the triangular excitation!

30 Characterization of Quantization Noise Sinusoidal excitation Consider an ADC Q-RMS LSB 12 IN What is the SNR? REF REF () t = sin( ωt + θ) + SIG REF REF SIG = = RMS Observe that the RMS value for the sinusoidal signal differs from that of the triangular signal REF REF SIG = = RMS REF t

31 Characterization of Quantization Noise Sinusoidal excitation Consider an ADC Q-RMS SIG RMS = LSB 12 REF 2 2 IN REF What is the SNR? t REF REF REF REF SNR= = = = = n LSB 2 / 2 LSB LSB REF 12 REF REF SNR =20log log n 176. db n = = + /2 LSB REF n

32 Characterization of Quantization Noise Saw tooth excitation Sinusoidal excitation IN IN REF REF t t SNR =2 n SNR = 602. n db Q-RMS LSB 12 SNR = n SNR = 602. n db Although derived for an ADC, same expressions apply for DAC SNR for saw tooth and for triangle excitations are the same SNR for sinusoidal excitation larger than that for saw tooth by 1.76dB SNR will decrease if input is not full-scale Equivalent Number of Bits (ENOB) often given relative to quantization noise SNR db Remember quantization noise is inherent in an ideal data converter!

33 Recall: Unwanted signals in the output of a system are called noise. Distortion Smooth nonlinearities Frequency attenuation Large Abrupt Nonlinearities Signals coming from other sources Interference from electrical coupling Movement of carriers in devices Interference from radiating sources Undesired outputs inherent in the data conversion process itself

34 Equivalent Number of Bits (ENOB) Often other sources of noise are present in a data converter and often the noise or other nonidealities in the data converter result in errors that are larger than 1/3 LSB and in many cases even much larger than LSB ENOB often a figure of merit that is used to more effectively characterize the real resolution of a data converter if a full-scale sinusoidal input were applied SNR db,act : Actual Signal to Noise Ratio SNR = 602. n db,act EFF

35 Equivalent Number of Bits (ENOB) SNR = 602. n db,act EFF Often simply stated as n EFF = SNR db,act 6.02 SNR ENOB = 6.02 Observe: ENOB is not dependent upon n

36 Equivalent Number of Bits (ENOB) ENOB = SNR Often distortion is also included in the noise category and ENOB is expressed as ENOB = SNDR where SNDR is the signal to (noise + distortion) ratio

37 Equivalent Number of Bits (ENOB) ENOB = SNR ENOB = SNDR These definitions of ENOB are based upon noise or noise and distortion Some other definitions of ENOB are used as well e.g. if one is only interested in distortion, an ENOB based upon distortion can be defined. ENOB is useful for determining whether the number of bits really being specified is really useful

38 Example: 8.5mV. The noise of a 12-bit ADC with V REF =5V was measured to be a) What is the quantization noise of this 12-bit ADC (in V RMS )? b) What is the ENOB? Quantization noise: QRMS QRMS V 32 REF 12 lsb = 041. mv

39 Example: 8.5mV. The SNR of a 12-bit ADC with V REF =5V was measured to be a) What is the quantization noise of this 12-bit ADC (in V RMS )? b) What is the ENOB? Quantization noise: ENOB: QRMS 1 V 32 REF 12 = 041. mv SNR ENOB = V 6.02 REF 5V SNR = V 8.5mV SNR = 2 2 = = mV 8.5mV ( SNR) ( ) SNR = 20log = 20log = 46. 4dB db ENOB = = Note: In this application, an 8-bit ADC would give about the same SNR performance!

40 Engineering Issues for Using Data Converters 1. Inherent with Data Conversion Process Amplitude Quantization Time Quantization (Present even with Ideal Data Converters) 2. Nonideal Components Uneven steps Offsets Gain errors Response Time Noise (Present to some degree in all physical Data Converters) How do these issues ultimately impact performance?

41 End of Lecture 40

EE 230 Lecture 43. Data Converters

EE 230 Lecture 43. Data Converters EE 230 Lecture 43 Data Converters Review from Last Time: Amplitude Quantization Unwanted signals in the output of a system are called noise. Distortion Smooth nonlinearities Frequency attenuation Large

More information

EE 435. Lecture 32. Spectral Performance Windowing

EE 435. Lecture 32. Spectral Performance Windowing EE 435 Lecture 32 Spectral Performance Windowing . Review from last lecture. Distortion Analysis T 0 T S THEOREM?: If N P is an integer and x(t) is band limited to f MAX, then 2 Am Χ mnp 1 0 m h N and

More information

EE 435. Lecture 28. Data Converters Linearity INL/DNL Spectral Performance

EE 435. Lecture 28. Data Converters Linearity INL/DNL Spectral Performance EE 435 Lecture 8 Data Converters Linearity INL/DNL Spectral Performance Performance Characterization of Data Converters Static characteristics Resolution Least Significant Bit (LSB) Offset and Gain Errors

More information

EE 435. Lecture 26. Data Converters. Data Converter Characterization

EE 435. Lecture 26. Data Converters. Data Converter Characterization EE 435 Lecture 26 Data Converters Data Converter Characterization . Review from last lecture. Data Converter Architectures n DAC R-2R (4-bits) R R R R V OUT 2R 2R 2R 2R R d 3 d 2 d 1 d 0 V REF By superposition:

More information

Data Converter Fundamentals

Data Converter Fundamentals Data Converter Fundamentals David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 33 Introduction Two main types of converters Nyquist-Rate Converters Generate output

More information

EE 435. Lecture 29. Data Converters. Linearity Measures Spectral Performance

EE 435. Lecture 29. Data Converters. Linearity Measures Spectral Performance EE 435 Lecture 9 Data Converters Linearity Measures Spectral Performance Linearity Measurements (testing) Consider ADC V IN (t) DUT X IOUT V REF Linearity testing often based upon code density testing

More information

EE 435. Lecture 26. Data Converters. Data Converter Characterization

EE 435. Lecture 26. Data Converters. Data Converter Characterization EE 435 Lecture 26 Data Converters Data Converter Characterization . Review from last lecture. Data Converter Architectures Large number of different circuits have been proposed for building data converters

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Processing Pro. Mark Fowler Note Set #14 Practical A-to-D Converters and D-to-A Converters Reading Assignment: Sect. 6.3 o Proakis & Manolakis 1/19 The irst step was to see that

More information

EE 435. Lecture 36. Quantization Noise ENOB Absolute and Relative Accuracy DAC Design. The String DAC

EE 435. Lecture 36. Quantization Noise ENOB Absolute and Relative Accuracy DAC Design. The String DAC EE 435 Lecture 36 Quantization Noise ENOB Absolute and elative Accuracy DAC Design The String DAC . eview from last lecture. Quantization Noise in ADC ecall: If the random variable f is uniformly distributed

More information

EE 505 Lecture 10. Spectral Characterization. Part 2 of 2

EE 505 Lecture 10. Spectral Characterization. Part 2 of 2 EE 505 Lecture 10 Spectral Characterization Part 2 of 2 Review from last lecture Spectral Analysis If f(t) is periodic f(t) alternately f(t) = = A A ( kω t + ) 0 + Aksin θk k= 1 0 + a ksin t k= 1 k= 1

More information

EE 435. Lecture 26. Data Converters. Differential Nonlinearity Spectral Performance

EE 435. Lecture 26. Data Converters. Differential Nonlinearity Spectral Performance EE 435 Lecture 26 Data Converters Differential Nonlinearity Spectral Performance . Review from last lecture. Integral Nonlinearity (DAC) Nonideal DAC INL often expressed in LSB INL = X k INL= max OUT OF

More information

Sistemas de Aquisição de Dados. Mestrado Integrado em Eng. Física Tecnológica 2016/17 Aula 3, 3rd September

Sistemas de Aquisição de Dados. Mestrado Integrado em Eng. Física Tecnológica 2016/17 Aula 3, 3rd September Sistemas de Aquisição de Dados Mestrado Integrado em Eng. Física Tecnológica 2016/17 Aula 3, 3rd September The Data Converter Interface Analog Media and Transducers Signal Conditioning Signal Conditioning

More information

Distortion Analysis T

Distortion Analysis T EE 435 Lecture 32 Spectral Performance Windowing Spectral Performance of Data Converters - Time Quantization - Amplitude Quantization Quantization Noise . Review from last lecture. Distortion Analysis

More information

EE 505 Lecture 7. Spectral Performance of Data Converters - Time Quantization - Amplitude Quantization Clock Jitter Statistical Circuit Modeling

EE 505 Lecture 7. Spectral Performance of Data Converters - Time Quantization - Amplitude Quantization Clock Jitter Statistical Circuit Modeling EE 505 Lecture 7 Spectral Performance of Data Converters - Time Quantization - Amplitude Quantization Clock Jitter Statistical Circuit Modeling . Review from last lecture. MatLab comparison: 512 Samples

More information

EE 505 Lecture 8. Clock Jitter Statistical Circuit Modeling

EE 505 Lecture 8. Clock Jitter Statistical Circuit Modeling EE 505 Lecture 8 Clock Jitter Statistical Circuit Modeling Spectral Characterization of Data Converters Distortion Analysis Time Quantization Effects of DACs of ADCs Amplitude Quantization Effects of DACs

More information

Analog Digital Sampling & Discrete Time Discrete Values & Noise Digital-to-Analog Conversion Analog-to-Digital Conversion

Analog Digital Sampling & Discrete Time Discrete Values & Noise Digital-to-Analog Conversion Analog-to-Digital Conversion Analog Digital Sampling & Discrete Time Discrete Values & Noise Digital-to-Analog Conversion Analog-to-Digital Conversion 6.082 Fall 2006 Analog Digital, Slide Plan: Mixed Signal Architecture volts bits

More information

Lecture 340 Characterization of DACs and Current Scaling DACs (5/1/10) Page 340-1

Lecture 340 Characterization of DACs and Current Scaling DACs (5/1/10) Page 340-1 Lecture 34 Characterization of DACs and Current Scaling DACs (5//) Page 34 LECTURE 34 CHARACTERZATON OF DACS AND CURRENT SCALNG DACS LECTURE ORGANZATON Outline ntroduction Static characterization of DACs

More information

EE 435. Lecture 35. Absolute and Relative Accuracy DAC Design. The String DAC

EE 435. Lecture 35. Absolute and Relative Accuracy DAC Design. The String DAC EE 435 Lecure 35 Absolue and Relaive Accuracy DAC Design The Sring DAC Makekup Lecures Rm 6 Sweeney 5:00 Rm 06 Coover 6:00 o 8:00 . Review from las lecure. Summary of ime and ampliude quanizaion assessmen

More information

EE 521: Instrumentation and Measurements

EE 521: Instrumentation and Measurements Aly El-Osery Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA September 23, 2009 1 / 18 1 Sampling 2 Quantization 3 Digital-to-Analog Converter 4 Analog-to-Digital Converter

More information

Lecture 4, Noise. Noise and distortion

Lecture 4, Noise. Noise and distortion Lecture 4, Noise Noise and distortion What did we do last time? Operational amplifiers Circuit-level aspects Simulation aspects Some terminology Some practical concerns Limited current Limited bandwidth

More information

CMPT 889: Lecture 3 Fundamentals of Digital Audio, Discrete-Time Signals

CMPT 889: Lecture 3 Fundamentals of Digital Audio, Discrete-Time Signals CMPT 889: Lecture 3 Fundamentals of Digital Audio, Discrete-Time Signals Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University October 6, 2005 1 Sound Sound waves are longitudinal

More information

EE 435. Lecture 30. Data Converters. Spectral Performance

EE 435. Lecture 30. Data Converters. Spectral Performance EE 435 Lecture 30 Data Converters Spectral Performance . Review from last lecture. INL Often Not a Good Measure of Linearity Four identical INL with dramatically different linearity X OUT X OUT X REF X

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing EE123 Digital Signal Processing Lecture 19 Practical ADC/DAC Ideal Anti-Aliasing ADC A/D x c (t) Analog Anti-Aliasing Filter HLP(jΩ) sampler t = nt x[n] =x c (nt ) Quantizer 1 X c (j ) and s < 2 1 T X

More information

Slide Set Data Converters. Background Elements

Slide Set Data Converters. Background Elements 0 Slide Set Data Converters Background Elements 1 Introduction Summary The Ideal Data Converter Sampling Amplitude Quantization Quantization Noise kt/c Noise Discrete and Fast Fourier Transforms The D/A

More information

EE 435. Lecture 31. Absolute and Relative Accuracy DAC Design. The String DAC

EE 435. Lecture 31. Absolute and Relative Accuracy DAC Design. The String DAC EE 435 Lecure 3 Absolue and Relaive Accuracy DAC Design The Sring DAC . Review from las lecure. DFT Simulaion from Malab Quanizaion Noise DACs and ADCs generally quanize boh ampliude and ime If convering

More information

Lecture 05 Power in AC circuit

Lecture 05 Power in AC circuit CA2627 Building Science Lecture 05 Power in AC circuit Instructor: Jiayu Chen Ph.D. Announcement 1. Makeup Midterm 2. Midterm grade Grade 25 20 15 10 5 0 10 15 20 25 30 35 40 Grade Jiayu Chen, Ph.D. 2

More information

J.-M Friedt. FEMTO-ST/time & frequency department. slides and references at jmfriedt.free.fr.

J.-M Friedt. FEMTO-ST/time & frequency department. slides and references at jmfriedt.free.fr. FEMTO-ST/time & frequency department jmfriedt@femto-st.fr slides and references at jmfriedt.free.fr February 21, 2018 1 / 17 Basics ADC: discrete time (aliasing) and discrete levels (quantization) V =

More information

Digital Signal Processing

Digital Signal Processing COMP ENG 4TL4: Digital Signal Processing Notes for Lecture #3 Wednesday, September 10, 2003 1.4 Quantization Digital systems can only represent sample amplitudes with a finite set of prescribed values,

More information

CS6956: Wireless and Mobile Networks Lecture Notes: 2/4/2015

CS6956: Wireless and Mobile Networks Lecture Notes: 2/4/2015 CS6956: Wireless and Mobile Networks Lecture Notes: 2/4/2015 [Most of the material for this lecture has been taken from the Wireless Communications & Networks book by Stallings (2 nd edition).] Effective

More information

1. Quantization Signal to Noise Ratio (SNR).

1. Quantization Signal to Noise Ratio (SNR). Digital Signal Processing 2/ Advanced Digital Signal Processing Lecture 2, Quantization, SNR Gerald Schuller, TU Ilmenau 1. Quantization Signal to Noise Ratio (SNR). Assume we have a A/D converter with

More information

Seminar: D. Jeon, Energy-efficient Digital Signal Processing Hardware Design Mon Sept 22, 9:30-11:30am in 3316 EECS

Seminar: D. Jeon, Energy-efficient Digital Signal Processing Hardware Design Mon Sept 22, 9:30-11:30am in 3316 EECS EECS 452 Lecture 6 Today: Announcements: Rounding and quantization Analog to digital conversion Lab 3 starts next week Hw3 due on tuesday Project teaming meeting: today 7-9PM, Dow 3150 My new office hours:

More information

Roundoff Noise in Digital Feedback Control Systems

Roundoff Noise in Digital Feedback Control Systems Chapter 7 Roundoff Noise in Digital Feedback Control Systems Digital control systems are generally feedback systems. Within their feedback loops are parts that are analog and parts that are digital. At

More information

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011 Basic Electronics Introductory Lecture Course for Technology and Instrumentation in Particle Physics 2011 Chicago, Illinois June 9-14, 2011 Presented By Gary Drake Argonne National Laboratory Session 2

More information

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals 1. Sampling and Reconstruction 2. Quantization 1 1. Sampling & Reconstruction DSP must interact with an analog world: A to D D to A x(t)

More information

Output high order sliding mode control of unity-power-factor in three-phase AC/DC Boost Converter

Output high order sliding mode control of unity-power-factor in three-phase AC/DC Boost Converter Output high order sliding mode control of unity-power-factor in three-phase AC/DC Boost Converter JianXing Liu, Salah Laghrouche, Maxim Wack Laboratoire Systèmes Et Transports (SET) Laboratoire SeT Contents

More information

Audio /Video Signal Processing. Lecture 2, Quantization, SNR Gerald Schuller, TU Ilmenau

Audio /Video Signal Processing. Lecture 2, Quantization, SNR Gerald Schuller, TU Ilmenau Audio /Video Signal Processing Lecture 2, Quantization, SNR Gerald Schuller, TU Ilmenau Quantization Signal to Noise Ratio (SNR). Assume we have a A/D converter with a quantizer with a certain number of

More information

Figure 1.1 (a) Model of a communication system, and (b) signal processing functions.

Figure 1.1 (a) Model of a communication system, and (b) signal processing functions. . Introduction to Signals and Operations Model of a Communication System [] Figure. (a) Model of a communication system, and (b) signal processing functions. Classification of Signals. Continuous-time

More information

EE 230 Lecture 20. Nonlinear Op Amp Applications. The Comparator Nonlinear Analysis Methods

EE 230 Lecture 20. Nonlinear Op Amp Applications. The Comparator Nonlinear Analysis Methods EE 230 Lecture 20 Nonlinear Op Amp Applications The Comparator Nonlinear Analysis Methods Quiz 14 What is the major purpose of compensation when designing an operatinal amplifier? And the number is? 1

More information

ELEN 610 Data Converters

ELEN 610 Data Converters Spring 04 S. Hoyos - EEN-60 ELEN 60 Data onverters Sebastian Hoyos Texas A&M University Analog and Mixed Signal Group Spring 04 S. Hoyos - EEN-60 Electronic Noise Signal to Noise ratio SNR Signal Power

More information

Application Note AN37. Noise Histogram Analysis. by John Lis

Application Note AN37. Noise Histogram Analysis. by John Lis AN37 Application Note Noise Histogram Analysis by John Lis NOISELESS, IDEAL CONVERTER OFFSET ERROR σ RMS NOISE HISTOGRAM OF SAMPLES PROBABILITY DISTRIBUTION FUNCTION X PEAK-TO-PEAK NOISE Crystal Semiconductor

More information

EE 5345 Biomedical Instrumentation Lecture 12: slides

EE 5345 Biomedical Instrumentation Lecture 12: slides EE 5345 Biomedical Instrumentation Lecture 1: slides 4-6 Carlos E. Davila, Electrical Engineering Dept. Southern Methodist University slides can be viewed at: http:// www.seas.smu.edu/~cd/ee5345.html EE

More information

Chapter 2: Problem Solutions

Chapter 2: Problem Solutions Chapter 2: Problem Solutions Discrete Time Processing of Continuous Time Signals Sampling à Problem 2.1. Problem: Consider a sinusoidal signal and let us sample it at a frequency F s 2kHz. xt 3cos1000t

More information

Analog to Digital Converters (ADCs)

Analog to Digital Converters (ADCs) Analog to Digital Converters (ADCs) Note: Figures are copyrighted Proakis & Manolakis, Digital Signal Processing, 4 th Edition, Pearson Publishers. Embedded System Design A Unified HW Approach, Vahid/Givargis,

More information

EE 505. Lecture 27. ADC Design Pipeline

EE 505. Lecture 27. ADC Design Pipeline EE 505 Lecture 7 AD Design Pipeline Review Sampling Noise V n5 R S5 dv REF V n4 R S4 V ns V ns β= + If the ON impedance of the switches is small and it is assumed that = =, it can be shown that Vˆ IN-RMS

More information

Pipelined multi step A/D converters

Pipelined multi step A/D converters Department of Electrical Engineering Indian Institute of Technology, Madras Chennai, 600036, India 04 Nov 2006 Motivation for multi step A/D conversion Flash converters: Area and power consumption increase

More information

Lecture 10, ATIK. Data converters 3

Lecture 10, ATIK. Data converters 3 Lecture, ATIK Data converters 3 What did we do last time? A quick glance at sigma-delta modulators Understanding how the noise is shaped to higher frequencies DACs A case study of the current-steering

More information

ECEN 610 Mixed-Signal Interfaces

ECEN 610 Mixed-Signal Interfaces ECEN 610 Mixed-Signal Interfaces Sebastian Hoyos Texas A&M University Analog and Mixed Signal Group Spring 014 S. Hoyos-ECEN-610 1 Sample-and-Hold Spring 014 S. Hoyos-ECEN-610 ZOH vs. Track-and-Hold V(t)

More information

EE 505. Lecture 29. ADC Design. Oversampled

EE 505. Lecture 29. ADC Design. Oversampled EE 505 Lecture 29 ADC Desig Oversampled Review from Last Lecture SAR ADC V IN Sample Hold C LK V REF DAC DAC Cotroller DAC Cotroller stores estimates of iput i Successive Approximatio Register (SAR) At

More information

Second and Higher-Order Delta-Sigma Modulators

Second and Higher-Order Delta-Sigma Modulators Second and Higher-Order Delta-Sigma Modulators MEAD March 28 Richard Schreier Richard.Schreier@analog.com ANALOG DEVICES Overview MOD2: The 2 nd -Order Modulator MOD2 from MOD NTF (predicted & actual)

More information

12. Introduction and Chapter Objectives

12. Introduction and Chapter Objectives Real Analog - Circuits 1 Chapter 1: Steady-State Sinusoidal Power 1. Introduction and Chapter Objectives In this chapter we will address the issue of power transmission via sinusoidal or AC) signals. This

More information

Slide Set Data Converters. Digital Enhancement Techniques

Slide Set Data Converters. Digital Enhancement Techniques 0 Slide Set Data Converters Digital Enhancement Techniques Introduction Summary Error Measurement Trimming of Elements Foreground Calibration Background Calibration Dynamic Matching Decimation and Interpolation

More information

High-Speed, High-Resolution, Radiation-Tolerant SAR ADC for Particle Physics Experiments

High-Speed, High-Resolution, Radiation-Tolerant SAR ADC for Particle Physics Experiments Erik Jonsson School of Engineering & Computer Science High-Speed, High-Resolution, Radiation-Tolerant SAR ADC for Particle Physics Experiments Yun Chiu Erik Jonsson Distinguished Professor Texas Analog

More information

Introduction to Biomedical Engineering

Introduction to Biomedical Engineering Introduction to Biomedical Engineering Biosignal processing Kung-Bin Sung 6/11/2007 1 Outline Chapter 10: Biosignal processing Characteristics of biosignals Frequency domain representation and analysis

More information

EE247 Lecture 16. Serial Charge Redistribution DAC

EE247 Lecture 16. Serial Charge Redistribution DAC EE47 Lecture 16 D/A Converters D/A examples Serial charge redistribution DAC Practical aspects of current-switch DACs Segmented current-switch DACs DAC self calibration techniques Current copiers Dynamic

More information

Q. 1 Q. 25 carry one mark each.

Q. 1 Q. 25 carry one mark each. GATE 5 SET- ELECTRONICS AND COMMUNICATION ENGINEERING - EC Q. Q. 5 carry one mark each. Q. The bilateral Laplace transform of a function is if a t b f() t = otherwise (A) a b s (B) s e ( a b) s (C) e as

More information

Lecture 6, ATIK. Switched-capacitor circuits 2 S/H, Some nonideal effects Continuous-time filters

Lecture 6, ATIK. Switched-capacitor circuits 2 S/H, Some nonideal effects Continuous-time filters Lecture 6, ATIK Switched-capacitor circuits 2 S/H, Some nonideal effects Continuous-time filters What did we do last time? Switched capacitor circuits The basics Charge-redistribution analysis Nonidealties

More information

Various signal sampling and reconstruction methods

Various signal sampling and reconstruction methods Various signal sampling and reconstruction methods Rolands Shavelis, Modris Greitans 14 Dzerbenes str., Riga LV-1006, Latvia Contents Classical uniform sampling and reconstruction Advanced sampling and

More information

Digital Signal 2 N Most Significant Bit (MSB) Least. Bit (LSB)

Digital Signal 2 N Most Significant Bit (MSB) Least. Bit (LSB) 1 Digital Signal Binary or two stages: 0 (Low voltage 0-3 V) 1 (High voltage 4-5 V) Binary digit is called bit. Group of bits is called word. 8-bit group is called byte. For N-bit base-2 number = 2 N levels

More information

Modeling All-MOS Log-Domain Σ A/D Converters

Modeling All-MOS Log-Domain Σ A/D Converters DCIS 04 Modeling All-MOS Log Σ ADCs Intro Circuits Modeling Example Conclusions 1/22 Modeling All-MOS Log-Domain Σ A/D Converters X.Redondo 1, J.Pallarès 2 and F.Serra-Graells 1 1 Institut de Microelectrònica

More information

A Nonuniform Quantization Scheme for High Speed SAR ADC Architecture

A Nonuniform Quantization Scheme for High Speed SAR ADC Architecture A Nonuniform Quantization Scheme for High Speed SAR ADC Architecture Youngchun Kim Electrical and Computer Engineering The University of Texas Wenjuan Guo Intel Corporation Ahmed H Tewfik Electrical and

More information

Issues with sampling time and jitter in Annex 93A. Adam Healey IEEE P802.3bj Task Force May 2013

Issues with sampling time and jitter in Annex 93A. Adam Healey IEEE P802.3bj Task Force May 2013 Issues with sampling time and jitter in Annex 93A Adam Healey IEEE P802.3bj Task Force May 2013 Part 1: Jitter (comment #157) 2 Treatment of jitter in COM Draft 2.0 h (0) (t s ) slope h(0) (t s ) 1 UI

More information

The information loss in quantization

The information loss in quantization The information loss in quantization The rough meaning of quantization in the frame of coding is representing numerical quantities with a finite set of symbols. The mapping between numbers, which are normally

More information

ETSF15 Analog/Digital. Stefan Höst

ETSF15 Analog/Digital. Stefan Höst ETSF15 Analog/Digital Stefan Höst Physical layer Analog vs digital Sampling, quantisation, reconstruction Modulation Represent digital data in a continuous world Disturbances Noise and distortion Synchronization

More information

EXAMPLE DESIGN PART 1

EXAMPLE DESIGN PART 1 ECE37 Advanced Analog Circuits Lecture 3 EXAMPLE DESIGN PART Richard Schreier richard.schreier@analog.com Trevor Caldwell trevor.caldwell@utoronto.ca Course Goals Deepen understanding of CMOS analog circuit

More information

A novel Capacitor Array based Digital to Analog Converter

A novel Capacitor Array based Digital to Analog Converter Chapter 4 A novel Capacitor Array based Digital to Analog Converter We present a novel capacitor array digital to analog converter(dac architecture. This DAC architecture replaces the large MSB (Most Significant

More information

D/A Converters. D/A Examples

D/A Converters. D/A Examples D/A architecture examples Unit element Binary weighted Static performance Component matching Architectures Unit element Binary weighted Segmented Dynamic element matching Dynamic performance Glitches Reconstruction

More information

Digital Signal Processing

Digital Signal Processing Digital Signal Processing Introduction Moslem Amiri, Václav Přenosil Embedded Systems Laboratory Faculty of Informatics, Masaryk University Brno, Czech Republic amiri@mail.muni.cz prenosil@fi.muni.cz February

More information

INTRODUCTION TO DELTA-SIGMA ADCS

INTRODUCTION TO DELTA-SIGMA ADCS ECE37 Advanced Analog Circuits INTRODUCTION TO DELTA-SIGMA ADCS Richard Schreier richard.schreier@analog.com NLCOTD: Level Translator VDD > VDD2, e.g. 3-V logic? -V logic VDD < VDD2, e.g. -V logic? 3-V

More information

Signal types. Signal characteristics: RMS, power, db Probability Density Function (PDF). Analogue-to-Digital Conversion (ADC).

Signal types. Signal characteristics: RMS, power, db Probability Density Function (PDF). Analogue-to-Digital Conversion (ADC). Signal types. Signal characteristics:, power, db Probability Density Function (PDF). Analogue-to-Digital Conversion (ADC). Signal types Stationary (average properties don t vary with time) Deterministic

More information

EE1 and ISE1 Communications I

EE1 and ISE1 Communications I EE1 and ISE1 Communications I Pier Luigi Dragotti Lecture two Lecture Aims To introduce signals, Classifications of signals, Some particular signals. 1 Signals A signal is a set of information or data.

More information

Oversampling Converters

Oversampling Converters Oversampling Converters David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 56 Motivation Popular approach for medium-to-low speed A/D and D/A applications requiring

More information

Summary Last Lecture

Summary Last Lecture EE247 Lecture 19 ADC Converters Sampling (continued) Sampling switch charge injection & clock feedthrough Complementary switch Use of dummy device Bottom-plate switching Track & hold T/H circuits T/H combined

More information

Lecture 4: Losses and Heat Transfer

Lecture 4: Losses and Heat Transfer 1 / 26 Lecture 4: Losses and Heat Transfer ELEC-E845 Electric Drives (5 ECTS) Marko Hinkkanen Aalto University School of Electrical Engineering Autumn 215 2 / 26 Learning Outcomes After this lecture and

More information

Chapter 5 Steady-State Sinusoidal Analysis

Chapter 5 Steady-State Sinusoidal Analysis Chapter 5 Steady-State Sinusoidal Analysis Chapter 5 Steady-State Sinusoidal Analysis 1. Identify the frequency, angular frequency, peak value, rms value, and phase of a sinusoidal signal. 2. Solve steady-state

More information

EXAMPLE DESIGN PART 2

EXAMPLE DESIGN PART 2 ECE37 Advanced Analog Circuits Lecture 4 EXAMPLE DESIGN PART 2 Richard Schreier richard.schreier@analog.com Trevor Caldwell trevor.caldwell@utoronto.ca Course Goals Deepen understanding of CMOS analog

More information

ACCURATE MAGNETIC FLUX MEASUREMENTS IN ELECTROMAGNETIC RAIL LAUNCHERS

ACCURATE MAGNETIC FLUX MEASUREMENTS IN ELECTROMAGNETIC RAIL LAUNCHERS Progress In Electromagnetics Research C, Vol. 40, 243 256, 203 ACCURATE MAGNETIC FLUX MEASUREMENTS IN ELECTROMAGNETIC RAIL LAUNCHERS Roberto Ferrero, Mirko Marracci, and Bernardo Tellini * Department of

More information

PCM Reference Chapter 12.1, Communication Systems, Carlson. PCM.1

PCM Reference Chapter 12.1, Communication Systems, Carlson. PCM.1 PCM Reference Chapter 1.1, Communication Systems, Carlson. PCM.1 Pulse-code modulation (PCM) Pulse modulations use discrete time samples of analog signals the transmission is composed of analog information

More information

Nyquist-Rate D/A Converters. D/A Converter Basics.

Nyquist-Rate D/A Converters. D/A Converter Basics. Nyquist-Rate D/A Converters David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 20 D/A Converter Basics. B in D/A is a digital signal (or word), B in b i B in = 2 1

More information

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 41 Pulse Code Modulation (PCM) So, if you remember we have been talking

More information

ECE 546 Lecture 23 Jitter Basics

ECE 546 Lecture 23 Jitter Basics ECE 546 Lecture 23 Jitter Basics Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine 1 Probe Further D. Derickson and M.

More information

Project Components. MC34063 or equivalent. Bread Board. Energy Systems Research Laboratory, FIU

Project Components. MC34063 or equivalent. Bread Board. Energy Systems Research Laboratory, FIU Project Components MC34063 or equivalent Bread Board PSpice Software OrCAD designer Lite version http://www.cadence.com/products/orcad/pages/downloads.aspx#pspice More Details on the Introduction CONVERTER

More information

DSP Design Lecture 2. Fredrik Edman.

DSP Design Lecture 2. Fredrik Edman. DSP Design Lecture Number representation, scaling, quantization and round-off Noise Fredrik Edman fredrik.edman@eit.lth.se Representation of Numbers Numbers is a way to use symbols to describe and model

More information

8-bit 50ksps ULV SAR ADC

8-bit 50ksps ULV SAR ADC 8-bit 50ksps ULV SAR ADC Fredrik Hilding Rosenberg Master of Science in Electronics Submission date: June 2015 Supervisor: Trond Ytterdal, IET Norwegian University of Science and Technology Department

More information

Analysis of Finite Wordlength Effects

Analysis of Finite Wordlength Effects Analysis of Finite Wordlength Effects Ideally, the system parameters along with the signal variables have infinite precision taing any value between and In practice, they can tae only discrete values within

More information

EE 40: Introduction to Microelectronic Circuits Spring 2008: Midterm 2

EE 40: Introduction to Microelectronic Circuits Spring 2008: Midterm 2 EE 4: Introduction to Microelectronic Circuits Spring 8: Midterm Venkat Anantharam 3/9/8 Total Time Allotted : min Total Points:. This is a closed book exam. However, you are allowed to bring two pages

More information

Sistemas de Aquisição de Dados. Mestrado Integrado em Eng. Física Tecnológica 2016/17 Aula 4, 10th October

Sistemas de Aquisição de Dados. Mestrado Integrado em Eng. Física Tecnológica 2016/17 Aula 4, 10th October Sistemas de Aquisição de Dados Mestrado Integrado em Eng. Física Tecnológica 216/17 Aula 4, 1th October ADC Amplitude Quantization: ADC Digital Output Formats V REF +FS RANGE (SPAN) OR FS ANALOG INPUT

More information

Atmospheric Extinction

Atmospheric Extinction Atmospheric Extinction Calibrating stellar photometry requires correction for loss of light passing through the atmosphere. Atmospheric Rayleigh and aerosol scattering preferentially redirects blue light

More information

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16 EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16 Instructions: Write your name and section number on all pages Closed book, closed notes; Computers and cell phones are not allowed You can use

More information

AN ABSTRACT OF THE THESIS OF

AN ABSTRACT OF THE THESIS OF AN ABSTRACT OF THE THESIS OF Madhulatha Bonu for the degree of Master of Science in Electrical and Computer Engineering presented on November 8, 006. Title: Noise Coupling Techniques in Multi-Cell Delta-Sigma

More information

A 74.9 db SNDR 1 MHz Bandwidth 0.9 mw Delta-Sigma Time-to-Digital Converter Using Charge Pump and SAR ADC

A 74.9 db SNDR 1 MHz Bandwidth 0.9 mw Delta-Sigma Time-to-Digital Converter Using Charge Pump and SAR ADC A 74.9 db SNDR 1 MHz Bandwidth 0.9 mw Delta-Sigma Time-to-Digital Converter Using Charge Pump and SAR ADC Anugerah Firdauzi, Zule Xu, Masaya Miyahara, and Akira Matsuzawa Tokyo Institute of Technology,

More information

2.004 Dynamics and Control II Spring 2008

2.004 Dynamics and Control II Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.004 Dynamics and Control II Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts Institute

More information

Central to this is two linear transformations: the Fourier Transform and the Laplace Transform. Both will be considered in later lectures.

Central to this is two linear transformations: the Fourier Transform and the Laplace Transform. Both will be considered in later lectures. In this second lecture, I will be considering signals from the frequency perspective. This is a complementary view of signals, that in the frequency domain, and is fundamental to the subject of signal

More information

Higher-Order Σ Modulators and the Σ Toolbox

Higher-Order Σ Modulators and the Σ Toolbox ECE37 Advanced Analog Circuits Higher-Order Σ Modulators and the Σ Toolbox Richard Schreier richard.schreier@analog.com NLCOTD: Dynamic Flip-Flop Standard CMOS version D CK Q Q Can the circuit be simplified?

More information

Measurement and Instrumentation. Sampling, Digital Devices, and Data Acquisition

Measurement and Instrumentation. Sampling, Digital Devices, and Data Acquisition 2141-375 Measurement and Instrumentation Sampling, Digital Devices, and Data Acquisition Basic Data Acquisition System Analog Form Analog Form Digital Form Display Physical varialble Sensor Signal conditioning

More information

Performance Analysis of Spread Spectrum CDMA systems

Performance Analysis of Spread Spectrum CDMA systems 1 Performance Analysis of Spread Spectrum CDMA systems 16:33:546 Wireless Communication Technologies Spring 5 Instructor: Dr. Narayan Mandayam Summary by Liang Xiao lxiao@winlab.rutgers.edu WINLAB, Department

More information

Design Engineering MEng EXAMINATIONS 2016

Design Engineering MEng EXAMINATIONS 2016 IMPERIAL COLLEGE LONDON Design Engineering MEng EXAMINATIONS 2016 For Internal Students of the Imperial College of Science, Technology and Medicine This paper is also taken for the relevant examination

More information

EE 205 Dr. A. Zidouri. Electric Circuits II. Frequency Selective Circuits (Filters) Low Pass Filter. Lecture #36

EE 205 Dr. A. Zidouri. Electric Circuits II. Frequency Selective Circuits (Filters) Low Pass Filter. Lecture #36 EE 05 Dr. A. Zidouri Electric ircuits II Frequency Selective ircuits (Filters) ow Pass Filter ecture #36 - - EE 05 Dr. A. Zidouri The material to be covered in this lecture is as follows: o Introduction

More information

Digital Signal Processing 2/ Advanced Digital Signal Processing Lecture 3, SNR, non-linear Quantisation Gerald Schuller, TU Ilmenau

Digital Signal Processing 2/ Advanced Digital Signal Processing Lecture 3, SNR, non-linear Quantisation Gerald Schuller, TU Ilmenau Digital Signal Processing 2/ Advanced Digital Signal Processing Lecture 3, SNR, non-linear Quantisation Gerald Schuller, TU Ilmenau What is our SNR if we have a sinusoidal signal? What is its pdf? Basically

More information

sine wave fit algorithm

sine wave fit algorithm TECHNICAL REPORT IR-S3-SB-9 1 Properties of the IEEE-STD-57 four parameter sine wave fit algorithm Peter Händel, Senior Member, IEEE Abstract The IEEE Standard 57 (IEEE-STD-57) provides algorithms for

More information

Principles of Communications

Principles of Communications Principles of Communications Weiyao Lin, PhD Shanghai Jiao Tong University Chapter 4: Analog-to-Digital Conversion Textbook: 7.1 7.4 2010/2011 Meixia Tao @ SJTU 1 Outline Analog signal Sampling Quantization

More information