Point spread function reconstruction from the image of a sharp edge

Size: px
Start display at page:

Download "Point spread function reconstruction from the image of a sharp edge"

Transcription

1 DOE/NV/ Point spread function reconstruction from the image of a sharp edge John Bardsley, Kevin Joyce, Aaron Luttman The University of Montana National Security Technologies LLC Montana Uncertainty Quantification June 4, 5

2 Stochastic Imaging Model Inverse problem Ideal Image Measured image Image system response k(x s) ds Measurement error +ε N(, I)

3 Point Spread Function Estimation Point Source Impulse Response PSF estimate Image System Response k(x s)(s) ds = k(x) Measurement error +ε N(, I)

4 Point Spread Function Estimation Heaviside function Edge Spread Noisey Data Image System Response f (x) = k(x s)e(s) ds Measurement error +ε N(, I)

5 Underdetermined Inverse problem f (x i ) = k(s, t)e(x i s)dtds + ε i y System Response t s??

6 x Radially Symmetric PSF If we assume radial symmetry, k(x, y) = ρ( x + y ), and that the edge is indicated at x = by E, then f (x i ) = = = k(s, t)e(x i s)dtds + ε i ( π ρ(r) ρ(r) g(x i, r) rdr + ε i. ) E(x i r cos θ)dθ rdr + ε i g(x,r).8 6 θ x < r x r x > r r Observe that g is symmetric about the x =.

7 Bayesian Stochastic Inverse Problem For the inverse problem f = Gρ + ɛ, regularization and uncertainty quantification can be achieved by modeling the PSF as a random quantity with an appropriate prior. Measurement error is given by Gaussian likelihood with E f = Gρ and Var f = I. We use a Gaussian prior defined implicitly on k(s, t). Denote as the squared Laplacian defined on a certain subspace of L (R ), then the prior density satisfies E k = and Var k = I [Stu3]. For the polar coordinate map T (r, θ), the radial symmetry assumption ( gives (Lρ)(r) := ( d k T )(r) = r dr r d ) ρ(r). Here, we impose a dr left zero derivative and right zero boundary condition on ρ.

8 Monte Carlo Sampling of the Posterior Since both densities are Gaussian, Bayes Theorem leads to a posterior density satisfying p(ρ f,, ) exp ( f Gρ ) Lρ. We impose uninformative Gamma hyper-priors for and with hyper-parameters α = and β = 6 [CS8]. It can be shown theoretically that for medium to large scale discretizations of the unknown ρ, the Hierarchical Gibbs sampler gives unsatisfactory samples of as the discretization for ρ becomes more refined [ABPS4]. To illustrate this, we implement the hierarchical Gibbs sampler for the discretization ρ at various levels of refinement on a synthetic example.

9 A Synthetic Example A radially symmetric two-dimensional Gaussian PSF has the form ρ(r j ) = (πσ ) e r j σ and it can be shown analytically that the analytic forward blur is an error function [Gρ](x i ) = πσ xi e s σ ds 8 6 ρ f G Gaussian radial PSF profile Line out from blurred edge r.5.5 x

10 Hierarchical Gibbs Sampler For ρ discretized with n points and f with n points, the joint posterior density of the unknown and hyperpriors satisfies ( p(ρ,, f ) ) R(ρ µ), (ρ µ) β( + ), where R = (G G + L L)ρ and µ = R G f. In order to draw efficiently from the conditional density for ρ, we use the Cholesky decomposition of R = S S which dominates the computation at O(n 3 ). The Hierarchical Gibbs sample is: : Let and be given and set k =. : Compute R k = S( T k S k. ) 3: Draw ρ k from N k R k G T f, R k. ( ) 4: Draw k+ from Γ n + α, Gρ k f β ( ) 5: Draw k+ from Γ n/ + α, Lρ k β 6: Set k = k + and return to.

11 Correlated chains.5 Disc. n = 5, for samples with ESS M/τ autocorrelation Disc. n = 5, for samples with ESS M/τ autocorrelation MCMC chains for, n= MCMC chains for, n=5 x Disc. n =, for samples with ESS M/τ autocorrelation Disc. n =, for samples with ESS M/τ autocorrelation MCMC chains for, n= MCMC chains for, n= x Disc. n =, for samples with ESS M/τ autocorrelation Disc. n =, for samples with ESS M/τ autocorrelation MCMC chains for, n= MCMC chains for, n= x

12 Correlated chains.5 Disc. n = 5, for samples with ESS M/τ autocorrelation Disc. n = 5, for samples with ESS M/τ autocorrelation MCMC chains for, n= MCMC chains for, n=5 x Disc. n =, for samples with ESS M/τ autocorrelation Disc. n =, for samples with ESS M/τ autocorrelation MCMC chains for, n= MCMC chains for, n= x

13 Marginalized Posterior Density In order to marginalize out ρ, we complete the square of the quadratic form in ρ and integrate out the multivariate Gaussian, ( p(ρ,, f )dρ ( ) n/+α exp Gρ f ) Lρ β( ) dρ ( = ( ) n/+α exp R(ρ µ), (ρ µ) where U = ) U(,, b) β( ) dρ = ( ) n/+α c(,, f ) exp ( ) U(,, b) β( ), (I GR G )f, f and c = det R /. To draw from this density, we embed a Metropolis-Hastings algorithm within the Gibbs sampler. Both U and c can be carried out using a Cholesky factorization (O(n 3 )), and will be required for each Metropolis step.

14 Metropolis-Hastings within Gibbs Sampling Since is the problematic parameter, we implment the Metropolis-Hastings step on its conditional marginalized density p( f, ). We use a Gaussian proposal with adaptive variance. We use an initial variance estimate and support by running a Hierarchical Gibbs sampler. Due to numerical overflow issues, all computations are carried out on the log scale. : Let, and γ be given. : Compute R k = S( T k S k. ) 3: Draw x k from N R k k A T b, R k. ( ) 4: Draw k+ from Γ n/ + α, Ax k b β. 5: Set j =, = k k i= i. Compute c = log c( k, ) and then U = log U( k,, b), and p = log p( f k ). 6: while j < M do 7: Draw j from N( j, γ). 8: Compute U j = U( k, j ), c j = c( k, j ), and then p j = log p( j f k ). 9: Draw u j from Unif[, ] and if p j p j < log u j set p j = p j and k = j. Otherwise, continue. : Set j = j +. : end while : Set k = k + and return to.

15 Marginalized chains.5 Disc. n = 5, for samples with ESS M/τ autocorrelation Disc. n = 5, for samples with ESS M/τ autocorrelation MCMC chains for, n= MCMC chains for, n=5 x Disc. n =, for samples with ESS M/τ autocorrelation Disc. n =, for samples with ESS M/τ autocorrelation MCMC chains for, n= MCMC chains for, n= x Disc. n =, for samples with ESS M/τ autocorrelation Disc. n =, for samples with ESS M/τ autocorrelation MCMC chains for, n= MCMC chains for, n= x

16 Marginalized chains.5 Disc. n = 5, for samples with ESS M/τ autocorrelation Disc. n = 5, for samples with ESS M/τ autocorrelation MCMC chains for, n= MCMC chains for, n=5 x Disc. n =, for samples with ESS M/τ autocorrelation Disc. n =, for samples with ESS M/τ autocorrelation MCMC chains for, n= MCMC chains for, n= x

17 Results Marginalized joint density of (,) with MCMC samples Disc. n =, for samples with ESS M/τ autocorrelation Disc. n =, for samples with ESS M/τ autocorrelation MCMC chains for, n= MCMC chains for, n= x x 4

18 Future Work The current implementation takes approximately 5-6 hours on a Intel(R) Core(TM) i5-43u core for a reconstruction with n =. Other factorizations based on spectral methods might allow for faster than O(n 3 ) computation for calucating U and c in each Metropolis step. Analyze how uncertainty in the blurring kernel affects deconvolution uncertainty. Theoretical details related to the infinite dimensional prior Lρ are not fully developed. Explore other priors that might enforce higher correlation near the peak of the PSFs.

19 References Sergios Agapiou, Johnathan M Bardsley, Omiros Papaspiliopoulos, and Andrew M Stuart. Analysis of the Gibbs sampler for hierarchical inverse problems. SIAM/ASA Journal on Uncertainty Quantification, ():5 544, 4. Johnathan M Bardsley. MCMC-based image reconstruction with uncertainty quantification. SIAM Journal on Scientific Computing, 34(3):A36 A33,. Daniela Calveti and Erkki Somersalo. Hypermodels in the Bayesian imaging framework. Inverse Problems, 4(3):343, 8. Andrew M Stuart. The Bayesian approach to inverse problems. arxiv preprint arxiv:3.6989v, 3.

Deblurring Jupiter (sampling in GLIP faster than regularized inversion) Colin Fox Richard A. Norton, J.

Deblurring Jupiter (sampling in GLIP faster than regularized inversion) Colin Fox Richard A. Norton, J. Deblurring Jupiter (sampling in GLIP faster than regularized inversion) Colin Fox fox@physics.otago.ac.nz Richard A. Norton, J. Andrés Christen Topics... Backstory (?) Sampling in linear-gaussian hierarchical

More information

Robust MCMC Sampling with Non-Gaussian and Hierarchical Priors

Robust MCMC Sampling with Non-Gaussian and Hierarchical Priors Division of Engineering & Applied Science Robust MCMC Sampling with Non-Gaussian and Hierarchical Priors IPAM, UCLA, November 14, 2017 Matt Dunlop Victor Chen (Caltech) Omiros Papaspiliopoulos (ICREA,

More information

Parameter Estimation. William H. Jefferys University of Texas at Austin Parameter Estimation 7/26/05 1

Parameter Estimation. William H. Jefferys University of Texas at Austin Parameter Estimation 7/26/05 1 Parameter Estimation William H. Jefferys University of Texas at Austin bill@bayesrules.net Parameter Estimation 7/26/05 1 Elements of Inference Inference problems contain two indispensable elements: Data

More information

Bayesian Inference and MCMC

Bayesian Inference and MCMC Bayesian Inference and MCMC Aryan Arbabi Partly based on MCMC slides from CSC412 Fall 2018 1 / 18 Bayesian Inference - Motivation Consider we have a data set D = {x 1,..., x n }. E.g each x i can be the

More information

Bayesian Methods and Uncertainty Quantification for Nonlinear Inverse Problems

Bayesian Methods and Uncertainty Quantification for Nonlinear Inverse Problems Bayesian Methods and Uncertainty Quantification for Nonlinear Inverse Problems John Bardsley, University of Montana Collaborators: H. Haario, J. Kaipio, M. Laine, Y. Marzouk, A. Seppänen, A. Solonen, Z.

More information

A Review of Pseudo-Marginal Markov Chain Monte Carlo

A Review of Pseudo-Marginal Markov Chain Monte Carlo A Review of Pseudo-Marginal Markov Chain Monte Carlo Discussed by: Yizhe Zhang October 21, 2016 Outline 1 Overview 2 Paper review 3 experiment 4 conclusion Motivation & overview Notation: θ denotes the

More information

Recent Advances in Bayesian Inference for Inverse Problems

Recent Advances in Bayesian Inference for Inverse Problems Recent Advances in Bayesian Inference for Inverse Problems Felix Lucka University College London, UK f.lucka@ucl.ac.uk Applied Inverse Problems Helsinki, May 25, 2015 Bayesian Inference for Inverse Problems

More information

MCMC algorithms for fitting Bayesian models

MCMC algorithms for fitting Bayesian models MCMC algorithms for fitting Bayesian models p. 1/1 MCMC algorithms for fitting Bayesian models Sudipto Banerjee sudiptob@biostat.umn.edu University of Minnesota MCMC algorithms for fitting Bayesian models

More information

10. Exchangeability and hierarchical models Objective. Recommended reading

10. Exchangeability and hierarchical models Objective. Recommended reading 10. Exchangeability and hierarchical models Objective Introduce exchangeability and its relation to Bayesian hierarchical models. Show how to fit such models using fully and empirical Bayesian methods.

More information

wissen leben WWU Münster

wissen leben WWU Münster MÜNSTER Sparsity Constraints in Bayesian Inversion Inverse Days conference in Jyväskylä, Finland. Felix Lucka 19.12.2012 MÜNSTER 2 /41 Sparsity Constraints in Inverse Problems Current trend in high dimensional

More information

Introduction to Bayesian methods in inverse problems

Introduction to Bayesian methods in inverse problems Introduction to Bayesian methods in inverse problems Ville Kolehmainen 1 1 Department of Applied Physics, University of Eastern Finland, Kuopio, Finland March 4 2013 Manchester, UK. Contents Introduction

More information

F denotes cumulative density. denotes probability density function; (.)

F denotes cumulative density. denotes probability density function; (.) BAYESIAN ANALYSIS: FOREWORDS Notation. System means the real thing and a model is an assumed mathematical form for the system.. he probability model class M contains the set of the all admissible models

More information

Bayesian Phylogenetics:

Bayesian Phylogenetics: Bayesian Phylogenetics: an introduction Marc A. Suchard msuchard@ucla.edu UCLA Who is this man? How sure are you? The one true tree? Methods we ve learned so far try to find a single tree that best describes

More information

Practical unbiased Monte Carlo for Uncertainty Quantification

Practical unbiased Monte Carlo for Uncertainty Quantification Practical unbiased Monte Carlo for Uncertainty Quantification Sergios Agapiou Department of Statistics, University of Warwick MiR@W day: Uncertainty in Complex Computer Models, 2nd February 2015, University

More information

Hierarchical Bayesian Inversion

Hierarchical Bayesian Inversion Hierarchical Bayesian Inversion Andrew M Stuart Computing and Mathematical Sciences, Caltech cw/ S. Agapiou, J. Bardsley and O. Papaspiliopoulos SIAM/ASA JUQ 2(2014), pp. 511--544 cw/ M. Dunlop and M.

More information

MCMC Sampling for Bayesian Inference using L1-type Priors

MCMC Sampling for Bayesian Inference using L1-type Priors MÜNSTER MCMC Sampling for Bayesian Inference using L1-type Priors (what I do whenever the ill-posedness of EEG/MEG is just not frustrating enough!) AG Imaging Seminar Felix Lucka 26.06.2012 , MÜNSTER Sampling

More information

Computational statistics

Computational statistics Computational statistics Markov Chain Monte Carlo methods Thierry Denœux March 2017 Thierry Denœux Computational statistics March 2017 1 / 71 Contents of this chapter When a target density f can be evaluated

More information

Bayesian Estimation of DSGE Models 1 Chapter 3: A Crash Course in Bayesian Inference

Bayesian Estimation of DSGE Models 1 Chapter 3: A Crash Course in Bayesian Inference 1 The views expressed in this paper are those of the authors and do not necessarily reflect the views of the Federal Reserve Board of Governors or the Federal Reserve System. Bayesian Estimation of DSGE

More information

Lecture 8: The Metropolis-Hastings Algorithm

Lecture 8: The Metropolis-Hastings Algorithm 30.10.2008 What we have seen last time: Gibbs sampler Key idea: Generate a Markov chain by updating the component of (X 1,..., X p ) in turn by drawing from the full conditionals: X (t) j Two drawbacks:

More information

Uncertainty quantification for inverse problems with a weak wave-equation constraint

Uncertainty quantification for inverse problems with a weak wave-equation constraint Uncertainty quantification for inverse problems with a weak wave-equation constraint Zhilong Fang*, Curt Da Silva*, Rachel Kuske** and Felix J. Herrmann* *Seismic Laboratory for Imaging and Modeling (SLIM),

More information

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis Summarizing a posterior Given the data and prior the posterior is determined Summarizing the posterior gives parameter estimates, intervals, and hypothesis tests Most of these computations are integrals

More information

arxiv: v1 [stat.co] 2 Nov 2018

arxiv: v1 [stat.co] 2 Nov 2018 Efficient Marginalization-based MCMC Methods for Hierarchical Bayesian Inverse Problems Arvind K. Saibaba Johnathan Bardsley D. Andrew Brown Alen Alexanderian arxiv:1811.01091v1 [stat.co] 2 Nov 2018 November

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Monte Carlo in Bayesian Statistics

Monte Carlo in Bayesian Statistics Monte Carlo in Bayesian Statistics Matthew Thomas SAMBa - University of Bath m.l.thomas@bath.ac.uk December 4, 2014 Matthew Thomas (SAMBa) Monte Carlo in Bayesian Statistics December 4, 2014 1 / 16 Overview

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Dealing with Boundary Artifacts in MCMC-Based Deconvolution

Dealing with Boundary Artifacts in MCMC-Based Deconvolution Dealing with Boundary Artifacts in MCMC-Based Deconvolution Johnathan M. Bardsley Department of Mathematical Sciences, University of Montana, Missoula, Montana. Aaron Luttman National Security Technologies,

More information

Advances and Applications in Perfect Sampling

Advances and Applications in Perfect Sampling and Applications in Perfect Sampling Ph.D. Dissertation Defense Ulrike Schneider advisor: Jem Corcoran May 8, 2003 Department of Applied Mathematics University of Colorado Outline Introduction (1) MCMC

More information

LECTURE 15 Markov chain Monte Carlo

LECTURE 15 Markov chain Monte Carlo LECTURE 15 Markov chain Monte Carlo There are many settings when posterior computation is a challenge in that one does not have a closed form expression for the posterior distribution. Markov chain Monte

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee University of Minnesota July 20th, 2008 1 Bayesian Principles Classical statistics: model parameters are fixed and unknown. A Bayesian thinks of parameters

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes Neil D. Lawrence GPSS 10th June 2013 Book Rasmussen and Williams (2006) Outline The Gaussian Density Covariance from Basis Functions Basis Function Representations Constructing

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo Markov Chain Monte Carlo Recall: To compute the expectation E ( h(y ) ) we use the approximation E(h(Y )) 1 n n h(y ) t=1 with Y (1),..., Y (n) h(y). Thus our aim is to sample Y (1),..., Y (n) from f(y).

More information

ST 740: Markov Chain Monte Carlo

ST 740: Markov Chain Monte Carlo ST 740: Markov Chain Monte Carlo Alyson Wilson Department of Statistics North Carolina State University October 14, 2012 A. Wilson (NCSU Stsatistics) MCMC October 14, 2012 1 / 20 Convergence Diagnostics:

More information

Markov Chain Monte Carlo, Numerical Integration

Markov Chain Monte Carlo, Numerical Integration Markov Chain Monte Carlo, Numerical Integration (See Statistics) Trevor Gallen Fall 2015 1 / 1 Agenda Numerical Integration: MCMC methods Estimating Markov Chains Estimating latent variables 2 / 1 Numerical

More information

Eco517 Fall 2013 C. Sims MCMC. October 8, 2013

Eco517 Fall 2013 C. Sims MCMC. October 8, 2013 Eco517 Fall 2013 C. Sims MCMC October 8, 2013 c 2013 by Christopher A. Sims. This document may be reproduced for educational and research purposes, so long as the copies contain this notice and are retained

More information

Likelihood-free MCMC

Likelihood-free MCMC Bayesian inference for stable distributions with applications in finance Department of Mathematics University of Leicester September 2, 2011 MSc project final presentation Outline 1 2 3 4 Classical Monte

More information

Learning the hyper-parameters. Luca Martino

Learning the hyper-parameters. Luca Martino Learning the hyper-parameters Luca Martino 2017 2017 1 / 28 Parameters and hyper-parameters 1. All the described methods depend on some choice of hyper-parameters... 2. For instance, do you recall λ (bandwidth

More information

Nonparametric Drift Estimation for Stochastic Differential Equations

Nonparametric Drift Estimation for Stochastic Differential Equations Nonparametric Drift Estimation for Stochastic Differential Equations Gareth Roberts 1 Department of Statistics University of Warwick Brazilian Bayesian meeting, March 2010 Joint work with O. Papaspiliopoulos,

More information

Dr. Johnathan M. Bardsley Professor of Mathematics University of Montana EDUCATION:

Dr. Johnathan M. Bardsley Professor of Mathematics University of Montana EDUCATION: Dr. Johnathan M. Bardsley Professor of Mathematics University of Montana EDUCATION: 2002 Ph.D. Mathematics Montana State University 1999 M.S. Mathematics University of Oregon 1998 M.S. Mathematics Montana

More information

Sequential Monte Carlo Samplers for Applications in High Dimensions

Sequential Monte Carlo Samplers for Applications in High Dimensions Sequential Monte Carlo Samplers for Applications in High Dimensions Alexandros Beskos National University of Singapore KAUST, 26th February 2014 Joint work with: Dan Crisan, Ajay Jasra, Nik Kantas, Alex

More information

Labor-Supply Shifts and Economic Fluctuations. Technical Appendix

Labor-Supply Shifts and Economic Fluctuations. Technical Appendix Labor-Supply Shifts and Economic Fluctuations Technical Appendix Yongsung Chang Department of Economics University of Pennsylvania Frank Schorfheide Department of Economics University of Pennsylvania January

More information

20: Gaussian Processes

20: Gaussian Processes 10-708: Probabilistic Graphical Models 10-708, Spring 2016 20: Gaussian Processes Lecturer: Andrew Gordon Wilson Scribes: Sai Ganesh Bandiatmakuri 1 Discussion about ML Here we discuss an introduction

More information

Bayesian Linear Regression

Bayesian Linear Regression Bayesian Linear Regression Sudipto Banerjee 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. September 15, 2010 1 Linear regression models: a Bayesian perspective

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

Efficient MCMC Sampling for Hierarchical Bayesian Inverse Problems

Efficient MCMC Sampling for Hierarchical Bayesian Inverse Problems Efficient MCMC Sampling for Hierarchical Bayesian Inverse Problems Andrew Brown 1,2, Arvind Saibaba 3, Sarah Vallélian 2,3 CCNS Transition Workshop SAMSI May 5, 2016 Supported by SAMSI Visiting Research

More information

Advanced Statistical Modelling

Advanced Statistical Modelling Markov chain Monte Carlo (MCMC) Methods and Their Applications in Bayesian Statistics School of Technology and Business Studies/Statistics Dalarna University Borlänge, Sweden. Feb. 05, 2014. Outlines 1

More information

A quick introduction to Markov chains and Markov chain Monte Carlo (revised version)

A quick introduction to Markov chains and Markov chain Monte Carlo (revised version) A quick introduction to Markov chains and Markov chain Monte Carlo (revised version) Rasmus Waagepetersen Institute of Mathematical Sciences Aalborg University 1 Introduction These notes are intended to

More information

Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) Markov Chain Monte Carlo (MCMC Dependent Sampling Suppose we wish to sample from a density π, and we can evaluate π as a function but have no means to directly generate a sample. Rejection sampling can

More information

eqr094: Hierarchical MCMC for Bayesian System Reliability

eqr094: Hierarchical MCMC for Bayesian System Reliability eqr094: Hierarchical MCMC for Bayesian System Reliability Alyson G. Wilson Statistical Sciences Group, Los Alamos National Laboratory P.O. Box 1663, MS F600 Los Alamos, NM 87545 USA Phone: 505-667-9167

More information

Contents. Part I: Fundamentals of Bayesian Inference 1

Contents. Part I: Fundamentals of Bayesian Inference 1 Contents Preface xiii Part I: Fundamentals of Bayesian Inference 1 1 Probability and inference 3 1.1 The three steps of Bayesian data analysis 3 1.2 General notation for statistical inference 4 1.3 Bayesian

More information

The Bayesian approach to inverse problems

The Bayesian approach to inverse problems The Bayesian approach to inverse problems Youssef Marzouk Department of Aeronautics and Astronautics Center for Computational Engineering Massachusetts Institute of Technology ymarz@mit.edu, http://uqgroup.mit.edu

More information

Lecture Notes based on Koop (2003) Bayesian Econometrics

Lecture Notes based on Koop (2003) Bayesian Econometrics Lecture Notes based on Koop (2003) Bayesian Econometrics A.Colin Cameron University of California - Davis November 15, 2005 1. CH.1: Introduction The concepts below are the essential concepts used throughout

More information

Making rating curves - the Bayesian approach

Making rating curves - the Bayesian approach Making rating curves - the Bayesian approach Rating curves what is wanted? A best estimate of the relationship between stage and discharge at a given place in a river. The relationship should be on the

More information

April 20th, Advanced Topics in Machine Learning California Institute of Technology. Markov Chain Monte Carlo for Machine Learning

April 20th, Advanced Topics in Machine Learning California Institute of Technology. Markov Chain Monte Carlo for Machine Learning for for Advanced Topics in California Institute of Technology April 20th, 2017 1 / 50 Table of Contents for 1 2 3 4 2 / 50 History of methods for Enrico Fermi used to calculate incredibly accurate predictions

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods Pattern Recognition and Machine Learning Chapter 11: Sampling Methods Elise Arnaud Jakob Verbeek May 22, 2008 Outline of the chapter 11.1 Basic Sampling Algorithms 11.2 Markov Chain Monte Carlo 11.3 Gibbs

More information

MCMC: Markov Chain Monte Carlo

MCMC: Markov Chain Monte Carlo I529: Machine Learning in Bioinformatics (Spring 2013) MCMC: Markov Chain Monte Carlo Yuzhen Ye School of Informatics and Computing Indiana University, Bloomington Spring 2013 Contents Review of Markov

More information

Reminder of some Markov Chain properties:

Reminder of some Markov Chain properties: Reminder of some Markov Chain properties: 1. a transition from one state to another occurs probabilistically 2. only state that matters is where you currently are (i.e. given present, future is independent

More information

Bayesian Calibration of Simulators with Structured Discretization Uncertainty

Bayesian Calibration of Simulators with Structured Discretization Uncertainty Bayesian Calibration of Simulators with Structured Discretization Uncertainty Oksana A. Chkrebtii Department of Statistics, The Ohio State University Joint work with Matthew T. Pratola (Statistics, The

More information

Large Scale Bayesian Inference

Large Scale Bayesian Inference Large Scale Bayesian I in Cosmology Jens Jasche Garching, 11 September 2012 Introduction Cosmography 3D density and velocity fields Power-spectra, bi-spectra Dark Energy, Dark Matter, Gravity Cosmological

More information

Markov Chain Monte Carlo methods

Markov Chain Monte Carlo methods Markov Chain Monte Carlo methods By Oleg Makhnin 1 Introduction a b c M = d e f g h i 0 f(x)dx 1.1 Motivation 1.1.1 Just here Supresses numbering 1.1.2 After this 1.2 Literature 2 Method 2.1 New math As

More information

David Giles Bayesian Econometrics

David Giles Bayesian Econometrics David Giles Bayesian Econometrics 5. Bayesian Computation Historically, the computational "cost" of Bayesian methods greatly limited their application. For instance, by Bayes' Theorem: p(θ y) = p(θ)p(y

More information

Monte Carlo Methods. Leon Gu CSD, CMU

Monte Carlo Methods. Leon Gu CSD, CMU Monte Carlo Methods Leon Gu CSD, CMU Approximate Inference EM: y-observed variables; x-hidden variables; θ-parameters; E-step: q(x) = p(x y, θ t 1 ) M-step: θ t = arg max E q(x) [log p(y, x θ)] θ Monte

More information

Bayesian Estimation of Input Output Tables for Russia

Bayesian Estimation of Input Output Tables for Russia Bayesian Estimation of Input Output Tables for Russia Oleg Lugovoy (EDF, RANE) Andrey Polbin (RANE) Vladimir Potashnikov (RANE) WIOD Conference April 24, 2012 Groningen Outline Motivation Objectives Bayesian

More information

Randomize-Then-Optimize for Sampling and Uncertainty Quantification in Electrical Impedance Tomography

Randomize-Then-Optimize for Sampling and Uncertainty Quantification in Electrical Impedance Tomography SIAM/ASA J. UNCERTAINTY QUANTIFICATION Vol. 3, pp. 1136 1158 c 2015 Society for Industrial and Applied Mathematics and American Statistical Association Randomize-Then-Optimize for Sampling and Uncertainty

More information

Example: Ground Motion Attenuation

Example: Ground Motion Attenuation Example: Ground Motion Attenuation Problem: Predict the probability distribution for Peak Ground Acceleration (PGA), the level of ground shaking caused by an earthquake Earthquake records are used to update

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 2 In our

More information

arxiv: v1 [stat.co] 23 Apr 2018

arxiv: v1 [stat.co] 23 Apr 2018 Bayesian Updating and Uncertainty Quantification using Sequential Tempered MCMC with the Rank-One Modified Metropolis Algorithm Thomas A. Catanach and James L. Beck arxiv:1804.08738v1 [stat.co] 23 Apr

More information

17 : Markov Chain Monte Carlo

17 : Markov Chain Monte Carlo 10-708: Probabilistic Graphical Models, Spring 2015 17 : Markov Chain Monte Carlo Lecturer: Eric P. Xing Scribes: Heran Lin, Bin Deng, Yun Huang 1 Review of Monte Carlo Methods 1.1 Overview Monte Carlo

More information

Risk Estimation and Uncertainty Quantification by Markov Chain Monte Carlo Methods

Risk Estimation and Uncertainty Quantification by Markov Chain Monte Carlo Methods Risk Estimation and Uncertainty Quantification by Markov Chain Monte Carlo Methods Konstantin Zuev Institute for Risk and Uncertainty University of Liverpool http://www.liv.ac.uk/risk-and-uncertainty/staff/k-zuev/

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

Bayesian data analysis in practice: Three simple examples

Bayesian data analysis in practice: Three simple examples Bayesian data analysis in practice: Three simple examples Martin P. Tingley Introduction These notes cover three examples I presented at Climatea on 5 October 0. Matlab code is available by request to

More information

Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods

Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods Jonas Hallgren 1 1 Department of Mathematics KTH Royal Institute of Technology Stockholm, Sweden BFS 2012 June

More information

STA414/2104 Statistical Methods for Machine Learning II

STA414/2104 Statistical Methods for Machine Learning II STA414/2104 Statistical Methods for Machine Learning II Murat A. Erdogdu & David Duvenaud Department of Computer Science Department of Statistical Sciences Lecture 3 Slide credits: Russ Salakhutdinov Announcements

More information

Bayesian Deep Learning

Bayesian Deep Learning Bayesian Deep Learning Mohammad Emtiyaz Khan AIP (RIKEN), Tokyo http://emtiyaz.github.io emtiyaz.khan@riken.jp June 06, 2018 Mohammad Emtiyaz Khan 2018 1 What will you learn? Why is Bayesian inference

More information

Computer Practical: Metropolis-Hastings-based MCMC

Computer Practical: Metropolis-Hastings-based MCMC Computer Practical: Metropolis-Hastings-based MCMC Andrea Arnold and Franz Hamilton North Carolina State University July 30, 2016 A. Arnold / F. Hamilton (NCSU) MH-based MCMC July 30, 2016 1 / 19 Markov

More information

Kernel adaptive Sequential Monte Carlo

Kernel adaptive Sequential Monte Carlo Kernel adaptive Sequential Monte Carlo Ingmar Schuster (Paris Dauphine) Heiko Strathmann (University College London) Brooks Paige (Oxford) Dino Sejdinovic (Oxford) December 7, 2015 1 / 36 Section 1 Outline

More information

Estimation of a bivariate hierarchical Ornstein-Uhlenbeck model for longitudinal data

Estimation of a bivariate hierarchical Ornstein-Uhlenbeck model for longitudinal data Estimation of a bivariate hierarchical Ornstein-Uhlenbeck model for longitudinal data Zita Oravecz & Francis Tuerlinckx (E-mail to: ) IAP workshop, Ghent 19th September, 2008 1 2 The latent OU model 3

More information

Online appendix to On the stability of the excess sensitivity of aggregate consumption growth in the US

Online appendix to On the stability of the excess sensitivity of aggregate consumption growth in the US Online appendix to On the stability of the excess sensitivity of aggregate consumption growth in the US Gerdie Everaert 1, Lorenzo Pozzi 2, and Ruben Schoonackers 3 1 Ghent University & SHERPPA 2 Erasmus

More information

Bayesian Methods in Multilevel Regression

Bayesian Methods in Multilevel Regression Bayesian Methods in Multilevel Regression Joop Hox MuLOG, 15 september 2000 mcmc What is Statistics?! Statistics is about uncertainty To err is human, to forgive divine, but to include errors in your design

More information

Kazuhiko Kakamu Department of Economics Finance, Institute for Advanced Studies. Abstract

Kazuhiko Kakamu Department of Economics Finance, Institute for Advanced Studies. Abstract Bayesian Estimation of A Distance Functional Weight Matrix Model Kazuhiko Kakamu Department of Economics Finance, Institute for Advanced Studies Abstract This paper considers the distance functional weight

More information

Down by the Bayes, where the Watermelons Grow

Down by the Bayes, where the Watermelons Grow Down by the Bayes, where the Watermelons Grow A Bayesian example using SAS SUAVe: Victoria SAS User Group Meeting November 21, 2017 Peter K. Ott, M.Sc., P.Stat. Strategic Analysis 1 Outline 1. Motivating

More information

Spring 2006: Introduction to Markov Chain Monte Carlo (MCMC)

Spring 2006: Introduction to Markov Chain Monte Carlo (MCMC) 36-724 Spring 2006: Introduction to Marov Chain Monte Carlo (MCMC) Brian Juner February 16, 2006 Hierarchical Normal Model Direct Simulation An Alternative Approach: MCMC Complete Conditionals for Hierarchical

More information

Doing Bayesian Integrals

Doing Bayesian Integrals ASTR509-13 Doing Bayesian Integrals The Reverend Thomas Bayes (c.1702 1761) Philosopher, theologian, mathematician Presbyterian (non-conformist) minister Tunbridge Wells, UK Elected FRS, perhaps due to

More information

Markov Chain Monte Carlo (MCMC) and Model Evaluation. August 15, 2017

Markov Chain Monte Carlo (MCMC) and Model Evaluation. August 15, 2017 Markov Chain Monte Carlo (MCMC) and Model Evaluation August 15, 2017 Frequentist Linking Frequentist and Bayesian Statistics How can we estimate model parameters and what does it imply? Want to find the

More information

Supplementary materials for Multivariate functional response regression, with application to fluorescence spectroscopy in a cervical pre-cancer study

Supplementary materials for Multivariate functional response regression, with application to fluorescence spectroscopy in a cervical pre-cancer study Supplementary materials for Multivariate functional response regression, with application to fluorescence spectroscopy in a cervical pre-cancer study Hongxiao Zhu a,, Jeffrey S. Morris b, Fengrong Wei

More information

Sub-kilometer-scale space-time stochastic rainfall simulation

Sub-kilometer-scale space-time stochastic rainfall simulation Picture: Huw Alexander Ogilvie Sub-kilometer-scale space-time stochastic rainfall simulation Lionel Benoit (University of Lausanne) Gregoire Mariethoz (University of Lausanne) Denis Allard (INRA Avignon)

More information

Bayesian model selection in graphs by using BDgraph package

Bayesian model selection in graphs by using BDgraph package Bayesian model selection in graphs by using BDgraph package A. Mohammadi and E. Wit March 26, 2013 MOTIVATION Flow cytometry data with 11 proteins from Sachs et al. (2005) RESULT FOR CELL SIGNALING DATA

More information

Likelihood NIPS July 30, Gaussian Process Regression with Student-t. Likelihood. Jarno Vanhatalo, Pasi Jylanki and Aki Vehtari NIPS-2009

Likelihood NIPS July 30, Gaussian Process Regression with Student-t. Likelihood. Jarno Vanhatalo, Pasi Jylanki and Aki Vehtari NIPS-2009 with with July 30, 2010 with 1 2 3 Representation Representation for Distribution Inference for the Augmented Model 4 Approximate Laplacian Approximation Introduction to Laplacian Approximation Laplacian

More information

Bayes Nets: Sampling

Bayes Nets: Sampling Bayes Nets: Sampling [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.] Approximate Inference:

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Bayes Nets: Sampling Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

More information

Modelling and forecasting of offshore wind power fluctuations with Markov-Switching models

Modelling and forecasting of offshore wind power fluctuations with Markov-Switching models Modelling and forecasting of offshore wind power fluctuations with Markov-Switching models 02433 - Hidden Markov Models Pierre-Julien Trombe, Martin Wæver Pedersen, Henrik Madsen Course week 10 MWP, compiled

More information

An Introduction to Bayesian Linear Regression

An Introduction to Bayesian Linear Regression An Introduction to Bayesian Linear Regression APPM 5720: Bayesian Computation Fall 2018 A SIMPLE LINEAR MODEL Suppose that we observe explanatory variables x 1, x 2,..., x n and dependent variables y 1,

More information

Regularization Parameter Selection for a Bayesian Multi-Level Group Lasso Regression Model with Application to Imaging Genomics

Regularization Parameter Selection for a Bayesian Multi-Level Group Lasso Regression Model with Application to Imaging Genomics Regularization Parameter Selection for a Bayesian Multi-Level Group Lasso Regression Model with Application to Imaging Genomics arxiv:1603.08163v1 [stat.ml] 7 Mar 016 Farouk S. Nathoo, Keelin Greenlaw,

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo 1 Motivation 1.1 Bayesian Learning Markov Chain Monte Carlo Yale Chang In Bayesian learning, given data X, we make assumptions on the generative process of X by introducing hidden variables Z: p(z): prior

More information

Markov Chain Monte Carlo Using the Ratio-of-Uniforms Transformation. Luke Tierney Department of Statistics & Actuarial Science University of Iowa

Markov Chain Monte Carlo Using the Ratio-of-Uniforms Transformation. Luke Tierney Department of Statistics & Actuarial Science University of Iowa Markov Chain Monte Carlo Using the Ratio-of-Uniforms Transformation Luke Tierney Department of Statistics & Actuarial Science University of Iowa Basic Ratio of Uniforms Method Introduced by Kinderman and

More information

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA Intro: Course Outline and Brief Intro to Marina Vannucci Rice University, USA PASI-CIMAT 04/28-30/2010 Marina Vannucci

More information

The Bayesian Choice. Christian P. Robert. From Decision-Theoretic Foundations to Computational Implementation. Second Edition.

The Bayesian Choice. Christian P. Robert. From Decision-Theoretic Foundations to Computational Implementation. Second Edition. Christian P. Robert The Bayesian Choice From Decision-Theoretic Foundations to Computational Implementation Second Edition With 23 Illustrations ^Springer" Contents Preface to the Second Edition Preface

More information

Bayesian Model Comparison:

Bayesian Model Comparison: Bayesian Model Comparison: Modeling Petrobrás log-returns Hedibert Freitas Lopes February 2014 Log price: y t = log p t Time span: 12/29/2000-12/31/2013 (n = 3268 days) LOG PRICE 1 2 3 4 0 500 1000 1500

More information

Dynamic System Identification using HDMR-Bayesian Technique

Dynamic System Identification using HDMR-Bayesian Technique Dynamic System Identification using HDMR-Bayesian Technique *Shereena O A 1) and Dr. B N Rao 2) 1), 2) Department of Civil Engineering, IIT Madras, Chennai 600036, Tamil Nadu, India 1) ce14d020@smail.iitm.ac.in

More information

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING. Inversion basics. Erkki Kyrölä Finnish Meteorological Institute

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING. Inversion basics. Erkki Kyrölä Finnish Meteorological Institute Inversion basics y = Kx + ε x ˆ = (K T K) 1 K T y Erkki Kyrölä Finnish Meteorological Institute Day 3 Lecture 1 Retrieval techniques - Erkki Kyrölä 1 Contents 1. Introduction: Measurements, models, inversion

More information