# u(x, y, t) = T(t)Φ(x, y) 0. (THE EQUATIONS FOR PRODUCT SOLUTIONS) Plugging u = T(t)Φ(x, y) in (PDE)-(BC) we see: There is a constant λ such that

Save this PDF as:
Size: px
Start display at page:

Download "u(x, y, t) = T(t)Φ(x, y) 0. (THE EQUATIONS FOR PRODUCT SOLUTIONS) Plugging u = T(t)Φ(x, y) in (PDE)-(BC) we see: There is a constant λ such that"

## Transcription

1 Seprtion of Vriles for Higher Dimensionl Wve Eqution 1. Virting Memrne: 2-D Wve Eqution nd Eigenfunctions of the Lplcin Ojective: Let Ω e plnr region with oundry curve Γ. Consider the wve eqution in Ω with zero displcement on Γ: (PDE u tt c 2 (u xx + u yy = (x, y in Ω, t >, (BC u(x, y, t = (x, y on Γ, t >, (IC u(x, y, = f(x, y, u t (x, y = g(x, y (x, y in Ω. (IDEA: Seprtion of Vriles We look for solutions of (PDE-(BC whose sptil structure of the displcement function remins invrint with time. In these solutions only the mplitudes of the oscilltion my chnge with time. Mthemticlly, we try to clssify ll nontrivil solutions of the following form: u(x, y, t = T(tΦ(x, y. (THE EQUATIONS FOR PRODUCT SOLUTIONS Plugging u = T(tΦ(x, y in (PDE-(BC we see: There is constnt λ such tht ( T (t + c 2 λt(t = t > ; ( Φ xx + Φ yy + λφ = (x, y in Ω, ( Φ = (x, y on Γ. We look for solutions of (*-(**-(*** tht re. Here, (* nd (** re deduced from (PDE, nd (*** follows from (BC. Eqution ( is esy to solve. The min issue now is to solve the eigenvlue prolem ( -(. (EIGENVALUES AND EIGENFUNCTIONS Now focus on the oundry vlue prolem (**-(*** for Φ(x, y. The solution structure of this prolem depends on the prmeter vlue λ. It cn e shown tht for most choices of λ, (**-(*** only hs the trivil solution Φ(x, y. The specil vlues of λ dmiting nontrivil solutions re clled eigenvlues of (**-(***, nd in tht cse, the corresponding nontrivil solutions Φ(x, y re clled eigenfunctions. Unfortuntely, for generl domin Ω, it s impossile to write down the eigenvlues nd eigenfunctions of ( -( in explicit form. We do, however, hve mthemticl theorem out this eigenvlue prolem: THEOREM. (i The eigenvlues of ( -( form sequence of positive numers {λ n } n=1 such tht < λ 1 < λ 2 λ 3 λ 4, lim n λ n = +. (ii The corresponding eigenfunctions Φ n (x, y re smooth functions in Ω. (iii Φ 1 (x, y does not chnge sign in Ω. (iv Ω Φ m(x, yφ n (x, ydxdy = for m n. 1

2 Let λ = λ n e one of the eigenvlues. We now solve eqution (*, which ecomes The solutions re where A nd B re constnts. T (t + c 2 λ n T(t = t >. T(t = A cos(c λ n t + B (c λ n t, (CLASSIFICATION OF PRODUCT SOLUTIONS Thus, product solution of (PDE-(BC must e of the form u(x, y, t = A cos(c λ n t + B (c ] λ n t Φ n (x, y, n = 1, 2, 3,. (SOLUTION FORMULA FOR THE INIT-BDRY VAL PROBLEM The generl solutions of (PDE-(BC-(IC re liner comintions of the product solutions. We cn use (IC to determine the coefficients in the liner comintion. This finlly gives the solution of the initil-oundry vlue prolem (PDE-(BC-(IC: u(x, t = n=1 n cos(c λ n t + n (c ] λ n t Φ n (x, y, where for n = 1, 2, 3,. Ω n = f(x, yφ n(x, ydxdy Φ, Ω n(x, y 2 dxdy n = 1 c g(x, yφ Ω n(x, ydxdy λ Φ, n Ω n(x, y 2 dxdy 2

3 2. The Cse of Rectngulr Memrne Ojective: Solve the initil-oundry vlue prolem (PDE-(BC-(IC, for the cse where Ω is the rectngle { < x <, < y < }: (PDE u tt c 2 (u xx + u yy = < x <, < y <, t >, { u(x,, t =, u(x,, t = < x <, t >, (BC u(, y, t =, u(, y, t = < y <, t >, (IC u(x, y, = f(x, y, u t (x, y = g(x, y < x <, < y <. THE EIGENVALUE PROBLEM ( -( cn e solved y further seprtion of vriles: Thnks to the specil symmetry of the rectngulr domin, we cn otin explicit expressions for the eigenvlues nd eigenfunctions. As mtter of fct, the eigenfunctions of the product form: Φ(x, y = X(xY (y will produce ll eigenvlues. Although, in generl there might e eigenfunctions of non-product forms, those non-product eigenfunctions re liner comiintions of product eigenfunctions. In this sense, we only need to solve ( -( for product functions Φ(x, y = X(xY (y. This will seprte the 2-D eigenvlue prolem ( -( to two 1-D eigenvlue prolems which we know how to solve. An ALTERNATIVE APPROACH is to strt from the eginnning with product solutions of the form: u(x, y, t = T(tX(xY (y. Plugging u = T(tX(xY (y in (PDE-(BC we see: there re constnts λ nd µ such tht ( T (t + c 2 (λ + µt(t = t > ; ( x X (x + λx(x = ( < x <, X( = X( = ; ( y Y (y + µy (y = ( < y <, Y ( = Y ( =. We know how to solve 1-D eigenvlue prolem ( x : If nd only if λ is one of the following vlues λ m = (mπ/ 2, m = 1, 2, prolem ( x hs nontrivil solutions which re constnt multiples of X m (x = (mπx/. Another 1-D eigenvlue prolem ( y is solved similrly: If nd only if µ is one of the following vlues µ n = (nπ/ 2, n = 1, 2, prolem ( y hs nontrivil solutions which re constnt multiples of Y n (y = (nπy/. For λ = λ m nd µ = µ n, we now solve eqution (*, which ecomes T (t + c 2 (λ m + µ n T(t = t >. 3

4 u(x, t = The solutions re T(t = A cos(c λ m + µ n t + B (c λ m + µ n t = A cos(cπ (m/ 2 + (n/ 2 t + B (cπ (m/ 2 + (n/ 2 t. (CLASSIFICATION OF PRODUCT SOLUTIONS Thus, (triple-fctor product solution of (PDE-(BC must e of the form: u(x, y, t = A cos(cπ (m/ 2 + (n/ 2 t+b (cπ ] (m/ 2 + (n/ 2 t (mπx/ (nπy/, where m, n = 1, 2, 3,. (SOLUTION FORMULA FOR THE INIT-BDRY VAL PROBLEM The solution of the initil-oundry vlue prolem (PDE-(BC-(IC is given y: m=1 n=1 m,n cos(cπ (m/ 2 + (n/ 2 t+ m,n (cπ ] (m/ 2 + (n/ 2 t (mπx/ (nπy/, where m,n = 4 m,n = x= y= 4 cπ (m 2 + (n 2 f(x, y x= y= dxdy, g(x, y dxdy, for m, n = 1, 2, 3,. 4

5 EXERCISES 1] Consider the 2-D wve eqution for virting rectngulr memrne, with the motion of the top nd ottom sides free, nd with the displcement of the left nd right sides fixed t zero: (1 u tt u xx u yy = < x <, < y <, t >, (2i u y (x,, t =, u y (x,, t = x, y, t >, (2ii u(, y, t =, u(, y, t = y, t >, (3 u(x, y, = f(x, y, u t (x, y, = g(x, y < x <, < y <. ( Find ll nontrivil solutions u(x, y, t to (1-(2 of the form u(x, y, t = X(xY (yt(t. ( Find the Fourier series solution formul for (1-(2-(3 with the generl initil dt f(x, y nd g(x, y. (c Find the Fourier series formul in the cse where f(x, y = xy, g(x, y =. 2] Consider the 3-D wve eqution in 3-D ox with zero displcement on the oundry: (4 u tt u xx u yy u zz = < x <, < y <, < z < c, t >, (5 u(, y, z, t = u(, y, z, t = u(x,, z, t = u(x,, z, t = u(x, y,, t = u(x, y, c, t = < x <, < y <, < z < c, t >, (6 u(x, y, z, = f(x, y, z, u t (x, y, z, = g(x, y, z < x <, < y <, < z < c. ( Find ll nontrivil solutions u(x, y, z, t to (4-(5 of the form u(x, y, z, t = X(xY (yz(zt(t. ( Find the Fourier series solution formul for (4-(5-(6 with the generl initil dt f(x, y, z nd g(x, y, z. (See next pge for the nswers 5

6 ANSWERS: 1] ( ( u(x, y, t = cos A cos(π (m/ 2 + (n/ 2 t + B (π ] (m/ 2 + (n/ 2 t, where m is ny positive integer, n is ny nonnegtive integer, nd A, B re constnts. u(x, y, t = m=1 n= cos m,n cos(π (m/ 2 + (n/ 2 t + m,n (π ] (m/ 2 + (n/ 2 t, 2] ( where m, = 2 f(x, y x= y= m,n = 4 f(x, y cos x= y= m, = 2 g(x, y mπ x= y= 4 m,n = π g(x, y (m 2 + (n 2 m=1 x= y= dxdy (m 1 dxdy (m 1, n 1 dxdy (m 1 ( 1 m+1 ( mπt (c u(x, y, t = cos mπ + m=1 n=1 4( 1 m {1 ( 1 n } mn 2 π 3 cos cos dxdy (m 1, n 1 cos(π (m/ 2 + (n/ 2 t ( kπz u(x, y, z, t = c A cos(π (m/ 2 + (n/ 2 + (k/c 2 t + B (π ] (m/ 2 + (n/ 2 + (k/c 2 t, ( where m, n, k re positive integers nd A, B re constnts. ( kπz u(x, y, z, t = c m=1 n=1 k=1 m,n,k cos(π (m/ 2 + (n/ 2 + (k/c 2 t + m,n,k (π ] (m/ 2 + (n/ 2 + (k/c 2 t, 6

7 where m,n,k = 8 c m,n,k = c f(x, y, z 8 π (mc 2 + (nc 2 + (k 2 for m 1, n 1, k 1. c ( kπz c g(x, y, z dxdydz ( kπz c dxdydz, 7

### (PDE) u t k(u xx + u yy ) = 0 (x, y) in Ω, t > 0, (BC) u(x, y, t) = 0 (x, y) on Γ, t > 0, (IC) u(x, y, 0) = f(x, y) (x, y) in Ω.

Seprtion of Vriles for Higher Dimensionl Het Eqution 1. Het Eqution nd Eigenfunctions of the Lplcin: An 2-D Exmple Ojective: Let Ω e plnr region with oundry curve Γ. Consider het conduction in Ω with fixed

### Differential Equations 2 Homework 5 Solutions to the Assigned Exercises

Differentil Equtions Homework Solutions to the Assigned Exercises, # 3 Consider the dmped string prolem u tt + 3u t = u xx, < x , u, t = u, t =, t >, ux, = fx, u t x, = gx. In the exm you were supposed

### The Dirichlet Problem in a Two Dimensional Rectangle. Section 13.5

The Dirichlet Prolem in Two Dimensionl Rectngle Section 13.5 1 Dirichlet Prolem in Rectngle In these notes we will pply the method of seprtion of vriles to otin solutions to elliptic prolems in rectngle

### Wave Equation on a Two Dimensional Rectangle

Wve Eqution on Two Dimensionl Rectngle In these notes we re concerned with ppliction of the method of seprtion of vriles pplied to the wve eqution in two dimensionl rectngle. Thus we consider u tt = c

### 10 Elliptic equations

1 Elliptic equtions Sections 7.1, 7.2, 7.3, 7.7.1, An Introduction to Prtil Differentil Equtions, Pinchover nd Ruinstein We consider the two-dimensionl Lplce eqution on the domin D, More generl eqution

### MA 201: Partial Differential Equations Lecture - 12

Two dimensionl Lplce Eqution MA 201: Prtil Differentil Equtions Lecture - 12 The Lplce Eqution (the cnonicl elliptic eqution) Two dimensionl Lplce Eqution Two dimensionl Lplce Eqution 2 u = u xx + u yy

### Module 9: The Method of Green s Functions

Module 9: The Method of Green s Functions The method of Green s functions is n importnt technique for solving oundry vlue nd, initil nd oundry vlue prolems for prtil differentil equtions. In this module,

### Lecture 24: Laplace s Equation

Introductory lecture notes on Prtil Differentil Equtions - c Anthony Peirce. Not to e copied, used, or revised without explicit written permission from the copyright owner. 1 Lecture 24: Lplce s Eqution

### 1 2-D Second Order Equations: Separation of Variables

Chpter 12 PDEs in Rectngles 1 2-D Second Order Equtions: Seprtion of Vribles 1. A second order liner prtil differentil eqution in two vribles x nd y is A 2 u x + B 2 u 2 x y + C 2 u y + D u 2 x + E u +

### Summary: Method of Separation of Variables

Physics 246 Electricity nd Mgnetism I, Fll 26, Lecture 22 1 Summry: Method of Seprtion of Vribles 1. Seprtion of Vribles in Crtesin Coordintes 2. Fourier Series Suggested Reding: Griffiths: Chpter 3, Section

### M344 - ADVANCED ENGINEERING MATHEMATICS

M3 - ADVANCED ENGINEERING MATHEMATICS Lecture 18: Lplce s Eqution, Anltic nd Numericl Solution Our emple of n elliptic prtil differentil eqution is Lplce s eqution, lso clled the Diffusion Eqution. If

### 1 E3102: a study guide and review, Version 1.0

1 E3102: study guide nd review, Version 1.0 Here is list of subjects tht I think we ve covered in clss (your milege my vry). If you understnd nd cn do the bsic problems in this guide you should be in very

### Section 3.2 Maximum Principle and Uniqueness

Section 3. Mximum Principle nd Uniqueness Let u (x; y) e smooth solution in. Then the mximum vlue exists nd is nite. (x ; y ) ; i.e., M mx fu (x; y) j (x; y) in g Furthermore, this vlue cn e otined y point

### 1 1D heat and wave equations on a finite interval

1 1D het nd wve equtions on finite intervl In this section we consider generl method of seprtion of vribles nd its pplictions to solving het eqution nd wve eqution on finite intervl ( 1, 2. Since by trnsltion

### APM346H1 Differential Equations. = u x, u = u. y, and u x, y =?. = 2 u t and u xx= 2 u. x,t, where u t. x, y, z,t u zz. x, y, z,t u yy.

INTRODUCTION Types of Prtil Differentil Equtions Trnsport eqution: u x x, yu y x, y=, where u x = u x, u = u y, nd u x, y=?. y Shockwve eqution: u x x, yu x, yu y x, y=. The virting string eqution: u tt

### Chapter Five - Eigenvalues, Eigenfunctions, and All That

Chpter Five - Eigenvlues, Eigenfunctions, n All Tht The prtil ifferentil eqution methos escrie in the previous chpter is specil cse of more generl setting in which we hve n eqution of the form L 1 xux,tl

### Waveguide Guide: A and V. Ross L. Spencer

Wveguide Guide: A nd V Ross L. Spencer I relly think tht wveguide fields re esier to understnd using the potentils A nd V thn they re using the electric nd mgnetic fields. Since Griffiths doesn t do it

### Consequently, the temperature must be the same at each point in the cross section at x. Let:

HW 2 Comments: L1-3. Derive the het eqution for n inhomogeneous rod where the therml coefficients used in the derivtion of the het eqution for homogeneous rod now become functions of position x in the

### AM1 Mathematical Analysis 1 Oct Feb Exercises Lecture 3. sin(x + h) sin x h cos(x + h) cos x h

AM Mthemticl Anlysis Oct. Feb. Dte: October Exercises Lecture Exercise.. If h, prove the following identities hold for ll x: sin(x + h) sin x h cos(x + h) cos x h = sin γ γ = sin γ γ cos(x + γ) (.) sin(x

### The Wave Equation I. MA 436 Kurt Bryan

1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

### Partial Differential Equations

Prtil Differentil Equtions Notes by Robert Piché, Tmpere University of Technology reen s Functions. reen s Function for One-Dimensionl Eqution The reen s function provides complete solution to boundry

### dx dt dy = G(t, x, y), dt where the functions are defined on I Ω, and are locally Lipschitz w.r.t. variable (x, y) Ω.

Chpter 8 Stility theory We discuss properties of solutions of first order two dimensionl system, nd stility theory for specil clss of liner systems. We denote the independent vrile y t in plce of x, nd

### MA FINAL EXAM INSTRUCTIONS

MA 33 FINAL EXAM INSTRUCTIONS NAME INSTRUCTOR. Intructor nme: Chen, Dong, Howrd, or Lundberg 2. Coure number: MA33. 3. SECTION NUMBERS: 6 for MWF :3AM-:2AM REC 33 cl by Erik Lundberg 7 for MWF :3AM-:2AM

### 1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation

1 1.1. Liner Constnt Coefficient Equtions Section Objective(s): Overview of Differentil Equtions. Liner Differentil Equtions. Solving Liner Differentil Equtions. The Initil Vlue Problem. 1.1.1. Overview

### Energy Bands Energy Bands and Band Gap. Phys463.nb Phenomenon

Phys463.nb 49 7 Energy Bnds Ref: textbook, Chpter 7 Q: Why re there insultors nd conductors? Q: Wht will hppen when n electron moves in crystl? In the previous chpter, we discussed free electron gses,

### (9) P (x)u + Q(x)u + R(x)u =0

STURM-LIOUVILLE THEORY 7 2. Second order liner ordinry differentil equtions 2.1. Recll some sic results. A second order liner ordinry differentil eqution (ODE) hs the form (9) P (x)u + Q(x)u + R(x)u =0

### AMS 212A Applied Mathematical Methods I Lecture 06 Copyright by Hongyun Wang, UCSC. ( ), v (that is, 1 ( ) L i

AMS A Applied Mthemticl Methods I Lecture 6 Copyright y Hongyun Wng, UCSC Recp of Lecture 5 Clssifiction of oundry conditions Dirichlet eumnn Mixed Adjoint opertor, self-djoint opertor Sturm-Liouville

### Suggested Solution to Assignment 5

MATH 4 (5-6) prti diferenti equtions Suggested Soution to Assignment 5 Exercise 5.. () (b) A m = A m = = ( )m+ mπ x sin mπx dx = x mπ cos mπx + + 4( )m 4 m π. 4x cos mπx dx mπ x cos mπxdx = x mπ sin mπx

### Green function and Eigenfunctions

Green function nd Eigenfunctions Let L e regulr Sturm-Liouville opertor on n intervl (, ) together with regulr oundry conditions. We denote y, φ ( n, x ) the eigenvlues nd corresponding normlized eigenfunctions

### REVIEW Chapter 1 The Real Number System

Mth 7 REVIEW Chpter The Rel Number System In clss work: Solve ll exercises. (Sections. &. Definition A set is collection of objects (elements. The Set of Nturl Numbers N N = {,,,, 5, } The Set of Whole

### Math Fall 2006 Sample problems for the final exam: Solutions

Mth 42-5 Fll 26 Smple problems for the finl exm: Solutions Any problem my be ltered or replced by different one! Some possibly useful informtion Prsevl s equlity for the complex form of the Fourier series

### Variational Techniques for Sturm-Liouville Eigenvalue Problems

Vritionl Techniques for Sturm-Liouville Eigenvlue Problems Vlerie Cormni Deprtment of Mthemtics nd Sttistics University of Nebrsk, Lincoln Lincoln, NE 68588 Emil: vcormni@mth.unl.edu Rolf Ryhm Deprtment

### Math 5440 Problem Set 3 Solutions

Mth 544 Mth 544 Problem Set 3 Solutions Aron Fogelson Fll, 213 1: (Logn, 1.5 # 2) Repet the derivtion for the eqution of motion of vibrting string when, in ddition, the verticl motion is retrded by dmping

### Bridging the gap: GCSE AS Level

Bridging the gp: GCSE AS Level CONTENTS Chpter Removing rckets pge Chpter Liner equtions Chpter Simultneous equtions 8 Chpter Fctors 0 Chpter Chnge the suject of the formul Chpter 6 Solving qudrtic equtions

### 3 Mathematics of the Poisson Equation

3 Mthemtics of the Poisson Eqution 3. Green functions nd the Poisson eqution () The Dirichlet Green function stisfies the Poisson eqution with delt-function chrge 2 G D (r, r o ) = δ 3 (r r o ) (3.) nd

### STURM-LIOUVILLE THEORY, VARIATIONAL APPROACH

STURM-LIOUVILLE THEORY, VARIATIONAL APPROACH XIAO-BIAO LIN. Qudrtic functionl nd the Euler-Jcobi Eqution The purpose of this note is to study the Sturm-Liouville problem. We use the vritionl problem s

### MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

MA123, Chpter 1: Formuls for integrls: integrls, ntiderivtives, nd the Fundmentl Theorem of Clculus (pp. 27-233, Gootmn) Chpter Gols: Assignments: Understnd the sttement of the Fundmentl Theorem of Clculus.

### Torsion in Groups of Integral Triangles

Advnces in Pure Mthemtics, 01,, 116-10 http://dxdoiorg/1046/pm011015 Pulished Online Jnury 01 (http://wwwscirporg/journl/pm) Torsion in Groups of Integrl Tringles Will Murry Deprtment of Mthemtics nd Sttistics,

### Partial Derivatives. Limits. For a single variable function f (x), the limit lim

Limits Prtil Derivtives For single vrible function f (x), the limit lim x f (x) exists only if the right-hnd side limit equls to the left-hnd side limit, i.e., lim f (x) = lim f (x). x x + For two vribles

### The Regulated and Riemann Integrals

Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

### PDE Notes. Paul Carnig. January ODE s vs PDE s 1

PDE Notes Pul Crnig Jnury 2014 Contents 1 ODE s vs PDE s 1 2 Section 1.2 Het diffusion Eqution 1 2.1 Fourier s w of Het Conduction............................. 2 2.2 Energy Conservtion.....................................

### Mathematics. Area under Curve.

Mthemtics Are under Curve www.testprepkrt.com Tle of Content 1. Introduction.. Procedure of Curve Sketching. 3. Sketching of Some common Curves. 4. Are of Bounded Regions. 5. Sign convention for finding

### Chapter 5. , r = r 1 r 2 (1) µ = m 1 m 2. r, r 2 = R µ m 2. R(m 1 + m 2 ) + m 2 r = r 1. m 2. r = r 1. R + µ m 1

Tor Kjellsson Stockholm University Chpter 5 5. Strting with the following informtion: R = m r + m r m + m, r = r r we wnt to derive: µ = m m m + m r = R + µ m r, r = R µ m r 3 = µ m R + r, = µ m R r. 4

### 1 E3102: A study guide and review, Version 1.2

1 E3102: A study guide nd review, Version 1.2 Here is list of subjects tht I think we ve covered in clss (your milege my vry). If you understnd nd cn do the bsic problems in this guide you should be in

### Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation.

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: y y x y2 = 0 : homogeneous equation. x2 v = y dy, y = vx, and x v + x dv dx = v + v2. dx =

### 13: Diffusion in 2 Energy Groups

3: Diffusion in Energy Groups B. Rouben McMster University Course EP 4D3/6D3 Nucler Rector Anlysis (Rector Physics) 5 Sept.-Dec. 5 September Contents We study the diffusion eqution in two energy groups

### Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner

### Section 4: Integration ECO4112F 2011

Reding: Ching Chpter Section : Integrtion ECOF Note: These notes do not fully cover the mteril in Ching, ut re ment to supplement your reding in Ching. Thus fr the optimistion you hve covered hs een sttic

### Thomas Whitham Sixth Form

Thoms Whithm Sith Form Pure Mthemtics Unit C Alger Trigonometry Geometry Clculus Vectors Trigonometry Compound ngle formule sin sin cos cos Pge A B sin Acos B cos Asin B A B sin Acos B cos Asin B A B cos

### Math 124A October 04, 2011

Mth 4A October 04, 0 Viktor Grigoryn 4 Vibrtions nd het flow In this lecture we will derive the wve nd het equtions from physicl principles. These re second order constnt coefficient liner PEs, which model

### Chapter 6 Techniques of Integration

MA Techniques of Integrtion Asst.Prof.Dr.Suprnee Liswdi Chpter 6 Techniques of Integrtion Recll: Some importnt integrls tht we hve lernt so fr. Tle of Integrls n+ n d = + C n + e d = e + C ( n ) d = ln

### Topics Covered AP Calculus AB

Topics Covered AP Clculus AB ) Elementry Functions ) Properties of Functions i) A function f is defined s set of ll ordered pirs (, y), such tht for ech element, there corresponds ectly one element y.

### Math 5440 Problem Set 3 Solutions

Mth 544 Mth 544 Problem Set 3 Solutions Aron Fogelson Fll, 25 1: Logn, 1.5 # 2) Repet the derivtion for the eqution of motion of vibrting string when, in ddition, the verticl motion is retrded by dmping

### MATH 423 Linear Algebra II Lecture 28: Inner product spaces.

MATH 423 Liner Algebr II Lecture 28: Inner product spces. Norm The notion of norm generlizes the notion of length of vector in R 3. Definition. Let V be vector spce over F, where F = R or C. A function

### Polynomials and Division Theory

Higher Checklist (Unit ) Higher Checklist (Unit ) Polynomils nd Division Theory Skill Achieved? Know tht polynomil (expression) is of the form: n x + n x n + n x n + + n x + x + 0 where the i R re the

### Brief Notes For Math 3710

Brief Notes For Mth 371 Afshin Ghoreishi Fll 13 Contents Prefce iii -1 Hndouts 1 -.9 Hndouts.............................................. 1 Introduction 15 1 Fourier Series 18 1.1 Periodic Functions nd

### Linear Systems with Constant Coefficients

Liner Systems with Constnt Coefficients 4-3-05 Here is system of n differentil equtions in n unknowns: x x + + n x n, x x + + n x n, x n n x + + nn x n This is constnt coefficient liner homogeneous system

### Sturm-Liouville Eigenvalue problem: Let p(x) > 0, q(x) 0, r(x) 0 in I = (a, b). Here we assume b > a. Let X C 2 1

Ch.4. INTEGRAL EQUATIONS AND GREEN S FUNCTIONS Ronld B Guenther nd John W Lee, Prtil Differentil Equtions of Mthemticl Physics nd Integrl Equtions. Hildebrnd, Methods of Applied Mthemtics, second edition

### The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O

1 Section 5. The Definite Integrl Suppose tht function f is continuous nd positive over n intervl [, ]. y = f(x) x The re under the grph of f nd ove the x-xis etween nd is denoted y f(x) dx nd clled the

### Module 6: LINEAR TRANSFORMATIONS

Module 6: LINEAR TRANSFORMATIONS. Trnsformtions nd mtrices Trnsformtions re generliztions of functions. A vector x in some set S n is mpped into m nother vector y T( x). A trnsformtion is liner if, for

### Phys. 506 Electricity and Magnetism Winter 2004 Prof. G. Raithel Problem Set 1 Total 30 Points. 1. Jackson Points

Phys. 56 Electricity nd Mgnetism Winter 4 Prof. G. Rithel Prolem Set Totl 3 Points. Jckson 8. Points : The electric field is the sme s in the -dimensionl electrosttic prolem of two concentric cylinders,

### 1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt

### Simple Harmonic Motion I Sem

Simple Hrmonic Motion I Sem Sllus: Differentil eqution of liner SHM. Energ of prticle, potentil energ nd kinetic energ (derivtion), Composition of two rectngulr SHM s hving sme periods, Lissjous figures.

### 5.4, 6.1, 6.2 Handout. As we ve discussed, the integral is in some way the opposite of taking a derivative. The exact relationship

5.4, 6.1, 6.2 Hnout As we ve iscusse, the integrl is in some wy the opposite of tking erivtive. The exct reltionship is given by the Funmentl Theorem of Clculus: The Funmentl Theorem of Clculus: If f is

### Abstract inner product spaces

WEEK 4 Abstrct inner product spces Definition An inner product spce is vector spce V over the rel field R equipped with rule for multiplying vectors, such tht the product of two vectors is sclr, nd the

### A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

### STRAND J: TRANSFORMATIONS, VECTORS and MATRICES

Mthemtics SKE: STRN J STRN J: TRNSFORMTIONS, VETORS nd MTRIES J3 Vectors Text ontents Section J3.1 Vectors nd Sclrs * J3. Vectors nd Geometry Mthemtics SKE: STRN J J3 Vectors J3.1 Vectors nd Sclrs Vectors

### Pressure Wave Analysis of a Cylindrical Drum

Pressure Wve Anlysis of Cylindricl Drum Chris Clrk, Brin Anderson, Brin Thoms, nd Josh Symonds Deprtment of Mthemtics The University of Rochester, Rochester, NY 4627 (Dted: December, 24 In this pper, hypotheticl

### 7.3 Problem 7.3. ~B(~x) = ~ k ~ E(~x)=! but we also have a reected wave. ~E(~x) = ~ E 2 e i~ k 2 ~x i!t. ~B R (~x) = ~ k R ~ E R (~x)=!

7. Problem 7. We hve two semi-innite slbs of dielectric mteril with nd equl indices of refrction n >, with n ir g (n ) of thickness d between them. Let the surfces be in the x; y lne, with the g being

### 2. THE HEAT EQUATION (Joseph FOURIER ( ) in 1807; Théorie analytique de la chaleur, 1822).

mpc2w4.tex Week 4. 2.11.2011 2. THE HEAT EQUATION (Joseph FOURIER (1768-1830) in 1807; Théorie nlytique de l chleur, 1822). One dimension. Consider uniform br (of some mteril, sy metl, tht conducts het),

### c n φ n (x), 0 < x < L, (1) n=1

SECTION : Fourier Series. MATH4. In section 4, we will study method clled Seprtion of Vribles for finding exct solutions to certin clss of prtil differentil equtions (PDEs. To do this, it will be necessry

### Review of Gaussian Quadrature method

Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge

### u t = k 2 u x 2 (1) a n sin nπx sin 2 L e k(nπ/l) t f(x) = sin nπx f(x) sin nπx dx (6) 2 L f(x 0 ) sin nπx 0 2 L sin nπx 0 nπx

Chpter 9: Green s functions for time-independent problems Introductory emples One-dimensionl het eqution Consider the one-dimensionl het eqution with boundry conditions nd initil condition We lredy know

### Recitation 3: More Applications of the Derivative

Mth 1c TA: Pdric Brtlett Recittion 3: More Applictions of the Derivtive Week 3 Cltech 2012 1 Rndom Question Question 1 A grph consists of the following: A set V of vertices. A set E of edges where ech

### Bases for Vector Spaces

Bses for Vector Spces 2-26-25 A set is independent if, roughly speking, there is no redundncy in the set: You cn t uild ny vector in the set s liner comintion of the others A set spns if you cn uild everything

### DEFINITION The inner product of two functions f 1 and f 2 on an interval [a, b] is the number. ( f 1, f 2 ) b DEFINITION 11.1.

398 CHAPTER 11 ORTHOGONAL FUNCTIONS AND FOURIER SERIES 11.1 ORTHOGONAL FUNCTIONS REVIEW MATERIAL The notions of generlized vectors nd vector spces cn e found in ny liner lger text. INTRODUCTION The concepts

### dy ky, dt where proportionality constant k may be positive or negative

Section 1.2 Autonomous DEs of the form 0 The DE y is mthemticl model for wide vriety of pplictions. Some of the pplictions re descried y sying the rte of chnge of y(t) is proportionl to the mount present.

### Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors

Vectors Skill Achieved? Know tht sclr is quntity tht hs only size (no direction) Identify rel-life exmples of sclrs such s, temperture, mss, distnce, time, speed, energy nd electric chrge Know tht vector

### Patch Antennas. Chapter Resonant Cavity Analysis

Chpter 4 Ptch Antenns A ptch ntenn is low-profile ntenn consisting of metl lyer over dielectric sustrte nd ground plne. Typiclly, ptch ntenn is fed y microstrip trnsmission line, ut other feed lines such

### Chapter 8.2: The Integral

Chpter 8.: The Integrl You cn think of Clculus s doule-wide triler. In one width of it lives differentil clculus. In the other hlf lives wht is clled integrl clculus. We hve lredy eplored few rooms in

### STURM-LIOUVILLE PROBLEMS: GENERALIZED FOURIER SERIES

STURM-LIOUVILLE PROBLEMS: GENERALIZED FOURIER SERIES 1. Regulr Sturm-Liouville Problem The method of seprtion of vribles to solve boundry vlue problems leds to ordinry differentil equtions on intervls

### Applied Partial Differential Equations with Fourier Series and Boundary Value Problems 5th Edition Richard Haberman

Applied Prtil Differentil Equtions with Fourier Series nd Boundry Vlue Problems 5th Edition Richrd Hbermn Person Eduction Limited Edinburgh Gte Hrlow Essex CM20 2JE Englnd nd Associted Compnies throughout

### Separation of Variables in Linear PDE

Seprtion of Vribles in Liner PDE Now we pply the theory of Hilbert spces to liner differentil equtions with prtil derivtives (PDE). We strt with prticulr exmple, the one-dimensionl (1D) wve eqution 2 u

### Matrix Algebra. Matrix Addition, Scalar Multiplication and Transposition. Linear Algebra I 24

Mtrix lger Mtrix ddition, Sclr Multipliction nd rnsposition Mtrix lger Section.. Mtrix ddition, Sclr Multipliction nd rnsposition rectngulr rry of numers is clled mtrix ( the plurl is mtrices ) nd the

### Chapter 3 The Schrödinger Equation and a Particle in a Box

Chpter 3 The Schrödinger Eqution nd Prticle in Bo Bckground: We re finlly ble to introduce the Schrödinger eqution nd the first quntum mechnicl model prticle in bo. This eqution is the bsis of quntum mechnics

### Elliptic Equations. Laplace equation on bounded domains Circular Domains

Elliptic Equtions Lplce eqution on bounded domins Sections 7.7.2, 7.7.3, An Introduction to Prtil Differentil Equtions, Pinchover nd Rubinstein 1.2 Circulr Domins We study the two-dimensionl Lplce eqution

### Sturm-Liouville Theory

LECTURE 1 Sturm-Liouville Theory In the two preceing lectures I emonstrte the utility of Fourier series in solving PDE/BVPs. As we ll now see, Fourier series re just the tip of the iceerg of the theory

### ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac

REVIEW OF ALGEBRA Here we review the bsic rules nd procedures of lgebr tht you need to know in order to be successful in clculus. ARITHMETIC OPERATIONS The rel numbers hve the following properties: b b

### Designing Information Devices and Systems I Discussion 8B

Lst Updted: 2018-10-17 19:40 1 EECS 16A Fll 2018 Designing Informtion Devices nd Systems I Discussion 8B 1. Why Bother With Thévenin Anywy? () Find Thévenin eqiuvlent for the circuit shown elow. 2kΩ 5V

### MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1

MATH34032: Green s Functions, Integrl Equtions nd the Clculus of Vritions 1 Section 1 Function spces nd opertors Here we gives some brief detils nd definitions, prticulrly relting to opertors. For further

### Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as

Improper Integrls Two different types of integrls cn qulify s improper. The first type of improper integrl (which we will refer to s Type I) involves evluting n integrl over n infinite region. In the grph

### k and v = v 1 j + u 3 i + v 2

ORTHOGONAL FUNCTIONS AND FOURIER SERIES Orthogonl functions A function cn e considered to e generliztion of vector. Thus the vector concets like the inner roduct nd orthogonlity of vectors cn e extended

### Riemann is the Mann! (But Lebesgue may besgue to differ.)

Riemnn is the Mnn! (But Lebesgue my besgue to differ.) Leo Livshits My 2, 2008 1 For finite intervls in R We hve seen in clss tht every continuous function f : [, b] R hs the property tht for every ɛ >

### Indefinite Integral. Chapter Integration - reverse of differentiation

Chpter Indefinite Integrl Most of the mthemticl opertions hve inverse opertions. The inverse opertion of differentition is clled integrtion. For exmple, describing process t the given moment knowing the

### ( ) Same as above but m = f x = f x - symmetric to y-axis. find where f ( x) Relative: Find where f ( x) x a + lim exists ( lim f exists.

AP Clculus Finl Review Sheet solutions When you see the words This is wht you think of doing Find the zeros Set function =, fctor or use qudrtic eqution if qudrtic, grph to find zeros on clcultor Find

### Integral equations, eigenvalue, function interpolation

Integrl equtions, eigenvlue, function interpoltion Mrcin Chrząszcz mchrzsz@cernch Monte Crlo methods, 26 My, 2016 1 / Mrcin Chrząszcz (Universität Zürich) Integrl equtions, eigenvlue, function interpoltion

### Chapter 3. Vector Spaces

3.4 Liner Trnsformtions 1 Chpter 3. Vector Spces 3.4 Liner Trnsformtions Note. We hve lredy studied liner trnsformtions from R n into R m. Now we look t liner trnsformtions from one generl vector spce

### Definite Integrals. The area under a curve can be approximated by adding up the areas of rectangles = 1 1 +

Definite Integrls --5 The re under curve cn e pproximted y dding up the res of rectngles. Exmple. Approximte the re under y = from x = to x = using equl suintervls nd + x evluting the function t the left-hnd