(9) P (x)u + Q(x)u + R(x)u =0


 Magnus Montgomery
 1 years ago
 Views:
Transcription
1 STURMLIOUVILLE THEORY 7 2. Second order liner ordinry differentil equtions 2.1. Recll some sic results. A second order liner ordinry differentil eqution (ODE) hs the form (9) P (x)u + Q(x)u + R(x)u =0 Becuse the eqution is liner, ny liner comintion of solutions is gin solution: if u 1,u 2 re solutions of (9) nd c 1,c 2 re constnts then c 1 u 1 (x)+c 2 u 2 (x) is lso solution of (9). Assumtions. 1) It is ssumed ssume tht the coefficients P (x),q(x),r(x) re continuous on n intervl [, ]. (However, jum discontinuities do er in lictions, nd cn lso e ccommodted; we will discuss this lter.) 2) It is ssumed tht P (x) does not vnish in [, ]. Though, we will sometimes let P vnish t or. (Points where P (x) is zero re singulr, solutions re usully very secil t such oints, nd cre is needed.) 3) It cn e ssumed without loss of generlity tht P (x) > 0 on (, ). (Since P (x) is never zero on (, ), nd it is continuous, then P (x) iseither ositive on (, ) or negtive on (, ). If P < 0 we multily the eqution y 1.) Existence nd uniqueness of solution to the initil vlue rolem: given x 0 [, ], so tht P (x 0 ) = 0 nd given the numers u 0,u 0 then there exists unique solution u(x) of (9) so tht u(x 0 )=u 0 nd u (x 0 )=u 0. This solution u(x) is twice differentile (moreover, u is continuous, s it is seen from (9)), nd it deends continuously on the initil conditions. Generl solution. There exist two linerly indeendent solutions of (9): u 1 (x),u 2 (x) solutions for x (, ) so tht the vectors (u 1 (x),u 1 (x)) nd (u 2(x),u 2 (x)) re linerly indeendent t ll x (, ). In fct, u 1 (x),u 2 (x) re linerly indeendent t ll x (, ) is equivlent to u 1 (x 0 ),u 2 (x 0 ) re linerly indeendent t some x 0 (, ). For exmle, the solutions with the initil conditions u 1 (x 0 )=1,u 1 (x 0)= 0 nd u 2 (x 0 )=0,u 2 (x 0) = 1 re linerly indeendent. Any solution of (9) is liner comintion of two indeendent solutions: (10) u(x) =C 1 u 1 (x)+c 2 u 2 (x) for some constnts C 1,2. In fct, C 1 u 1 (x) +C 2 u 2 (x) withc 1,2 ritrry rmeters is clled the generl solution of (9). So the set of ll the solutions of (9) form liner sce of dimension two (the dimension equls the order of the eqution). Note: The generl solution deends on two rmeters, so it mkes sense tht two conditions re required to determine these rmeters. However, there is no riori gurntee tht solutions stisfying different tyes of rolems, like oundry conditions, do exist.
2 8 RODICA D. COSTIN An equivlent condition for two solutions to e linerly indeendent is tht their Wronskin W [u 1,u 2 ]=u 1u 2 u 1 u 2 stisfies W (x) = 0 for ll x (, ) (equivlently, t some x 0 (, )). Recll tht the Wronskin stisfies the differentil eqution (11) W (x) = Q(x) P (x) W (x) nd therefore W (x) =C ex Q(x) 2.2. The selfdjoint form of liner second order eqution. Consider eigenvlue rolems for equtions (9): (12) P (x)u + Q(x)u + R(x)u + λu =0 We will now show tht ny eqution (12) cn e written in selfdjoint form: 1 (13) d w(x) dx (x)du dx + q(x) u = λu or, exnded, (14) u +( q + λw)u =0 where (x),q(x),w(x) re functions which we will determine now. Exnding the left hndside of (13) we otin which must e (12), therefore w u + w u + q w + λ u =0 w = P, w = Q, q w = R The first two equtions imly tht / = Q/P therefore Q(x) (15) (x) =ex Then since w = /P nd q = wr we otin (16) w(x) = 1 Q(x) P (x) ex, q(x) = R(x) P (x) ex Q(x)
3 STURMLIOUVILLE THEORY Homogeneous oundry conditions. These conditions re usully inherited from the PDEs which roduced the ODE (12) y sertion of vriles. If the vlues on the oundry re not zero, sustitutions cn often e mde to ensure zero vlues on the oundry: these re clled homogeneous oundry conditions. These could hve the form: Dirichlet conditions: u() = 0, u() = 0, or Newmn conditions: u () =0, u () = 0, or Mixed DirichletNewmn conditions: (17) B [u] αu()+α u () =0 B [u] βu()+β u () =0 where α, α,β,β re constnts. The mixed conditions re the most generl, s they hve the Dirichlet nd the Neumn conditions s rticulr cses (if α =0=β we otin Dirichlet conditions, nd if α = 0 = β we otin Newmn conditions). Therefore we work with the generl mixed DirichletNewmn conditions. Note: B,B re liner functionls of u. It must e ssumed tht the oundry conditions re nontrivil: the liner functionls B,B re not identiclly zero; this mens tht t lest one of the numers α, α is not zero (note tht this condition cn e written s α + α = 0), nd similrly, t lest one of the numers β,β is not zero (i.e. β + β = 0) Another wy of writing B [u], B [u]. Clerly if we multily α nd α y the sme constnt, we otin the sme oundry condition B [u], nd similrly for β nd β in B [u]. It is sometimes convenient (nd lwys ossile!) to choose these in the form (18) B [u] cos(θ )u() sin(θ )()u () =0 B [u] cos(θ )u() sin(θ )()u () =0 which re very suitle for Prüfer coordintes. The trnsformtion which rings (17) in the form (18) is the following: dividing α nd α y the quntity ± α 2 +(α /()) 2 with the sign chosen to e oosite to the sign of α, we otin B [u] = 0 in the form α 1 u() α 2 ()u () = 0 where α α2 2 = 1 nd α 2 0 therefore there exists θ [0,π) so tht α 1 = cos(θ ) nd α 2 = sin(θ ) (we choose θ <π/2if α 1 > 0 nd θ >π/2ifα 1 < 0). A similr trnsformtion cn e erformed on B. Note tht we cn choose θ in [n, (n + 1)π) for ny integer n (if n is even, we roceed s for the condition t x =, whileifn is odd we choose the oosite sign in front of ± β 2 +(β /()) 2, nmely the sign of β ) Singulr oundry conditions. Other tye of conditions which er in lictions re:
4 10 RODICA D. COSTIN Periodic conditions: if () = () then it cn e required tht the solutions e eriodic: More generlly: u() =u(), nd u () =u () α 1 u()+α 1 u ()+β 1 u()+β 1 u () =0 α 2 u()+α 2 u ()+β 2 u()+β 2 u () =0 If vnishes t n endoint, sy () = 0: then the oundry condition t x = is droed Formultion of the homogeneous SturmLiouville rolem. We will consider relvlued rolems: the functions P, Q, R nd the numers α, α,β,β re rel. In cse comlex vlued functions re needed, then equtions cn e written nd sertely solved for the rel nd imginry rts of these functions. Note tht with this relity ssumtion we hve (x) > 0 nd w(x) > 0 (see (15), (16)). Given the functions, q, w continuous on [, ] nd, w > 0 on [, ], nd B [u], B [u] (nontrivil) find the numers λ so tht the following rolem hs nontrivil (i.e. nonzero) solution u(x) on [, ]: [(x)u ] +[ q(x)+λw(x)]u =0 (19) Boundry conditions t x = nd x = (20) The oundry conditions re one of the following: regulr conditions: B [u] αu()+α u () =0 ( α + α = 0) B [u] βu()+β u () =0 ( β + β = 0) singulr conditions: if () = 0: (21) B [u] αu()+α u () =0 ( α + α = 0) or, if () = 0: (22) B [u] βu()+β u () =0 ( β + β = 0) (23) or, if oth () = 0, () = 0, then no oundry conditions re ssumed eriodic conditions: (lso singulr) if () = () C[u] u() u() =0 C [u] u () u () =0 The numers λ re clled eigenvlues, nd the corresonding solutions  eigenfunctions.
5 STURMLIOUVILLE THEORY Green s Identity nd selfdjointness of the SturmLiouville oertor. We show here tht the rolem (19) is indeed selfdjoint. Let us first show generl formul: Lemm 1. Green s identity: (24) (u ) v u(v ) = (u v uv ) Reltion (24) follows esily using integrtion y rts: (u ) v u(v ) = (u ) v u(v ) = u v (u )v uv + u (v )=(u v uv )
Green function and Eigenfunctions
Green function nd Eigenfunctions Let L e regulr SturmLiouville opertor on n intervl (, ) together with regulr oundry conditions. We denote y, φ ( n, x ) the eigenvlues nd corresponding normlized eigenfunctions
More informationSTURMLIOUVILLE BOUNDARY VALUE PROBLEMS
STURMLIOUVILLE BOUNDARY VALUE PROBLEMS Throughout, we let [, b] be bounded intervl in R. C 2 ([, b]) denotes the spce of functions with derivtives of second order continuous up to the endpoints. Cc 2
More informationk and v = v 1 j + u 3 i + v 2
ORTHOGONAL FUNCTIONS AND FOURIER SERIES Orthogonl functions A function cn e considered to e generliztion of vector. Thus the vector concets like the inner roduct nd orthogonlity of vectors cn e extended
More informationPhysics 116C Solution of inhomogeneous ordinary differential equations using Green s functions
Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner
More informationFamilies of Solutions to Bernoulli ODEs
In the fmily of solutions to the differentil eqution y ry dx + = it is shown tht vrition of the initil condition y( 0 = cuses horizontl shift in the solution curve y = f ( x, rther thn the verticl shift
More informationSturmLiouville Eigenvalue problem: Let p(x) > 0, q(x) 0, r(x) 0 in I = (a, b). Here we assume b > a. Let X C 2 1
Ch.4. INTEGRAL EQUATIONS AND GREEN S FUNCTIONS Ronld B Guenther nd John W Lee, Prtil Differentil Equtions of Mthemticl Physics nd Integrl Equtions. Hildebrnd, Methods of Applied Mthemtics, second edition
More informationVariational Techniques for SturmLiouville Eigenvalue Problems
Vritionl Techniques for SturmLiouville Eigenvlue Problems Vlerie Cormni Deprtment of Mthemtics nd Sttistics University of Nebrsk, Lincoln Lincoln, NE 68588 Emil: vcormni@mth.unl.edu Rolf Ryhm Deprtment
More information1 2D Second Order Equations: Separation of Variables
Chpter 12 PDEs in Rectngles 1 2D Second Order Equtions: Seprtion of Vribles 1. A second order liner prtil differentil eqution in two vribles x nd y is A 2 u x + B 2 u 2 x y + C 2 u y + D u 2 x + E u +
More informationWave Equation on a Two Dimensional Rectangle
Wve Eqution on Two Dimensionl Rectngle In these notes we re concerned with ppliction of the method of seprtion of vriles pplied to the wve eqution in two dimensionl rectngle. Thus we consider u tt = c
More informationAMS 212A Applied Mathematical Methods I Lecture 06 Copyright by Hongyun Wang, UCSC. ( ), v (that is, 1 ( ) L i
AMS A Applied Mthemticl Methods I Lecture 6 Copyright y Hongyun Wng, UCSC Recp of Lecture 5 Clssifiction of oundry conditions Dirichlet eumnn Mixed Adjoint opertor, selfdjoint opertor SturmLiouville
More information21.6 Green Functions for First Order Equations
21.6 Green Functions for First Order Equtions Consider the first order inhomogeneous eqution subject to homogeneous initil condition, B[y] y() = 0. The Green function G( ξ) is defined s the solution to
More informationConsequently, the temperature must be the same at each point in the cross section at x. Let:
HW 2 Comments: L13. Derive the het eqution for n inhomogeneous rod where the therml coefficients used in the derivtion of the het eqution for homogeneous rod now become functions of position x in the
More informationMath Fall 2006 Sample problems for the final exam: Solutions
Mth 425 Fll 26 Smple problems for the finl exm: Solutions Any problem my be ltered or replced by different one! Some possibly useful informtion Prsevl s equlity for the complex form of the Fourier series
More informationSTURMLIOUVILLE THEORY, VARIATIONAL APPROACH
STURMLIOUVILLE THEORY, VARIATIONAL APPROACH XIAOBIAO LIN. Qudrtic functionl nd the EulerJcobi Eqution The purpose of this note is to study the SturmLiouville problem. We use the vritionl problem s
More informationThe Dirichlet Problem in a Two Dimensional Rectangle. Section 13.5
The Dirichlet Prolem in Two Dimensionl Rectngle Section 13.5 1 Dirichlet Prolem in Rectngle In these notes we will pply the method of seprtion of vriles to otin solutions to elliptic prolems in rectngle
More informationMath Theory of Partial Differential Equations Lecture 29: SturmLiouville eigenvalue problems (continued).
Mth 412501 Theory of Prtil Differentil Equtions Lecture 29: SturmLiouville eigenvlue problems (continued). Regulr SturmLiouville eigenvlue problem: d ( p dφ ) + qφ + λσφ = 0 ( < x < b), dx dx β 1 φ()
More informationPartial Differential Equations
Prtil Differentil Equtions Notes by Robert Piché, Tmpere University of Technology reen s Functions. reen s Function for OneDimensionl Eqution The reen s function provides complete solution to boundry
More informationOPIAL S INEQUALITY AND OSCILLATION OF 2ND ORDER EQUATIONS. 1. Introduction We consider the secondorder linear differential equation.
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 5, Numer, Aril 997, Pges 3 9 S 000993997)039075 OPIAL S INEQUALITY AND OSCILLATION OF ND ORDER EQUATIONS R C BROWN AND D B HINTON Communicted y
More informationMath 360: A primitive integral and elementary functions
Mth 360: A primitive integrl nd elementry functions D. DeTurck University of Pennsylvni October 16, 2017 D. DeTurck Mth 360 001 2017C: Integrl/functions 1 / 32 Setup for the integrl prtitions Definition:
More informationMcGill University Math 354: Honors Analysis 3 Fall 2012 Solutions to selected Exercises. g(x) 2 dx 1 2 a
McGill University Mth 354: Honors Anlysis 3 Fll 2012 Assignment 1 Solutions to selected Exercises Exercise 1. (i) Verify the identity for ny two sets of comlex numers { 1,..., n } nd { 1,..., n } ( n )
More informationQuadratic reciprocity
Qudrtic recirocity Frncisc Bozgn Los Angeles Mth Circle Octoer 8, 01 1 Qudrtic Recirocity nd Legendre Symol In the eginning of this lecture, we recll some sic knowledge out modulr rithmetic: Definition
More informationMath 5440 Problem Set 3 Solutions
Mth 544 Mth 544 Problem Set 3 Solutions Aron Fogelson Fll, 213 1: (Logn, 1.5 # 2) Repet the derivtion for the eqution of motion of vibrting string when, in ddition, the verticl motion is retrded by dmping
More informationMath 5440 Problem Set 3 Solutions
Mth 544 Mth 544 Problem Set 3 Solutions Aron Fogelson Fll, 25 1: Logn, 1.5 # 2) Repet the derivtion for the eqution of motion of vibrting string when, in ddition, the verticl motion is retrded by dmping
More information1 1D heat and wave equations on a finite interval
1 1D het nd wve equtions on finite intervl In this section we consider generl method of seprtion of vribles nd its pplictions to solving het eqution nd wve eqution on finite intervl ( 1, 2. Since by trnsltion
More informationBoundaryvalue problems
226 Chpter 10 Boundryvlue problems The initilvlue problem is chrcterized by the imposition of uxiliry dt t single point: if the eqution is of the nth order, the n otherwise rbitrry constnts in its solution
More informationMath 520 Final Exam Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008
Mth 520 Finl Exm Topic Outline Sections 1 3 (Xio/Dums/Liw) Spring 2008 The finl exm will be held on Tuesdy, My 13, 25pm in 117 McMilln Wht will be covered The finl exm will cover the mteril from ll of
More informationTheoretical foundations of Gaussian quadrature
Theoreticl foundtions of Gussin qudrture 1 Inner product vector spce Definition 1. A vector spce (or liner spce) is set V = {u, v, w,...} in which the following two opertions re defined: (A) Addition of
More informationLinearity, linear operators, and self adjoint eigenvalue problems
Linerity, liner opertors, nd self djoint eigenvlue problems 1 Elements of liner lgebr The study of liner prtil differentil equtions utilizes, unsurprisingly, mny concepts from liner lgebr nd liner ordinry
More informationSection 3.2 Maximum Principle and Uniqueness
Section 3. Mximum Principle nd Uniqueness Let u (x; y) e smooth solution in. Then the mximum vlue exists nd is nite. (x ; y ) ; i.e., M mx fu (x; y) j (x; y) in g Furthermore, this vlue cn e otined y point
More informationModule 9: The Method of Green s Functions
Module 9: The Method of Green s Functions The method of Green s functions is n importnt technique for solving oundry vlue nd, initil nd oundry vlue prolems for prtil differentil equtions. In this module,
More informationMATH 174A: PROBLEM SET 5. Suggested Solution
MATH 174A: PROBLEM SET 5 Suggested Solution Problem 1. Suppose tht I [, b] is n intervl. Let f 1 b f() d for f C(I; R) (i.e. f is continuous relvlued function on I), nd let L 1 (I) denote the completion
More informationSturmLiouville Theory
LECTURE 1 SturmLiouville Theory In the two preceing lectures I emonstrte the utility of Fourier series in solving PDE/BVPs. As we ll now see, Fourier series re just the tip of the iceerg of the theory
More information10 Vector Integral Calculus
Vector Integrl lculus Vector integrl clculus extends integrls s known from clculus to integrls over curves ("line integrls"), surfces ("surfce integrls") nd solids ("volume integrls"). These integrls hve
More informationKroneckerJacobi symbol and Quadratic Reciprocity. Q b /Q p
KroneckerJcoi symol nd Qudrtic Recirocity Let Q e the field of rtionl numers, nd let Q, 0. For ositive rime integer, the Artin symol Q /Q hs the vlue 1 if Q is the slitting field of in Q, 0 if is rmified
More information3 Mathematics of the Poisson Equation
3 Mthemtics of the Poisson Eqution 3. Green functions nd the Poisson eqution () The Dirichlet Green function stisfies the Poisson eqution with deltfunction chrge 2 G D (r, r o ) = δ 3 (r r o ) (3.) nd
More information10 Elliptic equations
1 Elliptic equtions Sections 7.1, 7.2, 7.3, 7.7.1, An Introduction to Prtil Differentil Equtions, Pinchover nd Ruinstein We consider the twodimensionl Lplce eqution on the domin D, More generl eqution
More informationDEFINITION The inner product of two functions f 1 and f 2 on an interval [a, b] is the number. ( f 1, f 2 ) b DEFINITION 11.1.
398 CHAPTER 11 ORTHOGONAL FUNCTIONS AND FOURIER SERIES 11.1 ORTHOGONAL FUNCTIONS REVIEW MATERIAL The notions of generlized vectors nd vector spces cn e found in ny liner lger text. INTRODUCTION The concepts
More informationBest Approximation. Chapter The General Case
Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given
More informationg i fφdx dx = x i i=1 is a Hilbert space. We shall, henceforth, abuse notation and write g i f(x) = f
1. Appliction of functionl nlysis to PEs 1.1. Introduction. In this section we give little introduction to prtil differentil equtions. In prticulr we consider the problem u(x) = f(x) x, u(x) = x (1) where
More informationLecture 3. In this lecture, we will discuss algorithms for solving systems of linear equations.
Lecture 3 3 Solving liner equtions In this lecture we will discuss lgorithms for solving systems of liner equtions Multiplictive identity Let us restrict ourselves to considering squre mtrices since one
More informationReview of Gaussian Quadrature method
Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge
More informationLecture Solution of a System of Linear Equation
ChE Lecture Notes, Dept. of Chemicl Engineering, Univ. of TN, Knoville  D. Keffer, 5/9/98 (updted /) Lecture 8  Solution of System of Liner Eqution 8. Why is it importnt to e le to solve system of liner
More informationARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac
REVIEW OF ALGEBRA Here we review the bsic rules nd procedures of lgebr tht you need to know in order to be successful in clculus. ARITHMETIC OPERATIONS The rel numbers hve the following properties: b b
More informationThe Regulated and Riemann Integrals
Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue
More informationdx dt dy = G(t, x, y), dt where the functions are defined on I Ω, and are locally Lipschitz w.r.t. variable (x, y) Ω.
Chpter 8 Stility theory We discuss properties of solutions of first order two dimensionl system, nd stility theory for specil clss of liner systems. We denote the independent vrile y t in plce of x, nd
More informationUSA Mathematical Talent Search Round 1 Solutions Year 25 Academic Year
1/1/5. Alex is trying to oen lock whose code is sequence tht is three letters long, with ech of the letters being one of A, B or C, ossibly reeted. The lock hs three buttons, lbeled A, B nd C. When the
More informationu t = k 2 u x 2 (1) a n sin nπx sin 2 L e k(nπ/l) t f(x) = sin nπx f(x) sin nπx dx (6) 2 L f(x 0 ) sin nπx 0 2 L sin nπx 0 nπx
Chpter 9: Green s functions for timeindependent problems Introductory emples Onedimensionl het eqution Consider the onedimensionl het eqution with boundry conditions nd initil condition We lredy know
More informationChapter 28. Fourier Series An Eigenvalue Problem.
Chpter 28 Fourier Series Every time I close my eyes The noise inside me mplifies I cn t escpe I relive every moment of the dy Every misstep I hve mde Finds wy it cn invde My every thought And this is why
More informationHow do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?
XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk out solving systems of liner equtions. These re prolems tht give couple of equtions with couple of unknowns, like: 6= x + x 7=
More information(PDE) u t k(u xx + u yy ) = 0 (x, y) in Ω, t > 0, (BC) u(x, y, t) = 0 (x, y) on Γ, t > 0, (IC) u(x, y, 0) = f(x, y) (x, y) in Ω.
Seprtion of Vriles for Higher Dimensionl Het Eqution 1. Het Eqution nd Eigenfunctions of the Lplcin: An 2D Exmple Ojective: Let Ω e plnr region with oundry curve Γ. Consider het conduction in Ω with fixed
More informationChapter Five  Eigenvalues, Eigenfunctions, and All That
Chpter Five  Eigenvlues, Eigenfunctions, n All Tht The prtil ifferentil eqution methos escrie in the previous chpter is specil cse of more generl setting in which we hve n eqution of the form L 1 xux,tl
More informationMATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1
MATH34032: Green s Functions, Integrl Equtions nd the Clculus of Vritions 1 Section 1 Function spces nd opertors Here we gives some brief detils nd definitions, prticulrly relting to opertors. For further
More informationChapter 4. Additional Variational Concepts
Chpter 4 Additionl Vritionl Concepts 137 In the previous chpter we considered clculus o vrition problems which hd ixed boundry conditions. Tht is, in one dimension the end point conditions were speciied.
More informationBases for Vector Spaces
Bses for Vector Spces 22625 A set is independent if, roughly speking, there is no redundncy in the set: You cn t uild ny vector in the set s liner comintion of the others A set spns if you cn uild everything
More informationChapter 6 Techniques of Integration
MA Techniques of Integrtion Asst.Prof.Dr.Suprnee Liswdi Chpter 6 Techniques of Integrtion Recll: Some importnt integrls tht we hve lernt so fr. Tle of Integrls n+ n d = + C n + e d = e + C ( n ) d = ln
More information7. Indefinite Integrals
7. Indefinite Integrls These lecture notes present my interprettion of Ruth Lwrence s lecture notes (in Herew) 7. Prolem sttement By the fundmentl theorem of clculus, to clculte n integrl we need to find
More informationInfinite Geometric Series
Infinite Geometric Series Finite Geometric Series ( finite SUM) Let 0 < r < 1, nd let n be positive integer. Consider the finite sum It turns out there is simple lgebric expression tht is equivlent to
More informationConvex Sets and Functions
B Convex Sets nd Functions Definition B1 Let L, +, ) be rel liner spce nd let C be subset of L The set C is convex if, for ll x,y C nd ll [, 1], we hve 1 )x+y C In other words, every point on the line
More informationQuadratic Forms. Quadratic Forms
Qudrtic Forms Recll the Simon & Blume excerpt from n erlier lecture which sid tht the min tsk of clculus is to pproximte nonliner functions with liner functions. It s ctully more ccurte to sy tht we pproximte
More informationPolynomials and Division Theory
Higher Checklist (Unit ) Higher Checklist (Unit ) Polynomils nd Division Theory Skill Achieved? Know tht polynomil (expression) is of the form: n x + n x n + n x n + + n x + x + 0 where the i R re the
More informationThings to Memorize: A Partial List. January 27, 2017
Things to Memorize: A Prtil List Jnury 27, 2017 Chpter 2 Vectors  Bsic Fcts A vector hs mgnitude (lso clled size/length/norm) nd direction. It does not hve fixed position, so the sme vector cn e moved
More informationIn Section 5.3 we considered initial value problems for the linear second order equation. y.a/ C ˇy 0.a/ D k 1 (13.1.4)
678 Chpter 13 Boundry Vlue Problems for Second Order Ordinry Differentil Equtions 13.1 TWOPOINT BOUNDARY VALUE PROBLEMS In Section 5.3 we considered initil vlue problems for the liner second order eqution
More informationApplied Partial Differential Equations with Fourier Series and Boundary Value Problems 5th Edition Richard Haberman
Applied Prtil Differentil Equtions with Fourier Series nd Boundry Vlue Problems 5th Edition Richrd Hbermn Person Eduction Limited Edinburgh Gte Hrlow Essex CM20 2JE Englnd nd Associted Compnies throughout
More informationFarey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University
U.U.D.M. Project Report 07:4 Frey Frctions Rickrd Fernström Exmensrete i mtemtik, 5 hp Hledre: Andres Strömergsson Exmintor: Jörgen Östensson Juni 07 Deprtment of Mthemtics Uppsl University Frey Frctions
More informationBernoulli Numbers Jeff Morton
Bernoulli Numbers Jeff Morton. We re interested in the opertor e t k d k t k, which is to sy k tk. Applying this to some function f E to get e t f d k k tk d k f f + d k k tk dk f, we note tht since f
More information63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1
3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =
More informationDifferential Equations 2 Homework 5 Solutions to the Assigned Exercises
Differentil Equtions Homework Solutions to the Assigned Exercises, # 3 Consider the dmped string prolem u tt + 3u t = u xx, < x , u, t = u, t =, t >, ux, = fx, u t x, = gx. In the exm you were supposed
More informationODE: Existence and Uniqueness of a Solution
Mth 22 Fll 213 Jerry Kzdn ODE: Existence nd Uniqueness of Solution The Fundmentl Theorem of Clculus tells us how to solve the ordinry differentil eqution (ODE) du = f(t) dt with initil condition u() =
More informationSTURMLIOUVILLE PROBLEMS
STURMLIOUVILLE PROBLEMS Mrch 8, 24 We hve seen tht in the process of solving certin liner evolution equtions such s the het or wve equtions we re led in very nturl wy to n eigenvlue problem for second
More informationCalculus of variations with fractional derivatives and fractional integrals
Anis do CNMAC v.2 ISSN 1984820X Clculus of vritions with frctionl derivtives nd frctionl integrls Ricrdo Almeid, Delfim F. M. Torres Deprtment of Mthemtics, University of Aveiro 3810193 Aveiro, Portugl
More informationM597K: Solution to Homework Assignment 7
M597K: Solution to Homework Assignment 7 The following problems re on the specified pges of the text book by Keener (2nd Edition, i.e., revised nd updted version) Problems 3 nd 4 of Section 2.1 on p.94;
More informationAbstract inner product spaces
WEEK 4 Abstrct inner product spces Definition An inner product spce is vector spce V over the rel field R equipped with rule for multiplying vectors, such tht the product of two vectors is sclr, nd the
More information1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a nonconstant can be solved with the same idea as above.
1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt
More informationMathematics. Area under Curve.
Mthemtics Are under Curve www.testprepkrt.com Tle of Content 1. Introduction.. Procedure of Curve Sketching. 3. Sketching of Some common Curves. 4. Are of Bounded Regions. 5. Sign convention for finding
More informationCalculus of Variations: The Direct Approach
Clculus of Vritions: The Direct Approch Lecture by Andrejs Treibergs, Notes by Bryn Wilson June 7, 2010 The originl lecture slides re vilble online t: http://www.mth.uth.edu/~treiberg/directmethodslides.pdf
More informationW. We shall do so one by one, starting with I 1, and we shall do it greedily, trying
Vitli covers 1 Definition. A Vitli cover of set E R is set V of closed intervls with positive length so tht, for every δ > 0 nd every x E, there is some I V with λ(i ) < δ nd x I. 2 Lemm (Vitli covering)
More informationDuke Math Meet
Duke Mth Meet 0114 Power Round Qudrtic Residues nd Prime Numers For integers nd, we write to indicte tht evenly divides, nd to indicte tht does not divide For exmle, 4 nd 4 Let e rime numer An integer
More informationInternational Jour. of Diff. Eq. and Appl., 3, N1, (2001),
Interntionl Jour. of Diff. Eq. nd Appl., 3, N1, (2001), 3137. 1 New proof of Weyl s theorem A.G. Rmm Mthemtics Deprtment, Knss Stte University, Mnhttn, KS 665062602, USA rmm@mth.ksu.edu http://www.mth.ksu.edu/
More informationCoalgebra, Lecture 15: Equations for Deterministic Automata
Colger, Lecture 15: Equtions for Deterministic Automt Julin Slmnc (nd Jurrin Rot) Decemer 19, 2016 In this lecture, we will study the concept of equtions for deterministic utomt. The notes re self contined
More informationMath 61CM  Solutions to homework 9
Mth 61CM  Solutions to homework 9 Cédric De Groote November 30 th, 2018 Problem 1: Recll tht the left limit of function f t point c is defined s follows: lim f(x) = l x c if for ny > 0 there exists δ
More informationPolynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230
Polynomil Approimtions for the Nturl Logrithm nd Arctngent Functions Mth 23 You recll from first semester clculus how one cn use the derivtive to find n eqution for the tngent line to function t given
More informationConservation Law. Chapter Goal. 5.2 Theory
Chpter 5 Conservtion Lw 5.1 Gol Our long term gol is to understnd how mny mthemticl models re derived. We study how certin quntity chnges with time in given region (sptil domin). We first derive the very
More information1.3 The Lemma of DuBoisReymond
28 CHAPTER 1. INDIRECT METHODS 1.3 The Lemm of DuBoisReymond We needed extr regulrity to integrte by prts nd obtin the Euler Lgrnge eqution. The following result shows tht, t lest sometimes, the extr
More informationThe usual algebraic operations +,, (or ), on real numbers can then be extended to operations on complex numbers in a natural way: ( 2) i = 1
Mth50 Introduction to Differentil Equtions Brief Review of Complex Numbers Complex Numbers No rel number stisfies the eqution x =, since the squre of ny rel number hs to be nonnegtive. By introducing
More informationp(t) dt + i 1 re it ireit dt =
Note: This mteril is contined in Kreyszig, Chpter 13. Complex integrtion We will define integrls of complex functions long curves in C. (This is bit similr to [relvlued] line integrls P dx + Q dy in R2.)
More informationPHYSICS 116C Homework 4 Solutions
PHYSICS 116C Homework 4 Solutions 1. ( Simple hrmonic oscilltor. Clerly the eqution is of the SturmLiouville (SL form with λ = n 2, A(x = 1, B(x =, w(x = 1. Legendre s eqution. Clerly the eqution is of
More informationChapter 4 Contravariance, Covariance, and Spacetime Diagrams
Chpter 4 Contrvrince, Covrince, nd Spcetime Digrms 4. The Components of Vector in Skewed Coordintes We hve seen in Chpter 3; figure 3.9, tht in order to show inertil motion tht is consistent with the Lorentz
More information1 E3102: a study guide and review, Version 1.0
1 E3102: study guide nd review, Version 1.0 Here is list of subjects tht I think we ve covered in clss (your milege my vry). If you understnd nd cn do the bsic problems in this guide you should be in very
More informationThe Wave Equation I. MA 436 Kurt Bryan
1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string
More informationMath 211A Homework. Edward Burkard. = tan (2x + z)
Mth A Homework Ewr Burkr Eercises 5C Eercise 8 Show tht the utonomous system: 5 Plne Autonomous Systems = e sin 3y + sin cos + e z, y = sin ( + 3y, z = tn ( + z hs n unstble criticl point t = y = z =
More informationElliptic Equations. Laplace equation on bounded domains Circular Domains
Elliptic Equtions Lplce eqution on bounded domins Sections 7.7.2, 7.7.3, An Introduction to Prtil Differentil Equtions, Pinchover nd Rubinstein 1.2 Circulr Domins We study the twodimensionl Lplce eqution
More informationMTH 505: Number Theory Spring 2017
MTH 505: Numer Theory Spring 207 Homework 2 Drew Armstrong The Froenius Coin Prolem. Consider the eqution x ` y c where,, c, x, y re nturl numers. We cn think of $ nd $ s two denomintions of coins nd $c
More informationImproper Integrals, and Differential Equations
Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted
More information18 SturmLiouville Eigenvalue Problems
18 SturmLiouville Eigenvlue Problems Up until now ll our eigenvlue problems hve been of the form d 2 φ + λφ = 0, 0 < x < l (1) dx2 plus mix of boundry conditions, generlly being Dirichlet or Neumnn type.
More informationProblem set 1: Solutions Math 207B, Winter 2016
Problem set 1: Solutions Mth 27B, Winter 216 1. Define f : R 2 R by f(,) = nd f(x,y) = xy3 x 2 +y 6 if (x,y) (,). ()Show tht thedirectionl derivtives of f t (,)exist inevery direction. Wht is its Gâteux
More informationReview of basic calculus
Review of bsic clculus This brief review reclls some of the most importnt concepts, definitions, nd theorems from bsic clculus. It is not intended to tech bsic clculus from scrtch. If ny of the items below
More informationIntegrals along Curves.
Integrls long Curves. 1. Pth integrls. Let : [, b] R n be continuous function nd let be the imge ([, b]) of. We refer to both nd s curve. If we need to distinguish between the two we cll the function the
More informationBest Approximation in the 2norm
Jim Lmbers MAT 77 Fll Semester 111 Lecture 1 Notes These notes correspond to Sections 9. nd 9.3 in the text. Best Approximtion in the norm Suppose tht we wish to obtin function f n (x) tht is liner combintion
More informationComplex integration. L3: Cauchy s Theory.
MM Vercelli. L3: Cuchy s Theory. Contents: Complex integrtion. The Cuchy s integrls theorems. Singulrities. The residue theorem. Evlution of definite integrls. Appendix: Fundmentl theorem of lgebr. Discussions
More informationChapter 3. Vector Spaces
3.4 Liner Trnsformtions 1 Chpter 3. Vector Spces 3.4 Liner Trnsformtions Note. We hve lredy studied liner trnsformtions from R n into R m. Now we look t liner trnsformtions from one generl vector spce
More information