# Chapter 3. Vector Spaces

Size: px
Start display at page:

## Transcription

1 3.4 Liner Trnsformtions 1 Chpter 3. Vector Spces 3.4 Liner Trnsformtions Note. We hve lredy studied liner trnsformtions from R n into R m. Now we look t liner trnsformtions from one generl vector spce to nother. We ll see prllel behvior between these liner trnsformtions nd the mtrix trnsformtions of Section 2.3. In fct, we use ordered bses to ssocite mtrices with liner trnsformtions between generl finite dimensionl vector spces. Definition 3.9. A function T tht mps vector spce V into vector spce V is liner trnsformtion if it stisfies: (1) ( u + v) = T( u) + T( v), nd (2) T(r u) = rt( u), for ll vectors u, v V nd for ll sclrs r R. Note 3.4.A. Exercise clims tht the condition of T : V V being liner is equivlent to the condition T(r u + s v) = rt( u) + st( v) for ll u, v V nd for ll r,s R. Notice tht the sme clim ws estblished for V nd V Eucliden spces in Exercises We cn conclude (from Mthemticl Induction, see Appendix A) tht for v 1, v 2,..., v n V nd r 1,r 2,...,r n R, we hve T(r 1 v 1 + r 2 v r n v n ) = r 1 T( v 1 ) + r 2 T( v 2 ) + + r n T( v n ). Exmple 3.4.A. Let F be the vector spce of ll functions mpping R into R (see Exmple 3.1.3). Let be nonzero sclr nd define T : F F s T(f) = f. Is T liner trnsformtion?

2 3.4 Liner Trnsformtions 2 Definition. For liner trnsformtion T : V V, the set V is the domin of T nd the set V is the codomin of T. If W is subset of V, then T[W] = {T( w) w W } is the imge of W under T. T[V ] is the rnge of T. For W V, T 1 [W ] = { v V T( v) W } is the inverse imge of W under T. T 1 [{ 0 }] if the kernel of T, denoted ker(t). Notice tht ker(t) = { v V T( v) = 0 }. Exmple 3.4.B. Let F be the vector spce of ll functions mpping R into R (see Exmple 3.1.3). Let be nonzero sclr nd define T : F F s T(f) = f, s in Exmple 3.4.A. Describe the kernel of T. Definition. Let V,V nd V be vector spces nd let T : V V nd T : V V be liner trnsformtions. The composition trnsformtion T T : V V is defined by (T T)( v) = T (T( v)) for v V. Exmple. Pge 214 Exmple 1. Let F be the vector spce of ll functions f : R R (see Exmple 3.1.3), nd let D be its subspce of ll differentible functions. Show tht differentition is liner trnsformtion of D into F. Exmple. Pge 215 Exmple 3. Let C,b be the set of ll continuous functions mpping [,b] R. Then C,b is vector spce (bsed on n rgument similr to tht which justifies tht C = {f F f is continuous} is subspce of F, s mentioned in Note 3.2.A). Prove tht T : C,b R defined by T(f) = b f(x) dx is liner trnsformtion. Such trnsformtion which mps functions to rel numbers is clled liner functionl.

3 3.4 Liner Trnsformtions 3 Exmple. Pge 215 Exmple 4. Let C be the vector spce of ll continuous functions mpping R into R (see Note 3.2.A). Let R nd let T : C C be defined by T (f) = x f(t) dt. Prove tht T is liner trnsformtion. Note. One might think tht the differentition opertor D : D F nd the opertor T : C C in the previous exmple re inverses of ech other (we hve not yet defined the inverse of liner trnsformtion from one generl vector spce to nother). This is not the cse, though, since T (f) = x f(t) dt implies tht ( x T (f)() = f(t) dt) = f(t) dt = 0, so T mps continuous functions to continuous functions which re 0 t x =. Now ech T (f) is differentible since d dx [T [ (f)] = d x dx f(t) dt] = f(x) by the Fundmentl Theorem of Clculus. If we define D = {f D d() = 0} (D is subspce of D bsed on n rgument similr to tht given in Exercise 3.2.4) then x= we hve T : C D, D : D C, nd for f C, ( x ) (D T )(f) = D(T (f)) = D f(t) dt = d [ x dx ] f(t) dt = f(x) = f. If f D (so f() = 0) AND f is continuously differentible (tht is, f is continuous) then (T D)(f) = T (D(f)) = T (f ) = x f (t) dt = f(x) f() = f(x) = f. So if we define D 1, = {f D f is continuous} ( subspce of D ), then we do hve tht the differentition D : D 1, C nd T : C D 1, re inverses of ech other.

4 3.4 Liner Trnsformtions 4 Note. Frleigh nd Beuregrd lso give n exmple of liner functionl T : F R defined for given c R s T(f) = f(c). This is n exmple of n evlution functionl (see Exmple 3.4.2). In Exmple 3.4.5, the uthors show tht T : D D defined, for 0, 1,..., n R, s T(f) = n f (n) (x) + n 1 f (n 1) (x) f (x) + 0 f(x) is liner trnsformtion. This exmple plys fundmentl role in the study of nth-order liner differentil equtions with constnt coefficients (where the tools developed for mtrices re useful). Theorem 3.5. Preservtion of Zero nd Subtrction Let V nd V be vectors spces, nd let T : V V be liner trnsformtion. Then (1) T( 0) = 0, nd (2) T( v 1 v 2 ) = T( v 1 ) T( v 2 ), for ny vectors v 1 nd v 2 in V. Theorem 3.6. Bses nd Liner Trnsformtions. Let T : V V be liner trnsformtion, nd let B be bsis for V. For ny vector v in V, the vector T( v) is uniquely determined by the vectors T( b) for ll b B. In other words, if two liner trnsformtions hve the sme vlue t ech bsis vector b B, then the two trnsformtions hve the sme vlue t ech vector in V.

5 3.4 Liner Trnsformtions 5 Theorem 3.7. Preservtion of Subspces. Let V nd V be vector spces, nd let T : V V be liner trnsformtion. (1) If W is subspce of V, then T[W] is subspce of V. (2) If W is subspce of V, then T 1 [W ] is subspce of V. Theorem 3.4.A. (Pge 229 number 46) Let T : V V be liner trnsformtion nd let T( p) = b for prticulr vector p in V. The solution set of T( x) = b is the set { p + h h ker(t)}. Definition. A trnsformtion T : V V is one-to-one if T( v 1 ) = T( v 2 ) implies tht v 1 = v 2 (or by the contrpositive, v 1 v 2 implies T( v 1 ) T( v 2 )). Trnsformtion T is onto if for ll v V there is v V such tht T( v) = v. Corollry 3.4.A. One-to-One nd Kernel. A liner trnsformtion T is one-to-one if nd only if ker(t) = { 0}. Definition Let V nd V be vector spces. A liner trnsformtion T : V V is invertible if there exists liner trnsformtion T 1 : V V such tht T 1 T is the identity trnsformtion on V nd T T 1 is the identity trnsformtion on V. Such T 1 is clled n inverse trnsformtion of T. Theorem 3.8. A liner trnsformtion T : V V is invertible if nd only if it is one-to-one nd onto V. When T 1 exists, it is liner.

6 3.4 Liner Trnsformtions 6 Exmple 3.4.C. Let F be the vector spce of ll functions mpping R into R (see Exmple 3.1.3). Let be nonzero sclr nd define T : F F s T(f) = f, s in Exmple 3.4.A. Determine if T is invertible. If so, find its inverse. Note. It is t this stge tht Frleigh nd Beuregrd introduce the Fundmentl Theorem of Finite Dimensionl Vector spces (see Theorem 3.3.A). They define n isomorphism s one-to-one nd onto liner trnsformtion (s we did in Section 3.3, though we didn t use the lnguge of liner trnsformtion t tht time). Their comments on isomorphisms on pge 221 re certinly worth reding. For completeness, we now stte their version of the Fundmentl Theorem of Finite Dimensionl Vector Spces long with the nme they give it. Theorem 3.9. Coordintiztion of Finite-Dimensionl Spces. Let V be finite-dimensionl vector spce with ordered bsis B = ( b 1, b 2,..., b n ). The mp T : V R n defined by T( v) = v B, the coordinte vector of v reltive to B, is n isomorphism. Tht is, ny n-dimensionl vector spce is isomorphic to R n. Note. Just s mtrices represented liner trnsformtions mpping R n R m (see Corollry 2.3.A, Stndrd Mtrix Representtion of Liner Trnsformtions ), we cn use the coordintiztion of generl finite dimensionl vector spces V nd V to represent liner trnsformtion mpping V V with mtrix.

7 3.4 Liner Trnsformtions 7 Theorem Mtrix Representtions of Liner Trnsformtions. Let V nd V be finite-dimensionl vector spces nd let B = ( b 1, b 2,..., b n ) nd B = ( b 1, b 2,..., b m) be ordered bses for V nd V, respectively. Let T : V V be liner trnsformtion, nd let T : R n R m be the liner trnsformtion such tht for ech v V, we hve T( v B ) = T( v) B. Then the stndrd mtrix representtion of T is the mtrix A whose jth column vector is T( b j ) B, nd T( v) B = A v B for ll vectors v V. Definition The mtrix A of Theorem 3.10 is the mtrix representtion of T reltive to B,B. Exmples. Pge 227 Number 18, Pge 227 Number 22, Pge 227 Number 24. Note. Let T : V V where B is bsis for V nd B is bsis for V. By Theorem 3.8, T 1 is liner when it exists. So it hs mtrix representtion reltive the B,B. The next result gives this mtrix representtion in terms of the mtrix representtion of T reltive to B,B. Theorem 3.4.B. The mtrix representtion of T 1 reltive to B,B is the inverse of the mtrix representtion of T reltive to B,B. Exmples. Pge 228 Number 28, Pge 229 Number 44, Pge 226 Number 12. Revised: 10/24/2018

### Chapter 14. Matrix Representations of Linear Transformations

Chpter 4 Mtrix Representtions of Liner Trnsformtions When considering the Het Stte Evolution, we found tht we could describe this process using multipliction by mtrix. This ws nice becuse computers cn

### Math 520 Final Exam Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008

Mth 520 Finl Exm Topic Outline Sections 1 3 (Xio/Dums/Liw) Spring 2008 The finl exm will be held on Tuesdy, My 13, 2-5pm in 117 McMilln Wht will be covered The finl exm will cover the mteril from ll of

### Elementary Linear Algebra

Elementry Liner Algebr Anton & Rorres, 1 th Edition Lecture Set 5 Chpter 4: Prt II Generl Vector Spces 163 คณ ตศาสตร ว ศวกรรม 3 สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา 1/2555 163 คณตศาสตรวศวกรรม 3 สาขาวชาวศวกรรมคอมพวเตอร

### MTH 5102 Linear Algebra Practice Exam 1 - Solutions Feb. 9, 2016

Nme (Lst nme, First nme): MTH 502 Liner Algebr Prctice Exm - Solutions Feb 9, 206 Exm Instructions: You hve hour & 0 minutes to complete the exm There re totl of 6 problems You must show your work Prtil

### MATRICES AND VECTORS SPACE

MATRICES AND VECTORS SPACE MATRICES AND MATRIX OPERATIONS SYSTEM OF LINEAR EQUATIONS DETERMINANTS VECTORS IN -SPACE AND -SPACE GENERAL VECTOR SPACES INNER PRODUCT SPACES EIGENVALUES, EIGENVECTORS LINEAR

### Problem Set 4: Solutions Math 201A: Fall 2016

Problem Set 4: s Mth 20A: Fll 206 Problem. Let f : X Y be one-to-one, onto mp between metric spces X, Y. () If f is continuous nd X is compct, prove tht f is homeomorphism. Does this result remin true

### MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1

MATH34032: Green s Functions, Integrl Equtions nd the Clculus of Vritions 1 Section 1 Function spces nd opertors Here we gives some brief detils nd definitions, prticulrly relting to opertors. For further

### The Regulated and Riemann Integrals

Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

### Theoretical foundations of Gaussian quadrature

Theoreticl foundtions of Gussin qudrture 1 Inner product vector spce Definition 1. A vector spce (or liner spce) is set V = {u, v, w,...} in which the following two opertions re defined: (A) Addition of

### Chapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY

Chpter 3 MTRIX In this chpter: Definition nd terms Specil Mtrices Mtrix Opertion: Trnspose, Equlity, Sum, Difference, Sclr Multipliction, Mtrix Multipliction, Determinnt, Inverse ppliction of Mtrix in

Qudrtic Forms Recll the Simon & Blume excerpt from n erlier lecture which sid tht the min tsk of clculus is to pproximte nonliner functions with liner functions. It s ctully more ccurte to sy tht we pproximte

### Bases for Vector Spaces

Bses for Vector Spces 2-26-25 A set is independent if, roughly speking, there is no redundncy in the set: You cn t uild ny vector in the set s liner comintion of the others A set spns if you cn uild everything

### Inner-product spaces

Inner-product spces Definition: Let V be rel or complex liner spce over F (here R or C). An inner product is n opertion between two elements of V which results in sclr. It is denoted by u, v nd stisfies:

### 63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =

### x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b

CHAPTER 5. INTEGRALS 61 where nd x = b n x i = 1 (x i 1 + x i ) = midpoint of [x i 1, x i ]. Problem 168 (Exercise 1, pge 377). Use the Midpoint Rule with the n = 4 to pproximte 5 1 x e x dx. Some quick

### ODE: Existence and Uniqueness of a Solution

Mth 22 Fll 213 Jerry Kzdn ODE: Existence nd Uniqueness of Solution The Fundmentl Theorem of Clculus tells us how to solve the ordinry differentil eqution (ODE) du = f(t) dt with initil condition u() =

### The final exam will take place on Friday May 11th from 8am 11am in Evans room 60.

Mth 104: finl informtion The finl exm will tke plce on Fridy My 11th from 8m 11m in Evns room 60. The exm will cover ll prts of the course with equl weighting. It will cover Chpters 1 5, 7 15, 17 21, 23

### Abstract inner product spaces

WEEK 4 Abstrct inner product spces Definition An inner product spce is vector spce V over the rel field R equipped with rule for multiplying vectors, such tht the product of two vectors is sclr, nd the

### PHYS 4390: GENERAL RELATIVITY LECTURE 6: TENSOR CALCULUS

PHYS 4390: GENERAL RELATIVITY LECTURE 6: TENSOR CALCULUS To strt on tensor clculus, we need to define differentition on mnifold.a good question to sk is if the prtil derivtive of tensor tensor on mnifold?

### g i fφdx dx = x i i=1 is a Hilbert space. We shall, henceforth, abuse notation and write g i f(x) = f

1. Appliction of functionl nlysis to PEs 1.1. Introduction. In this section we give little introduction to prtil differentil equtions. In prticulr we consider the problem u(x) = f(x) x, u(x) = x (1) where

### Handout 4. Inverse and Implicit Function Theorems.

8.95 Hndout 4. Inverse nd Implicit Function Theorems. Theorem (Inverse Function Theorem). Suppose U R n is open, f : U R n is C, x U nd df x is invertible. Then there exists neighborhood V of x in U nd

### Advanced Calculus: MATH 410 Uniform Convergence of Functions Professor David Levermore 11 December 2015

Advnced Clculus: MATH 410 Uniform Convergence of Functions Professor Dvid Levermore 11 December 2015 12. Sequences of Functions We now explore two notions of wht it mens for sequence of functions {f n

### Chapter 4 Contravariance, Covariance, and Spacetime Diagrams

Chpter 4 Contrvrince, Covrince, nd Spcetime Digrms 4. The Components of Vector in Skewed Coordintes We hve seen in Chpter 3; figure 3.9, tht in order to show inertil motion tht is consistent with the Lorentz

### (4.1) D r v(t) ω(t, v(t))

1.4. Differentil inequlities. Let D r denote the right hnd derivtive of function. If ω(t, u) is sclr function of the sclrs t, u in some open connected set Ω, we sy tht function v(t), t < b, is solution

### 1 The fundamental theorems of calculus.

The fundmentl theorems of clculus. The fundmentl theorems of clculus. Evluting definite integrls. The indefinite integrl- new nme for nti-derivtive. Differentiting integrls. Theorem Suppose f is continuous

Mth 452 - Advnced Clculus II Line Integrls nd Green s Theorem The min gol of this chpter is to prove Stoke s theorem, which is the multivrible version of the fundmentl theorem of clculus. We will be focused

Mth 348 Fll 7 Lecture 3: Curves in Clculus Disclimer. As we hve textook, this lecture note is for guidnce nd supplement only. It should not e relied on when prepring for exms. In this lecture we set up

### STUDY GUIDE FOR BASIC EXAM

STUDY GUIDE FOR BASIC EXAM BRYON ARAGAM This is prtil list of theorems tht frequently show up on the bsic exm. In mny cses, you my be sked to directly prove one of these theorems or these vrints. There

### Notes on length and conformal metrics

Notes on length nd conforml metrics We recll how to mesure the Eucliden distnce of n rc in the plne. Let α : [, b] R 2 be smooth (C ) rc. Tht is α(t) (x(t), y(t)) where x(t) nd y(t) re smooth rel vlued

### Review on Integration (Secs ) Review: Sec Origins of Calculus. Riemann Sums. New functions from old ones.

Mth 20B Integrl Clculus Lecture Review on Integrtion (Secs. 5. - 5.3) Remrks on the course. Slide Review: Sec. 5.-5.3 Origins of Clculus. Riemnn Sums. New functions from old ones. A mthemticl description

### DEFINITION The inner product of two functions f 1 and f 2 on an interval [a, b] is the number. ( f 1, f 2 ) b DEFINITION 11.1.

398 CHAPTER 11 ORTHOGONAL FUNCTIONS AND FOURIER SERIES 11.1 ORTHOGONAL FUNCTIONS REVIEW MATERIAL The notions of generlized vectors nd vector spces cn e found in ny liner lger text. INTRODUCTION The concepts

### a n = 1 58 a n+1 1 = 57a n + 1 a n = 56(a n 1) 57 so 0 a n+1 1, and the required result is true, by induction.

MAS221(216-17) Exm Solutions 1. (i) A is () bounded bove if there exists K R so tht K for ll A ; (b) it is bounded below if there exists L R so tht L for ll A. e.g. the set { n; n N} is bounded bove (by

### 2. VECTORS AND MATRICES IN 3 DIMENSIONS

2 VECTORS AND MATRICES IN 3 DIMENSIONS 21 Extending the Theory of 2-dimensionl Vectors x A point in 3-dimensionl spce cn e represented y column vector of the form y z z-xis y-xis z x y x-xis Most of the

### Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus

Unit #9 : Definite Integrl Properties; Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

### 1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation

1 1.1. Liner Constnt Coefficient Equtions Section Objective(s): Overview of Differentil Equtions. Liner Differentil Equtions. Solving Liner Differentil Equtions. The Initil Vlue Problem. 1.1.1. Overview

### MATH , Calculus 2, Fall 2018

MATH 36-2, 36-3 Clculus 2, Fll 28 The FUNdmentl Theorem of Clculus Sections 5.4 nd 5.5 This worksheet focuses on the most importnt theorem in clculus. In fct, the Fundmentl Theorem of Clculus (FTC is rgubly

### REPRESENTATION THEORY OF PSL 2 (q)

REPRESENTATION THEORY OF PSL (q) YAQIAO LI Following re notes from book [1]. The im is to show the qusirndomness of PSL (q), i.e., the group hs no low dimensionl representtion. 1. Representtion Theory

### Anonymous Math 361: Homework 5. x i = 1 (1 u i )

Anonymous Mth 36: Homewor 5 Rudin. Let I be the set of ll u (u,..., u ) R with u i for ll i; let Q be the set of ll x (x,..., x ) R with x i, x i. (I is the unit cube; Q is the stndrd simplex in R ). Define

### Chapter 4. Lebesgue Integration

4.2. Lebesgue Integrtion 1 Chpter 4. Lebesgue Integrtion Section 4.2. Lebesgue Integrtion Note. Simple functions ply the sme role to Lebesgue integrls s step functions ply to Riemnn integrtion. Definition.

### Chapter 3 Polynomials

Dr M DRAIEF As described in the introduction of Chpter 1, pplictions of solving liner equtions rise in number of different settings In prticulr, we will in this chpter focus on the problem of modelling

### 1 The Lagrange interpolation formula

Notes on Qudrture 1 The Lgrnge interpoltion formul We briefly recll the Lgrnge interpoltion formul. The strting point is collection of N + 1 rel points (x 0, y 0 ), (x 1, y 1 ),..., (x N, y N ), with x

### Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors

Vectors Skill Achieved? Know tht sclr is quntity tht hs only size (no direction) Identify rel-life exmples of sclrs such s, temperture, mss, distnce, time, speed, energy nd electric chrge Know tht vector

### dx dt dy = G(t, x, y), dt where the functions are defined on I Ω, and are locally Lipschitz w.r.t. variable (x, y) Ω.

Chpter 8 Stility theory We discuss properties of solutions of first order two dimensionl system, nd stility theory for specil clss of liner systems. We denote the independent vrile y t in plce of x, nd

### (e) if x = y + z and a divides any two of the integers x, y, or z, then a divides the remaining integer

Divisibility In this note we introduce the notion of divisibility for two integers nd b then we discuss the division lgorithm. First we give forml definition nd note some properties of the division opertion.

### Here we study square linear systems and properties of their coefficient matrices as they relate to the solution set of the linear system.

Section 24 Nonsingulr Liner Systems Here we study squre liner systems nd properties of their coefficient mtrices s they relte to the solution set of the liner system Let A be n n Then we know from previous

### STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS

STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS Throughout, we let [, b] be bounded intervl in R. C 2 ([, b]) denotes the spce of functions with derivtives of second order continuous up to the endpoints. Cc 2

### 1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt

### Section 6.1 INTRO to LAPLACE TRANSFORMS

Section 6. INTRO to LAPLACE TRANSFORMS Key terms: Improper Integrl; diverge, converge A A f(t)dt lim f(t)dt Piecewise Continuous Function; jump discontinuity Function of Exponentil Order Lplce Trnsform

### 1 The fundamental theorems of calculus.

The fundmentl theorems of clculus. The fundmentl theorems of clculus. Evluting definite integrls. The indefinite integrl- new nme for nti-derivtive. Differentiting integrls. Tody we provide the connection

### Review of Gaussian Quadrature method

Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge

### Convex Sets and Functions

B Convex Sets nd Functions Definition B1 Let L, +, ) be rel liner spce nd let C be subset of L The set C is convex if, for ll x,y C nd ll [, 1], we hve 1 )x+y C In other words, every point on the line

### Math 61CM - Solutions to homework 9

Mth 61CM - Solutions to homework 9 Cédric De Groote November 30 th, 2018 Problem 1: Recll tht the left limit of function f t point c is defined s follows: lim f(x) = l x c if for ny > 0 there exists δ

### Regulated functions and the regulated integral

Regulted functions nd the regulted integrl Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics University of Toronto April 3 2014 1 Regulted functions nd step functions Let = [ b] nd let X be normed

### MORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.)

MORE FUNCTION GRAPHING; OPTIMIZATION FRI, OCT 25, 203 (Lst edited October 28, 203 t :09pm.) Exercise. Let n be n rbitrry positive integer. Give n exmple of function with exctly n verticl symptotes. Give

### Math 554 Integration

Mth 554 Integrtion Hndout #9 4/12/96 Defn. A collection of n + 1 distinct points of the intervl [, b] P := {x 0 = < x 1 < < x i 1 < x i < < b =: x n } is clled prtition of the intervl. In this cse, we

### AMATH 731: Applied Functional Analysis Fall Additional notes on Fréchet derivatives

AMATH 731: Applied Functionl Anlysis Fll 214 Additionl notes on Fréchet derivtives (To ccompny Section 3.1 of the AMATH 731 Course Notes) Let X,Y be normed liner spces. The Fréchet derivtive of n opertor

### Section 6.1 INTRO to LAPLACE TRANSFORMS

Section 6. INTRO to LAPLACE TRANSFORMS Key terms: Improper Integrl; diverge, converge A A f(t)dt lim f(t)dt Piecewise Continuous Function; jump discontinuity Function of Exponentil Order Lplce Trnsform

### Fourier series. Preliminary material on inner products. Suppose V is vector space over C and (, )

Fourier series. Preliminry mteril on inner products. Suppose V is vector spce over C nd (, ) is Hermitin inner product on V. This mens, by definition, tht (, ) : V V C nd tht the following four conditions

### NOTES ON HILBERT SPACE

NOTES ON HILBERT SPACE 1 DEFINITION: by Prof C-I Tn Deprtment of Physics Brown University A Hilbert spce is n inner product spce which, s metric spce, is complete We will not present n exhustive mthemticl

### Module 6: LINEAR TRANSFORMATIONS

Module 6: LINEAR TRANSFORMATIONS. Trnsformtions nd mtrices Trnsformtions re generliztions of functions. A vector x in some set S n is mpped into m nother vector y T( x). A trnsformtion is liner if, for

### 20 MATHEMATICS POLYNOMIALS

0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of

### Lecture 3. Limits of Functions and Continuity

Lecture 3 Limits of Functions nd Continuity Audrey Terrs April 26, 21 1 Limits of Functions Notes I m skipping the lst section of Chpter 6 of Lng; the section bout open nd closed sets We cn probbly live

### df dt f () b f () a dt

Vector lculus 16.7 tokes Theorem Nme: toke's Theorem is higher dimensionl nlogue to Green's Theorem nd the Fundmentl Theorem of clculus. Why, you sk? Well, let us revisit these theorems. Fundmentl Theorem

### Best Approximation in the 2-norm

Jim Lmbers MAT 77 Fll Semester 1-11 Lecture 1 Notes These notes correspond to Sections 9. nd 9.3 in the text. Best Approximtion in the -norm Suppose tht we wish to obtin function f n (x) tht is liner combintion

### 10 Vector Integral Calculus

Vector Integrl lculus Vector integrl clculus extends integrls s known from clculus to integrls over curves ("line integrls"), surfces ("surfce integrls") nd solids ("volume integrls"). These integrls hve

### Recitation 3: More Applications of the Derivative

Mth 1c TA: Pdric Brtlett Recittion 3: More Applictions of the Derivtive Week 3 Cltech 2012 1 Rndom Question Question 1 A grph consists of the following: A set V of vertices. A set E of edges where ech

### Linearity, linear operators, and self adjoint eigenvalue problems

Linerity, liner opertors, nd self djoint eigenvlue problems 1 Elements of liner lgebr The study of liner prtil differentil equtions utilizes, unsurprisingly, mny concepts from liner lgebr nd liner ordinry

### Lesson Notes: Week 40-Vectors

Lesson Notes: Week 40-Vectors Vectors nd Sclrs vector is quntity tht hs size (mgnitude) nd direction. Exmples of vectors re displcement nd velocity. sclr is quntity tht hs size but no direction. Exmples

### Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

Advnced Clculus: MATH 410 Notes on Integrls nd Integrbility Professor Dvid Levermore 17 October 2004 1. Definite Integrls In this section we revisit the definite integrl tht you were introduced to when

### Things to Memorize: A Partial List. January 27, 2017

Things to Memorize: A Prtil List Jnury 27, 2017 Chpter 2 Vectors - Bsic Fcts A vector hs mgnitude (lso clled size/length/norm) nd direction. It does not hve fixed position, so the sme vector cn e moved

### MATH 423 Linear Algebra II Lecture 28: Inner product spaces.

MATH 423 Liner Algebr II Lecture 28: Inner product spces. Norm The notion of norm generlizes the notion of length of vector in R 3. Definition. Let V be vector spce over F, where F = R or C. A function

### IMPORTANT THEOREMS CHEAT SHEET

IMPORTANT THEOREMS CHEAT SHEET BY DOUGLAS DANE Howdy, I m Bronson s dog Dougls. Bronson is still complining bout the textbook so I thought if I kept list of the importnt results for you, he might stop.

### Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

Czechoslovk Mthemticl Journl, 55 (130) (2005), 933 940 ESTIMATES OF THE REMAINDER IN TAYLOR S THEOREM USING THE HENSTOCK-KURZWEIL INTEGRAL, Abbotsford (Received Jnury 22, 2003) Abstrct. When rel-vlued

### 7.2 The Definite Integral

7.2 The Definite Integrl the definite integrl In the previous section, it ws found tht if function f is continuous nd nonnegtive, then the re under the grph of f on [, b] is given by F (b) F (), where

### II. Integration and Cauchy s Theorem

MTH6111 Complex Anlysis 2009-10 Lecture Notes c Shun Bullett QMUL 2009 II. Integrtion nd Cuchy s Theorem 1. Pths nd integrtion Wrning Different uthors hve different definitions for terms like pth nd curve.

### Coalgebra, Lecture 15: Equations for Deterministic Automata

Colger, Lecture 15: Equtions for Deterministic Automt Julin Slmnc (nd Jurrin Rot) Decemer 19, 2016 In this lecture, we will study the concept of equtions for deterministic utomt. The notes re self contined

### UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE

UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE 1. Pointwise Convergence of Sequence Let E be set nd Y be metric spce. Consider functions f n : E Y for n = 1, 2,.... We sy tht the sequence

### AQA Further Pure 1. Complex Numbers. Section 1: Introduction to Complex Numbers. The number system

Complex Numbers Section 1: Introduction to Complex Numbers Notes nd Exmples These notes contin subsections on The number system Adding nd subtrcting complex numbers Multiplying complex numbers Complex

### n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1

The Fundmentl Theorem of Clculus As we continue to study the re problem, let s think bck to wht we know bout computing res of regions enclosed by curves. If we wnt to find the re of the region below the

### Taylor Polynomial Inequalities

Tylor Polynomil Inequlities Ben Glin September 17, 24 Abstrct There re instnces where we my wish to pproximte the vlue of complicted function round given point by constructing simpler function such s polynomil

### Chapter 1. Basic Concepts

Socrtes Dilecticl Process: The Þrst step is the seprtion of subject into its elements. After this, by deþning nd discovering more bout its prts, one better comprehends the entire subject Socrtes (469-399)

### a a a a a a a a a a a a a a a a a a a a a a a a In this section, we introduce a general formula for computing determinants.

Section 9 The Lplce Expnsion In the lst section, we defined the determinnt of (3 3) mtrix A 12 to be 22 12 21 22 2231 22 12 21. In this section, we introduce generl formul for computing determinnts. Rewriting

### Best Approximation. Chapter The General Case

Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given

### Jim Lambers MAT 169 Fall Semester Lecture 4 Notes

Jim Lmbers MAT 169 Fll Semester 2009-10 Lecture 4 Notes These notes correspond to Section 8.2 in the text. Series Wht is Series? An infinte series, usully referred to simply s series, is n sum of ll of

### Continuous Random Variables

STAT/MATH 395 A - PROBABILITY II UW Winter Qurter 217 Néhémy Lim Continuous Rndom Vribles Nottion. The indictor function of set S is rel-vlued function defined by : { 1 if x S 1 S (x) if x S Suppose tht

### CAAM 453 NUMERICAL ANALYSIS I Examination There are four questions, plus a bonus. Do not look at them until you begin the exam.

Exmintion 1 Posted 23 October 2002. Due no lter thn 5pm on Mondy, 28 October 2002. Instructions: 1. Time limit: 3 uninterrupted hours. 2. There re four questions, plus bonus. Do not look t them until you

### THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS RADON ROSBOROUGH https://intuitiveexplntionscom/picrd-lindelof-theorem/ This document is proof of the existence-uniqueness theorem

### Math 270A: Numerical Linear Algebra

Mth 70A: Numericl Liner Algebr Instructor: Michel Holst Fll Qurter 014 Homework Assignment #3 Due Give to TA t lest few dys before finl if you wnt feedbck. Exercise 3.1. (The Bsic Liner Method for Liner

### I. INTEGRAL THEOREMS. A. Introduction

1 U Deprtment of Physics 301A Mechnics - I. INTEGRAL THEOREM A. Introduction The integrl theorems of mthemticl physics ll hve their origin in the ordinry fundmentl theorem of clculus, i.e. xb x df dx dx

### P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0)

1 Tylor polynomils In Section 3.5, we discussed how to pproximte function f(x) round point in terms of its first derivtive f (x) evluted t, tht is using the liner pproximtion f() + f ()(x ). We clled this

### Orthogonal Polynomials

Mth 4401 Gussin Qudrture Pge 1 Orthogonl Polynomils Orthogonl polynomils rise from series solutions to differentil equtions, lthough they cn be rrived t in vriety of different mnners. Orthogonl polynomils

### MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

MA123, Chpter 1: Formuls for integrls: integrls, ntiderivtives, nd the Fundmentl Theorem of Clculus (pp. 27-233, Gootmn) Chpter Gols: Assignments: Understnd the sttement of the Fundmentl Theorem of Clculus.

### Review of Riemann Integral

1 Review of Riemnn Integrl In this chpter we review the definition of Riemnn integrl of bounded function f : [, b] R, nd point out its limittions so s to be convinced of the necessity of more generl integrl.

### A HELLY THEOREM FOR FUNCTIONS WITH VALUES IN METRIC SPACES. 1. Introduction

Ttr Mt. Mth. Publ. 44 (29), 159 168 DOI: 1.2478/v1127-9-56-z t m Mthemticl Publictions A HELLY THEOREM FOR FUNCTIONS WITH VALUES IN METRIC SPACES Miloslv Duchoň Peter Mličký ABSTRACT. We present Helly

### AMATH 731: Applied Functional Analysis Fall Some basics of integral equations

AMATH 731: Applied Functionl Anlysis Fll 2009 1 Introduction Some bsics of integrl equtions An integrl eqution is n eqution in which the unknown function u(t) ppers under n integrl sign, e.g., K(t, s)u(s)

### Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space.

Clculus 3 Li Vs Spce Curves Recll the prmetric equtions of curve in xy-plne nd compre them with prmetric equtions of curve in spce. Prmetric curve in plne x = x(t) y = y(t) Prmetric curve in spce x = x(t)

### arxiv: v1 [math.ra] 1 Nov 2014

CLASSIFICATION OF COMPLEX CYCLIC LEIBNIZ ALGEBRAS DANIEL SCOFIELD AND S MCKAY SULLIVAN rxiv:14110170v1 [mthra] 1 Nov 2014 Abstrct Since Leibniz lgebrs were introduced by Lody s generliztion of Lie lgebrs,

### Summary: Method of Separation of Variables

Physics 246 Electricity nd Mgnetism I, Fll 26, Lecture 22 1 Summry: Method of Seprtion of Vribles 1. Seprtion of Vribles in Crtesin Coordintes 2. Fourier Series Suggested Reding: Griffiths: Chpter 3, Section