Partial Differential Equations


 Clarence Riley
 2 years ago
 Views:
Transcription
1 Prtil Differentil Equtions Notes by Robert Piché, Tmpere University of Technology reen s Functions. reen s Function for OneDimensionl Eqution The reen s function provides complete solution to boundry vlue problem in much the sme wy tht n inverse mtri provides generl solution for systems of liner equtions. In this section the reen s function is introduced in the contet of simple onedimensionl problem. Some of the proofs use the identity b (uv vu ) d b uv vu. This cn be obtined by integrting (uv vu ) uv vu. A singulrity function K(, ξ) of the opertor L defined by Lu() u () c()u() is chrcterised by three properties:. K is continuous; 2. K is continuous in < ξ nd in > ξ, nd K ( +, ) K (, ) ; 3. K is continuous nd LK for ξ. Note tht the three properties do not define singulrity function uniquely: if K is singulrity function then so is K + H, where H(, ξ) is ny function with continuous H nd H nd with LH. The reen s function (, ξ) for the opertor L nd the domin (, b) with Dirichlet boundry conditions is the singulrity function tht stisfies the homogeneous Dirichlet conditions (, ξ) nd (b, ξ). The reen s function provides the solution to the boundry vlue problem with Dirichlet boundry conditions: Theorem If u stisfies the differentil eqution u + cu f on (, b) nd the boundry conditions u(), u(b), then for ll ξ (, b). u(ξ) b (, ξ)f() d () Proof. Letting v() (, ξ), we hve b vf d ξ b uv vu d + uv vu d ξ + ξ uv vu + b ξ + uv vu b uv vu u(ξ) ξ+ ξ v + ξ+ ξ vu, which completes the proof.
2 The lod (or source) function f in the differentil eqution u cu f cn be thought of s superposition of point lods f() δ( ξ)f(ξ)dξ, where δ( ξ) is concentrted t ξ nd hs unit mgnitude (i.e. δ d ). Then formul () represents the solution s weighted sum of reen s functions, where ech (ξ, ) is the solution to u () δ( ξ). The reen s function cn thus be thought of s the response to unit point lod. The reen s function lso provides the solution of the boundry vlue problem with nonhomogeneous boundry conditions: Theorem 2 The solution of u +cu with boundry conditions u() h nd u(b) h stisfies u(ξ) (, ξ)h (b, ξ)h (2) for ll ξ (, b). Proof. Denoting v() (, ξ), we hve ξ which completes the proof. b (uv vu ) d + (uv vu ) d ξ + ξ (uv vu ) + b ξ + (uv vu ) b (uv vu ) ξ+ ξ (uv vu ) b uv + u(ξ), The following result tells us tht the response t to point lod pplied t ξ is equl to the response t ξ to point lod pplied t. Theorem 3 (Reciprocity Principle) (, ξ) (ξ, ) for ll, ξ (, b). Proof. Let y nd η be distinct points in (, b) with y < η, let u() (, η) nd v() (, y). Then y y b uv vu η b uv vu d + uv vu d + uv vu d y + η + uv vu + η y + uv vu + b η + uv vu y+ y uv vu η+ η uv vu, u(y) v(η) leving u(y) v(η), tht is, (y, η) (η, y). The proof for y > η is similr. As consequence of Theorem 2, we cn rewrite formul () s nd formul (2) s u() b (, ξ)f(ξ) dξ. u() ξ (, )h ξ (, b)h. A singulrity function of d2 is given by d 2 K(, ξ) ξ, 2 s cn redily be verified. The reen s function for the intervl (, ) cn be 2
3 found by solving H with boundry conditions H(, ξ) K(, ξ) nd H(, ξ) K(, ξ), then setting K + H. This yields.25 (, ξ) ξ + ( + ξ) ξ 2 2 { ( )ξ for ξ < ( ξ) for < ξ. The solution of u f stisfying u() h nd u() h is given by ξ u() ( ) (, ξ)f(ξ) dξ + ξ (, )h ξ (, )h ξf(ξ) dξ + ( ξ)f(ξ) dξ + ( )h + h..2 reen s Function for TwoDimensionl Poisson Eqution Now we go through the sme discussion in two dimensions. Some of the proofs use reen s second identity u v v u da (u v v u) n dl, Ω This cn be derived by writing reen s first identity twice, with u nd v interchnged the second time, nd subtrcting. A singulrity function K(, ) of the opertor is chrcterised by the three properties. For ny fied, lim disk centred t ; ɛ 2. For ny fied, lim ɛ outwrd unit norml to B ɛ; 3. K is hrmonic s function of for. K(, ) dl, where B ɛ denotes the rdiusɛ K(, ) n dl, where n denotes the Note tht these three properties do not define singulrity function uniquely: if K is singulrity function then so is K + H, where H(, ) is ny function tht is hrmonic s function of. A singulrity function of is given by K(, ) 2π ln. (3) This ssertion cn be verified s follows. Without loss of generlity we cn tke. In polr coordintes, we hve K ln r with r, which is 2π hrmonic in R 2 \ {} (see section 9.4). Also, K dl 2π ln ɛ ɛ dθ ɛ ln ɛ 2π nd (becuse K n K/ r) K n dl 2π 3 2π ɛ dθ. ɛ
4 The reen s function for nd domin Ω with Dirichlet boundry conditions is singulrity function tht stisfies (, ) for. The reen s function provides the solution to the Poisson eqution with homogeneous Dirichlet boundry conditions: Theorem 4 If u f in Ω nd u on then u( ) (, )f() da ( Ω). (4) Ω Proof. Letting v() (, ), we hve vf da u v v u da Ω\B ɛ Ω\B ɛ (u v v u) n dl (u v v u) n dl u( ) v n dl + vu n dl, } {{ } nd the second term goes to zero becuse min u n v dl which completes the proof. vu n dl m u n v dl, The formul (4) represents the solution s the superposition of reen s functions, which cn be thought of s point source responses. The following result tells us tht the response t to point source locted t is equl to the response t to point source locted t. Theorem 5 (Reciprocity Principle) (, ) (, ) for. Proof. Let y nd y be distinct points in Ω, let B ɛ nd B ɛ denote ɛrdius disks centred t y nd y, nd let u() (, y ) nd v() (, y). Then u v v u da Ω\B ɛ\b ɛ (u v v u) n dl B ɛ u(y) v n dl + vu n dl B } ɛ B {{}} ɛ {{} uv n dl + v(y ) u n dl, leving us with u(y) v(y ), tht is, (y, y ) (y, y). 4
5 As consequence of Theorem 4, formul (4) cn be written s u() (, )f( ) da. Ω The singulrity function (3) is clled the freespce reen s function for Poisson s eqution. It is reen s function for Poisson s eqution with the boundry condition u() s. The freespce reen s function doesn t stisfy this boundry condition, but the boundry condition does ensure tht the term (u v v u) n dl in the proof of Theorem 3 goes to zero when Ω is tken to be disk of rdius R centred t nd R. The method of imges cn be used to find reen s functions for other domins. For emple, using the ide tht unit point source locted t (, y ) with y > nd point source of strength locted t (, y ) will cncel ech other on the is, we find the reen s function (, ) 2π ln ( ( ) 2 + (y y ) 2) 2 + 2π ln ( ( ) 2 + (y + y ) 2) 2 for the Poisson eqution in the hlfplne y >. Using similr ides, one cn derive the formul for reen s function for the origincentred disk of rdius s (, ) 2π ln π ln. Representing nd in polr coordintes s (r, θ) nd (ρ, θ ), nd using the cosine lw cos γ with γ θ θ, the disk reen s function cn be written (, ) 2π ln 4 + r 2 ρ rρ cos γ 2 (r 2 + ρ 2 2rρ cos γ). (5) The reen s function ((, y), (,.5)) for the hlfplne nd the unitrdius disk re shown below y.5 y The reen s function lso provides the solution of Lplce s eqution with nonhomogeneous Dirichlet boundry conditions: 5
6 Theorem 6 If u in Ω nd u h on then u( ) h() (, ) n dl. Proof. Similr to the proof of Theorem 4. For the hlfplne y > the unit norml points in the negtive y direction nd we hve n y /π y y ( ) 2 + (y ). 2 The solution of Lplce s eqution u in the hlfplne with u(, ) h() is therefore u(, y ) y h() π ( ) 2 + (y ) d. 2 For the origincentred disk, the unit outwrd norml points in the rdil direction nd we hve n r r 2π 2 ρ ρ 2 2ρ cos γ. The solution of Lplce s eqution on the disk with u h on the boundry r is therefore u(ρ, θ ) 2π ( 2 ρ 2 )h(θ) 2π 2 + ρ 2 2ρ cos(θ θ ) dθ, which is Poisson s integrl formul (section.)..3 reen s functions from eigenfunctions The Poisson problem cn lso be solved by the method of eigenfunctions. To introduce the technique, we strt with onedimensionl problem. Consider the differentil eqution u f with boundry conditions u(), u(). The ssocited eigenvlue problem is φ + λφ with the sme boundry conditions. The eigenvlues nd eigenfunctions re λ m m2 π 2 2, φ m () sin mπ. Substituting tril solution of the form m A m φ m () into the differentil eqution, multiplying through by φ m (), nd integrting gives A m λ m sin 2 mπ d /2 m f() sin mπ Thus the A m re λ m the Fourier sine coefficients of f, nd the solution t point ξ (, ) is [ ] 2 mπ u(ξ) f() sin m 2 π2 sin mπξ d. d, 6
7 Compring this with formul (), we deduce the reen s function to be the term in brckets, tht is, (, ξ) m 2 mπ mπξ sin sin m 2 π2. When, this is the Fourier sine epnsion of the reen s function presented in section. Net, consider the twodimensionl Poisson eqution u f on the domin (, ) (, b), with u on the boundry. The ssocited eigenvlue problem is u + λu, with the sme boundry conditions. Assuming solution of the form u(, y) X()Y (y) yields, with α 2 s seprtion constnt, the two eigenvlue problems X + α 2 X, Y + (λ α 2 )Y with homogeneous boundry conditions X() X() Y () Y (b). The eigenfunctions of the onedimensionl problems re nd the eigenvlues re X m () sin mπ, Y n(y) sin nπy b. λ mn π 2 ( m n2 b 2 Substituting tril solution of the form m the Poisson eqution, multiplying through by X m Y n, nd integrting gives A mn λ mn sin 2 mπ d sin 2 nπy dy b /2 b b/2 ). n A m,n X m ()Y n (y) into b f(, y) sin mπ nπy sin d dy b Thus the A mn re λ mn the twodimensionl Fourier sine coefficients of f, nd the solution t point is with (, y,, y ) 4b π 2 u(, y ) m n b f(, y)(, y,, y ) d dy mπ sin m 2 b 2 + n 2 2 sin nπy sin mπ b b sin nπy. b The reen s function (, y, /2, /4) for squre domin is plotted below y/.25.5 / 7
Summary: Method of Separation of Variables
Physics 246 Electricity nd Mgnetism I, Fll 26, Lecture 22 1 Summry: Method of Seprtion of Vribles 1. Seprtion of Vribles in Crtesin Coordintes 2. Fourier Series Suggested Reding: Griffiths: Chpter 3, Section
More informationPhysics 116C Solution of inhomogeneous ordinary differential equations using Green s functions
Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner
More informationu t = k 2 u x 2 (1) a n sin nπx sin 2 L e k(nπ/l) t f(x) = sin nπx f(x) sin nπx dx (6) 2 L f(x 0 ) sin nπx 0 2 L sin nπx 0 nπx
Chpter 9: Green s functions for timeindependent problems Introductory emples Onedimensionl het eqution Consider the onedimensionl het eqution with boundry conditions nd initil condition We lredy know
More informationJackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell
Jckson 2.26 Homework Problem Solution Dr. Christopher S. Bird University of Msschusetts Lowell PROBLEM: The twodimensionl region, ρ, φ β, is bounded by conducting surfces t φ =, ρ =, nd φ = β held t zero
More information21.6 Green Functions for First Order Equations
21.6 Green Functions for First Order Equtions Consider the first order inhomogeneous eqution subject to homogeneous initil condition, B[y] y() = 0. The Green function G( ξ) is defined s the solution to
More informationElliptic Equations. Laplace equation on bounded domains Circular Domains
Elliptic Equtions Lplce eqution on bounded domins Sections 7.7.2, 7.7.3, An Introduction to Prtil Differentil Equtions, Pinchover nd Rubinstein 1.2 Circulr Domins We study the twodimensionl Lplce eqution
More informationMath Fall 2006 Sample problems for the final exam: Solutions
Mth 425 Fll 26 Smple problems for the finl exm: Solutions Any problem my be ltered or replced by different one! Some possibly useful informtion Prsevl s equlity for the complex form of the Fourier series
More informationES.182A Topic 32 Notes Jeremy Orloff
ES.8A Topic 3 Notes Jerem Orloff 3 Polr coordintes nd double integrls 3. Polr Coordintes (, ) = (r cos(θ), r sin(θ)) r θ Stndrd,, r, θ tringle Polr coordintes re just stndrd trigonometric reltions. In
More informationPHYSICS 116C Homework 4 Solutions
PHYSICS 116C Homework 4 Solutions 1. ( Simple hrmonic oscilltor. Clerly the eqution is of the SturmLiouville (SL form with λ = n 2, A(x = 1, B(x =, w(x = 1. Legendre s eqution. Clerly the eqution is of
More informationM344  ADVANCED ENGINEERING MATHEMATICS
M3  ADVANCED ENGINEERING MATHEMATICS Lecture 18: Lplce s Eqution, Anltic nd Numericl Solution Our emple of n elliptic prtil differentil eqution is Lplce s eqution, lso clled the Diffusion Eqution. If
More informationModule 9: The Method of Green s Functions
Module 9: The Method of Green s Functions The method of Green s functions is n importnt technique for solving oundry vlue nd, initil nd oundry vlue prolems for prtil differentil equtions. In this module,
More informationdf dt f () b f () a dt
Vector lculus 16.7 tokes Theorem Nme: toke's Theorem is higher dimensionl nlogue to Green's Theorem nd the Fundmentl Theorem of clculus. Why, you sk? Well, let us revisit these theorems. Fundmentl Theorem
More informationMA 201: Partial Differential Equations Lecture  12
Two dimensionl Lplce Eqution MA 201: Prtil Differentil Equtions Lecture  12 The Lplce Eqution (the cnonicl elliptic eqution) Two dimensionl Lplce Eqution Two dimensionl Lplce Eqution 2 u = u xx + u yy
More information3 Mathematics of the Poisson Equation
3 Mthemtics of the Poisson Eqution 3. Green functions nd the Poisson eqution () The Dirichlet Green function stisfies the Poisson eqution with deltfunction chrge 2 G D (r, r o ) = δ 3 (r r o ) (3.) nd
More informationSTURMLIOUVILLE BOUNDARY VALUE PROBLEMS
STURMLIOUVILLE BOUNDARY VALUE PROBLEMS Throughout, we let [, b] be bounded intervl in R. C 2 ([, b]) denotes the spce of functions with derivtives of second order continuous up to the endpoints. Cc 2
More informationGreen function and Eigenfunctions
Green function nd Eigenfunctions Let L e regulr SturmLiouville opertor on n intervl (, ) together with regulr oundry conditions. We denote y, φ ( n, x ) the eigenvlues nd corresponding normlized eigenfunctions
More information1 2D Second Order Equations: Separation of Variables
Chpter 12 PDEs in Rectngles 1 2D Second Order Equtions: Seprtion of Vribles 1. A second order liner prtil differentil eqution in two vribles x nd y is A 2 u x + B 2 u 2 x y + C 2 u y + D u 2 x + E u +
More informationPlates on elastic foundation
Pltes on elstic foundtion Circulr elstic plte, xilsymmetric lod, Winkler soil (fter Timoshenko & WoinowskyKrieger (1959)  Chpter 8) Prepred by Enzo Mrtinelli Drft version ( April 016) Introduction Winkler
More informationLecture 13  Linking E, ϕ, and ρ
Lecture 13  Linking E, ϕ, nd ρ A Puzzle... InnerSurfce Chrge Density A positive point chrge q is locted offcenter inside neutrl conducting sphericl shell. We know from Guss s lw tht the totl chrge on
More information1 1D heat and wave equations on a finite interval
1 1D het nd wve equtions on finite intervl In this section we consider generl method of seprtion of vribles nd its pplictions to solving het eqution nd wve eqution on finite intervl ( 1, 2. Since by trnsltion
More information1 E3102: a study guide and review, Version 1.0
1 E3102: study guide nd review, Version 1.0 Here is list of subjects tht I think we ve covered in clss (your milege my vry). If you understnd nd cn do the bsic problems in this guide you should be in very
More informationVariational Techniques for SturmLiouville Eigenvalue Problems
Vritionl Techniques for SturmLiouville Eigenvlue Problems Vlerie Cormni Deprtment of Mthemtics nd Sttistics University of Nebrsk, Lincoln Lincoln, NE 68588 Emil: vcormni@mth.unl.edu Rolf Ryhm Deprtment
More informationProblem Set 3 Solutions
Msschusetts Institute of Technology Deprtment of Physics Physics 8.07 Fll 2005 Problem Set 3 Solutions Problem 1: Cylindricl Cpcitor Griffiths Problems 2.39: Let the totl chrge per unit length on the inner
More information10 Elliptic equations
1 Elliptic equtions Sections 7.1, 7.2, 7.3, 7.7.1, An Introduction to Prtil Differentil Equtions, Pinchover nd Ruinstein We consider the twodimensionl Lplce eqution on the domin D, More generl eqution
More informationMultiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution
Multiple Integrls eview of Single Integrls eding Trim 7.1 eview Appliction of Integrls: Are 7. eview Appliction of Integrls: Volumes 7.3 eview Appliction of Integrls: Lengths of Curves Assignment web pge
More informationMATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1
MATH34032: Green s Functions, Integrl Equtions nd the Clculus of Vritions 1 Section 1 Function spces nd opertors Here we gives some brief detils nd definitions, prticulrly relting to opertors. For further
More informationWe divide the interval [a, b] into subintervals of equal length x = b a n
Arc Length Given curve C defined by function f(x), we wnt to find the length of this curve between nd b. We do this by using process similr to wht we did in defining the Riemnn Sum of definite integrl:
More informationChapter 2. Vectors. 2.1 Vectors Scalars and Vectors
Chpter 2 Vectors 2.1 Vectors 2.1.1 Sclrs nd Vectors A vector is quntity hving both mgnitude nd direction. Emples of vector quntities re velocity, force nd position. One cn represent vector in ndimensionl
More informationApplied Partial Differential Equations with Fourier Series and Boundary Value Problems 5th Edition Richard Haberman
Applied Prtil Differentil Equtions with Fourier Series nd Boundry Vlue Problems 5th Edition Richrd Hbermn Person Eduction Limited Edinburgh Gte Hrlow Essex CM20 2JE Englnd nd Associted Compnies throughout
More informationr = cos θ + 1. dt ) dt. (1)
MTHE 7 Proble Set 5 Solutions (A Crdioid). Let C be the closed curve in R whose polr coordintes (r, θ) stisfy () Sketch the curve C. r = cos θ +. (b) Find pretriztion t (r(t), θ(t)), t [, b], of C in polr
More information(9) P (x)u + Q(x)u + R(x)u =0
STURMLIOUVILLE THEORY 7 2. Second order liner ordinry differentil equtions 2.1. Recll some sic results. A second order liner ordinry differentil eqution (ODE) hs the form (9) P (x)u + Q(x)u + R(x)u =0
More informationNotes on length and conformal metrics
Notes on length nd conforml metrics We recll how to mesure the Eucliden distnce of n rc in the plne. Let α : [, b] R 2 be smooth (C ) rc. Tht is α(t) (x(t), y(t)) where x(t) nd y(t) re smooth rel vlued
More informationThe Dirichlet Problem in a Two Dimensional Rectangle. Section 13.5
The Dirichlet Prolem in Two Dimensionl Rectngle Section 13.5 1 Dirichlet Prolem in Rectngle In these notes we will pply the method of seprtion of vriles to otin solutions to elliptic prolems in rectngle
More informationCandidates must show on each answer book the type of calculator used.
UNIVERSITY OF EAST ANGLIA School of Mthemtics My/June UG Exmintion 2007 2008 ELECTRICITY AND MAGNETISM Time llowed: 3 hours Attempt FIVE questions. Cndidtes must show on ech nswer book the type of clcultor
More informationMath 100 Review Sheet
Mth 100 Review Sheet Joseph H. Silvermn December 2010 This outline of Mth 100 is summry of the mteril covered in the course. It is designed to be study id, but it is only n outline nd should be used s
More informationMultiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution
Multiple Integrls eview of Single Integrls eding Trim 7.1 eview Appliction of Integrls: Are 7. eview Appliction of Integrls: olumes 7.3 eview Appliction of Integrls: Lengths of Curves Assignment web pge
More informationCalculus 2: Integration. Differentiation. Integration
Clculus 2: Integrtion The reverse process to differentition is known s integrtion. Differentition f() f () Integrtion As it is the opposite of finding the derivtive, the function obtined b integrtion is
More informationUniversity of Washington Department of Chemistry Chemistry 453 Winter Quarter 2010 Homework Assignment 4; Due at 5p.m. on 2/01/10
University of Wshington Deprtment of Chemistry Chemistry 45 Winter Qurter Homework Assignment 4; Due t 5p.m. on // We lerned tht the Hmiltonin for the quntized hrmonic oscilltor is ˆ d κ H. You cn obtin
More informationChapter 4 Contravariance, Covariance, and Spacetime Diagrams
Chpter 4 Contrvrince, Covrince, nd Spcetime Digrms 4. The Components of Vector in Skewed Coordintes We hve seen in Chpter 3; figure 3.9, tht in order to show inertil motion tht is consistent with the Lorentz
More information1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a nonconstant can be solved with the same idea as above.
1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt
More informationA REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007
A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus
More informationSpace Curves. Recall the parametric equations of a curve in xyplane and compare them with parametric equations of a curve in space.
Clculus 3 Li Vs Spce Curves Recll the prmetric equtions of curve in xyplne nd compre them with prmetric equtions of curve in spce. Prmetric curve in plne x = x(t) y = y(t) Prmetric curve in spce x = x(t)
More informationPartial Derivatives. Limits. For a single variable function f (x), the limit lim
Limits Prtil Derivtives For single vrible function f (x), the limit lim x f (x) exists only if the righthnd side limit equls to the lefthnd side limit, i.e., lim f (x) = lim f (x). x x + For two vribles
More informationIn Section 5.3 we considered initial value problems for the linear second order equation. y.a/ C ˇy 0.a/ D k 1 (13.1.4)
678 Chpter 13 Boundry Vlue Problems for Second Order Ordinry Differentil Equtions 13.1 TWOPOINT BOUNDARY VALUE PROBLEMS In Section 5.3 we considered initil vlue problems for the liner second order eqution
More informationKai Sun. University of Michigan, Ann Arbor
Ki Sun University of Michign, Ann Arbor How to see toms in solid? For conductors, we cn utilize scnning tunneling microscope (STM) to see toms (Nobel Prize in Physics in 1986) Limittions: (1) conductors
More information(6.5) Length and area in polar coordinates
86 Chpter 6 SLICING TECHNIQUES FURTHER APPLICATIONS Totl mss 6 x ρ(x)dx + x 6 x dx + 9 kg dx + 6 x dx oment bout origin 6 xρ(x)dx x x dx + x + x + ln x ( ) + ln 6 kg m x dx + 6 6 x x dx Centre of mss +
More informationImproper Integrals, and Differential Equations
Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted
More informationMathematics. Area under Curve.
Mthemtics Are under Curve www.testprepkrt.com Tle of Content 1. Introduction.. Procedure of Curve Sketching. 3. Sketching of Some common Curves. 4. Are of Bounded Regions. 5. Sign convention for finding
More informationWaveguide Guide: A and V. Ross L. Spencer
Wveguide Guide: A nd V Ross L. Spencer I relly think tht wveguide fields re esier to understnd using the potentils A nd V thn they re using the electric nd mgnetic fields. Since Griffiths doesn t do it
More information, the action per unit length. We use g = 1 and will use the function. gψd 2 x = A 36. Ψ 2 d 2 x = A2 45
Gbriel Brello  Clssicl Electrodynmics.. For this problem, we compute A L z, the ction per unit length. We use g = nd will use the function Ψx, y = Ax x y y s the form of our pproximte solution. First
More informationChapter 9 Definite Integrals
Chpter 9 Definite Integrls In the previous chpter we found how to tke n ntiderivtive nd investigted the indefinite integrl. In this chpter the connection etween ntiderivtives nd definite integrls is estlished
More informationMACsolutions of the nonexistent solutions of mathematical physics
Proceedings of the 4th WSEAS Interntionl Conference on Finite Differences  Finite Elements  Finite Volumes  Boundry Elements MACsolutions of the nonexistent solutions of mthemticl physics IGO NEYGEBAUE
More informationChapter 8: Methods of Integration
Chpter 8: Methods of Integrtion Bsic Integrls 8. Note: We hve the following list of Bsic Integrls p p+ + c, for p sec tn + c p + ln + c sec tn sec + c e e + c tn ln sec + c ln + c sec ln sec + tn + c ln
More informationChapter 28. Fourier Series An Eigenvalue Problem.
Chpter 28 Fourier Series Every time I close my eyes The noise inside me mplifies I cn t escpe I relive every moment of the dy Every misstep I hve mde Finds wy it cn invde My every thought And this is why
More informationc n φ n (x), 0 < x < L, (1) n=1
SECTION : Fourier Series. MATH4. In section 4, we will study method clled Seprtion of Vribles for finding exct solutions to certin clss of prtil differentil equtions (PDEs. To do this, it will be necessry
More informationLinearity, linear operators, and self adjoint eigenvalue problems
Linerity, liner opertors, nd self djoint eigenvlue problems 1 Elements of liner lgebr The study of liner prtil differentil equtions utilizes, unsurprisingly, mny concepts from liner lgebr nd liner ordinry
More informationProblems for HW X. C. Gwinn. November 30, 2009
Problems for HW X C. Gwinn November 30, 2009 These problems will not be grded. 1 HWX Problem 1 Suppose thn n object is composed of liner dielectric mteril, with constnt reltive permittivity ɛ r. The object
More informationMA Handout 2: Notation and Background Concepts from Analysis
MA350059 Hndout 2: Nottion nd Bckground Concepts from Anlysis This hndout summrises some nottion we will use nd lso gives recp of some concepts from other units (MA20023: PDEs nd CM, MA20218: Anlysis 2A,
More informationLecture 24: Laplace s Equation
Introductory lecture notes on Prtil Differentil Equtions  c Anthony Peirce. Not to e copied, used, or revised without explicit written permission from the copyright owner. 1 Lecture 24: Lplce s Eqution
More informationChapter 6 Techniques of Integration
MA Techniques of Integrtion Asst.Prof.Dr.Suprnee Liswdi Chpter 6 Techniques of Integrtion Recll: Some importnt integrls tht we hve lernt so fr. Tle of Integrls n+ n d = + C n + e d = e + C ( n ) d = ln
More informationThomas Whitham Sixth Form
Thoms Whithm Sith Form Pure Mthemtics Unit C Alger Trigonometry Geometry Clculus Vectors Trigonometry Compound ngle formule sin sin cos cos Pge A B sin Acos B cos Asin B A B sin Acos B cos Asin B A B cos
More informationConsequently, the temperature must be the same at each point in the cross section at x. Let:
HW 2 Comments: L13. Derive the het eqution for n inhomogeneous rod where the therml coefficients used in the derivtion of the het eqution for homogeneous rod now become functions of position x in the
More informationTheoretische Physik 2: Elektrodynamik (Prof. A.S. Smith) Home assignment 4
WiSe 1 8.1.1 Prof. Dr. A.S. Smith Dipl.Phys. Ellen Fischermeier Dipl.Phys. Mtthis Sb m Lehrstuhl für Theoretische Physik I Deprtment für Physik FriedrichAlexnderUniversität ErlngenNürnberg Theoretische
More informationReference. Vector Analysis Chapter 2
Reference Vector nlsis Chpter Sttic Electric Fields (3 Weeks) Chpter 3.3 Coulomb s Lw Chpter 3.4 Guss s Lw nd pplictions Chpter 3.5 Electric Potentil Chpter 3.6 Mteril Medi in Sttic Electric Field Chpter
More informationMatrix Eigenvalues and Eigenvectors September 13, 2017
Mtri Eigenvlues nd Eigenvectors September, 7 Mtri Eigenvlues nd Eigenvectors Lrry Cretto Mechnicl Engineering 5A Seminr in Engineering Anlysis September, 7 Outline Review lst lecture Definition of eigenvlues
More informationThe Algebra (aljabr) of Matrices
Section : Mtri lgebr nd Clculus Wshkewicz College of Engineering he lgebr (ljbr) of Mtrices lgebr s brnch of mthemtics is much broder thn elementry lgebr ll of us studied in our high school dys. In sense
More information2. THE HEAT EQUATION (Joseph FOURIER ( ) in 1807; Théorie analytique de la chaleur, 1822).
mpc2w4.tex Week 4. 2.11.2011 2. THE HEAT EQUATION (Joseph FOURIER (17681830) in 1807; Théorie nlytique de l chleur, 1822). One dimension. Consider uniform br (of some mteril, sy metl, tht conducts het),
More informationKirchhoff and Mindlin Plates
Kirchhoff nd Mindlin Pltes A plte significntly longer in two directions compred with the third, nd it crries lod perpendiculr to tht plne. The theory for pltes cn be regrded s n extension of bem theory,
More informationARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac
REVIEW OF ALGEBRA Here we review the bsic rules nd procedures of lgebr tht you need to know in order to be successful in clculus. ARITHMETIC OPERATIONS The rel numbers hve the following properties: b b
More informationMATH 174A: PROBLEM SET 5. Suggested Solution
MATH 174A: PROBLEM SET 5 Suggested Solution Problem 1. Suppose tht I [, b] is n intervl. Let f 1 b f() d for f C(I; R) (i.e. f is continuous relvlued function on I), nd let L 1 (I) denote the completion
More informationDo the onedimensional kinetic energy and momentum operators commute? If not, what operator does their commutator represent?
1 Problem 1 Do the onedimensionl kinetic energy nd momentum opertors commute? If not, wht opertor does their commuttor represent? KE ˆ h m d ˆP i h d 1.1 Solution This question requires clculting the
More information(b) Let S 1 : f(x, y, z) = (x a) 2 + (y b) 2 + (z c) 2 = 1, this is a level set in 3D, hence
Problem ( points) Find the vector eqution of the line tht joins points on the two lines L : r ( + t) i t j ( + t) k L : r t i + (t ) j ( + t) k nd is perpendiculr to both those lines. Find the set of ll
More informationSturmLiouville Theory
LECTURE 1 SturmLiouville Theory In the two preceing lectures I emonstrte the utility of Fourier series in solving PDE/BVPs. As we ll now see, Fourier series re just the tip of the iceerg of the theory
More informationThis final is a three hour open book, open notes exam. Do all four problems.
Physics 55 Fll 27 Finl Exm Solutions This finl is three hour open book, open notes exm. Do ll four problems. [25 pts] 1. A point electric dipole with dipole moment p is locted in vcuum pointing wy from
More informationMath 113 Exam 2 Practice
Mth Em Prctice Februry, 8 Em will cover sections 6.5, 7.7.5 nd 7.8. This sheet hs three sections. The first section will remind you bout techniques nd formuls tht you should know. The second gives number
More informationg i fφdx dx = x i i=1 is a Hilbert space. We shall, henceforth, abuse notation and write g i f(x) = f
1. Appliction of functionl nlysis to PEs 1.1. Introduction. In this section we give little introduction to prtil differentil equtions. In prticulr we consider the problem u(x) = f(x) x, u(x) = x (1) where
More informationAPPM 1360 Exam 2 Spring 2016
APPM 6 Em Spring 6. 8 pts, 7 pts ech For ech of the following prts, let f + nd g 4. For prts, b, nd c, set up, but do not evlute, the integrl needed to find the requested informtion. The volume of the
More informationTHE DISCRIMINANT & ITS APPLICATIONS
THE DISCRIMINANT & ITS APPLICATIONS The discriminnt ( Δ ) is the epression tht is locted under the squre root sign in the qudrtic formul i.e. Δ b c. For emple: Given +, Δ () ( )() The discriminnt is used
More informationPhys 6321 Final Exam  Solutions May 3, 2013
Phys 6321 Finl Exm  Solutions My 3, 2013 You my NOT use ny book or notes other thn tht supplied with this test. You will hve 3 hours to finish. DO YOUR OWN WORK. Express your nswers clerly nd concisely
More information63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1
3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =
More informationLINEAR ALGEBRA APPLIED
5.5 Applictions of Inner Product Spces 5.5 Applictions of Inner Product Spces 7 Find the cross product of two vectors in R. Find the liner or qudrtic lest squres pproimtion of function. Find the nthorder
More informationMath Theory of Partial Differential Equations Lecture 29: SturmLiouville eigenvalue problems (continued).
Mth 412501 Theory of Prtil Differentil Equtions Lecture 29: SturmLiouville eigenvlue problems (continued). Regulr SturmLiouville eigenvlue problem: d ( p dφ ) + qφ + λσφ = 0 ( < x < b), dx dx β 1 φ()
More informationNote 16. Stokes theorem Differential Geometry, 2005
Note 16. Stokes theorem ifferentil Geometry, 2005 Stokes theorem is the centrl result in the theory of integrtion on mnifolds. It gives the reltion between exterior differentition (see Note 14) nd integrtion
More informationEnergy Bands Energy Bands and Band Gap. Phys463.nb Phenomenon
Phys463.nb 49 7 Energy Bnds Ref: textbook, Chpter 7 Q: Why re there insultors nd conductors? Q: Wht will hppen when n electron moves in crystl? In the previous chpter, we discussed free electron gses,
More information) 4n+2 sin[(4n + 2)φ] n=0. a n ρ n sin(nφ + α n ) + b n ρ n sin(nφ + β n ) n=1. n=1. [A k ρ k cos(kφ) + B k ρ k sin(kφ)] (1) 2 + k=1
Physics 505 Fll 2007 Homework Assignment #3 Solutions Textbook problems: Ch. 2: 2.4, 2.5, 2.22, 2.23 2.4 A vrint of the preceeding twodimensionl problem is long hollow conducting cylinder of rdius b tht
More informationMATHEMATICS PART A. 1. ABC is a triangle, right angled at A. The resultant of the forces acting along AB, AC
FIITJEE Solutions to AIEEE MATHEMATICS PART A. ABC is tringle, right ngled t A. The resultnt of the forces cting long AB, AC with mgnitudes AB nd respectively is the force long AD, where D is the AC foot
More informationMA Exam 2 Study Guide, Fall u n du (or the integral of linear combinations
LESSON 0 Chpter 7.2 Trigonometric Integrls. Bsic trig integrls you should know. sin = cos + C cos = sin + C sec 2 = tn + C sec tn = sec + C csc 2 = cot + C csc cot = csc + C MA 6200 Em 2 Study Guide, Fll
More informationDefinite integral. Mathematics FRDIS MENDELU
Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová Brno 1 Motivtion  re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function defined on [, b]. Wht is the re of the
More informationThe usual algebraic operations +,, (or ), on real numbers can then be extended to operations on complex numbers in a natural way: ( 2) i = 1
Mth50 Introduction to Differentil Equtions Brief Review of Complex Numbers Complex Numbers No rel number stisfies the eqution x =, since the squre of ny rel number hs to be nonnegtive. By introducing
More informationENGI 9420 Lecture Notes 7  Fourier Series Page 7.01
ENGI 940 ecture Notes 7  Fourier Series Pge 7.0 7. Fourier Series nd Fourier Trnsforms Fourier series hve multiple purposes, including the provision of series solutions to some liner prtil differentil
More informationLecture 1: Electrostatic Fields
Lecture 1: Electrosttic Fields Instructor: Dr. Vhid Nyyeri Contct: nyyeri@iust.c.ir Clss web site: http://webpges.iust.c. ir/nyyeri/courses/bee 1.1. Coulomb s Lw Something known from the ncient time (here
More informationHW3, Math 307. CSUF. Spring 2007.
HW, Mth 7. CSUF. Spring 7. Nsser M. Abbsi Spring 7 Compiled on November 5, 8 t 8:8m public Contents Section.6, problem Section.6, problem Section.6, problem 5 Section.6, problem 7 6 5 Section.6, problem
More informationDEFINITION OF ASSOCIATIVE OR DIRECT PRODUCT AND ROTATION OF VECTORS
3 DEFINITION OF ASSOCIATIVE OR DIRECT PRODUCT AND ROTATION OF VECTORS This chpter summrizes few properties of Cli ord Algebr nd describe its usefulness in e ecting vector rottions. 3.1 De nition of Associtive
More informationJim Lambers MAT 280 Spring Semester Lecture 26 and 27 Notes
Jim Lmbers MAT 280 pring emester 200910 Lecture 26 nd 27 Notes These notes correspond to ection 8.6 in Mrsden nd Tromb. ifferentil Forms To dte, we hve lerned the following theorems concerning the evlution
More informationUnit 5. Integration techniques
18.01 EXERCISES Unit 5. Integrtion techniques 5A. Inverse trigonometric functions; Hyperbolic functions 5A1 Evlute ) tn 1 3 b) sin 1 ( 3/) c) If θ = tn 1 5, then evlute sin θ, cos θ, cot θ, csc θ, nd
More informationAQA Further Pure 2. Hyperbolic Functions. Section 2: The inverse hyperbolic functions
Hperbolic Functions Section : The inverse hperbolic functions Notes nd Emples These notes contin subsections on The inverse hperbolic functions Integrtion using the inverse hperbolic functions Logrithmic
More informationMath 5440 Problem Set 3 Solutions
Mth 544 Mth 544 Problem Set 3 Solutions Aron Fogelson Fll, 213 1: (Logn, 1.5 # 2) Repet the derivtion for the eqution of motion of vibrting string when, in ddition, the verticl motion is retrded by dmping
More information5.2 Volumes: Disks and Washers
4 pplictions of definite integrls 5. Volumes: Disks nd Wshers In the previous section, we computed volumes of solids for which we could determine the re of crosssection or slice. In this section, we restrict
More informationMath 32B Discussion Session Session 7 Notes August 28, 2018
Mth 32B iscussion ession ession 7 Notes August 28, 28 In tody s discussion we ll tlk bout surfce integrls both of sclr functions nd of vector fields nd we ll try to relte these to the mny other integrls
More informationSTURMLIOUVILLE THEORY, VARIATIONAL APPROACH
STURMLIOUVILLE THEORY, VARIATIONAL APPROACH XIAOBIAO LIN. Qudrtic functionl nd the EulerJcobi Eqution The purpose of this note is to study the SturmLiouville problem. We use the vritionl problem s
More information