Suggested Solution to Assignment 5

Size: px
Start display at page:

Download "Suggested Solution to Assignment 5"

Transcription

1 MATH 4 (5-6) prti diferenti equtions Suggested Soution to Assignment 5 Exercise 5.. () (b) A m = A m = = ( )m+ mπ x sin mπx dx = x mπ cos mπx + + 4( )m 4 m π. 4x cos mπx dx mπ x cos mπxdx = x mπ sin mπx 4x 4 sin mπxdx = ( )m mπ m π. 4. To find the Fourier series of the function f(x) = sin x, we first note tht this is n even function so tht it hs cos-series. If we integrte from to π nd mutipy the resut by, we cn tke the function sin x insted of sin x so tht Hence, we hve n = π = π sin x cos nxdx = f(x) = π 4 cos x ( π Substituting x = nd x = π, we hve 5. () From Pge.9, we hve Integrtion of both sides gives x x = sin xdx = 4 π. { 4 ( n )π n even n odd. cos 4x cos 6x ). 4n =. ( ) n 4n = π 4. m= m+ ( ) mπ mπx sin. = c + ( ) m mπx m cos. π m= The constnt of the integrtion is the missing coefficient (b) By setting x = gives or c = A = x dx = 6. = 6 + ( ) m m π, π = m= m= ( ) m+ m.

2 MATH 4 (5-6) prti diferenti equtions 8. The key point in the probem bove is to sove the foowing PDE probem. u t u xx =, u(x, ) = φ(x), u(, t) = u(, t) =, { φ(x) =, < x <, x, < x <. Through stndrd procedure of seprtion vribe method, we obtin where n = 9 φ(x) sin nπxdx = u(x, t) = n e n π t sin nπx, sin πn n π, so the soution T = u(x, t) + x. 9. From Section 4..7, we see tht the gener formu to wve eqution with Neu- mnn boundry condition is u(x, t) = (A + B t) + (A n cos nct + B n sin nct) cos nx, where φ(x) = A + A n cos nx, ψ(x) = B + ncb n cos nx. By further ccution, we hve B =, B = 4c nd the other coefficients re zero. Hence, the soution is u(x, t) = sin ct cos x t +. 4c Exercise 5.. Suppose α = p/q, where p, q re co-prime to ech other. Then is is not difficut to see tht S = qπ is period of the function. Suppose qπ = mt, where T is the minim period. Then cos x + cos αx = cos(x + T ) + cos(αx + αt ). Let x =, we hve the bove equity hods iff q/m, p/m re both integers. Therefore, m =. Hence, we finish the probem. 5. Let m = mπx φ(x) sin. Then we hve φ(x) = m= m sin mπx. 8. () If f is even, f( x) = f(x). Differentiting both sides gives f ( x) = f (x), so f ( x) = f (x), showing f is odd. If f is odd, f( x) = f(x). Differentiting both sides gives f ( x) = f (x), so f ( x) = f (x), showing f is even. (b) If f is even, consider f( x)dx = f(x)dx. Vi substitution, u = x, we hve f(u)du = f(x)dx. So if ignoring te constnt of integrtion, F ( x) = F (x), showing F is odd, where F is n ntiderivtive of f.simiry, for f odd, we hve f( x)dx = f(x)dx, so F ( x) = F (x), showing F is even.. () If φ is continuos on (, ), φ odd is continuous on (, ) if nd ony if im φ(x) =. x + (b) If φ(x) is differentibe on (, ), φ odd is differentibe on (, ) if nd ony if im x φ (x) exists, since + is n even function, so the ony thing to void is n infinite discontinuity t x =. φ odd

3 MATH 4 (5-6) prti diferenti equtions (c) If φ is continuos on (, ), φ even is continuous on (, ) if nd ony if im φ(x) exists, since the ony x + thing to void is n infinite discontinuity t x =. (d) If φ(x) is differentibe on (, ), φ even is differentibe on (, ) if nd ony if im x φ (x) =, since + φ even is n odd function. Extr. u(, t) = u(, t) = tes us we cn do odd extension nd periodic extension with period. Thus define { sin (πx), x [n, n + ] φ(x) = sin (πx), x [n, n] { x( x), x [n, n + ] ψ(x) = x( + x), x [n, n] n =, ±, ±,... By d Aembert s formu,u(x, t) = [φ(x + t) + φ(x t)] + x+t 4 x t ψ(s)ds soves the probem. Exercise 5.. Since X() =, by the odd extension x( x) = X(x) for < x <, then X stisfies X + λx =, X ( ) = X () =. Hence, λ = [(n + )π] /, X n (x) = sin[(n + )πx/], n =,,,... Thus we botin the gener formu to this eqution u(x, t) = [A n cos (n + )πct n= + B n sin (n + )πct ] sin (n + )πx. By the boundry condition, we obtined tht B n re zero, whie A n ( ) n (n+ ) π. = sin (n+ )πx x dx = 5(). Let u(x, t) = X(x)T (t), then X (x) = λx(x), X() =, X () =. By Theorem, there is no negtive eigenvue. It is esy to check tht is not n eigenvue. Hence, there re ony positive eigenvues. Let λ = β, β >, then we hve X(x) = A cos βx + B sin βx. Hence the bounndry condtions impy A =, Bβ cos β =. So the eigenfunctions re β = (n + )π, n =,,,... X n (x) = sin (n + )πx, n =,,,...

4 MATH 4 (5-6) prti diferenti equtions 6. Let X (x) = λx(x), λ C, then X(x) = e λx. By the boundry condition X() = X(), we hve e λ =. Hence, λ n = nπi, X n (x) = e nπxi, n Z. Since, if m n, X n (x)x m (x)dx = e (n m)πxi dx =. Therefore, the eigenfunctions re orthogon on the interv (, ). 8. If nd then ( X X + X X ) b X () X () = X () X () =, X (b) + b X (b) = X (b) + b X (b) =, = X (b)x (b) + X (b)x (b) + X ()X () X ()X () = b X (b)x (b) X (b) b X (b) + X ()X () X () X () =. 9. For j =,, suppose tht X j (b) = αx j () + βx j() X j(b) = γx j () + δx j(). Then, (X X X X ) b = X (b)x (b) X (b)x (b) X ()X () + X ()X () = [γx () + δx ()][αx () + βx ()] [αx () + βx ()][γx () + δx ()] X ()X () + X ()X () = (αδ βγ )X ()X () + ( + βγ αδ)x ()X () = (αδ βγ )(X X ) x=. Therefore, the boundry conditions re symetric if nd ony if αδ βγ =.. By the divergence theorem, f g b = (f (x)g(x)) dx = f (x)g(x)dx = f (x)g(x) + f (x)g (x)dx, f (x)g (x)dx + f g b.. Substitute f(x) = X(x) = g(x) in the Green s first identity, we hve Since X = λx, so Therefore, we get λ since X. X (x)x(x)dx = λ X (x)dx + (X X) b. X (x)dx. 4

5 MATH 4 (5-6) prti diferenti equtions Exercise 5.4. The prti sum is given by S n = ( )n x n + x. () Obviousy for ny x fixed, S n. Thus it converges to pointwise. +x +x (b) Let x n = n, then xn e. Thus it does not converge uniformy. (c) It wi converge to S(x) = +x in the L sence since S n S dx = x 4n ( + x ) dx x 4n dx s n. 4n +. This is n esy consequence combined Theorem nd Theorem on Pge 4 nd Theorem 4 on Pge 5.. () For ny fixed point x, WLOG, we ssume x <. Then there is N such tht for n > N, x < n, which impies tht f n (x ). Thus f n (x) pointwisey. (b) Let x n = n, then f n(x n ) = γ n, which impies tht the convergence is not uniform. (c) By direct computtion, we hve f n(x)dx = n γndx + n + γndx = γ n n. For γ n = n, f n(x)dx = n s n. (d) By the computtion in (c), for γ n = n, fn(x)dx = n s n. 4. For odd n, For even n, Thus, for ny n, 4 + n dx = 4 n. n 4 + n dx = 4 n. n g n (x) L = s n. n 5

6 MATH 4 (5-6) prti diferenti equtions 5. () We see tht A = terms re 4, pi dx = 4 nd A m = πx cos nd πx cos, π 4π cos mπx dx = mx cos 4πx. mπ sin. So, the first four nonzero (b) We cn express φ(x) = A + (A n cos nπx + B n sin nπx ). by Theorem 4 of Sectiion 4, since φ(x) nd its derivtive is piecewise continuous, so we get the fourier series wi converge to f(x) except t x =, whie the vue of this series t x = is. (c) By corory 7, we see tht it converge to φ(x) in L sense. (d) Put x =, we see tht the sine series vnish, it turns out to be tht φ() = π thus we obtin the sum of thee series is π. 6. The series is cos x = n sin nx. If n >, n = π cos x sin nxdx = + )x [cos(n + π n + cos(n )x n ] π = n( + ( )n ) (n. )π ( ) [ m ] m<,m n m If n =, =. The sum series is if x = π,, π. By Theorem 4 in Section 4, the sum series converges to cos x pointwisey in < x < π, nd to cos x for π < x <. 7. () Obviousy φ(x) is odd. Thus, its fu Fourier series is just the Sine Fourier series, i.e. where B n stisfies B n = (b) By (), the first three nonzero terms re (c) Since B n sin nπx, φ(x) sin nπxdx = nπ. π sin πx, π sin πx, sin πx. π φ(x) dx = ( x) dx, it cconverges in the men squre sense ccording to Corory 7. (d) Since φ(x) is continuous on (, ) except t the point x =. Therefore, Theorem 4 in Section 4 impies it converges pointwisey on (, ) expect t x =. (e) Since the series does not converge pointwisey, it does not converge uniformy. Exercise 5.6. () (Use the method of shifting the dt.) Let v(x, t) := u(x, t), then v soves v t = v xx, v x (, t) = v(, t) =, nd v(x, ) = x. By the method of sepertion of vribes, we hve v(x, t) = A n e (n+ ) π t cos[(n + )πx], n= cos mπ 6

7 MATH 4 (5-6) prti diferenti equtions where Hence, where A n is s before. (b). A n = ( ) n+ 4(n + ) π. u(x, t) = + A n e (n+ ) π t cos[(n + )πx], n=. In the cse j(t) = nd h(t) = e t, by () nd the initi condition u n () =, Therefore, u(x, t) = u n (t) = 5. It is esy to check tht et sin 5x + 5c soves Using the method of shifting the dt, we hve where nπk (λ n k + ) (et e λnkt ). nπk (λ n k + ) (et e λnkt ) sin nπx. v t t = c v xx + e t sin 5x, nd v(, t) = v(π, t) =. u(x, t) = et sin 5x + 5c + (A n cos(nct) + B n sin(nct)) sin(nx), A n = π sin 5x sin nx dx = + 5c sin 5x] sin nx dx + 5c B n = [sin x ncπ c n = = 5c( + 5c n = 5. ) otherwise So the formu of the soution cn be simpfied s u(x, t) = c sin ct sin x + + 5c + 5c n = 5 ; 5 otherwise (e t cos 5ct 5c sin 5ct ) sin 5x. 8. (Expnsion Method) Let u(x, t) = u n (t) sin nπx, u t (x, t) = v n (t) sin nπx, u x (x, t) = w n (t) sin nπx. 7

8 MATH 4 (5-6) prti diferenti equtions Then v n (t) = w n (t) = = u t nπx sin dx = du n dt, u nπx sin x dx = du n dt, ( nπ ) u(x, t) sin nπx = λ n u n (t) nπ ( ) n At, dx + (u x sin nπx nπ u cos nπx where λ n = (nπ/). Here we used the Green s second identity nd the boundry conditions. Hence, by the PDE u t = ku xx nd the initi condition u(x, ) =, we get ) du n dt = k[ λ n u n (t) nπ ( ) n At], u n () =. Hence, Therefore, where λ n = (nπ/). u(x, t) = u n (t) = ( ) n+ nπ A[ t λ n λ nk + e λnkt λ nk ]. ( ) n+ nπ A[ t λ n λ nk + e λnkt nπx λ ] sin, nk 8

Math 124B January 24, 2012

Math 124B January 24, 2012 Mth 24B Jnury 24, 22 Viktor Grigoryn 5 Convergence of Fourier series Strting from the method of seprtion of vribes for the homogeneous Dirichet nd Neumnn boundry vue probems, we studied the eigenvue probem

More information

MAGIC058 & MATH64062: Partial Differential Equations 1

MAGIC058 & MATH64062: Partial Differential Equations 1 MAGIC58 & MATH646: Prti Differenti Equtions 1 Section 4 Fourier series 4.1 Preiminry definitions Definition: Periodic function A function f( is sid to be periodic, with period p if, for, f( + p = f( where

More information

Lecture Notes 4: Fourier Series and PDE s

Lecture Notes 4: Fourier Series and PDE s Lecture Notes 4: Fourier Series and PDE s 1. Periodic Functions A function fx defined on R is caed a periodic function if there exists a number T > such that fx + T = fx, x R. 1.1 The smaest number T for

More information

Fourier Series in Complex notation. cos(x) = eix + e ix 2. A n cos + B n sin l. i 2 B n. e inx=l + A n + ib n 2 8. ( 0 m 6= n. C n = 1 2l.

Fourier Series in Complex notation. cos(x) = eix + e ix 2. A n cos + B n sin l. i 2 B n. e inx=l + A n + ib n 2 8. ( 0 m 6= n. C n = 1 2l. Fourier Series in Compex nottion sin(x) = eix e ix i = i eix e ix cos(x) = eix + e ix So So '(x) = A 1 0 + nx nx A n cos + B n sin = A 1 0 + e inx= + e inx= A n = A 0 + 1 = C n = C n 1 n= 1 A n ib n C

More information

Fourier Series. with the period 2π, given that sin nx and cos nx are period functions with the period 2π. Then we.

Fourier Series. with the period 2π, given that sin nx and cos nx are period functions with the period 2π. Then we. . Definition We c the trigonometric series the series of the form + cos x+ b sin x+ cos x+ b sin x+ or more briefy + ( ncos nx+ bnsin nx) () n The constnts, n nd b, n ( n,, ) re coefficients of the series

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 32: 10.2 Fourier Series

Lecture Notes for Math 251: ODE and PDE. Lecture 32: 10.2 Fourier Series Lecture Notes for Math 251: ODE and PDE. Lecture 32: 1.2 Fourier Series Shawn D. Ryan Spring 212 Last Time: We studied the heat equation and the method of Separation of Variabes. We then used Separation

More information

Wave Equation Dirichlet Boundary Conditions

Wave Equation Dirichlet Boundary Conditions Wave Equation Dirichet Boundary Conditions u tt x, t = c u xx x, t, < x 1 u, t =, u, t = ux, = fx u t x, = gx Look for simpe soutions in the form ux, t = XxT t Substituting into 13 and dividing

More information

10.2-3: Fourier Series.

10.2-3: Fourier Series. 10.2-3: Fourier Series. 10.2-3: Fourier Series. O. Costin: Fourier Series, 10.2-3 1 Fourier series are very useful in representing periodic functions. Examples of periodic functions. A function is periodic

More information

Week 6 Lectures, Math 6451, Tanveer

Week 6 Lectures, Math 6451, Tanveer Fourier Series Week 6 Lectures, Math 645, Tanveer In the context of separation of variabe to find soutions of PDEs, we encountered or and in other cases f(x = f(x = a 0 + f(x = a 0 + b n sin nπx { a n

More information

PHYSICS 116C Homework 4 Solutions

PHYSICS 116C Homework 4 Solutions PHYSICS 116C Homework 4 Solutions 1. ( Simple hrmonic oscilltor. Clerly the eqution is of the Sturm-Liouville (SL form with λ = n 2, A(x = 1, B(x =, w(x = 1. Legendre s eqution. Clerly the eqution is of

More information

6 Wave Equation on an Interval: Separation of Variables

6 Wave Equation on an Interval: Separation of Variables 6 Wave Equation on an Interva: Separation of Variabes 6.1 Dirichet Boundary Conditions Ref: Strauss, Chapter 4 We now use the separation of variabes technique to study the wave equation on a finite interva.

More information

Math 124B January 31, 2012

Math 124B January 31, 2012 Math 124B January 31, 212 Viktor Grigoryan 7 Inhomogeneous boundary vaue probems Having studied the theory of Fourier series, with which we successfuy soved boundary vaue probems for the homogeneous heat

More information

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner

More information

22. Periodic Functions and Fourier Series

22. Periodic Functions and Fourier Series November 29, 2010 22-1 22. Periodic Functions and Fourier Series 1 Periodic Functions A real-valued function f(x) of a real variable is called periodic of period T > 0 if f(x + T ) = f(x) for all x R.

More information

Chapter 28. Fourier Series An Eigenvalue Problem.

Chapter 28. Fourier Series An Eigenvalue Problem. Chpter 28 Fourier Series Every time I close my eyes The noise inside me mplifies I cn t escpe I relive every moment of the dy Every misstep I hve mde Finds wy it cn invde My every thought And this is why

More information

1. The vibrating string problem revisited.

1. The vibrating string problem revisited. Weeks 7 8: S eprtion of Vribes In the pst few weeks we hve expored the possibiity of soving first nd second order PDEs by trnsforming them into simper forms ( method of chrcteristics. Unfortuntey, this

More information

Math 201 Assignment #11

Math 201 Assignment #11 Math 21 Assignment #11 Problem 1 (1.5 2) Find a formal solution to the given initial-boundary value problem. = 2 u x, < x < π, t > 2 u(, t) = u(π, t) =, t > u(x, ) = x 2, < x < π Problem 2 (1.5 5) Find

More information

Math 5440 Problem Set 3 Solutions

Math 5440 Problem Set 3 Solutions Mth 544 Mth 544 Problem Set 3 Solutions Aron Fogelson Fll, 213 1: (Logn, 1.5 # 2) Repet the derivtion for the eqution of motion of vibrting string when, in ddition, the verticl motion is retrded by dmping

More information

Math 124B January 17, 2012

Math 124B January 17, 2012 Math 124B January 17, 212 Viktor Grigoryan 3 Fu Fourier series We saw in previous ectures how the Dirichet and Neumann boundary conditions ead to respectivey sine and cosine Fourier series of the initia

More information

Math 5440 Problem Set 3 Solutions

Math 5440 Problem Set 3 Solutions Mth 544 Mth 544 Problem Set 3 Solutions Aron Fogelson Fll, 25 1: Logn, 1.5 # 2) Repet the derivtion for the eqution of motion of vibrting string when, in ddition, the verticl motion is retrded by dmping

More information

AM1 Mathematical Analysis 1 Oct Feb Exercises Lecture 3. sin(x + h) sin x h cos(x + h) cos x h

AM1 Mathematical Analysis 1 Oct Feb Exercises Lecture 3. sin(x + h) sin x h cos(x + h) cos x h AM Mthemticl Anlysis Oct. Feb. Dte: October Exercises Lecture Exercise.. If h, prove the following identities hold for ll x: sin(x + h) sin x h cos(x + h) cos x h = sin γ γ = sin γ γ cos(x + γ) (.) sin(x

More information

Differential Equations 2 Homework 5 Solutions to the Assigned Exercises

Differential Equations 2 Homework 5 Solutions to the Assigned Exercises Differentil Equtions Homework Solutions to the Assigned Exercises, # 3 Consider the dmped string prolem u tt + 3u t = u xx, < x , u, t = u, t =, t >, ux, = fx, u t x, = gx. In the exm you were supposed

More information

Review SOLUTIONS: Exam 2

Review SOLUTIONS: Exam 2 Review SOUTIONS: Exm. True or Flse? (And give short nswer ( If f(x is piecewise smooth on [, ], we cn find series representtion using either sine or cosine series. SOUTION: TRUE. If we use sine series,

More information

ENGI 9420 Lecture Notes 7 - Fourier Series Page 7.01

ENGI 9420 Lecture Notes 7 - Fourier Series Page 7.01 ENGI 940 ecture Notes 7 - Fourier Series Pge 7.0 7. Fourier Series nd Fourier Trnsforms Fourier series hve multiple purposes, including the provision of series solutions to some liner prtil differentil

More information

Module 9: The Method of Green s Functions

Module 9: The Method of Green s Functions Module 9: The Method of Green s Functions The method of Green s functions is n importnt technique for solving oundry vlue nd, initil nd oundry vlue prolems for prtil differentil equtions. In this module,

More information

MATH 124B: HOMEWORK 2

MATH 124B: HOMEWORK 2 MATH 24B: HOMEWORK 2 Suggested due date: August 5th, 26 () Consider the geometric series ( ) n x 2n. (a) Does it converge pointwise in the interval < x

More information

Assignment 7 Due Tuessday, March 29, 2016

Assignment 7 Due Tuessday, March 29, 2016 Math 45 / AMCS 55 Dr. DeTurck Assignment 7 Due Tuessday, March 9, 6 Topics for this week Convergence of Fourier series; Lapace s equation and harmonic functions: basic properties, compuations on rectanges

More information

(PDE) u t k(u xx + u yy ) = 0 (x, y) in Ω, t > 0, (BC) u(x, y, t) = 0 (x, y) on Γ, t > 0, (IC) u(x, y, 0) = f(x, y) (x, y) in Ω.

(PDE) u t k(u xx + u yy ) = 0 (x, y) in Ω, t > 0, (BC) u(x, y, t) = 0 (x, y) on Γ, t > 0, (IC) u(x, y, 0) = f(x, y) (x, y) in Ω. Seprtion of Vriles for Higher Dimensionl Het Eqution 1. Het Eqution nd Eigenfunctions of the Lplcin: An 2-D Exmple Ojective: Let Ω e plnr region with oundry curve Γ. Consider het conduction in Ω with fixed

More information

1 1D heat and wave equations on a finite interval

1 1D heat and wave equations on a finite interval 1 1D het nd wve equtions on finite intervl In this section we consider generl method of seprtion of vribles nd its pplictions to solving het eqution nd wve eqution on finite intervl ( 1, 2. Since by trnsltion

More information

Math Fall 2006 Sample problems for the final exam: Solutions

Math Fall 2006 Sample problems for the final exam: Solutions Mth 42-5 Fll 26 Smple problems for the finl exm: Solutions Any problem my be ltered or replced by different one! Some possibly useful informtion Prsevl s equlity for the complex form of the Fourier series

More information

The Fourier series for a 2π-periodic function

The Fourier series for a 2π-periodic function The Fourier series for a 2π-periodic function Let f : ( π, π] R be a bounded piecewise continuous function which we continue to be a 2π-periodic function defined on R, i.e. f (x + 2π) = f (x), x R. The

More information

The Dirichlet Problem in a Two Dimensional Rectangle. Section 13.5

The Dirichlet Problem in a Two Dimensional Rectangle. Section 13.5 The Dirichlet Prolem in Two Dimensionl Rectngle Section 13.5 1 Dirichlet Prolem in Rectngle In these notes we will pply the method of seprtion of vriles to otin solutions to elliptic prolems in rectngle

More information

Consequently, the temperature must be the same at each point in the cross section at x. Let:

Consequently, the temperature must be the same at each point in the cross section at x. Let: HW 2 Comments: L1-3. Derive the het eqution for n inhomogeneous rod where the therml coefficients used in the derivtion of the het eqution for homogeneous rod now become functions of position x in the

More information

c n φ n (x), 0 < x < L, (1) n=1

c n φ n (x), 0 < x < L, (1) n=1 SECTION : Fourier Series. MATH4. In section 4, we will study method clled Seprtion of Vribles for finding exct solutions to certin clss of prtil differentil equtions (PDEs. To do this, it will be necessry

More information

Summary: Method of Separation of Variables

Summary: Method of Separation of Variables Physics 246 Electricity nd Mgnetism I, Fll 26, Lecture 22 1 Summry: Method of Seprtion of Vribles 1. Seprtion of Vribles in Crtesin Coordintes 2. Fourier Series Suggested Reding: Griffiths: Chpter 3, Section

More information

Abstract inner product spaces

Abstract inner product spaces WEEK 4 Abstrct inner product spces Definition An inner product spce is vector spce V over the rel field R equipped with rule for multiplying vectors, such tht the product of two vectors is sclr, nd the

More information

Physics 215 Quantum Mechanics 1 Assignment 2

Physics 215 Quantum Mechanics 1 Assignment 2 Physics 15 Quntum Mechnics 1 Assignment Logn A. Morrison Jnury, 16 Problem 1 Clculte p nd p on the Gussin wve pcket α whose wve function is x α = 1 ikx x 1/4 d 1 Solution Recll tht where ψx = x ψ. Additionlly,

More information

DEFINITION The inner product of two functions f 1 and f 2 on an interval [a, b] is the number. ( f 1, f 2 ) b DEFINITION 11.1.

DEFINITION The inner product of two functions f 1 and f 2 on an interval [a, b] is the number. ( f 1, f 2 ) b DEFINITION 11.1. 398 CHAPTER 11 ORTHOGONAL FUNCTIONS AND FOURIER SERIES 11.1 ORTHOGONAL FUNCTIONS REVIEW MATERIAL The notions of generlized vectors nd vector spces cn e found in ny liner lger text. INTRODUCTION The concepts

More information

u(x, y, t) = T(t)Φ(x, y) 0. (THE EQUATIONS FOR PRODUCT SOLUTIONS) Plugging u = T(t)Φ(x, y) in (PDE)-(BC) we see: There is a constant λ such that

u(x, y, t) = T(t)Φ(x, y) 0. (THE EQUATIONS FOR PRODUCT SOLUTIONS) Plugging u = T(t)Φ(x, y) in (PDE)-(BC) we see: There is a constant λ such that Seprtion of Vriles for Higher Dimensionl Wve Eqution 1. Virting Memrne: 2-D Wve Eqution nd Eigenfunctions of the Lplcin Ojective: Let Ω e plnr region with oundry curve Γ. Consider the wve eqution in Ω

More information

Math 220B - Summer 2003 Homework 1 Solutions

Math 220B - Summer 2003 Homework 1 Solutions Math 0B - Summer 003 Homework Soutions Consider the eigenvaue probem { X = λx 0 < x < X satisfies symmetric BCs x = 0, Suppose f(x)f (x) x=b x=a 0 for a rea-vaued functions f(x) which satisfy the boundary

More information

Wave Equation on a Two Dimensional Rectangle

Wave Equation on a Two Dimensional Rectangle Wve Eqution on Two Dimensionl Rectngle In these notes we re concerned with ppliction of the method of seprtion of vriles pplied to the wve eqution in two dimensionl rectngle. Thus we consider u tt = c

More information

14 Separation of Variables Method

14 Separation of Variables Method 14 Separation of Variabes Method Consider, for exampe, the Dirichet probem u t = Du xx < x u(x, ) = f(x) < x < u(, t) = = u(, t) t > Let u(x, t) = T (t)φ(x); now substitute into the equation: dt

More information

Homework #04 Answers and Hints (MATH4052 Partial Differential Equations)

Homework #04 Answers and Hints (MATH4052 Partial Differential Equations) Homework #4 Answers and Hints (MATH452 Partia Differentia Equations) Probem 1 (Page 89, Q2) Consider a meta rod ( < x < ), insuated aong its sides but not at its ends, which is initiay at temperature =

More information

Method of Separation of Variables

Method of Separation of Variables MODUE 5: HEAT EQUATION 11 ecture 3 Method of Separation of Variables Separation of variables is one of the oldest technique for solving initial-boundary value problems (IBVP) and applies to problems, where

More information

Lecture 1. Functional series. Pointwise and uniform convergence.

Lecture 1. Functional series. Pointwise and uniform convergence. 1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is

More information

The Riemann Integral

The Riemann Integral Deprtment of Mthemtics King Sud University 2017-2018 Tble of contents 1 Anti-derivtive Function nd Indefinite Integrls 2 3 4 5 Indefinite Integrls & Anti-derivtive Function Definition Let f : I R be function

More information

Section 7.1 Integration by Substitution

Section 7.1 Integration by Substitution Section 7. Integrtion by Substitution Evlute ech of the following integrls. Keep in mind tht using substitution my not work on some problems. For one of the definite integrls, it is not possible to find

More information

UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE

UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE 1. Pointwise Convergence of Sequence Let E be set nd Y be metric spce. Consider functions f n : E Y for n = 1, 2,.... We sy tht the sequence

More information

Fourier and Partial Differential Equations

Fourier and Partial Differential Equations Chapter 5 Fourier and Partial Differential Equations 5.1 Fourier MATH 294 SPRING 1982 FINAL # 5 5.1.1 Consider the function 2x, 0 x 1. a) Sketch the odd extension of this function on 1 x 1. b) Expand the

More information

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation.

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation. Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: y y x y2 = 0 : homogeneous equation. x2 v = y dy, y = vx, and x v + x dv dx = v + v2. dx =

More information

Fourier Series. 10 (D3.9) Find the Cesàro sum of the series. 11 (D3.9) Let a and b be real numbers. Under what conditions does a series of the form

Fourier Series. 10 (D3.9) Find the Cesàro sum of the series. 11 (D3.9) Let a and b be real numbers. Under what conditions does a series of the form Exercises Fourier Anaysis MMG70, Autumn 007 The exercises are taken from: Version: Monday October, 007 DXY Section XY of H F Davis, Fourier Series and orthogona functions EÖ Some exercises from earier

More information

Reversing the Chain Rule. As we have seen from the Second Fundamental Theorem ( 4.3), the easiest way to evaluate an integral b

Reversing the Chain Rule. As we have seen from the Second Fundamental Theorem ( 4.3), the easiest way to evaluate an integral b Mth 32 Substitution Method Stewrt 4.5 Reversing the Chin Rule. As we hve seen from the Second Fundmentl Theorem ( 4.3), the esiest wy to evlute n integrl b f(x) dx is to find n ntiderivtive, the indefinite

More information

MA 201: Partial Differential Equations Lecture - 10

MA 201: Partial Differential Equations Lecture - 10 MA 201: Partia Differentia Equations Lecture - 10 Separation of Variabes, One dimensiona Wave Equation Initia Boundary Vaue Probem (IBVP) Reca: A physica probem governed by a PDE may contain both boundary

More information

G: Uniform Convergence of Fourier Series

G: Uniform Convergence of Fourier Series G: Uniform Convergence of Fourier Series From previous work on the prototypical problem (and other problems) u t = Du xx 0 < x < l, t > 0 u(0, t) = 0 = u(l, t) t > 0 u(x, 0) = f(x) 0 < x < l () we developed

More information

Wave Equation With Homogeneous Boundary Conditions

Wave Equation With Homogeneous Boundary Conditions Wave Equation With Homogeneous Boundary Conditions MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 018 Objectives In this lesson we will learn: how to solve the

More information

Course 2BA1, Section 11: Periodic Functions and Fourier Series

Course 2BA1, Section 11: Periodic Functions and Fourier Series Course BA, 8 9 Section : Periodic Functions and Fourier Series David R. Wikins Copyright c David R. Wikins 9 Contents Periodic Functions and Fourier Series 74. Fourier Series of Even and Odd Functions...........

More information

1 E3102: a study guide and review, Version 1.0

1 E3102: a study guide and review, Version 1.0 1 E3102: study guide nd review, Version 1.0 Here is list of subjects tht I think we ve covered in clss (your milege my vry). If you understnd nd cn do the bsic problems in this guide you should be in very

More information

Review on Integration (Secs ) Review: Sec Origins of Calculus. Riemann Sums. New functions from old ones.

Review on Integration (Secs ) Review: Sec Origins of Calculus. Riemann Sums. New functions from old ones. Mth 20B Integrl Clculus Lecture Review on Integrtion (Secs. 5. - 5.3) Remrks on the course. Slide Review: Sec. 5.-5.3 Origins of Clculus. Riemnn Sums. New functions from old ones. A mthemticl description

More information

Review Sol. of More Long Answer Questions

Review Sol. of More Long Answer Questions Review Sol. of More Long Answer Questions 1. Solve the integro-differential equation t y (t) e t v y(v)dv = t; y()=. (1) Solution. The key is to recognize the convolution: t e t v y(v) dv = e t y. () Now

More information

Chapter 5. , r = r 1 r 2 (1) µ = m 1 m 2. r, r 2 = R µ m 2. R(m 1 + m 2 ) + m 2 r = r 1. m 2. r = r 1. R + µ m 1

Chapter 5. , r = r 1 r 2 (1) µ = m 1 m 2. r, r 2 = R µ m 2. R(m 1 + m 2 ) + m 2 r = r 1. m 2. r = r 1. R + µ m 1 Tor Kjellsson Stockholm University Chpter 5 5. Strting with the following informtion: R = m r + m r m + m, r = r r we wnt to derive: µ = m m m + m r = R + µ m r, r = R µ m r 3 = µ m R + r, = µ m R r. 4

More information

Part II. Analysis of PDE

Part II. Analysis of PDE Prt II. Anlysis of PDE Lecture notes for MA342H P. Krgeorgis pete@mths.tcd.ie 1/38 Second-order liner equtions Consider the liner opertor L(u) which is defined by L(u) = 1 u xx + 2 u yy +b 1 u x +b 2 u

More information

Best Approximation. Chapter The General Case

Best Approximation. Chapter The General Case Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given

More information

Improper Integrals. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Improper Integrals. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Improper Integrls MATH 2, Clculus II J. Robert Buchnn Deprtment of Mthemtics Spring 28 Definite Integrls Theorem (Fundmentl Theorem of Clculus (Prt I)) If f is continuous on [, b] then b f (x) dx = [F(x)]

More information

1 2-D Second Order Equations: Separation of Variables

1 2-D Second Order Equations: Separation of Variables Chpter 12 PDEs in Rectngles 1 2-D Second Order Equtions: Seprtion of Vribles 1. A second order liner prtil differentil eqution in two vribles x nd y is A 2 u x + B 2 u 2 x y + C 2 u y + D u 2 x + E u +

More information

(4.1) D r v(t) ω(t, v(t))

(4.1) D r v(t) ω(t, v(t)) 1.4. Differentil inequlities. Let D r denote the right hnd derivtive of function. If ω(t, u) is sclr function of the sclrs t, u in some open connected set Ω, we sy tht function v(t), t < b, is solution

More information

0.1 Properties of regulated functions and their Integrals.

0.1 Properties of regulated functions and their Integrals. MA244 Anlysis III Solutions. Sheet 2. NB. THESE ARE SKELETON SOLUTIONS, USE WISELY!. Properties of regulted functions nd their Integrls.. (Q.) Pick ny ɛ >. As f, g re regulted, there exist φ, ψ S[, b]:

More information

17 Source Problems for Heat and Wave IB- VPs

17 Source Problems for Heat and Wave IB- VPs 17 Source Problems for Heat and Wave IB- VPs We have mostly dealt with homogeneous equations, homogeneous b.c.s in this course so far. Recall that if we have non-homogeneous b.c.s, then we want to first

More information

Math 473: Practice Problems for the Material after Test 2, Fall 2011

Math 473: Practice Problems for the Material after Test 2, Fall 2011 Mth 473: Prctice Problems for the Mteril fter Test, Fll SOLUTION. Consider the following modified het eqution u t = u xx + u x. () Use the relevnt 3 point pproximtion formuls for u xx nd u x to derive

More information

Waveguides Free Space. Modal Excitation. Daniel S. Weile. Department of Electrical and Computer Engineering University of Delaware

Waveguides Free Space. Modal Excitation. Daniel S. Weile. Department of Electrical and Computer Engineering University of Delaware Modl Excittion Dniel S. Weile Deprtment of Electricl nd Computer Engineering University of Delwre ELEG 648 Modl Excittion in Crtesin Coordintes Outline 1 Aperture Excittion Current Excittion Outline 1

More information

Homework for Math , Fall 2016

Homework for Math , Fall 2016 Homework for Math 5440 1, Fall 2016 A. Treibergs, Instructor November 22, 2016 Our text is by Walter A. Strauss, Introduction to Partial Differential Equations 2nd ed., Wiley, 2007. Please read the relevant

More information

Functions of Several Variables

Functions of Several Variables Functions of Severl Vribles Sketching Level Curves Sections Prtil Derivtives on every open set on which f nd the prtils, 2 f y = 2 f y re continuous. Norml Vector x, y, 2 f y, 2 f y n = ± (x 0,y 0) (x

More information

Strauss PDEs 2e: Section Exercise 2 Page 1 of 12. For problem (1), complete the calculation of the series in case j(t) = 0 and h(t) = e t.

Strauss PDEs 2e: Section Exercise 2 Page 1 of 12. For problem (1), complete the calculation of the series in case j(t) = 0 and h(t) = e t. Strauss PDEs e: Section 5.6 - Exercise Page 1 of 1 Exercise For probem (1, compete the cacuation of the series in case j(t = and h(t = e t. Soution With j(t = and h(t = e t, probem (1 on page 147 becomes

More information

Introduction and Review

Introduction and Review Chpter 6A Notes Pge of Introuction n Review Derivtives y = f(x) y x = f (x) Evlute erivtive t x = : y = x x= f f(+h) f() () = lim h h Geometric Interprettion: see figure slope of the line tngent to f t

More information

Discrete Least-squares Approximations

Discrete Least-squares Approximations Discrete Lest-squres Approximtions Given set of dt points (x, y ), (x, y ),, (x m, y m ), norml nd useful prctice in mny pplictions in sttistics, engineering nd other pplied sciences is to construct curve

More information

Solving the Heat Equation (Sect. 10.5).

Solving the Heat Equation (Sect. 10.5). Solving the Heat Equation Sect. 1.5. Review: The Stationary Heat Equation. The Heat Equation. The Initial-Boundary Value Problem. The separation of variables method. An example of separation of variables.

More information

Partial Differential Equations Summary

Partial Differential Equations Summary Partial Differential Equations Summary 1. The heat equation Many physical processes are governed by partial differential equations. temperature of a rod. In this chapter, we will examine exactly that.

More information

MAT 372 K.T.D.D. Final Sınavın Çözümleri N. Course. Question 1 (Canonical Forms). Consider the second order partial differential equation

MAT 372 K.T.D.D. Final Sınavın Çözümleri N. Course. Question 1 (Canonical Forms). Consider the second order partial differential equation OKAN ÜNİVERSİTESİ FEN EDEBİYAT FAKÜTESİ MATEMATİK BÖÜMÜ 1.5. MAT 7 K.T.D.D. Final Sınavın Çözümleri N. Course Question 1 (Canonical Forms). Consider the second order partial differential equation (sin

More information

4 1-D Boundary Value Problems Heat Equation

4 1-D Boundary Value Problems Heat Equation 4 -D Boundary Vaue Probems Heat Equation The main purpose of this chapter is to study boundary vaue probems for the heat equation on a finite rod a x b. u t (x, t = ku xx (x, t, a < x < b, t > u(x, = ϕ(x

More information

The Wave Equation I. MA 436 Kurt Bryan

The Wave Equation I. MA 436 Kurt Bryan 1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

More information

10 Elliptic equations

10 Elliptic equations 1 Elliptic equtions Sections 7.1, 7.2, 7.3, 7.7.1, An Introduction to Prtil Differentil Equtions, Pinchover nd Ruinstein We consider the two-dimensionl Lplce eqution on the domin D, More generl eqution

More information

Math Assignment 14

Math Assignment 14 Math 2280 - Assignment 14 Dylan Zwick Spring 2014 Section 9.5-1, 3, 5, 7, 9 Section 9.6-1, 3, 5, 7, 14 Section 9.7-1, 2, 3, 4 1 Section 9.5 - Heat Conduction and Separation of Variables 9.5.1 - Solve the

More information

x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b

x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b CHAPTER 5. INTEGRALS 61 where nd x = b n x i = 1 (x i 1 + x i ) = midpoint of [x i 1, x i ]. Problem 168 (Exercise 1, pge 377). Use the Midpoint Rule with the n = 4 to pproximte 5 1 x e x dx. Some quick

More information

Math 115 ( ) Yum-Tong Siu 1. Lagrange Multipliers and Variational Problems with Constraints. F (x,y,y )dx

Math 115 ( ) Yum-Tong Siu 1. Lagrange Multipliers and Variational Problems with Constraints. F (x,y,y )dx Mth 5 2006-2007) Yum-Tong Siu Lgrnge Multipliers nd Vritionl Problems with Constrints Integrl Constrints. Consider the vritionl problem of finding the extremls for the functionl J[y] = F x,y,y )dx with

More information

Separation of Variables. A. Three Famous PDE s

Separation of Variables. A. Three Famous PDE s Separation of Variables c 14, Philip D. Loewen A. Three Famous PDE s 1. Wave Equation. Displacement u depends on position and time: u = u(x, t. Concavity drives acceleration: u tt = c u xx.. Heat Equation.

More information

Instructor s Solutions Manual PARTIAL DIFFERENTIAL EQUATIONS. with FOURIER SERIES and BOUNDARY VALUE PROBLEMS. NAKHLÉ H. ASMAR University of Missouri

Instructor s Solutions Manual PARTIAL DIFFERENTIAL EQUATIONS. with FOURIER SERIES and BOUNDARY VALUE PROBLEMS. NAKHLÉ H. ASMAR University of Missouri Instructor s Solutions Manual PARTIA DIFFERENTIA EQUATIONS with FOURIER SERIES and BOUNDARY VAUE PROBEMS Second Edition NAKHÉ H. ASMAR University of Missouri Contents Preface Errata v vi A Preview of Applications

More information

Green function and Eigenfunctions

Green function and Eigenfunctions Green function nd Eigenfunctions Let L e regulr Sturm-Liouville opertor on n intervl (, ) together with regulr oundry conditions. We denote y, φ ( n, x ) the eigenvlues nd corresponding normlized eigenfunctions

More information

Name: Math Homework Set # 5. March 12, 2010

Name: Math Homework Set # 5. March 12, 2010 Name: Math 4567. Homework Set # 5 March 12, 2010 Chapter 3 (page 79, problems 1,2), (page 82, problems 1,2), (page 86, problems 2,3), Chapter 4 (page 93, problems 2,3), (page 98, problems 1,2), (page 102,

More information

Solutions to Exercises 8.1

Solutions to Exercises 8.1 Section 8. Partial Differential Equations in Physics and Engineering 67 Solutions to Exercises 8.. u xx +u xy u is a second order, linear, and homogeneous partial differential equation. u x (,y) is linear

More information

LECTURE 19: SEPARATION OF VARIABLES, HEAT CONDUCTION IN A ROD

LECTURE 19: SEPARATION OF VARIABLES, HEAT CONDUCTION IN A ROD ECTURE 19: SEPARATION OF VARIABES, HEAT CONDUCTION IN A ROD The idea of separation of variables is simple: in order to solve a partial differential equation in u(x, t), we ask, is it possible to find a

More information

Homework 4. (1) If f R[a, b], show that f 3 R[a, b]. If f + (x) = max{f(x), 0}, is f + R[a, b]? Justify your answer.

Homework 4. (1) If f R[a, b], show that f 3 R[a, b]. If f + (x) = max{f(x), 0}, is f + R[a, b]? Justify your answer. Homework 4 (1) If f R[, b], show tht f 3 R[, b]. If f + (x) = mx{f(x), 0}, is f + R[, b]? Justify your nswer. (2) Let f be continuous function on [, b] tht is strictly positive except finitely mny points

More information

Math 260: Solving the heat equation

Math 260: Solving the heat equation Math 260: Solving the heat equation D. DeTurck University of Pennsylvania April 25, 2013 D. DeTurck Math 260 001 2013A: Solving the heat equation 1 / 1 1D heat equation with Dirichlet boundary conditions

More information

Chapter 10: Partial Differential Equations

Chapter 10: Partial Differential Equations 1.1: Introduction Chapter 1: Partial Differential Equations Definition: A differential equations whose dependent variable varies with respect to more than one independent variable is called a partial differential

More information

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1 3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =

More information

u t = k 2 u x 2 (1) a n sin nπx sin 2 L e k(nπ/l) t f(x) = sin nπx f(x) sin nπx dx (6) 2 L f(x 0 ) sin nπx 0 2 L sin nπx 0 nπx

u t = k 2 u x 2 (1) a n sin nπx sin 2 L e k(nπ/l) t f(x) = sin nπx f(x) sin nπx dx (6) 2 L f(x 0 ) sin nπx 0 2 L sin nπx 0 nπx Chpter 9: Green s functions for time-independent problems Introductory emples One-dimensionl het eqution Consider the one-dimensionl het eqution with boundry conditions nd initil condition We lredy know

More information

1.3 The Lemma of DuBois-Reymond

1.3 The Lemma of DuBois-Reymond 28 CHAPTER 1. INDIRECT METHODS 1.3 The Lemm of DuBois-Reymond We needed extr regulrity to integrte by prts nd obtin the Euler- Lgrnge eqution. The following result shows tht, t lest sometimes, the extr

More information

PDE Notes. Paul Carnig. January ODE s vs PDE s 1

PDE Notes. Paul Carnig. January ODE s vs PDE s 1 PDE Notes Pul Crnig Jnury 2014 Contents 1 ODE s vs PDE s 1 2 Section 1.2 Het diffusion Eqution 1 2.1 Fourier s w of Het Conduction............................. 2 2.2 Energy Conservtion.....................................

More information

Handout I - Mathematics II

Handout I - Mathematics II Hndout I - Mthemtics II The im of this hndout is to briefly summrize the most importnt definitions nd theorems, nd to provide some smple exercises. The topics re discussed in detil t the lectures nd seminrs.

More information

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all 3 Definite Integrl 3.1 Introduction In school one comes cross the definition of the integrl of rel vlued function defined on closed nd bounded intervl [, b] between the limits nd b, i.e., f(x)dx s the

More information

Calculus II: Integrations and Series

Calculus II: Integrations and Series Clculus II: Integrtions nd Series August 7, 200 Integrls Suppose we hve generl function y = f(x) For simplicity, let f(x) > 0 nd f(x) continuous Denote F (x) = re under the grph of f in the intervl [,x]

More information

1 Heat Equation Dirichlet Boundary Conditions

1 Heat Equation Dirichlet Boundary Conditions Chapter 3 Heat Exampes in Rectanges Heat Equation Dirichet Boundary Conditions u t (x, t) = ku xx (x, t), < x (.) u(, t) =, u(, t) = u(x, ) = f(x). Separate Variabes Look for simpe soutions in the

More information