Phys. 506 Electricity and Magnetism Winter 2004 Prof. G. Raithel Problem Set 1 Total 30 Points. 1. Jackson Points

Size: px
Start display at page:

Download "Phys. 506 Electricity and Magnetism Winter 2004 Prof. G. Raithel Problem Set 1 Total 30 Points. 1. Jackson Points"

Transcription

1 Phys. 56 Electricity nd Mgnetism Winter 4 Prof. G. Rithel Prolem Set Totl 3 Points. Jckson 8. Points : The electric field is the sme s in the -dimensionl electrosttic prolem of two concentric cylinders, i.e. E(ρ = ˆρE ρ where E denotes the field on the surfce of the inner conductor, which hs rdius. Since for TEM wves propgting in the +z-direction it is H = µcẑ E = Z ẑ E with the plne-wve impednce Z = µ ɛ, it is H(ρ = ˆφE Zρ = ˆφH ρ with H = E Z eing the mgnetic field on the surfce of the inner conductor. The Poynting vector S(ρ = E H = ẑ Z E ρ = ẑz H ρ, nd the power is P = Re [ẑ S] πρdρ = Zπ H ln ( q.e.d. : On the inner surfce, = inner σδ ρ= H(ρ = dl = π σδ H nd on the outer surfce = outer σδ ρ= H(ρ = dl = π σδ H = π σδ H The power loss is the sum of the two, = π σδ H ( + Then, the ttenution constnt γ = P,

2 γ = ( + σδz ln ( q.e.d. c: Voltge: V = E dl = ˆρE ρ ˆρdρ = H Z ln (. Current: For TEM modes, the surfce currents re in z-direction, i.e. on the inner conductor K z = H. The totl current I = πh. Thus, the chrcteristic impednce Z is Z = V I = Z π ln ( q.e.d. Note tht Z is the plne-wve impednce Z = µ ɛ. d: The series resistnce R stisfies RI =, where the fctor complex quntities. Thus, with the ove I nd R = ( πσδ + q.e.d. occurs, s usul, due to the use of The inductnce per length is defined vi the mgnetic-field energy per length, u m = 4 B H d = π 4 B H ρdρ = 4 L I, where the fctor 4 (in plce of the mgneto-sttic vlue is to the use of complex quntities. The given result oviously ccounts for the field energies inside the guide, u m,guide, nd in the inner nd outer skin regions, u m,inner nd u m,outer. In the guide, ( u m,guide = π µ H ln In the inner guide wll it is H = H exp( ξ/δ, where ξ mesures the depth from the guide surfce. Assuming δ, which is good ssumption except in pthetic cses, u m,inner = πµ c 4 where µ c is the permeility of the conductor, nd similrly u m,inner = πµ c 4 Summing over the liner mgnetic-field energy densities, it is H exp( ξ/δdξ = πµ cδ 4 H ( H πµ c δ exp( ξ/δdξ = H 4 [ ( u m = π H µ ln + δµ ( c + ] nd L = 4u m I = µ ( π ln + δµ ( c 4π + q.e.d. Note tht normlly δ < nd therefore the second term is much smller thn the first.

3 . Jckson 8.4 Points : Following the nlysis on pge 369f with the replcement pπ d re k it is seen tht the cutoff frequencies ω M,mn = x mnc R for mode T M mn with m =,,.. nd n =,,.. nd ω E,mn = x mn c R for mode T E mn with m =,,.. nd n =,,.. There, x mn is the n-th zero of the Bessel function J m (x nd x mn is the n-th zero d dx J m(x. The fundmentl mode is T E with ω E, =.84c R =: ω. with c = µɛ. The next four higher modes re: T M with ω M, /ω =.36 T E with ω E, /ω =.659 T E with ω E, /ω =.8 T M with ω M, /ω =.8 : T E : We require ψ to clculte the power P from Eq. 8.5 in Jckson, nd ll mgnetic fields to clculte Here, it is / = σδ H dl. H z = ψ = H J ( x R ρ exp(iφ H t = ik γ tψ = ikh γ exp(iφ [ ˆρ x R J ( x R ρ + ˆφ i ρ J ( x R ρ ] with γ = µɛω E, nd k = µɛ(ω ω E, nd δ = µ c σω. Ug Eq. 8.5, P = π H ω ω E, µ ω E, ɛ ω R ρj ( x R ρdρ where the integrl equls R ( J x (x. Also, on the surfce H z = H J (x nd H t = k H γ R J (x, nd thus = σδ πr( H z + H t = πr H J (x σδ ( + k γ 4 R

4 The ttenution constnt for hollow rss guide, for which µ = µ c = µ nd ɛ = ɛ is then found to e β E, (ω = P = R ɛ σ µ ɛ ω 4 E, R + ω ω E, ω ω ω E, (µ ɛ ω E, R T M : The required fields re, ug γ = x R nd Z = k ɛω, Ug Eq. 8.5, clculting nd evluting β = P E z = ψ = E J ( x R ρ E t = ik γ tψ = ike [ γ ˆρ x R J ( x ] R ρ = ˆρ ike R J x ( x R ρ H t = Z ẑ E t = ˆφ ike R Zx J ( x R ρ = σδ πr H t, for hollow rss guide (µ = µ c = µ nd ɛ = ɛ, it is found β M, (ω = ɛ ω 3 R σ(ω ωm, Expresg the results in normlized frequency, x := ω ω E, nd the dmping constnts in units of R ɛ ω E, σ, ( ɛ ω E, β = β/ R σ, it is β E, (x = β M, (x =.84 + x x x (.84 x 3 x.36

5 TM TE Figure : Dmping constnts in scled units

6 3. Jckson 8.5 Points : The prolem hs discrete π/ rottion symmetry. Thus, ny mode T X mn is degenerte with T X nm, where X = E or X = M. For m n, we cn use the superposition principle to form liner superpositions of degenerte modes tht stisfy the pplicle oundry conditions on the digonl (in ddition to the sides tht form right ngle. TM-modes: E z (x, y = E [ ( mπx ( nπy ( nπx ( mπy ] for n, m =,, 3.. nd n m. It is E z (x, y = for x = y. The corresponding cutoff frequencies re ω M,mn = π m + n µɛ The lowest TM-mode hs m = nd n =. TE-modes: ( mπx H z (x, y = H [cos cos ( nπy + cos ( nπx cos ( mπy ] for n, m =,,,.. ut not n = m =. As required, the norml derivtive on the digonl, n H z = ( x H z y vnishes for x = y. The corresponding cutoff frequencies re lso ω E,mn = π m + n µɛ The lowest TE-mode hs m = nd n =. Note. Since ech pir of degenerte modes of the squre guide gives only one mode of the tringulr guide, there re out hlf s mny modes in the tringulr guides s there re in the squre guide. This oservtion mkes sense, ecuse generlly the mode density (=numer of modes per frequency intervl t lrge frequencies is pproximtely proportionl to the guide cross section. : T E : We need to clculte the power nd the mgnetic field on the surfces. With n (unnormlized ψ = H z = cos ( πy + cos

7 nd, y symmetry, tringle ψψ dxdy = squre ψψ dxdy = squre Mgnetic-field mplitudes on the sides: Use H z = ψ nd [ ( cos πx H t = ik γ th z = ikπ [ ˆx γ ( + cos πy + cos + ŷ ( πy ] cos ( πy ] dxdy = to see tht on the side x = it is H z (y = + cos ( πy nd Ht (y = kπ γ ( πy. Then, long tht side it is y= x=,y= [ H 3 dy = + k π ] γ 4 The y = -side yields the sme result. On the digonl x = y it is H z (y = cos ( πy nd Ht (y = kπ γ ( πy. Then, long the digonl it is y= x=y,y= H dl = y= H dy = [ + k π ] x=y,y= γ 4 nd the sum over ll three sides, H dl = (3 + + k π γ 4 ( + = (3 + + k π γ 4 ( + Use k = µɛ(ω ω E, nd γ E, = ω E, µɛ = π to get H dl = ( + + ω ωe, ( + With Eq. 8.5 nd = σδ β E, = σδ E, H dl nd β = P ɛ µ ω ω E, ω E, ω [ ( + ω E, ω + ( + ] where δ E, = µ c σω E,. The result hs een written in form nlogous with Eq in Jckson. T M : We use which yields ψ = ( πy ( πx ( πy

8 tringle Also, H z =, nd the mgnitude of the mgnetic field is ψψ dxdy = 4 On the side x = it is H = H t = Z E t = ɛω γ tψ = ɛω [ π ( πy γ ˆx cos [ π ( πy ŷ cos π ( πx cos π ( πx cos ( πy ( πy ] ] y= x=,y= H dy = 5 ɛ ω π γ 4 The sme pplies on the side y =. On the digonl x = y, it is nd H t = ɛω γ y= π cos x=y,y= ( πx π ( πx cos Ht dl = y= Ht dx = 5 ɛ ω π x=y,y= γ 4 The line integrl over ll three sides in H dl = ɛ ω π γ 4 Use γ M, = ω M, µɛ = 5 π nd Eq. 8.5 nd β M, = σδ M, ɛ µ = σδ ω 4 ω M, H dl nd β = P ω E, ω to find For the corresponding modes in squre guide, doule the re integrls ψψ dxdy, nd for the line integrls doule the results over the verticl nd horizontl sides of the tringulr guide nd leve out the digonls. T M E, : The re integrl doules nd the line integrl ecomes H dl = 4 + ω ω E,

9 The resultnt dmping constnt is β E,,squre = β E,,tringle + 4 ω E, ω ( + + ( + ω E, ω T M : The re integrl doules nd the line integrl remins unchnged. Thus, β M,,squre = β M,,tringle

Homework Assignment #1 Solutions

Homework Assignment #1 Solutions Physics 56 Winter 8 Textook prolems: h. 8: 8., 8.4 Homework Assignment # Solutions 8. A trnsmission line consisting of two concentric circulr cylinders of metl with conductivity σ nd skin depth δ, s shown,

More information

Phys. 506 Electricity and Magnetism Winter 2004 Prof. G. Raithel Problem Set 2 Total 40 Points. 1. Problem Points

Phys. 506 Electricity and Magnetism Winter 2004 Prof. G. Raithel Problem Set 2 Total 40 Points. 1. Problem Points Phys. 56 Electricity nd Mgnetism Winter 4 Prof. G. ithel Problem Set Totl 4 Points 1. Problem 8.6 1 Points : TM mnp : ω mnp = 1 µɛ x mn + p π y with y = L where m, p =, 1,.. nd n = 1,,.. nd x mn is the

More information

This final is a three hour open book, open notes exam. Do all four problems.

This final is a three hour open book, open notes exam. Do all four problems. Physics 55 Fll 27 Finl Exm Solutions This finl is three hour open book, open notes exm. Do ll four problems. [25 pts] 1. A point electric dipole with dipole moment p is locted in vcuum pointing wy from

More information

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jckson 2.26 Homework Problem Solution Dr. Christopher S. Bird University of Msschusetts Lowell PROBLEM: The two-dimensionl region, ρ, φ β, is bounded by conducting surfces t φ =, ρ =, nd φ = β held t zero

More information

Waveguide Guide: A and V. Ross L. Spencer

Waveguide Guide: A and V. Ross L. Spencer Wveguide Guide: A nd V Ross L. Spencer I relly think tht wveguide fields re esier to understnd using the potentils A nd V thn they re using the electric nd mgnetic fields. Since Griffiths doesn t do it

More information

Homework Assignment 6 Solution Set

Homework Assignment 6 Solution Set Homework Assignment 6 Solution Set PHYCS 440 Mrch, 004 Prolem (Griffiths 4.6 One wy to find the energy is to find the E nd D fields everywhere nd then integrte the energy density for those fields. We know

More information

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space.

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space. Clculus 3 Li Vs Spce Curves Recll the prmetric equtions of curve in xy-plne nd compre them with prmetric equtions of curve in spce. Prmetric curve in plne x = x(t) y = y(t) Prmetric curve in spce x = x(t)

More information

potentials A z, F z TE z Modes We use the e j z z =0 we can simply say that the x dependence of E y (1)

potentials A z, F z TE z Modes We use the e j z z =0 we can simply say that the x dependence of E y (1) 3e. Introduction Lecture 3e Rectngulr wveguide So fr in rectngulr coordintes we hve delt with plne wves propgting in simple nd inhomogeneous medi. The power density of plne wve extends over ll spce. Therefore

More information

Waveguides Free Space. Modal Excitation. Daniel S. Weile. Department of Electrical and Computer Engineering University of Delaware

Waveguides Free Space. Modal Excitation. Daniel S. Weile. Department of Electrical and Computer Engineering University of Delaware Modl Excittion Dniel S. Weile Deprtment of Electricl nd Computer Engineering University of Delwre ELEG 648 Modl Excittion in Crtesin Coordintes Outline 1 Aperture Excittion Current Excittion Outline 1

More information

Polynomials and Division Theory

Polynomials and Division Theory Higher Checklist (Unit ) Higher Checklist (Unit ) Polynomils nd Division Theory Skill Achieved? Know tht polynomil (expression) is of the form: n x + n x n + n x n + + n x + x + 0 where the i R re the

More information

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1 Mth 33 Volume Stewrt 5.2 Geometry of integrls. In this section, we will lern how to compute volumes using integrls defined by slice nlysis. First, we recll from Clculus I how to compute res. Given the

More information

Homework Assignment 3 Solution Set

Homework Assignment 3 Solution Set Homework Assignment 3 Solution Set PHYCS 44 6 Ferury, 4 Prolem 1 (Griffiths.5(c The potentil due to ny continuous chrge distriution is the sum of the contriutions from ech infinitesiml chrge in the distriution.

More information

Partial Differential Equations

Partial Differential Equations Prtil Differentil Equtions Notes by Robert Piché, Tmpere University of Technology reen s Functions. reen s Function for One-Dimensionl Eqution The reen s function provides complete solution to boundry

More information

Physics 3323, Fall 2016 Problem Set 7 due Oct 14, 2016

Physics 3323, Fall 2016 Problem Set 7 due Oct 14, 2016 Physics 333, Fll 16 Problem Set 7 due Oct 14, 16 Reding: Griffiths 4.1 through 4.4.1 1. Electric dipole An electric dipole with p = p ẑ is locted t the origin nd is sitting in n otherwise uniform electric

More information

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3 2 The Prllel Circuit Electric Circuits: Figure 2- elow show ttery nd multiple resistors rrnged in prllel. Ech resistor receives portion of the current from the ttery sed on its resistnce. The split is

More information

KINEMATICS OF RIGID BODIES

KINEMATICS OF RIGID BODIES KINEMTICS OF RIGID ODIES Introduction In rigid body kinemtics, e use the reltionships governing the displcement, velocity nd ccelertion, but must lso ccount for the rottionl motion of the body. Description

More information

Name Solutions to Test 3 November 8, 2017

Name Solutions to Test 3 November 8, 2017 Nme Solutions to Test 3 November 8, 07 This test consists of three prts. Plese note tht in prts II nd III, you cn skip one question of those offered. Some possibly useful formuls cn be found below. Brrier

More information

Theoretische Physik 2: Elektrodynamik (Prof. A.-S. Smith) Home assignment 4

Theoretische Physik 2: Elektrodynamik (Prof. A.-S. Smith) Home assignment 4 WiSe 1 8.1.1 Prof. Dr. A.-S. Smith Dipl.-Phys. Ellen Fischermeier Dipl.-Phys. Mtthis Sb m Lehrstuhl für Theoretische Physik I Deprtment für Physik Friedrich-Alexnder-Universität Erlngen-Nürnberg Theoretische

More information

Trigonometric Functions

Trigonometric Functions Exercise. Degrees nd Rdins Chpter Trigonometric Functions EXERCISE. Degrees nd Rdins 4. Since 45 corresponds to rdin mesure of π/4 rd, we hve: 90 = 45 corresponds to π/4 or π/ rd. 5 = 7 45 corresponds

More information

Phys 6321 Final Exam - Solutions May 3, 2013

Phys 6321 Final Exam - Solutions May 3, 2013 Phys 6321 Finl Exm - Solutions My 3, 2013 You my NOT use ny book or notes other thn tht supplied with this test. You will hve 3 hours to finish. DO YOUR OWN WORK. Express your nswers clerly nd concisely

More information

APPLICATIONS OF THE DEFINITE INTEGRAL

APPLICATIONS OF THE DEFINITE INTEGRAL APPLICATIONS OF THE DEFINITE INTEGRAL. Volume: Slicing, disks nd wshers.. Volumes by Slicing. Suppose solid object hs boundries extending from x =, to x = b, nd tht its cross-section in plne pssing through

More information

Partial Derivatives. Limits. For a single variable function f (x), the limit lim

Partial Derivatives. Limits. For a single variable function f (x), the limit lim Limits Prtil Derivtives For single vrible function f (x), the limit lim x f (x) exists only if the right-hnd side limit equls to the left-hnd side limit, i.e., lim f (x) = lim f (x). x x + For two vribles

More information

Section 4: Integration ECO4112F 2011

Section 4: Integration ECO4112F 2011 Reding: Ching Chpter Section : Integrtion ECOF Note: These notes do not fully cover the mteril in Ching, ut re ment to supplement your reding in Ching. Thus fr the optimistion you hve covered hs een sttic

More information

LUMS School of Science and Engineering

LUMS School of Science and Engineering LUMS School of Science nd Engineering PH- Solution of ssignment Mrch, 0, 0 Brvis Lttice Answer: We hve given tht c.5(î + ĵ + ˆk) 5 (î + ĵ + ˆk) 0 (î + ĵ + ˆk) c (î + ĵ + ˆk) î + ĵ + ˆk + b + c î, b ĵ nd

More information

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

More information

The Velocity Factor of an Insulated Two-Wire Transmission Line

The Velocity Factor of an Insulated Two-Wire Transmission Line The Velocity Fctor of n Insulted Two-Wire Trnsmission Line Problem Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 Mrch 7, 008 Estimte the velocity fctor F = v/c nd the

More information

Ph2b Quiz - 1. Instructions

Ph2b Quiz - 1. Instructions Ph2b Winter 217-18 Quiz - 1 Due Dte: Mondy, Jn 29, 218 t 4pm Ph2b Quiz - 1 Instructions 1. Your solutions re due by Mondy, Jnury 29th, 218 t 4pm in the quiz box outside 21 E. Bridge. 2. Lte quizzes will

More information

KEY CONCEPTS. satisfies the differential equation da. = 0. Note : If F (x) is any integral of f (x) then, x a

KEY CONCEPTS. satisfies the differential equation da. = 0. Note : If F (x) is any integral of f (x) then, x a KEY CONCEPTS THINGS TO REMEMBER :. The re ounded y the curve y = f(), the -is nd the ordintes t = & = is given y, A = f () d = y d.. If the re is elow the is then A is negtive. The convention is to consider

More information

Conducting Ellipsoid and Circular Disk

Conducting Ellipsoid and Circular Disk 1 Problem Conducting Ellipsoid nd Circulr Disk Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 (September 1, 00) Show tht the surfce chrge density σ on conducting ellipsoid,

More information

Phys. 506 Electricity and Magnetism Winter 2004 Prof. G. Raithel Problem Set 4 Total 40 Points. 1. Problem Points

Phys. 506 Electricity and Magnetism Winter 2004 Prof. G. Raithel Problem Set 4 Total 40 Points. 1. Problem Points Phys. 56 Electricity nd Mgnetism Winter Prof. G. Rithel Problem Set Totl Points. Problem 9. Points ). In the long-wvelength limit, in the source nd its immedite vicinity electro- nd mgnetosttic equtions

More information

Problem 1. Solution: a) The coordinate of a point on the disc is given by r r cos,sin,0. The potential at P is then given by. r z 2 rcos 2 rsin 2

Problem 1. Solution: a) The coordinate of a point on the disc is given by r r cos,sin,0. The potential at P is then given by. r z 2 rcos 2 rsin 2 Prolem Consider disc of chrge density r r nd rdius R tht lies within the xy-plne. The origin of the coordinte systems is locted t the center of the ring. ) Give the potentil t the point P,,z in terms of,r,

More information

4.4 Areas, Integrals and Antiderivatives

4.4 Areas, Integrals and Antiderivatives . res, integrls nd ntiderivtives 333. Ares, Integrls nd Antiderivtives This section explores properties of functions defined s res nd exmines some connections mong res, integrls nd ntiderivtives. In order

More information

2. VECTORS AND MATRICES IN 3 DIMENSIONS

2. VECTORS AND MATRICES IN 3 DIMENSIONS 2 VECTORS AND MATRICES IN 3 DIMENSIONS 21 Extending the Theory of 2-dimensionl Vectors x A point in 3-dimensionl spce cn e represented y column vector of the form y z z-xis y-xis z x y x-xis Most of the

More information

Lecture 13 - Linking E, ϕ, and ρ

Lecture 13 - Linking E, ϕ, and ρ Lecture 13 - Linking E, ϕ, nd ρ A Puzzle... Inner-Surfce Chrge Density A positive point chrge q is locted off-center inside neutrl conducting sphericl shell. We know from Guss s lw tht the totl chrge on

More information

Chapter 5 Waveguides and Resonators

Chapter 5 Waveguides and Resonators 5-1 Chpter 5 Wveguides nd Resontors Dr. Sturt Long 5- Wht is wveguide (or trnsmission line)? Structure tht trnsmits electromgnetic wves in such wy tht the wve intensity is limited to finite cross-sectionl

More information

Physics 712 Electricity and Magnetism Solutions to Final Exam, Spring 2016

Physics 712 Electricity and Magnetism Solutions to Final Exam, Spring 2016 Physics 7 Electricity nd Mgnetism Solutions to Finl Em, Spring 6 Plese note tht some possibly helpful formuls pper on the second pge The number of points on ech problem nd prt is mrked in squre brckets

More information

On the diagram below the displacement is represented by the directed line segment OA.

On the diagram below the displacement is represented by the directed line segment OA. Vectors Sclrs nd Vectors A vector is quntity tht hs mgnitude nd direction. One exmple of vector is velocity. The velocity of n oject is determined y the mgnitude(speed) nd direction of trvel. Other exmples

More information

Today in Physics 122: work, energy and potential in electrostatics

Today in Physics 122: work, energy and potential in electrostatics Tody in Physics 1: work, energy nd potentil in electrosttics Leftovers Perfect conductors Fields from chrges distriuted on perfect conductors Guss s lw for grvity Work nd energy Electrosttic potentil energy,

More information

Exam 1 Solutions (1) C, D, A, B (2) C, A, D, B (3) C, B, D, A (4) A, C, D, B (5) D, C, A, B

Exam 1 Solutions (1) C, D, A, B (2) C, A, D, B (3) C, B, D, A (4) A, C, D, B (5) D, C, A, B PHY 249, Fll 216 Exm 1 Solutions nswer 1 is correct for ll problems. 1. Two uniformly chrged spheres, nd B, re plced t lrge distnce from ech other, with their centers on the x xis. The chrge on sphere

More information

Patch Antennas. Chapter Resonant Cavity Analysis

Patch Antennas. Chapter Resonant Cavity Analysis Chpter 4 Ptch Antenns A ptch ntenn is low-profile ntenn consisting of metl lyer over dielectric sustrte nd ground plne. Typiclly, ptch ntenn is fed y microstrip trnsmission line, ut other feed lines such

More information

BME 207 Introduction to Biomechanics Spring 2018

BME 207 Introduction to Biomechanics Spring 2018 April 6, 28 UNIVERSITY O RHODE ISAND Deprtment of Electricl, Computer nd Biomedicl Engineering BME 27 Introduction to Biomechnics Spring 28 Homework 8 Prolem 14.6 in the textook. In ddition to prts -e,

More information

Magnetic forces on a moving charge. EE Lecture 26. Lorentz Force Law and forces on currents. Laws of magnetostatics

Magnetic forces on a moving charge. EE Lecture 26. Lorentz Force Law and forces on currents. Laws of magnetostatics Mgnetic forces on moving chrge o fr we ve studied electric forces between chrges t rest, nd the currents tht cn result in conducting medium 1. Mgnetic forces on chrge 2. Lws of mgnetosttics 3. Mgnetic

More information

Shape and measurement

Shape and measurement C H A P T E R 5 Shpe nd mesurement Wht is Pythgors theorem? How do we use Pythgors theorem? How do we find the perimeter of shpe? How do we find the re of shpe? How do we find the volume of shpe? How do

More information

x = a To determine the volume of the solid, we use a definite integral to sum the volumes of the slices as we let!x " 0 :

x = a To determine the volume of the solid, we use a definite integral to sum the volumes of the slices as we let!x  0 : Clculus II MAT 146 Integrtion Applictions: Volumes of 3D Solids Our gol is to determine volumes of vrious shpes. Some of the shpes re the result of rotting curve out n xis nd other shpes re simply given

More information

Flow of Energy and Momentum in a Coaxial Cable

Flow of Energy and Momentum in a Coaxial Cable Flow of Energy nd Momentum in Coxil Cle 1 Prolem Kirk T. McDonld Joseph Henry Lortories, Princeton University, Princeton, NJ 08544 (Mrch 31, 007) Discuss the flow of energy nd of momentum in, s well s

More information

Problem Set 3 Solutions

Problem Set 3 Solutions Msschusetts Institute of Technology Deprtment of Physics Physics 8.07 Fll 2005 Problem Set 3 Solutions Problem 1: Cylindricl Cpcitor Griffiths Problems 2.39: Let the totl chrge per unit length on the inner

More information

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors Vectors Skill Achieved? Know tht sclr is quntity tht hs only size (no direction) Identify rel-life exmples of sclrs such s, temperture, mss, distnce, time, speed, energy nd electric chrge Know tht vector

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

Mathematics. Area under Curve.

Mathematics. Area under Curve. Mthemtics Are under Curve www.testprepkrt.com Tle of Content 1. Introduction.. Procedure of Curve Sketching. 3. Sketching of Some common Curves. 4. Are of Bounded Regions. 5. Sign convention for finding

More information

7.3 Problem 7.3. ~B(~x) = ~ k ~ E(~x)=! but we also have a reected wave. ~E(~x) = ~ E 2 e i~ k 2 ~x i!t. ~B R (~x) = ~ k R ~ E R (~x)=!

7.3 Problem 7.3. ~B(~x) = ~ k ~ E(~x)=! but we also have a reected wave. ~E(~x) = ~ E 2 e i~ k 2 ~x i!t. ~B R (~x) = ~ k R ~ E R (~x)=! 7. Problem 7. We hve two semi-innite slbs of dielectric mteril with nd equl indices of refrction n >, with n ir g (n ) of thickness d between them. Let the surfces be in the x; y lne, with the g being

More information

10. AREAS BETWEEN CURVES

10. AREAS BETWEEN CURVES . AREAS BETWEEN CURVES.. Ares etween curves So res ove the x-xis re positive nd res elow re negtive, right? Wrong! We lied! Well, when you first lern out integrtion it s convenient fiction tht s true in

More information

Summary: Method of Separation of Variables

Summary: Method of Separation of Variables Physics 246 Electricity nd Mgnetism I, Fll 26, Lecture 22 1 Summry: Method of Seprtion of Vribles 1. Seprtion of Vribles in Crtesin Coordintes 2. Fourier Series Suggested Reding: Griffiths: Chpter 3, Section

More information

Definite integral. Mathematics FRDIS MENDELU

Definite integral. Mathematics FRDIS MENDELU Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová Brno 1 Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function defined on [, b]. Wht is the re of the

More information

PDE Notes. Paul Carnig. January ODE s vs PDE s 1

PDE Notes. Paul Carnig. January ODE s vs PDE s 1 PDE Notes Pul Crnig Jnury 2014 Contents 1 ODE s vs PDE s 1 2 Section 1.2 Het diffusion Eqution 1 2.1 Fourier s w of Het Conduction............................. 2 2.2 Energy Conservtion.....................................

More information

Math 426: Probability Final Exam Practice

Math 426: Probability Final Exam Practice Mth 46: Probbility Finl Exm Prctice. Computtionl problems 4. Let T k (n) denote the number of prtitions of the set {,..., n} into k nonempty subsets, where k n. Argue tht T k (n) kt k (n ) + T k (n ) by

More information

) 4n+2 sin[(4n + 2)φ] n=0. a n ρ n sin(nφ + α n ) + b n ρ n sin(nφ + β n ) n=1. n=1. [A k ρ k cos(kφ) + B k ρ k sin(kφ)] (1) 2 + k=1

) 4n+2 sin[(4n + 2)φ] n=0. a n ρ n sin(nφ + α n ) + b n ρ n sin(nφ + β n ) n=1. n=1. [A k ρ k cos(kφ) + B k ρ k sin(kφ)] (1) 2 + k=1 Physics 505 Fll 2007 Homework Assignment #3 Solutions Textbook problems: Ch. 2: 2.4, 2.5, 2.22, 2.23 2.4 A vrint of the preceeding two-dimensionl problem is long hollow conducting cylinder of rdius b tht

More information

Math 0230 Calculus 2 Lectures

Math 0230 Calculus 2 Lectures Mth Clculus Lectures Chpter 7 Applictions of Integrtion Numertion of sections corresponds to the text Jmes Stewrt, Essentil Clculus, Erly Trnscendentls, Second edition. Section 7. Ares Between Curves Two

More information

APPM 1360 Exam 2 Spring 2016

APPM 1360 Exam 2 Spring 2016 APPM 6 Em Spring 6. 8 pts, 7 pts ech For ech of the following prts, let f + nd g 4. For prts, b, nd c, set up, but do not evlute, the integrl needed to find the requested informtion. The volume of the

More information

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30 Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová (Mendel University) Definite integrl MENDELU / Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function

More information

Math 259 Winter Solutions to Homework #9

Math 259 Winter Solutions to Homework #9 Mth 59 Winter 9 Solutions to Homework #9 Prolems from Pges 658-659 (Section.8). Given f(, y, z) = + y + z nd the constrint g(, y, z) = + y + z =, the three equtions tht we get y setting up the Lgrnge multiplier

More information

7.1 Integral as Net Change and 7.2 Areas in the Plane Calculus

7.1 Integral as Net Change and 7.2 Areas in the Plane Calculus 7.1 Integrl s Net Chnge nd 7. Ares in the Plne Clculus 7.1 INTEGRAL AS NET CHANGE Notecrds from 7.1: Displcement vs Totl Distnce, Integrl s Net Chnge We hve lredy seen how the position of n oject cn e

More information

Problem Solving 7: Faraday s Law Solution

Problem Solving 7: Faraday s Law Solution MASSACHUSETTS NSTTUTE OF TECHNOLOGY Deprtment of Physics: 8.02 Prolem Solving 7: Frdy s Lw Solution Ojectives 1. To explore prticulr sitution tht cn led to chnging mgnetic flux through the open surfce

More information

7.6 The Use of Definite Integrals in Physics and Engineering

7.6 The Use of Definite Integrals in Physics and Engineering Arknss Tech University MATH 94: Clculus II Dr. Mrcel B. Finn 7.6 The Use of Definite Integrls in Physics nd Engineering It hs been shown how clculus cn be pplied to find solutions to geometric problems

More information

Electromagnetism Answers to Problem Set 10 Spring 2006

Electromagnetism Answers to Problem Set 10 Spring 2006 Electromgnetism 76 Answers to Problem Set 1 Spring 6 1. Jckson Prob. 5.15: Shielded Bifilr Circuit: Two wires crrying oppositely directed currents re surrounded by cylindricl shell of inner rdius, outer

More information

u(x, y, t) = T(t)Φ(x, y) 0. (THE EQUATIONS FOR PRODUCT SOLUTIONS) Plugging u = T(t)Φ(x, y) in (PDE)-(BC) we see: There is a constant λ such that

u(x, y, t) = T(t)Φ(x, y) 0. (THE EQUATIONS FOR PRODUCT SOLUTIONS) Plugging u = T(t)Φ(x, y) in (PDE)-(BC) we see: There is a constant λ such that Seprtion of Vriles for Higher Dimensionl Wve Eqution 1. Virting Memrne: 2-D Wve Eqution nd Eigenfunctions of the Lplcin Ojective: Let Ω e plnr region with oundry curve Γ. Consider the wve eqution in Ω

More information

Review of Gaussian Quadrature method

Review of Gaussian Quadrature method Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge

More information

Hung problem # 3 April 10, 2011 () [4 pts.] The electric field points rdilly inwrd [1 pt.]. Since the chrge distribution is cylindriclly symmetric, we pick cylinder of rdius r for our Gussin surfce S.

More information

Candidates must show on each answer book the type of calculator used.

Candidates must show on each answer book the type of calculator used. UNIVERSITY OF EAST ANGLIA School of Mthemtics My/June UG Exmintion 2007 2008 ELECTRICITY AND MAGNETISM Time llowed: 3 hours Attempt FIVE questions. Cndidtes must show on ech nswer book the type of clcultor

More information

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner

More information

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1 3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =

More information

10 Vector Integral Calculus

10 Vector Integral Calculus Vector Integrl lculus Vector integrl clculus extends integrls s known from clculus to integrls over curves ("line integrls"), surfces ("surfce integrls") nd solids ("volume integrls"). These integrls hve

More information

Abstract inner product spaces

Abstract inner product spaces WEEK 4 Abstrct inner product spces Definition An inner product spce is vector spce V over the rel field R equipped with rule for multiplying vectors, such tht the product of two vectors is sclr, nd the

More information

Math 107H Topics for the first exam. csc 2 x dx = cot x + C csc x cotx dx = csc x + C tan x dx = ln secx + C cot x dx = ln sinx + C e x dx = e x + C

Math 107H Topics for the first exam. csc 2 x dx = cot x + C csc x cotx dx = csc x + C tan x dx = ln secx + C cot x dx = ln sinx + C e x dx = e x + C Integrtion Mth 07H Topics for the first exm Bsic list: x n dx = xn+ + C (provided n ) n + sin(kx) dx = cos(kx) + C k sec x dx = tnx + C sec x tnx dx = sec x + C /x dx = ln x + C cos(kx) dx = sin(kx) +

More information

PH12b 2010 Solutions HW#3

PH12b 2010 Solutions HW#3 PH 00 Solutions HW#3. The Hmiltonin of this two level system is where E g < E e The experimentlist sis is H E g jgi hgj + E e jei hej j+i p (jgi + jei) j i p (jgi jei) ) At t 0 the stte is j (0)i j+i,

More information

QUADRATIC EQUATIONS OBJECTIVE PROBLEMS

QUADRATIC EQUATIONS OBJECTIVE PROBLEMS QUADRATIC EQUATIONS OBJECTIVE PROBLEMS +. The solution of the eqution will e (), () 0,, 5, 5. The roots of the given eqution ( p q) ( q r) ( r p) 0 + + re p q r p (), r p p q, q r p q (), (d), q r p q.

More information

set is not closed under matrix [ multiplication, ] and does not form a group.

set is not closed under matrix [ multiplication, ] and does not form a group. Prolem 2.3: Which of the following collections of 2 2 mtrices with rel entries form groups under [ mtrix ] multipliction? i) Those of the form for which c d 2 Answer: The set of such mtrices is not closed

More information

14.4. Lengths of curves and surfaces of revolution. Introduction. Prerequisites. Learning Outcomes

14.4. Lengths of curves and surfaces of revolution. Introduction. Prerequisites. Learning Outcomes Lengths of curves nd surfces of revolution 4.4 Introduction Integrtion cn be used to find the length of curve nd the re of the surfce generted when curve is rotted round n xis. In this section we stte

More information

Math 124A October 04, 2011

Math 124A October 04, 2011 Mth 4A October 04, 0 Viktor Grigoryn 4 Vibrtions nd het flow In this lecture we will derive the wve nd het equtions from physicl principles. These re second order constnt coefficient liner PEs, which model

More information

Designing Information Devices and Systems I Spring 2018 Homework 7

Designing Information Devices and Systems I Spring 2018 Homework 7 EECS 16A Designing Informtion Devices nd Systems I Spring 2018 omework 7 This homework is due Mrch 12, 2018, t 23:59. Self-grdes re due Mrch 15, 2018, t 23:59. Sumission Formt Your homework sumission should

More information

September 13 Homework Solutions

September 13 Homework Solutions College of Engineering nd Computer Science Mechnicl Engineering Deprtment Mechnicl Engineering 5A Seminr in Engineering Anlysis Fll Ticket: 5966 Instructor: Lrry Cretto Septemer Homework Solutions. Are

More information

f(a+h) f(a) x a h 0. This is the rate at which

f(a+h) f(a) x a h 0. This is the rate at which M408S Concept Inventory smple nswers These questions re open-ended, nd re intended to cover the min topics tht we lerned in M408S. These re not crnk-out-n-nswer problems! (There re plenty of those in the

More information

DEFINITION The inner product of two functions f 1 and f 2 on an interval [a, b] is the number. ( f 1, f 2 ) b DEFINITION 11.1.

DEFINITION The inner product of two functions f 1 and f 2 on an interval [a, b] is the number. ( f 1, f 2 ) b DEFINITION 11.1. 398 CHAPTER 11 ORTHOGONAL FUNCTIONS AND FOURIER SERIES 11.1 ORTHOGONAL FUNCTIONS REVIEW MATERIAL The notions of generlized vectors nd vector spces cn e found in ny liner lger text. INTRODUCTION The concepts

More information

Math 120 Answers for Homework 13

Math 120 Answers for Homework 13 Mth 12 Answers for Homework 13 1. In this problem we will use the fct tht if m f(x M on n intervl [, b] (nd if f is integrble on [, b] then (* m(b f dx M(b. ( The function f(x = 1 + x 3 is n incresing

More information

Differential Equations 2 Homework 5 Solutions to the Assigned Exercises

Differential Equations 2 Homework 5 Solutions to the Assigned Exercises Differentil Equtions Homework Solutions to the Assigned Exercises, # 3 Consider the dmped string prolem u tt + 3u t = u xx, < x , u, t = u, t =, t >, ux, = fx, u t x, = gx. In the exm you were supposed

More information

Advanced Computational Fluid Dynamics AA215A Lecture 3 Polynomial Interpolation: Numerical Differentiation and Integration.

Advanced Computational Fluid Dynamics AA215A Lecture 3 Polynomial Interpolation: Numerical Differentiation and Integration. Advnced Computtionl Fluid Dynmics AA215A Lecture 3 Polynomil Interpoltion: Numericl Differentition nd Integrtion Antony Jmeson Winter Qurter, 2016, Stnford, CA Lst revised on Jnury 7, 2016 Contents 3 Polynomil

More information

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp. MA123, Chpter 1: Formuls for integrls: integrls, ntiderivtives, nd the Fundmentl Theorem of Clculus (pp. 27-233, Gootmn) Chpter Gols: Assignments: Understnd the sttement of the Fundmentl Theorem of Clculus.

More information

ELE B7 Power Systems Engineering. Power System Components Modeling

ELE B7 Power Systems Engineering. Power System Components Modeling Power Systems Engineering Power System Components Modeling Section III : Trnsformer Model Power Trnsformers- CONSTRUCTION Primry windings, connected to the lternting voltge source; Secondry windings, connected

More information

Instructor(s): Acosta/Woodard PHYSICS DEPARTMENT PHY 2049, Fall 2015 Midterm 1 September 29, 2015

Instructor(s): Acosta/Woodard PHYSICS DEPARTMENT PHY 2049, Fall 2015 Midterm 1 September 29, 2015 Instructor(s): Acost/Woodrd PHYSICS DEPATMENT PHY 049, Fll 015 Midterm 1 September 9, 015 Nme (print): Signture: On m honor, I hve neither given nor received unuthorized id on this emintion. YOU TEST NUMBE

More information

Session Trimester 2. Module Code: MATH08001 MATHEMATICS FOR DESIGN

Session Trimester 2. Module Code: MATH08001 MATHEMATICS FOR DESIGN School of Science & Sport Pisley Cmpus Session 05-6 Trimester Module Code: MATH0800 MATHEMATICS FOR DESIGN Dte: 0 th My 06 Time: 0.00.00 Instructions to Cndidtes:. Answer ALL questions in Section A. Section

More information

University of. d Class. 3 st Lecture. 2 nd

University of. d Class. 3 st Lecture. 2 nd University of Technology Electromechnicl Deprtment Energy Brnch Advnced Mthemtics Line Integrl nd d lss st Lecture nd Advnce Mthemtic Line Integrl lss Electromechnicl Engineer y Dr.Eng.Muhmmd.A.R.Yss Dr.Eng

More information

3 Mathematics of the Poisson Equation

3 Mathematics of the Poisson Equation 3 Mthemtics of the Poisson Eqution 3. Green functions nd the Poisson eqution () The Dirichlet Green function stisfies the Poisson eqution with delt-function chrge 2 G D (r, r o ) = δ 3 (r r o ) (3.) nd

More information

MATH 253 WORKSHEET 24 MORE INTEGRATION IN POLAR COORDINATES. r dr = = 4 = Here we used: (1) The half-angle formula cos 2 θ = 1 2

MATH 253 WORKSHEET 24 MORE INTEGRATION IN POLAR COORDINATES. r dr = = 4 = Here we used: (1) The half-angle formula cos 2 θ = 1 2 MATH 53 WORKSHEET MORE INTEGRATION IN POLAR COORDINATES ) Find the volume of the solid lying bove the xy-plne, below the prboloid x + y nd inside the cylinder x ) + y. ) We found lst time the set of points

More information

03 Qudrtic Functions Completing the squre: Generl Form f ( x) x + x + c f ( x) ( x + p) + q where,, nd c re constnts nd 0. (i) (ii) (iii) (iv) *Note t

03 Qudrtic Functions Completing the squre: Generl Form f ( x) x + x + c f ( x) ( x + p) + q where,, nd c re constnts nd 0. (i) (ii) (iii) (iv) *Note t A-PDF Wtermrk DEMO: Purchse from www.a-pdf.com to remove the wtermrk Add Mths Formule List: Form 4 (Updte 8/9/08) 0 Functions Asolute Vlue Function Inverse Function If f ( x ), if f ( x ) 0 f ( x) y f

More information

Reference. Vector Analysis Chapter 2

Reference. Vector Analysis Chapter 2 Reference Vector nlsis Chpter Sttic Electric Fields (3 Weeks) Chpter 3.3 Coulomb s Lw Chpter 3.4 Guss s Lw nd pplictions Chpter 3.5 Electric Potentil Chpter 3.6 Mteril Medi in Sttic Electric Field Chpter

More information

Math 113 Exam 2 Practice

Math 113 Exam 2 Practice Mth 3 Exm Prctice Februry 8, 03 Exm will cover 7.4, 7.5, 7.7, 7.8, 8.-3 nd 8.5. Plese note tht integrtion skills lerned in erlier sections will still be needed for the mteril in 7.5, 7.8 nd chpter 8. This

More information

Problem Set 9. Figure 1: Diagram. This picture is a rough sketch of the 4 parabolas that give us the area that we need to find. The equations are:

Problem Set 9. Figure 1: Diagram. This picture is a rough sketch of the 4 parabolas that give us the area that we need to find. The equations are: (x + y ) = y + (x + y ) = x + Problem Set 9 Discussion: Nov., Nov. 8, Nov. (on probbility nd binomil coefficients) The nme fter the problem is the designted writer of the solution of tht problem. (No one

More information

Things to Memorize: A Partial List. January 27, 2017

Things to Memorize: A Partial List. January 27, 2017 Things to Memorize: A Prtil List Jnury 27, 2017 Chpter 2 Vectors - Bsic Fcts A vector hs mgnitude (lso clled size/length/norm) nd direction. It does not hve fixed position, so the sme vector cn e moved

More information

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University U.U.D.M. Project Report 07:4 Frey Frctions Rickrd Fernström Exmensrete i mtemtik, 5 hp Hledre: Andres Strömergsson Exmintor: Jörgen Östensson Juni 07 Deprtment of Mthemtics Uppsl University Frey Frctions

More information

PHYSICS 116C Homework 4 Solutions

PHYSICS 116C Homework 4 Solutions PHYSICS 116C Homework 4 Solutions 1. ( Simple hrmonic oscilltor. Clerly the eqution is of the Sturm-Liouville (SL form with λ = n 2, A(x = 1, B(x =, w(x = 1. Legendre s eqution. Clerly the eqution is of

More information

First midterm topics Second midterm topics End of quarter topics. Math 3B Review. Steve. 18 March 2009

First midterm topics Second midterm topics End of quarter topics. Math 3B Review. Steve. 18 March 2009 Mth 3B Review Steve 18 Mrch 2009 About the finl Fridy Mrch 20, 3pm-6pm, Lkretz 110 No notes, no book, no clcultor Ten questions Five review questions (Chpters 6,7,8) Five new questions (Chpters 9,10) No

More information