Some variations of the reduction of one-loop Feynman tensor integrals

Size: px
Start display at page:

Download "Some variations of the reduction of one-loop Feynman tensor integrals"

Transcription

1 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 1 / 6 Some variations of the reduction of one-loop Feynman tensor integrals Tord Riemann DESY, Zeuthen in collaboration with Jochem Fleischer [and T. Diakonidis, B. Tausk, J. Gluza, K.Kajda] 13th International Workshop on Advanced Computing and Analysis Techniques in Physics Research, February 22-27, 2010 Jaipur, India version presented

2 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 2 / 6 Outline 1 Introduction 2 Recursions 3 Simplifying recursions Numbers: D 111 Summary 6 Backup: 6- and -pt numbers

3 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers Introduction n-point tensor integrals of rank R: (n,r)-integrals I µ 1 µ R d d k R r=1 n = k µr iπ d/2, (1) n j=1 cν j j d = 2ɛ and denominators c j have indices ν j and chords q j c j = (k q j ) 2 m 2 j + iε (2) k q1 k q2 k k q3 k qn 1 tensor integrals due to: fermion propagators three-gauge boson couplings e.g. unitary gauge propagators 3 / 6

4 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers / 6 Reduction of tensor integrals express them by a (very) small set of scalar integrals Presently needed for massive processes: n 6 and rank R n For box diagrams and simpler ones: Use of the conventional Passarino-Veltman reduction [Passarino:1978 [1]] Examples: LO (Lowest order) of e.g. Z e + µ is one-loop [Riemann:1981,Mann:1983 [2][3]] NLO: one-loop corrections to e.g. H τ + τ, WW, ZZ [Fleischer:1980 []] NNLO: e.g. radiative loop corrections e + e e + e γ (here with -point functions)

5 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers / 6 Status of opensource packages - hopefully complete package FF [vanoldenborgh:1990 []], package LoopTools/FF [Hahn:1998,2006 [6]] covers also -point functions, rank R 1/ɛ 2 not covered, and we observed sometimes problems in certain configurations with light-like external particles package Golem9 [Binoth:2008 [7]] for n 6, but only massless propagators Mathematica package hexagon.m [Diakonidis:2008 [8, 9]] for n 6, rankr package for all n scalar integrals: QCDloop [Ellis:2007 [10]] see also: review A.Denner, DESY TH workshop 2009 So, if you want to evaluate something less trivial, you have to create your own tensor reduction library.

6 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 6 / 6 This talk: derive efficient reduction formulae in the algebraic Fleischer-Davydychev-Tarasov approach The original Passarino-Veltman reduction allows to express tensor integrals by a small set of scalar -,3-,2-,1-point functions integrals in d dimensions. Extensions: Need of reduction of n-point functions with n > Improvements: Avoid the break-down in certain kinematical configurations A crucial step was to avoid for n = pentagons the towers of inverse Gram determinants. They may get small or vanishing and may appear by reducing algebraically the tensors to scalars.

7 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 7 / 6 Crucial contributions [of course, list is incomplete... ] [Campbell:1996 [11]] [Denner:2002,200 [12, 13]] [Binoth:1999,200 [1, 1]] [Bern:1993 [16]] [Ossola:2006 [17] ] In the following, I will describe recent developments in the Fleischer-Davydychev-Tarasov approach. [Davydychev:1991,Tarasov:1996,Fleischer:1999,Diakonidis:2008,2009 [18, 19, 20, 9, 21]] get tensor reduction kill pentagon-gram det s treat sub-gram det s

8 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 8 / 6 Recursions for hexagons I Express any hexagon by pentagons [Fleischer:1999,Binoth:200,Denner:200,Diakonidis:2008 [20, 1, 13, 9] ] I µ 1...µ R 1 ρ 6 = 6 s=1 I µ 1...µ R 1,s Q ρ s. (3) auxiliary vectors Q ρ s = 6X q ρ i i=1 `0s 0i 6 `0 0 6, s = () Scalar case [N=: Melrose:196 [22]] `0 6X s N I N = `0 s=1 0 N IN 1 s, N =, 6 ()

9 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 9 / 6 Notations: I {µ 1, },s n 1 etc. I {µ 1, },s n 1,ab is obtained from by shrinking line s I {µ 1, } n raising the powers of inverse propagators a, b.

10 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 10 / 6 Notations: modified Cayley determinant [Melrose:196] Modified Cayley determinant () N of a diagram with N internal lines and chords q j : () N Y 11 Y Y 1N 1 Y 12 Y Y 2N Y 1N Y 2N... Y NN, (6) with matrix elements Y ij = (q i q j ) 2 + mi 2 + mj 2, (i, j = 1... N) (7) Gram determinant G n: G n = 2q i q j, i, j = 1,... n For a choice q n = 0, both determinants are related: () N = G N 1 The determinant () N does not depend on the masses.

11 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 11 / 6 Notations: signed minors [Melrose:196] We also need signed minors of () N, constructed by deleting m rows and m columns from () N, and multiplying with a sign factor: P ( 1) l (j l +k l ) sgn {j} sgn {k} «j1 j 2 j m k 1 k 2 k m N rows j 1 j m deleted columns k 1 k m deleted (8) where sgn {j} and sgn {k} are the signs of permutations that sort the deleted rows j 1 j m and columns k 1 k m into ascending order.

12 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 12 / 6 Dimensional shifts and recurrence relations for pentagons I Naive, direct approach. Following [Davydychev:1991 [18]] replace tensors by scalar integrals in higher dimensions: Example R = 3: I µνλ = Z = d 2ɛ k π d/2 X i,j,k=1 Y r=1 and n ijk = (1 + δ ij )(1 + δ ik + δ jk ). c 1 r k µ k ν k λ (9) q µ q ν i j qk λ n ijk I [d+]3 + 1 n 1 X (g µν q,ijk i λ + g µλ qi ν + g νλ q µ )I [d+]2, 2 i n,i i=1

13 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 13 / 6 Following [Tarasov:1996,Fleischer:1999 [19, 20]] apply recurrence relations, some of them relating scalar integrals of different dimensions, in order to get rid of the dimensionalities D = d 2ɛ + 2l: (d nx i=1 "! ν j j + I [d+] = 1 j + () 0 "! ν i + 1)I [d+] n = 1 0! 0 0 ν j j + I = () n X k=1 0! 0j 0k n! # X j k I (10) k k=1! # nx 0 k I n, n = here(11) k k=1 n " # X d ν i (k i + + 1) I (12) where the operators i ±, j ±, k ± act by shifting the indices ν i, ν j, ν k by ±1. i=1

14 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 1 / 6 At the end one may arrange a representation of e.g. I µνλ in terms of a collection of scalar 1-point to -point functions in generic dimension d: A 0, B 0, C 0, D 0. A problem for applications are the powers of the inverse Gram determinants 1/ () in recursions with dimensional shifts.

15 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 1 / 6 Alternative: Recursions for pentagons I Express any (, R) pentagon by a (, R 1) pentagon plus (, R 1) boxes [Fleischer et al., Diakonidis:2010 [23]] I µ 1...µ R 1 µ = I µ 1...µ R 1 Q µ 0 s=1 I µ 1...µ R 1,s Q µ s (13) auxiliary vectors with inverse Gram determinants ( s ) Q s µ = q µ i i, s = 0,..., (1) () i=1 For e.g. R = 3, again [1/() ] 3 will occur.

16 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers Interlude: Further recursion steps The recursions may be set forth, see [Diakonidis:2009 [21]] ; they get additional terms, e.g.: I µνλρ = I µνλ Q ρ 0 X t=1 with the additional tensor and vector components: X T µν = I µ,[d+] Q0 ν I µ,[d+],t 3 Qt ν t=1 G µν I [d+]2 (16) `i G µλ = 1 X 2 gµλ q µ q λ j i j () i,j=1 I µνλ,t 3 Q ρ t G µρ T νλ G νρ T µλ G λρ T µν, (1) I µ I µν I µνλρ I µνλρσ, s I µνλρ I µνλ, s, st I µνλ I µνλ 3, s I µν, st I µν, stu I µν 3 2, s I µ, st I µ, stu I µ, stuv 3 2 I µ 1 E0 D0 C0 B0 A0 Fleischer s triangle 16 / 6

17 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 17 / 6 Algebraic simplifications, 1st step With the identity ««0 s 0 i = «««0s 0 s () + 0i i 0 (17) we eliminate the inverse Gram determinant from all terms with exclusion of Q µ 0 : " I µ 1...µ R 1 µ = I µ 1...µ R 1 `s X 0 `0 s=1 0 # I µ 1...µ R 1,s Q µ 0 X s=1 I µ 1...µ R 1,s Q µ s (18) The auxiliary vectors Q µ s were introduced already for n = 6: X Q µ 0 = q µ i i=1 `0 X i while Q µ 0 () = i=1 q µ i `0 i Q µ s = () X q µ i i=1 `0s 0i `0 0 (19)

18 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 18 / 6 Algebraic simplifications, 2nd step I Have to show for the product T µ 1...µ R 1 Q µ 0 that the Gram determinant cancels. This came out to be a complicated task. [ (0 ) T µ 1...µ R 1 = I µ 1...µ R 1 0 s=1 ( ) ] s I µ 1...µ R 1,s 0 (20) Example: For R = 3 pentagons need rank 2 tensor: [ (0 ) T µν = I µν 0 s=1 ( ) ] s I µν 0 (21)

19 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 19 / 6 Algebraic simplifications, 2nd step I Example R = 3: the building blocks are here I µν and I µν : I µν = work!!! q µ i qj ν i,j=1 q µ i qj ν i,j=1 ] [ [(1 + δ ij )I [d+]2,ij + g µν 1 ] 2 I[d+] 1 ( 0 0) [ +g µν 1 1 ( 2 0 0) s=1 s=1 [( ) 0i I [d+],s sj + ] ( ) s I [d+],s 0 See: The I µν had already been made free of 1/(). ( ) ] 0s I [d+],s 0j,i (22)

20 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 20 / 6 Davydychev s higher dimensional integrals The second term with I µν is a typical example of [Davydychev:1991 [18]] : tensor scalars in d + 2l I µν = q µ i qj ν i,j=1 ] [ [(1 + δ ij )I [d+]2,ij + g µν 1 ] 2 I[d+] Further, at this point, we have to reduce the scalar integrals etc. to generic dimension d with Tarasov s recurrence relations, see next slide. The I µν is naturally free of 1/(). I [d+]2,ij (23)

21 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 21 / 6 Algebraic simplifications, 2nd step Work out the red part in ( [ (0 0 0) Iµνλ = 0) Iµν ( s s=1 0 work!!! ) Iµν,s Use of identities for the determinants «««««0 s 0s 0 s = () + 0 i 0i i 0 ] Q0 λ s=1 Iµν,s Q 0,λ s (2) «0 ««i i s j 0i s j X j = +, g µν = 2 q µ q ν i () sj 0 () () i j (2) i,j=1 ««««««s 0s s 0s s 0s = 0 is i 0s s 0i (26) ««««««s ts s ts s ts = 0 js j 0s s 0j (27)

22 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 22 / 6 Algebraic simplifications, 2nd step Use of identities for the determinants work!!! ««««««s is s 0s s 0i = + 0 js i js s sj (28) «««««s 0st 0s st ts 2 = s 0st 0s st 0s (29) " ««««# s «" ««««# st «ts ust ts ust ts us ts us = 0s jst js 0st s 0s js js 0s st (30) X «ts = 0 (31) is t=1

23 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers Express pentagons I µ, Iµν, Iµνλ etc. by d-shifted scalar boxes I Intermediate result with I [d+],s, I [d+]2,s,ij etc. I µ = [ 1 ( 0 0) i=1 s=1 ( ) ] 0i I s q µ 0s i (32) I µ ν = E ij = i,j=1 1 ( 0 0) q µ i q ν j E ij + g µν E 00 (33) s=1 E 00 = 1 1 ( 2 0 0) [( ) 0i I [d+],s sj + ) s=1 ( s 0 ( ) ] 0s I [d+],s 0j,i (3) I [d+],s (3) 23 / 6

24 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 2 / 6 Express pentagons I µ, Iµν, Iµνλ etc. by d-shifted scalar boxes II I µ ν λ = i,j,k=1 E ijk = 1 ( 0 0) E 00j = 1 ( 0 0) q µ i q ν j q λ k E ijk + s=1 s=1 [ 1 2 k=1 g [µν q λ] k E 00k (36) {[( ) 0j I [d+]2,s sk,i + (i j) ( ) 0s I [d+],s 0j d 1 3 ] + ( ) ] s I [d+]2,s j These presentations are evidently free of inverse Gram determinants. ( ) } 0s ν ij I [d+]2,s 0k,ij (37) (38)

25 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 2 / 6 Isolation of inverse sub-gram det s () I We have now two kinds of objects in higher dim s to be evaluated: I s, I[d+],s, I [d+]2,s boxes (39) I [d+],s,i, I [d+]2,s,i I [d+]2,s,ij boxes with higher indices (0) Application of dimension-shifting recurrence relations produces powers of 1/(). They are the unwanted sub-gram-determinants (). Simplest: In I µ (32) appears Is.

26 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 26 / 6 Isolation of inverse sub-gram det s () II One of Tarasov s recurrence relations (11) applies (n = ): () n (d 3)I [d+] = So that we express: I D = k=1 [ (0 ) 0 k=1 ( ) ] 0 k I (1) k ( k 0) ( 0 I 0) D,k 3, for() n = 0 (2) If the dimension D = d + 2l > d, one has to reduce the dimension of I D,k 3 by Tarasov s dim-recurrences, but now without 1/(), because now 1/() 3 appear.

27 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 27 / 6 Isolation of inverse sub-gram det s () III For the other boxes, with higher indices, the game is more involved. Try to have inverse Gram determinants only in front of boxes I, and hold the I 3, I 2, I 1 free of them Introduce: ) lim I d,s ( s = s) 0 t=1 ( ts 0s ( 0s ) 0s A typical example appearing in (3) is I [d+],s,i. With the aid of relations like 0s ts 0s ts is 0s 0s is I d,st 3 Z d,s (3) s = s 0st, () 0si

28 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 28 / 6 Isolation of inverse sub-gram det s () IV one may cancel out the factor `s from the combination s `0s `ts X is `s Z s is `s I3 st = = 1 X 0st `0s I3 st () 0si s t=1 s 0s t=1 This allows to rewrite the recurrence relation ( 0s ) ( ts ) I [d+],s is,i = ( s I s) s + is ( s s) t=1 into one with 1/ ( ) s s = 1/() ONLY in front of boxes: ( ) [ I [d+],s 0s I s,i = Z s ] ( is s + s) 1 ) ( 0s 0s t=1 I st 3 ( ) 0st I3 st (6) 0si

29 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 29 / 6 Isolation of inverse sub-gram det s () V This is a nice expression, because it contains an explicit difference quotient for the case that ( ) s s becomes zero or if it becomes small but finite. The numerical strategy will be: The () 0: Just evaluate what you like. The () = 0: Replace [ I s Z s ] ( s s) d 3 ( 0 0) I [d+],s and the I [d+],s may be written, in that case () = 0, by t c ki [d+],st 3. Further reducing to scalars in d dimensions, no 1/() will re-appear.

30 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 30 / 6 Isolation of inverse sub-gram det s () VI This is, what one may do if not explicitely work on expansions of the scalar integrals for small () n.

31 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 31 / 6 Example: -point tensor of rank 3 I Following Davydychev, [18], one gets I µνλ = Z d k µ k ν k λ Q n r=1 cr = nx i,j,k=1 q µ i q ν j q λ k ν ijk I [d+]3 n,ijk nx i=1 g [µν q λ] I [d+]2 (7) i n,i We identify the tensor coefficient D 111 : D 111 ν ijk I [d+]3,ijk for ijk = 222

32 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 32 / 6 An example from A. Denner: D 111 Next figures copied from: A.Denner, plenary talk DESY Theory Workshop 2009, p.69 (backup transparency) box integral 0 t e d 0 tēµ M Z s µ νu e + s νu appears, e.g., in subgraph of diagram Gramdet.: (N) 0 if t e d t crit s µ νu(s µ νu s νu + tēµ ) s µ νu s νu e e Z Z µ d W µ ν µ u d

33 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 33 / 6 The figure demonstrates the effects of careful treatment of vanishing Gram determinant (). Gramdet.: (N) 0 if t e d t crit s µ νu(s µ νu s νu + tēµ ) s µ νu s νu numerical comparison: maximal tensor rank = 6 (similar to ee f application) Absolute predictions D 1 D 111 D 0 D 11 (etc.) Passarino Veltman reduction improved by Gram expansion Z Relative deviations from best Passarino--Veltman region x t e d t crit 1 s µ νu = GeV 2 s νu = GeV 2 tēµ = 10 GeV 2 t crit = 6 10 GeV 2 PV reduction breaks down, but Gram exp. stable for (N) 0!

34 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 3 / 6 D 111 numerics with our reductions Now rewrite: ν ijk I [d+]3,ijk ν ij ν ijk I [d+]3,s,reg,ijk ν ij ν ijk I [d+]3,s,ijk 0 t i j k = I [d+] 2 X k + I [d+] 2,t k + I [d+] 2 k + I [d+] 2 (),ij () 3,ij t=1,t i,j (),j (),i 0s» ks = ν s ij I s [d+]2,s Z [d+]2,s,ij,ij ««0si I [d+]2,s 0sj + I [d+]2,s X «0st + ν 0s 0sk,j 0sk,i ij I [d+]2,st (9) 0sk 3,ij 0s t=1,t i,j «k i j = d (d 3)(d + 1)I [d+]3 1 0i + (d 3) I 0 0j 0 0 [d+]2 + 2ν ij I [d+]3,ij 0 3 d 16 j X «0t I 0 0 0i 0 0 [d+]2,t + d 3 X «0t I 3 0 0j t=1 0 [d+]2,t 3,i t= ««0i I 0 0k 0 [d+]2 0j X «+ I [d+]2 0t + ν,j 0k,i ij I [d+]2,t (0) 0k 3,ij t=1,t i,j (8)

35 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 3 / 6 Numerics: LoopTools versus our approach Using LoopTools call and our math numerics (preliminary): x D111-7 : I D0i[dd111] I Zd30,Zd20,Iid20-6 : I D0i[dd111] I Zd30,Zd20,Iid20 - : I D0i[dd111] I Zd30,Zd20,Iid20 x< -: LoopTools dies out - : I D0i[dd111] I flei x < -3: loss of accuracy -3 : I D0i[dd111] I flei -2 : I D0i[dd111] I flei -1 : I D0i[dd111] I flei

36 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 36 / 6 Summary Recursive treatment of pnetagon tensors integrals of rank R in terms of pentagons and boxes of rank R 1 Systematic derivation of expressions which are explicitely free of inverse Gram determinants () until pentagons of rank R = Properly isolation of inverse Gram determinants of subdiagrams of the type ( ) s s, which cannot be completely n avoided. Some [preliminary] numerics, so far Mathematica, and C++ under way

37 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers References I G. Passarino and M. J. G. Veltman, One loop corrections for e + e annihilation into µ + µ in the Weinberg model, Nucl. Phys. B160 (1979) 11. T. Riemann, G. Mann, and D. Ebert. Nonconservation of lepton number in Z decay, in: F. Kaschluhn (ed.), Proc. XVth Int. Symp. Ahrenshoop on Special Topics In Gauge Field Theories, Nov -12, 1981, Ahrenshoop, GDR, AdW, Zeuthen (1981) PHE 81-07, pp G. Mann and T. Riemann, Effective flavor changing weak neutral current in the standard theory and Z boson decay, Annalen Phys. 0 (198) 33. J. Fleischer and F. Jegerlehner, Radiative Corrections to Higgs Decays in the Extended Weinberg-Salam Model, Phys. Rev. D23 (1981) G. J. van Oldenborgh, FF: A Package to evaluate one loop Feynman diagrams, Comput. Phys. Commun. 66 (1991) 1 1. T. Hahn and M. Perez-Victoria, Automatized one-loop calculations in four and d dimensions, Comput. Phys. Commun. 118 (1999) 13, [hep-ph/98076]. T. Binoth, J. P. Guillet, G. Heinrich, E. Pilon, and T. Reiter, Golem9: a numerical program to calculate one-loop tensor integrals with up to six external legs, Comput. Phys. Commun. 180 (2009) , [ ]. T. Diakonidis, J. Fleischer, J. Gluza, K. Kajda, T. Riemann, and J. Tausk, On the tensor reduction of one-loop pentagons and hexagons, Nucl. Phys. Proc. Suppl. 183 (2008) , [ ]. 37 / 6

38 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 38 / 6 References II T. Diakonidis et al., A complete reduction of one-loop tensor - and 6-point integrals, Phys. Rev. D80 (2009) , [ ]. R. K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP 02 (2008) 002, [ ]. J. Campbell, E. W. N. Glover, and D. Miller, One-loop tensor integrals in dimensional regularisation, Nucl. Phys. B98 (1997) 397 2, [hep-ph/961213]. A. Denner and S. Dittmaier, Reduction of one-loop tensor -point integrals, Nucl. Phys. B68 (2003) , [hep-ph/021229]. A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B73 (2006) 62 11, [hep-ph/00911]. T. Binoth, J. P. Guillet, and G. Heinrich, Reduction formalism for dimensionally regulated one-loop N-point integrals, Nucl. Phys. B72 (2000) , [hep-ph/991132]. T. Binoth, J. Guillet, G. Heinrich, E. Pilon, and C. Schubert, An algebraic / numerical formalism for one-loop multi-leg amplitudes, JHEP 10 (200) 01, [hep-ph/00267]. Z. Bern, L. J. Dixon, and D. A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys. B12 (199) , [hep-ph/930620]. G. Ossola, C. Papadopoulos, and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B763 (2007) , [hep-ph/ ].

39 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers References III A. I. Davydychev, A Simple formula for reducing Feynman diagrams to scalar integrals, Phys. Lett. B263 (1991) O. V. Tarasov, Connection between Feynman integrals having different values of the space-time dimension, Phys. Rev. D (1996) , [hep-th/ ]. J. Fleischer, F. Jegerlehner, and O. Tarasov, Algebraic reduction of one-loop Feynman graph amplitudes, Nucl. Phys. B66 (2000) 23 0, [hep-ph/ ]. T. Diakonidis, J. Fleischer, T. Riemann, and J. B. Tausk, A recursive reduction of tensor Feynman integrals, Phys. Lett. B683 (2010) 69 7, [arxiv: ]. D. B. Melrose, Reduction of Feynman diagrams, Nuovo Cim. 0 (196) T. Diakonidis, J. Fleischer, T. Riemann, and B. Tausk, A recursive approach to the reduction of tensor Feynman integrals, PoS RADCOR2009 (2009) 033, [ ]. 39 / 6

40 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 0 / 6 Numbers (I) Pentagons Randomly chosen phase space point with massive and massless internal particles p E E E E+00 p E E E E+00 p E E E E+00 p E E E E+01 p E E E E+01 m 1 = 0.0, m 2 = 2.0, m 3 = 3.0, m =.0, m =.0 p 3 p 1 + p 2 m 3 p 1 + p 2 m p1 m2 p2 m 1 m m 1 m 3 p 1 + p 2 + p 3 p + p m3 m1 p m p3 m p m p p + p m p 3 m 1 p

41 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers Selected pentagon components Shown are the constant terms of the tensor components E 2 E 12 E 232 E 0321 E Pentagon.F ( E-0, E-0) ( E-06, E-06) ( E-0, E-0) ( E-06, E-0) ( E-0, E-0) Box.F LoopTools ( E-03, E-03) ( E-03, E-03 ) ( E-03, E-02) ( E-03, E-02) ( E-03, E-03) ( E-03, E-03) ( E-0, E-0) ( E-0, E-0) Triangle.F LoopTools C 2 ( E-0, E-03) ( E-0, E-03) C 01 ( E-02, E-02) ( E-02, E-02) C 133 ( E-02, E-02) ( E-02, E-02) Bubble.F LoopTools B 3 ( E+00, E+00) ( , ) B 12 ( E+00, E-02) ( , E-02) 1 / 6

42 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers here some text 1. p 3 p 2 k+q 2 k+q 3 m 3 m p k+q 1 m 2 m k+q p 1 m 1 m 6 p k+q 0 k+q p 6 Figure: Momenta flow for the massive six-point topology. here some text 2. 2 / 6

43 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 3 / 6 Numbers (II) Hexagons p E E+03 p E E+03 p E E E E+02 p E E E E+02 p E E E E+01 p E E E E+01 m 1 = 110.0, m 2 = 120.0, m 3 = 130.0, m = 10.0, m = 10.0, m 6 = F E 18 i E 19 µ F µ E 17 + i E E 17 i E E 17 + i E E 16 + i E 17 µ ν F µν E 1 i E E 1 + i E E 1 i E E 1 i E E 1 i E E 16 + i E E 1 i E E 1 i E E 1 + i E E 1 + i E 1

44 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers / 6 µ ν λ F µνλ E 11 i E E 13 i E E 13 + i E E 12 + i E E 12 + i E E 13 i E E 13 i E E 12 + i E E 13 + i E E 12 + i E E 13 + i E E 13 i E E 12 i E E 13 + i E E 1 + i E E 13 + i E E 13 i E E 12 i E E 13 i E E 12 i E 12 Table: Tensor components for a massive rank R = 3 six-point function

45 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers µ ν λ ρ F µνλρ E 09 + i E E 10 + i E E 10 i E E 10 i E E 10 i E E 11 + i E E 11 + i E E 10 i E E 11 i E E 10 i E E 10 i E E 11 i E E 10 + i E E 11 + i E E 11 i E E 11 i E E 11 i E E 10 + i E E 11 + i E E 09 + i E E 10 + i E E 12 i E E 11 i E E 11 + i E E 11 + i E E 10 + i E E 12 i E E 11 i E E 12 i E E 11 i E E 10 + i E E 11 + i E E 10 + i E E 11 + i E 11 / 6

46 Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers p p p p p p 6 = (p 1 + p 2 + p 3 + p + p ) Table: Phase space point of massless six-point functions taken from [Binoth:2008 [7]]. Golem9: Binoth, Guillet, Heinrich, Pilon, Reiter [arxiv:hep-ph/ ] Shown are only the constant terms of the tensor components. Hexagon.F Golem9 F ( E+00, E-01 ) ( E+00, E-01 ) F ( E+01, E+00 ) ( E+01, E+00) F ( E+02, E+02 ) ( E+02, E+02 ) F ( E+00, E+00 ) ( E+00, E+00 ) F ( E+00, E+00) ( E+00, E+00) 6 / 6

Tord Riemann. DESY, Zeuthen, Germany

Tord Riemann. DESY, Zeuthen, Germany 1/ v. 2010-08-31 1:2 T. Riemann Tensor reduction Corfu 2010, Greece Algebraic tensor Feynman integral reduction Tord Riemann DESY, Zeuthen, Germany Based on work done in collaboration with Jochem Fleischer

More information

Tensor reduction of Feynman integrals

Tensor reduction of Feynman integrals TOPICS colliders Methods of multiloop calculations and resummation Computer codes for calculations in high energy physics Theoretical predictions beyond the Standard Model Physical program of future experiments

More information

Reduction of one-loop amplitudes at the integrand level-nlo QCD calculations

Reduction of one-loop amplitudes at the integrand level-nlo QCD calculations Reduction of one-loop amplitudes at the integrand level-nlo QCD calculations Costas G. Papadopoulos NCSR Demokritos, Athens Epiphany 2008, Krakow, 3-6 January 2008 Costas G. Papadopoulos (Athens) OPP Reduction

More information

arxiv: v1 [hep-ph] 30 Dec 2015

arxiv: v1 [hep-ph] 30 Dec 2015 June 3, 8 Derivation of functional equations for Feynman integrals from algebraic relations arxiv:5.94v [hep-ph] 3 Dec 5 O.V. Tarasov II. Institut für Theoretische Physik, Universität Hamburg, Luruper

More information

7 Veltman-Passarino Reduction

7 Veltman-Passarino Reduction 7 Veltman-Passarino Reduction This is a method of expressing an n-point loop integral with r powers of the loop momentum l in the numerator, in terms of scalar s-point functions with s = n r, n. scalar

More information

Towards a more accurate prediction of W +b jets with an automatized approach to one-loop calculations

Towards a more accurate prediction of W +b jets with an automatized approach to one-loop calculations Towards a more accurate prediction of W +b jets with an automatized approach to one-loop calculations Laura Reina Loops and Legs in Quantum Field Theory Wernigerode, April 2012 Outline Motivations: W +b-jet

More information

Reducing full one-loop amplitudes at the integrand level

Reducing full one-loop amplitudes at the integrand level Reducing full one-loop amplitudes at the integrand level Costas Papadopoulos, Les Houches 2007 In collaboration with G. Ossola and R. Pittau 27/06/2007 HEP-NCSR DEMOKRITOS 1 The History Passarino-Veltman

More information

A semi-numerical approach to one-loop multi-leg amplitudes p.1

A semi-numerical approach to one-loop multi-leg amplitudes p.1 A semi-numerical approach to one-loop multi-leg amplitudes Gudrun Heinrich Universität Zürich UNIVERSITAS TURICENSIS MDCCC XXXIII LoopFest V, SLAC, 21.06.06 A semi-numerical approach to one-loop multi-leg

More information

Next-to-leading order multi-leg processes for the Large Hadron Collider

Next-to-leading order multi-leg processes for the Large Hadron Collider Next-to-leading order multi-leg processes for the Large Hadron Collider, Thomas Reiter School of Physics, The University of Edinburgh, Edinburgh EH9 3JZ, UK. E-mail: binoth@ph.ed.ac.uk,thomas.reiter@ed.ac.uk

More information

Evaluating multiloop Feynman integrals by Mellin-Barnes representation

Evaluating multiloop Feynman integrals by Mellin-Barnes representation April 7, 004 Loops&Legs 04 Evaluating multiloop Feynman integrals by Mellin-Barnes representation V.A. Smirnov Nuclear Physics Institute of Moscow State University Mellin-Barnes representation as a tool

More information

Automation of One-Loop Calculations with Golem/Samurai

Automation of One-Loop Calculations with Golem/Samurai Automation of One-Loop Calculations with Golem/Samurai Giovanni Ossola New York City College of Technology City University of New York (CUNY) In collaboration with: G. Cullen, N. Greiner, G. Heinrich,

More information

NLO QCD calculations with the OPP method

NLO QCD calculations with the OPP method A. van Hameren The H. Niewodniczański Institute of Nuclear Physics Polisch Academy of Sciences Radzikowskiego 15, 31-3 Krakow, Poland E-mail: hameren@if.edu.pl Institute of Nuclear Physics, NCSR Demokritos,

More information

Evaluating double and triple (?) boxes

Evaluating double and triple (?) boxes Evaluating double and triple (?) boxes V.A. Smirnov a hep-ph/0209295 September 2002 a Nuclear Physics Institute of Moscow State University, Moscow 9992, Russia A brief review of recent results on analytical

More information

NNLO antenna subtraction with two hadronic initial states

NNLO antenna subtraction with two hadronic initial states NNLO antenna subtraction with two hadronic initial states Institut für Theoretische Physik, Universität Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland E-mail: radja@physik.uzh.ch Aude Gehrmann-De

More information

Precision Calculations for the LHC

Precision Calculations for the LHC Precision Calculations for the LHC LHC Olympics 2006 Zvi Bern, UCLA with Carola Berger, Lance Dixon, Darren Forde and David Kosower hep-ph/0501240 hep-ph/0505055 hep-ph/0507005 hep-ph/0604195 hep-ph/0607014

More information

Automatic calculation of one-loop amplitudes

Automatic calculation of one-loop amplitudes The H. Niewodniczański Institute of Nuclear Physics Polisch Academy of Sciences Radzikowskiego, - Krakow, Poland E-mail: hameren@if.edu.pl C.G. Papadopoulos Institute of Nuclear Physics, NCSR Demokritos,

More information

Functional equations for Feynman integrals

Functional equations for Feynman integrals Functional equations for Feynman integrals O.V. Tarasov JINR, Dubna, Russia October 9, 016, Hayama, Japan O.V. Tarasov (JINR) Functional equations for Feynman integrals 1 / 34 Contents 1 Functional equations

More information

Recent developments in automated NLO calculations

Recent developments in automated NLO calculations Recent developments in automated NLO calculations Giuseppe Bevilacqua NCSR Demokritos, Athens Workshop on Standard Model and Beyond and Standard Cosmology Corfu - August 31, 2009 In collaboration with

More information

Automatic calculations of Feynman integrals in the Euclidean region

Automatic calculations of Feynman integrals in the Euclidean region Automatic calculations of Feynman integrals in the Euclidean region Krzysztof Kajda University of Silesia 9 dec 2008 Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals

More information

arxiv:hep-ph/ v1 9 Jun 1997

arxiv:hep-ph/ v1 9 Jun 1997 DTP/97/44 RAL TR 97-027 hep-ph/9706297 arxiv:hep-ph/9706297v1 9 Jun 1997 The One-loop QCD Corrections for γ q qgg J. M. Campbell, E. W. N. Glover Physics Department, University of Durham, Durham DH1 3LE,

More information

Numerical Evaluation of Loop Integrals

Numerical Evaluation of Loop Integrals Numerical Evaluation of Loop Integrals Institut für Theoretische Physik Universität Zürich Tsukuba, April 22 nd 2006 In collaboration with Babis Anastasiou Rationale (Why do we need complicated loop amplitudes?)

More information

Parallel adaptive methods for Feynman loop integrals. Conference on Computational Physics (CCP 2011)

Parallel adaptive methods for Feynman loop integrals. Conference on Computational Physics (CCP 2011) Outline Elise de Doncker 1 Fukuko Yuasa 2 1 Department of Computer Science, Western Michigan University, Kalamazoo MI 49008, U. S. 2 High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki

More information

REDUCTION OF FEYNMAN GRAPH AMPLITUDES TO A MINIMAL SET OF BASIC INTEGRALS

REDUCTION OF FEYNMAN GRAPH AMPLITUDES TO A MINIMAL SET OF BASIC INTEGRALS REDUCTION OF FEYNMAN GRAPH AMPLITUDES TO A MINIMAL SET OF BASIC INTEGRALS O.V.Tarasov DESY Zeuthen, Platanenallee 6, D 5738 Zeuthen, Germany E-mail: tarasov@ifh.de (Received December 7, 998) An algorithm

More information

NLO QCD corrections to WW+jet production including leptonic W decays at hadron colliders

NLO QCD corrections to WW+jet production including leptonic W decays at hadron colliders including leptonic W decays at hadron colliders Stefan Dittmaier a, b and Peter Uwer c a Albert-Ludwigs-Universität Freiburg, Physikalisches Institut, D-79104 Freiburg, Germany b Paul Scherrer Institut,

More information

On-Shell Recursion Relations for Multi-Parton One-Loop Amplitudes

On-Shell Recursion Relations for Multi-Parton One-Loop Amplitudes for Multi-Parton One-Loop Amplitudes Carola F. Berger Stanford Linear Accelerator Center with Zvi Bern, Lance Dixon, Darren Forde, David Kosower SUSY06 June 13th, 2006 [1] Z. Bern, L. J. Dixon, D. A. Kosower,

More information

Outline Motivations for ILC: e + e γ/z q qg LHC: pp l + l + jet (q q l + l g + qg l + l q + qg l + l q) Existing literature The complete EW one-loop c

Outline Motivations for ILC: e + e γ/z q qg LHC: pp l + l + jet (q q l + l g + qg l + l q + qg l + l q) Existing literature The complete EW one-loop c Complete electroweak corrections to e + e 3 jets C.M. Carloni Calame INFN & University of Southampton Workshop LC08: e + e Physics at TeV scale September 22-25, 2008 in collaboration with S. Moretti, F.

More information

From Tensor Integral to IBP

From Tensor Integral to IBP From Tensor Integral to IBP Mohammad Assadsolimani, in collaboration with P. Kant, B. Tausk and P. Uwer 11. Sep. 2012 Mohammad Assadsolimani From Tensor Integral to IBP 1 Contents Motivation NNLO Tensor

More information

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases.

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases. Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases. Lorenzo Tancredi TTP, KIT - Karlsruhe Bologna, 18 Novembre 2014 Based on collaboration with Thomas Gehrmann,

More information

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with G. Heinrich Based on arxiv:124.4152 [hep-ph] HP 8 :Workshop on High Precision for Hard Processes,

More information

arxiv: v1 [hep-ph] 4 Jan 2012

arxiv: v1 [hep-ph] 4 Jan 2012 DESY 11 258 WUB/11-28 arxiv:1201.0968v1 [hep-ph] 4 Jan 2012 Theoretical improvements for luminosity monitoring at low energies, Michał Gunia Institute of Physics, University of Silesia, 40-007 Katowice,

More information

arxiv:hep-ph/ v1 30 Oct 2002

arxiv:hep-ph/ v1 30 Oct 2002 DESY 02-179 hep-ph/0210426 Calculating two- and three-body decays with FeynArts and FormCalc Michael Klasen arxiv:hep-ph/0210426v1 30 Oct 2002 II. Institut für Theoretische Physik, Universität Hamburg,

More information

Simplified differential equations approach for the calculation of multi-loop integrals

Simplified differential equations approach for the calculation of multi-loop integrals Simplified differential equations approach for the calculation of multi-loop integrals Chris Wever (N.C.S.R. Demokritos) 1 C. Papadopoulos [arxiv: 1401.6057 [hep-ph]] C. Papadopoulos, D. Tommasini, C.

More information

Triangle diagrams in the Standard Model

Triangle diagrams in the Standard Model Triangle diagrams in the Standard Model A. I. Davydychev and M. N. Dubinin Institute for Nuclear Physics, Moscow State University, 119899 Moscow, USSR Abstract Method of massive loop Feynman diagrams evaluation

More information

Reduction of Feynman integrals to master integrals

Reduction of Feynman integrals to master integrals Reduction of Feynman integrals to master integrals A.V. Smirnov Scientific Research Computing Center of Moscow State University A.V. Smirnov ACAT 2007 p.1 Reduction problem for Feynman integrals A review

More information

Bootstrapping One-Loop 2 n Amplitudes

Bootstrapping One-Loop 2 n Amplitudes Bootstrapping One-Loop 2 n Amplitudes Carola F. Berger Stanford Linear Accelerator Center with Zvi Bern, Lance Dixon, Darren Forde, David Kosower Loopfest V June 19th, 2006 [1] Z. Bern, L. J. Dixon, D.

More information

The Non-commutative S matrix

The Non-commutative S matrix The Suvrat Raju Harish-Chandra Research Institute 9 Dec 2008 (work in progress) CONTEMPORARY HISTORY In the past few years, S-matrix techniques have seen a revival. (Bern et al., Britto et al., Arkani-Hamed

More information

W + W + jet compact analytic results

W + W + jet compact analytic results W + W + jet compact analytic results Tania Robens. based on. J. Campbell, D. Miller, TR (arxiv:1506.xxxxx) IKTP, TU Dresden 2015 Radcor-Loopfest UCLA, Los Angeles, California WW + jet: Motivation from

More information

arxiv:hep-ph/ v2 1 Feb 2005

arxiv:hep-ph/ v2 1 Feb 2005 UG-FT-62/04 CAFPE-32/04 August 2, 208 arxiv:hep-ph/040420v2 Feb 2005 Recursive numerical calculus of one-loop tensor integrals F. del Aguila and R. Pittau Departamento de Física Teórica y del Cosmos and

More information

One-loop computations in QFT: a modern perspective

One-loop computations in QFT: a modern perspective One-loop computations in QFT: a modern perspective Kirill Melnikov Johns Hopkins University December 2012 Lectures based on R.K. Ellis, Z. Kunszt, K. Melnikov, G. Zanderighi, ``One-loop computations in

More information

arxiv:hep-ph/ v1 18 Nov 1996

arxiv:hep-ph/ v1 18 Nov 1996 TTP96-55 1 MPI/PhT/96-122 hep-ph/9611354 November 1996 arxiv:hep-ph/9611354v1 18 Nov 1996 AUTOMATIC COMPUTATION OF THREE-LOOP TWO-POINT FUNCTIONS IN LARGE MOMENTUM EXPANSION K.G. Chetyrkin a,b, R. Harlander

More information

Multiloop integrals in dimensional regularization made simple

Multiloop integrals in dimensional regularization made simple Multiloop integrals in dimensional regularization made simple Johannes M. Henn Institute for Advanced Study based on PRL 110 (2013) [arxiv:1304.1806], JHEP 1307 (2013) 128 [arxiv:1306.2799] with A. V.

More information

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with: J. Carter and G. Heinrich Based on arxiv:124.4152 [hep-ph] http://secdec.hepforge.org DESY-HU

More information

Four-fermion production near the W-pair production threshold. Giulia Zanderighi, Theory Division, CERN ILC Physics in Florence September

Four-fermion production near the W-pair production threshold. Giulia Zanderighi, Theory Division, CERN ILC Physics in Florence September Four-fermion production near the W-pair production threshold Giulia Zanderighi, Theory Division, CERN ILC Physics in Florence September 12-14 2007 International Linear Collider we all believe that no matter

More information

Loop-Tree Duality Method

Loop-Tree Duality Method Numerical Implementation of the Loop-Tree Duality Method IFIC Sebastian Buchta in collaboration with G. Rodrigo,! P. Draggiotis, G. Chachamis and I. Malamos 24. July 2015 Outline 1.Introduction! 2.A new

More information

Simplified differential equations approach for NNLO calculations

Simplified differential equations approach for NNLO calculations Simplified differential equations approach for NNLO calculations Costas. G. Papadopoulos INPP, NCSR Demokritos, Athens UCLA, June 19, 2015 Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, 2015 1 / 39

More information

Automation of Multi-leg One-loop virtual Amplitudes

Automation of Multi-leg One-loop virtual Amplitudes Automation of Multi-leg One-loop virtual Amplitudes Institute for Particle Physics Phenomenology University of Durham Science Laboratories South Rd DURHAM DH1 3LE, UK E-mail: daniel.maitre@durham.ac.uk

More information

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules Unitarity, Dispersion Relations, Cutkosky s Cutting Rules 04.06.0 For more information about unitarity, dispersion relations, and Cutkosky s cutting rules, consult Peskin& Schröder, or rather Le Bellac.

More information

Higgs boson signal and background in MCFM

Higgs boson signal and background in MCFM Higgs boson signal and background in MCFM Zurich, January 11, 2012 Keith Ellis, Fermilab John Campbell, RKE and Ciaran Williams arxiv:1105.0020, 1107.5569 [hep-ph] MCFM MCFM is a unified approach to NLO

More information

Numerical multi-loop calculations: tools and applications

Numerical multi-loop calculations: tools and applications Journal of Physics: Conference Series PAPER OPEN ACCESS Numerical multi-loop calculations: tools and applications To cite this article: S. Borowka et al 2016 J. Phys.: Conf. Ser. 762 012073 Related content

More information

arxiv:math-ph/ v2 19 Oct 2005

arxiv:math-ph/ v2 19 Oct 2005 Reduction of su(n) loop tensors to trees arxiv:math-ph/050508v 9 Oct 005 Maciej Trzetrzelewski M. Smoluchowski Institute of Physics, Jagiellonian University Reymonta, 0-059 Cracow, Poland April 0, 07 Abstract

More information

Modern Feynman Diagrammatic One-Loop Calculations

Modern Feynman Diagrammatic One-Loop Calculations Modern Feynman Diagrammatic One-Loop Calculations G. Cullen, a N. Greiner, b A. Guffanti, c J.P. Guillet, d G. Heinrich, e S. Karg, f N. Kauer, g T. Kleinschmidt, e M. Koch-Janusz, h G. Luisoni, e P. Mastrolia,

More information

Maximal Unitarity at Two Loops

Maximal Unitarity at Two Loops Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon Caron- Huot & Kasper Larsen 1108.1180, 1205.0801,

More information

arxiv: v2 [hep-th] 7 Jul 2016

arxiv: v2 [hep-th] 7 Jul 2016 Integration-by-parts reductions from unitarity cuts and algebraic geometry arxiv:1606.09447v [hep-th] 7 Jul 016 Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland E-mail: Kasper.Larsen@phys.ethz.ch

More information

Automation of NLO computations using the FKS subtraction method

Automation of NLO computations using the FKS subtraction method Automation of NLO computations using the FKS subtraction method Institute for Theoretical Physics, Universität Zürich E-mail: frederix@physik.uzh.ch In this talk the FKS subtraction method for next-to-leading

More information

Generalized Prescriptive Unitarity. Jacob Bourjaily University of Copenhagen QCD Meets Gravity 2017 University of California, Los Angeles

Generalized Prescriptive Unitarity. Jacob Bourjaily University of Copenhagen QCD Meets Gravity 2017 University of California, Los Angeles Generalized Prescriptive Unitarity Jacob Bourjaily University of Copenhagen QCD Meets Gravity 2017 University of California, Los Angeles Organization and Outline Overview: Generalized & Prescriptive Unitarity

More information

Diphoton production at LHC

Diphoton production at LHC 1 Diphoton production at LHC 120 GeV < M γγ < 140 GeV Leandro Cieri Universidad de Buenos Aires - Argentina & INFN Sezione di Firenze Rencontres de Moriond March 11, 2012 Outline Introduction Available

More information

One-Loop Calculations with BlackHat

One-Loop Calculations with BlackHat July 2008 MIT-CTP 3963 Saclay-IPhT-T08/117 SLAC-PUB-13295 UCLA/08/TEP/21 One-Loop Calculations with BlackHat C. F. Berger a, Z. Bern b, L. J. Dixon c, F. Febres Cordero b, D. Forde c, H. Ita b, D. A. Kosower

More information

MHV Diagrams and Tree Amplitudes of Gluons

MHV Diagrams and Tree Amplitudes of Gluons Institute for Advanced Study, Princeton, NJ 08540 U.S.A. E-mail: cachazo@ias.edu Institute for Advanced Study, Princeton, NJ 08540 U.S.A. E-mail: cachazo@ias.edu Recently, a new perturbation expansion

More information

One-Mass Two-Loop Master Integrals for Mixed

One-Mass Two-Loop Master Integrals for Mixed One-Mass Two-Loop Master Integrals for Mixed α s -Electroweak Drell-Yan Production work ongoing with Andreas von Manteuffel The PRISMA Cluster of Excellence and Institute of Physics Johannes Gutenberg

More information

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS Germán F. R. Sborlini Departamento de Física, FCEyN, UBA (Argentina) 10/12/2012 - IFIC CONTENT Introduction Collinear limits Splitting functions Computing splitting

More information

arxiv: v2 [hep-ph] 20 Jul 2014

arxiv: v2 [hep-ph] 20 Jul 2014 arxiv:407.67v [hep-ph] 0 Jul 04 Mass-corrections to double-higgs production & TopoID Jonathan Grigo and Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT) E-mail: jonathan.grigo@kit.edu,

More information

arxiv:hep-ph/ v1 26 May 1994

arxiv:hep-ph/ v1 26 May 1994 ETH-TH/94-4 KLTE-DTP/94-3 May 5, 994 arxiv:hep-ph/9405386v 6 May 994 One-loop radiative corrections to the helicity amplitudes of QCD processes involving four quarks and one gluon Zoltan Kunszt a, Adrian

More information

LIMIT ON MASS DIFFERENCES IN THE WEINBERG MODEL. M. VELTMAN Institute for Theoretical Physics, University of Utrecht, Netherlands

LIMIT ON MASS DIFFERENCES IN THE WEINBERG MODEL. M. VELTMAN Institute for Theoretical Physics, University of Utrecht, Netherlands Nuclear Physics B123 (1977) 89-99 North-Holland Publishing Company LIMIT ON MASS DIFFERENCES IN THE WEINBERG MODEL M. VELTMAN Institute for Theoretical Physics, University of Utrecht, Netherlands Received

More information

Two-loop Remainder Functions in N = 4 SYM

Two-loop Remainder Functions in N = 4 SYM Two-loop Remainder Functions in N = 4 SYM Claude Duhr Institut für theoretische Physik, ETH Zürich, Wolfgang-Paulistr. 27, CH-8093, Switzerland E-mail: duhrc@itp.phys.ethz.ch 1 Introduction Over the last

More information

Two-loop Heavy Fermion Corrections to Bhabha Scattering

Two-loop Heavy Fermion Corrections to Bhabha Scattering Two-loop Heavy Fermion Corrections to Bhabha Scattering S. Actis 1, M. Czakon 2, J. Gluza 3 and T. Riemann 1 1 Deutsches Elektronen-Synchrotron DESY Platanenallee 6, D 15738 Zeuthen, Germany 2 Institut

More information

Reduction at the integrand level beyond NLO

Reduction at the integrand level beyond NLO Reduction at the integrand level beyond NLO Costas G. Papadopoulos NCSR Demokritos, Athens, Greece & CERN, Geneva, Switzerland Corfu 2012, September 15, 2012 Costas G. Papadopoulos (NCSR-D & CERN) NNLO

More information

BACKGROUND EXPERIENCE AND THEORY INNOVATION FOR LHC

BACKGROUND EXPERIENCE AND THEORY INNOVATION FOR LHC BACKGROUND EXPERIENCE AND THEORY INNOVATION FOR LHC Babis Anastasiou ETH Zurich PADOVA 20-01-2010 A theory revolution Deeper understanding of the structure of gauge theories Sharp theoretical predictions

More information

(a) (b) Notes 6: The Higgs. Spontaneous symmetry breaking

(a) (b) Notes 6: The Higgs. Spontaneous symmetry breaking Notes 6: The Higgs This is a middle difficulty explaination. The text books are either much more detailed or simpler. This is a useful guide for those who want to look at HM, Griffiths or Burcham and Jobes

More information

Discontinuities of Feynman Integrals

Discontinuities of Feynman Integrals CEA Saclay Brown University, Twelfth Workshop on Non-Perturbative Quantum Chromodynamics June 10, 2013 Outline Landau and Cutkosky Classic unitarity cuts I I I Dispersion relations Modern unitarity method,

More information

arxiv:hep-th/ v1 2 Jul 1998

arxiv:hep-th/ v1 2 Jul 1998 α-representation for QCD Richard Hong Tuan arxiv:hep-th/9807021v1 2 Jul 1998 Laboratoire de Physique Théorique et Hautes Energies 1 Université de Paris XI, Bâtiment 210, F-91405 Orsay Cedex, France Abstract

More information

SUSY QCD. Consider a SUSY SU(N) with F flavors of quarks and squarks

SUSY QCD. Consider a SUSY SU(N) with F flavors of quarks and squarks SUSY gauge theories SUSY QCD Consider a SUSY SU(N) with F flavors of quarks and squarks Q i = (φ i, Q i, F i ), i = 1,..., F, where φ is the squark and Q is the quark. Q i = (φ i, Q i, F i ), in the antifundamental

More information

QFT Perturbation Theory

QFT Perturbation Theory QFT Perturbation Theory Ling-Fong Li (Institute) Slide_04 1 / 43 Interaction Theory As an illustration, take electromagnetic interaction. Lagrangian density is The combination L = ψ (x ) γ µ ( i µ ea µ

More information

arxiv:hep-ph/ v1 28 Mar 2006

arxiv:hep-ph/ v1 28 Mar 2006 DESY-06-0 SFB/CPP-06- Hypergeometric representation of the two-loop equal mass sunrise diagram arxiv:hep-ph/0607v 8 Mar 006 O.V. Tarasov Deutsches Elektronen - Synchrotron DESY Platanenallee 6, D-578 Zeuthen,

More information

Asymptotic Expansions of Feynman Integrals on the Mass Shell in Momenta and Masses

Asymptotic Expansions of Feynman Integrals on the Mass Shell in Momenta and Masses Asymptotic Expansions of Feynman Integrals on the Mass Shell in Momenta and Masses arxiv:hep-ph/9708423v 2 Aug 997 V.A. Smirnov Nuclear Physics Institute of Moscow State University Moscow 9899, Russia

More information

Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach

Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach Peter Stoffer in collaboration with G. Colangelo, M. Hoferichter and M. Procura JHEP 09 (2015) 074 [arxiv:1506.01386 [hep-ph]] JHEP

More information

Unitarization procedures applied to a Strongly Interacting EWSBS

Unitarization procedures applied to a Strongly Interacting EWSBS Unitarization procedures applied to a Strongly Interacting EWSBS Rafael L. Delgado A.Dobado, M.J.Herrero, Felipe J.Llanes-Estrada and J.J.Sanz-Cillero, 2015 Intern. Summer Workshop on Reaction Theory,

More information

NLO-QCD calculation in GRACE. - GRACE status - Y. Kurihara (KEK) GRACE Group LoopFest IV

NLO-QCD calculation in GRACE. - GRACE status - Y. Kurihara (KEK) GRACE Group LoopFest IV NLO-QCD calculation in GRACE - GRACE status - Y. Kurihara (KEK) GRACE Group 19/Aug./2005 @ LoopFest IV GRACE Author list J. Fujimoto, T. Ishikawa, M. Jimbo, T. Kaneko, K. Kato, S. Kawabata, T. Kon, Y.

More information

Coefficients of one-loop integral

Coefficients of one-loop integral functions by recursion International Workshop: From Twistors to Amplitudes 1 Niels Emil Jannik Bjerrum-Bohr together with Zvi Bern, David Dunbar and Harald Ita Motivation The LHC collider at CERN is approaching

More information

NLM introduction and wishlist

NLM introduction and wishlist 1. NLM introduction and wishlist he LHC will be a very complex environment with most of the interesting physics signals, and their backgrounds, consisting of multi-parton (and lepton/photon) final states.

More information

Scattering amplitudes and AdS/CFT

Scattering amplitudes and AdS/CFT Scattering amplitudes and AdS/CFT Cristian Vergu Brown University BOX 1843 Providence, RI 02912 1 Introduction and notation Scattering amplitudes in the maximally supersymmetric N = 4 gauge theory are

More information

Extension of Chern- Simons Forms

Extension of Chern- Simons Forms Extension of Chern- Simons Forms Spyros Konitopoulos NCSR Demokritos, Athens Corfu Summer School, 5.9.24 Overview. Anomalies (abelian- non abelian) 2. Zumino s reduclon method 3. Tensor Gauge Theory (TGT)

More information

W + W Production with Many Jets at the LHC

W + W Production with Many Jets at the LHC W + W Production with Many Jets at the LHC NLO QCD with BlackHat+Sherpa Fernando Febres Cordero Department of Physics, University of Freiburg Radcor-Loopfest 2015, UCLA June 2015 With Philipp Hofmann and

More information

Master integrals without subdivergences

Master integrals without subdivergences Master integrals without subdivergences Joint work with Andreas von Manteuffel and Robert Schabinger Erik Panzer 1 (CNRS, ERC grant 257638) Institute des Hautes Études Scientifiques 35 Route de Chartres

More information

Pati-Salam GUT-Flavour Models with Three Higgs Generations

Pati-Salam GUT-Flavour Models with Three Higgs Generations Pati-Salam GUT-Flavour Models with Three Higgs Generations Florian Hartmann in collaboration with Wolfgang Kilian and Karsten Schnitter based on: JHEP 1405 (2014) 064 and arxiv:1405.1901 Universität Siegen

More information

Introduction to perturbative QCD and factorization

Introduction to perturbative QCD and factorization Introduction to perturbative QCD and factorization Part 1 M. Diehl Deutsches Elektronen-Synchroton DESY Ecole Joliot Curie 2018 DESY Plan of lectures 0. Brief introduction 1. Renormalisation, running coupling,

More information

Modern Approaches to Scattering Amplitudes

Modern Approaches to Scattering Amplitudes Ph.D. Workshop, 10 October 2017 Outline Scattering Amplitudes 1 Scattering Amplitudes Introduction The Standard Method 2 On-Shell vs Off-Shell On-Shell building blocks BCFW Recursion Relations 3 Amplitudes

More information

Danny van Dyk. B Workshop Neckarzimmern February 19th, Danny van Dyk (TU Dortmund) News on B K µ + µ 1 / 35

Danny van Dyk. B Workshop Neckarzimmern February 19th, Danny van Dyk (TU Dortmund) News on B K µ + µ 1 / 35 News on B K µ + µ Danny van Dyk B Workshop Neckarzimmern February 19th, 2010 Danny van Dyk (TU Dortmund) News on B K µ + µ 1 / 35 The Goal 15 1 10 0.8 5 0.6 C10 0-5 0.4-10 0.2-15 -15-10 -5 0 5 10 15 C

More information

arxiv: v1 [hep-ph] 19 Apr 2007

arxiv: v1 [hep-ph] 19 Apr 2007 DESY 07-037 HEPTOOLS 07-009 SFB/CPP-07-14 arxiv:0704.2423v1 [hep-ph] 19 Apr 2007 AMBRE a Mathematica package for the construction of Mellin-Barnes representations for Feynman integrals Abstract J. Gluza,

More information

A Brief Introduction to AdS/CFT Correspondence

A Brief Introduction to AdS/CFT Correspondence Department of Physics Universidad de los Andes Bogota, Colombia 2011 Outline of the Talk Outline of the Talk Introduction Outline of the Talk Introduction Motivation Outline of the Talk Introduction Motivation

More information

FEYNHELPERS: CONNECTING FEYNCALC TO FIRE AND PACKAGE-X

FEYNHELPERS: CONNECTING FEYNCALC TO FIRE AND PACKAGE-X FEYNHELPERS: CONNECTING FEYNCALC TO FIRE AND PACKAGE-X Vladyslav Shtabovenko Technische Universität München Instituto de Física Corpuscular, Valencia Physik-Department T30f Physik-Department T30f (TUM)

More information

Hypergeometric representation of the two-loop equal mass sunrise diagram

Hypergeometric representation of the two-loop equal mass sunrise diagram Physics Letters B 68 6 95 wwwelseviercom/locate/physletb Hypergeometric representation of the two-loop equal mass sunrise diagram OV Tarasov Deutsches Elektronen-Synchrotron DESY Platanenallee 6 D-578

More information

Twistors and Unitarity

Twistors and Unitarity Twistors and Unitarity NLO six-gluon Amplitude in QCD Pierpaolo Mastrolia Institute for Theoretical Physics, University of Zürich IFAE 2006, April 19, 2006 in collaboration with: Ruth Britto and Bo Feng

More information

Fully exclusive NNLO QCD computations

Fully exclusive NNLO QCD computations Fully exclusive NNLO QCD computations Kirill Melnikov University of Hawaii Loopfest V, SLAC, June 2006 Fully exclusive NNLO QCD computations p. 1/20 Outline Introduction Technology Higgs boson production

More information

Higgs Boson Phenomenology Lecture I

Higgs Boson Phenomenology Lecture I iggs Boson Phenomenology Lecture I Laura Reina TASI 2011, CU-Boulder, June 2011 Outline of Lecture I Understanding the Electroweak Symmetry Breaking as a first step towards a more fundamental theory of

More information

AMBRE a Mathematica package for the construction of Mellin-Barnes representations for Feynman integrals

AMBRE a Mathematica package for the construction of Mellin-Barnes representations for Feynman integrals DESY 07-037 -- DRAFT version -- 2007-03-26 14:59 AMBRE a Mathematica package for the construction of Mellin-Barnes representations for Feynman integrals J. Gluza, K. Kajda Department of Field Theory and

More information

gg! hh in the high energy limit

gg! hh in the high energy limit gg! hh in the high energy limit Go Mishima Karlsruhe Institute of Technology (KIT), TTP in collaboration with Matthias Steinhauser, Joshua Davies, David Wellmann work in progress gg! hh : previous works

More information

Calculating four-loop massless propagators with Forcer

Calculating four-loop massless propagators with Forcer Calculating four-loop massless propagators with Forcer Takahiro Ueda Nikhef, The Netherlands Collaboration with: Ben Ruijl and Jos Vermaseren 18 Jan. 2016 ACAT2016, UTFSM, Valparaíso 1 / 30 Contents Introduction

More information

Supergravity from 2 and 3-Algebra Gauge Theory

Supergravity from 2 and 3-Algebra Gauge Theory Supergravity from 2 and 3-Algebra Gauge Theory Henrik Johansson CERN June 10, 2013 Twelfth Workshop on Non-Perturbative Quantum Chromodynamics, l Institut d Astrophysique de Paris Work with: Zvi Bern,

More information

Theory toolbox. Chapter Chiral effective field theories

Theory toolbox. Chapter Chiral effective field theories Chapter 3 Theory toolbox 3.1 Chiral effective field theories The near chiral symmetry of the QCD Lagrangian and its spontaneous breaking can be exploited to construct low-energy effective theories of QCD

More information

Numerical evaluation of multi-loop integrals

Numerical evaluation of multi-loop integrals Max-Planck-Institut für Physik, München, Germany E-mail: sjahn@mpp.mpg.de We present updates on the development of pyse CDE C, a toolbox to numerically evaluate parameter integrals in the context of dimensional

More information