SUSY QCD. Consider a SUSY SU(N) with F flavors of quarks and squarks

Size: px
Start display at page:

Download "SUSY QCD. Consider a SUSY SU(N) with F flavors of quarks and squarks"

Transcription

1 SUSY gauge theories

2 SUSY QCD Consider a SUSY SU(N) with F flavors of quarks and squarks Q i = (φ i, Q i, F i ), i = 1,..., F, where φ is the squark and Q is the quark. Q i = (φ i, Q i, F i ), in the antifundamental representation. Note the the bar ( the name not a conjugation, the conjugate fields are ) is part of Q i = (φ i, Q i, F i ), Q i = (φ i, Q i, F i ).

3 SUSY QCD matter content is: SU(N) SU(F ) SU(F ) U(1) B U(1) R Q 1 1 F N F Q 1 1 F N F W =

4 R-charge [R, Q α ] = Q α. chiral supermultiplet: R ψ = R φ 1, normalize the R-charge by Rλ a = λ a, R-charge of the gluino is 1, and the R-charge of the gluon is.

5 Group Theory: Bird Tracks Identify the group generator with a vertex as in Fig.??. a m r ) n (T = n m Figure 1: Bird-track notation for the group generator T a.

6 Bird Tracks quadratic Casimir C 2 (r) and the indext (r) of the representation r, are given diagrammaticly as (T a r ) m l (T a r ) l n = C 2 (r)δ m n, (T a r ) m n (T b r ) n m = T (r)δ ab, m C (r) δ = 2 n n m T(r) δ ab = a b Figure 2:

7 Bird Tracks Contracting the external legs: In the first diagram setting m equal = Figure 3: to n and summing over n yields a factor of d(r). In the second diagram setting a equal to b and summing yields a factor d(ad). d(r)c 2 (r) = d(ad)t (r).

8 Casimirs d( ) = N, d(ad) = N 2 1 T ( ) = 1 2, T (Ad) = N so C 2 ( ) = N 2 1 2N, C 2(Ad) = N.

9 Sum over Generators For the fundamental representation : (T a ) l p(t a ) m n = 1 2 (δl nδ m p 1 N δl pδ m n ). = 1 2 2Ν 1 Figure 4: We can reduce the sums over multiple generators to an essentially topological exercise

10 Anomalies Since we can define an R-charge by taking arbitrary linear combinations of the U(1) R and U(1) B charges we can choose Q i and Q i to have the same R-charge. For a U(1) not be to broken by instanton effects the SU(N) 2 U(1) R anomaly diagram vanishes Figure 5: fermion contributes its R-charge times T (r). Sum over gluino, quarks: 1 T (Ad) + (R 1)T ( ) 2F =, so R = F N F

11 Renormalization group tree-level SUSY: Y = 2g, λ = g 2. For SUSY to be a consistent quantum symmetry these relations must be preserved under RG running. the β function for the gauge coupling at one-loop is β g = µ dg dµ = g3 16π 2 ( 11 3 T (Ad) 2 3 T (F ) 1 3 T (S)) g3 b 16π 2, For SUSY QCD: b = (3N F )

12 where Renormalization group the β function for the Yukawa coupling is : [ ] (4π) 2 β j Y = 1 2 Y 2 (F )Y j + Y j Y 2 (F ) + 2Y k Y j Y k +Y k Tr Y k Y j 3gm{C 2 2 m (F ), Y j }, Y 2 (F ) Y j Y j Y 2 (F )Y j represents the scalar loop corrections to the fermion legs 2Y k Y j Y k contains the 1PI vertex corrections Y k Tr Y k Y j represents fermion loop corrections to the scalar leg C m 2 (F ) is the quadratic Casimir of the fermion fields in the mth gauge group, and represents gauge loop corrections to the fermion legs

13 SUSY QCD RG For SUSY QCD the Yukawa coupling of quark i with color index m, gluino a, and antisquark j with color index n is given by Y jn im,a = 2g(T a ) n mδ j i. Q φ λ Q = Y (Q) 2 λ Q φ λ = Y ( λ) 2 φ Q λ φ = Tr Y Y Figure 6: Feynman diagrams and associated bird-track diagrams. Y 2 (Q) = 2g 2 C 2 ( ), Y 2 (λ) = 2g 2 2F T ( )

14 SUSY QCD RG no scalar corrections corresponding to Y k Y j Y k. As for the fermion loop correction it always has a quark (antisquark) and gluino for the internal lines so we have Y k Tr Y k Y j = Y kq kq im,a (Yfp,b ) Y jn fp,b = 2g2 C 2 ( )(T a ) n mδ j i, gauge loop corrections are {C m 2 (F ), Y j } = (C 2 ( ) + C 2 (Ad))Y j. all the terms in β j Y proportional to C 2( ) cancel: (4π) 2 β j Y = 2g 3 (C 2 ( ) + F + 2C 2 ( ) 3C 2 ( ) 3N) = 2g 3 (3N F ) = 2(4π) 2 β g so the relation between the Yukawa and gauge couplings is preserved under RG running

15 SUSY QCD Quartic RG SUSY also requires the D-term quartic coupling λ = g 2. The auxiliary D a field is given by and the D-term potential is D a = g(φ in (T a ) m n φ mi φ in (T a ) m n φ mi) V = 1 2 Da D a The β function for a quartic scalar coupling at one-loop is (4π) 2 β λ = Λ (2) 4H + 3A + Λ Y 3Λ S, Λ (2) corresponds to the 1PI contribution from the quartic interactions H corresponds to the fermion box graphs A to the two gauge boson exchange graphs Λ Y to the Yukawa leg corrections Λ S corresponds to the gauge leg corrections

16 SUSY QCD Quartic RG (a) (b) (c) (d) (e) + Figure 7:

17 SUSY QCD Quartic RG = 1 4 4Ν 1 4Ν Ν 2 2 Ν 2 = + 2Ν 2 Ν 1 4Ν 2 Figure 8: The bird-track diagram for the sum over four generators quickly reduces to the sum over two generators and a product of identity matrices.

18 SUSY QCD Quartic RG (φ in (T a ) m n φ mi φ in (T a ) m n φ mi)(φ jq (T a ) p qφ pj φ jq (T a ) p qφ pj), (with flavor indices i j, the case i = j is left as an exercise) we have Λ (2) = ( ) 2F + N 6 N (T a ) m n (T a ) p q + ( ) 1 1 N δ m 2 n δq p, 4H = 8 ( ) N 2 N (T a ) m n (T a ) p q 4 ( ) 1 1 N δ m 2 n δq p, 3A = 3 ( ) N 4 N (T a ) m n (T a ) p q + 3 ( ) 1 1 N δ m 2 n δq p, Λ Y = 4 ( ) N 1 N (T a ) m n (T a ) p q, 3Λ S = 6 ( ) N 1 N (T a ) m n (T a ) p q. individual diagrams that renormalize the gauge invariant, SUSY breaking, operator (φ mi φ mi )(φ pj φ pj ) but the full β function for this operator vanishes and the D-term β function satisfies β λ = β g 2T a T a, β g 2 = 2gβ g. So SUSY is not anomalous at one-loop, and the β functions preserve the relations between couplings at all scales.

19 SUSY RG Figure 9: The couplings remain equal as we run below the SUSY threshold M, but split apart below the non-susy threshold m. If we had added dimension 4 SUSY breaking terms to the theory then the couplings would have run differently at all scales

20 one-loop squark mass Figure 1: The squark loop correction to the squark mass. Σ squark () = ig 2 (T a ) l n(t a ) m l = ig2 16π 2 C 2 ( )δ m n Λ 2 d 4 k (2π) 4 dk 2. i k 2

21 one-loop squark mass Figure 11: The quark gluino loop correction to the squark mass. Σ quark gluino () = ( i 2g) 2 (T a ) l n(t a ) m l ( 1) d 4 k = 2g 2 C 2 ( )δn m d 4 k = 4ig2 16π 2 C 2 ( )δ m n 2k 2 (2π) 4 k 4 Λ 2 dk 2. (2π) Tr ik σ 4 k 2 ik σ k 2

22 one-loop squark mass (a) (b) Figure 12: (a) The squark gluon loop and (b) the gluon loop. Σ quark gluino () = (ig) 2 (T a ) l n(t a ) m l = ξig2 16π 2 C 2 ( )δ m n Λ 2 d 4 k (2π) 4 dk 2, i k k µ ( i) (g µν+(ξ 1) 2 k 2 kµkν k 2 ) k ν Σ gluon () = 1 2 ig2 { (T a ) l n, (T b ) m l = (3+ξ)ig2 16π 2 C 2 ( )δ m n } δ ab g µν d 4 k Λ 2 dk 2. (2π) 4 i k ( i) (g µν+(ξ 1) 2 k 2 kµkν k 2 )

23 one-loop squark mass Adding all the terms together we have Σ() = ( ξ (3 + ξ)) ig2 16π 2 C 2 ( )δ m n Λ 2 dk 2 =. The quadratic divergence in the squark mass cancels! In fact for a massless squark all the mass corrections cancel. This means that in a SUSY theory with a Higgs the Higgs mass is protected from quadratic divergences from gauge interactions as well as from Yukawa interactions

24 Flat directions F < N and the scalar potential is: D a = g(φ in (T a ) m n φ mi φ in (T a ) m n φ mi) V = 1 2 Da D a maximal rank F. In a SUSY vacua: define d n m φ in φ mi d n m = φ in φ mi D a = T am n (d n m d n m) = Since T a is a complete basis for traceless matrices, we must therefore have that the difference of the two matrices is proportional to the identity matrix: d n m d n m = αi

25 Flat directions F < N d n m can be diagonalized by an SU(N) gauge transformation U d U In this diagonal basis there will be at least N F zero eigenvalues d = v 2 1 v v 2 F... where v 2 i. In this basis dn m must also be diagonal, and it must also have N F zero eigenvalues. This tells us that α =, and hence that d n m = d n m

26 Flat directions F < N d n m and d n m are invariant under SU(F ) SU(F ) transformations since φ mi φ mi Vj i, d n m V j i φ in φ mi V i φ jn φ mj = d n m. j, Thus, up to a flavor transformation, we can write v 1... φ = φ = v F D-term potential has flat directions, as we change the VEVs, we move between different vacua with different particle spectra, generically SU(N F ) gauge symmetry.

27 Flat directions F N d n m and d n m are N N positive semi-definite Hermitian matrices of maximal rank N in a SUSY vacuum : d n m d n m = ρi. d n m can be diagonalized by an SU(N) gauge transformation: v 1 2 v 2 2 d =... vn 2 In this basis, d n m must also be diagonal, with eigenvalues v i 2, so v i 2 = v i 2 + ρ.

28 Flat directions F N Since d n m and d n m are invariant under flavor transformations, we can use SU(F ) SU(F ) transformations to put φ and φ in the form v 1... v 1... Φ =....., Φ = v N.... v N Again we have a space of degenerate vacua. At a generic point in the moduli space the SU(N) gauge symmetry is completely broken.

29 The super Higgs mechanism a massless vector supermultiplet eats a chiral supermultiplet to form a massive vector supermultiplet Fayet

30 The super Higgs mechanism Consider the case when v 1 = v 1 = v and v i = v i =, for i > 1 SU(N) SU(N 1) and SU(F ) SU(F ) SU(F 1) SU(F 1). The number of broken gauge generators is N 2 1 ((N 1) 2 1) = 2(N 1) + 1, decompose the adjoint of SU(N) under SU(N 1), we have Ad N = Ad N 1 convenient basis of gauge generators is G A = X, X α 1, X α 2, T a where A = 1,..., N 2 1, α = 1,..., N 1, and a = 1,..., (N 1) 2 1. Xs are the broken generators (span the coset of SU(N)/SU(N 1)), T s are the unbroken SU(N 1) generators

31 The super Higgs mechanism The Xs are analogs of the Pauli matrices: X = 1 2(N 2 N) N , X α 1 = , X α 2 = i.... i.

32 The super Higgs mechanism We can also define raising and lowering operators: X ±α = 1 2 (X α 1 ix α 2 ) so that X +α = , X α =

33 The super Higgs mechanism We can then write the sum of the product of two generators as: G A G A = X X + X +α X α + X α X +α + T a T a Expanding the squark field around its VEV φ φ φ + φ, we have A GA φ = X φ + α X α φ, φ A GA = φ X + φ α X+α, since T a annihilates φ. label the components of the gluino field as G A λ A = X Λ + X +α Λ +α + X α Λ α + T a λ a,

34 The super Higgs mechanism write the quark field as ( ω ψ Q = i ω α Q mi ), Q = ( ω ω α ψ i Q im ), where i is a flavor index, α and m are color indices, Q is a matrix with N 1 rows and F 1 columns, and Q is a matrix with F 1 rows and N 1 columns. fermion mass terms generated by the Yukawa interactions: L F mass = 2g [( φ ( X Λ + φ X +α Λ +α) Q ) ] Q X Λ φ + X α Λ α φ + h.c. ( = gv ω Λ ω Λ ) + ω α Λ +α ω α Λ α + h.c.]. [ N 1 N So we have a Dirac fermion (Λ, (1/ 2)(ω ω )) with mass gv 2(N 1)/N, two sets of N 1 Dirac fermions (Λ +α, ω α ), (Λ α, ω α )) with mass gv, and massless Weyl fermions Q, Q, ψ, ψ, and (1/ 2)(ω + ω )).

35 The super Higgs mechanism decompose the squark field as φ = ( ) h σi, φ = H α φ mi ( h σ i H α φ im ), where φ is a matrix with N 1 rows and F 1 columns. Shifting the scalar field by its VEV so that φ φ + φ we have that the auxiliary D A field is given by D A g = φ G A φ φ G A φ + φ G A φ φ G A φ +φ G A φ φg A φ + φ G A φ φg A φ.

36 The super Higgs mechanism picking out the mass terms in the scalar potential V = 1 2 DA D A : V mass = g2 2 = g2 v 2 2 [ ( ) φ X φ + φ X φ φ X φ φx φ 2 ] +2( φ X +α φ φ X +α φ )(φ X α φ φx α φ ) [ ( h + h (h + h) ] +(H α H α )(H α H α ). (N 1) 2 2(N 2 N) diagonalize the mass matrix: H +α = 1 2 (H α H α ), π +α = 1 2 (H α + H α ), H α = 1 2 (H α H α ), π α = 1 2 (H α + H α ), h = Re(h h), π = Im(h h), Ω = 1 2 (h + h). ) 2

37 The super Higgs mechanism mass terms reduce to V mass = g 2 v 2 [ N 1 N (h ) 2 + H +α H α]. real scalar h with mass gv 2(N 1)/N, a complex scalar H +α (and its conjugate H α ) with mass gv, massless complex scalars σ i, σ i, and Ω. πs become the longitudinal components of the massive gauge bosons, can be removed by going to Unitary gauge

38 The super Higgs mechanism We can write the gauge fields as: G B A B µ = X W µ + X +α W +α µ + X α W α µ + T a A a µ. Then the A 2 φ 2 terms which lead to gauge boson masses are L A 2 φ 2 = g2 A A µ A B ν g µν φ G A G B φ = g 2 g µν φ (X WµX Wν + X +α W µ +α X α Wν α = g 2 v 2 g ( µν N 1 2N W µw ν W ) µ +α Wν α. + X α W α µ X +α W identical term arising from L A2 φ 2 gauge boson Wµ with mass gv 2(N 1)/N, gauge bosons W µ +α and Wµ α with mass gv, the massless gauge bosons A a µ of the unbroken SU(N 1) gauge group. all the particles fall into supermultiplets

39 The super Higgs mechanism v= SU(N) SU(F ) SU(F ) b.d.o.f. Q 1 2NF Q 1 2NF for v we have massive states (in Unitary gauge): SU(N 1) SU(F 1) SU(F 1) b.d.o.f. W W (N 1) W 1 1 4(N 1) massive vector supermultiplet (Wµ, h, Λ, (1/ 2)(ω ω )) 2(N 1) m W = gv N, massive vector supermultiplets (W +α µ, H +α, Λ +α, ω α ) and (W α µ, H α, Λ α, ω α m W ± = gv.

40 The super Higgs mechanism for v also have the massless states: SU(N 1) SU(F 1) SU(F 1) b.d.o.f. Q 1 2(N 1)(F 1) Q 1 2(N 1)(F 1) ψ 1 1 2(F 1) ψ 1 1 2(F 1) S quark chiral supermultiplet Q = (φ, Q ) gauge singlets ψ = (σ, ψ) and S = (1/ 2)(h + h), (1/ 2)(ω + ω ) In both cases (v = and v ) a total of 2(N 2 1) + 4F N b.d.o.f. (and, of course, the same number of fermionic degrees of freedom).

Lecture 5 The Renormalization Group

Lecture 5 The Renormalization Group Lecture 5 The Renormalization Group Outline The canonical theory: SUSY QCD. Assignment of R-symmetry charges. Group theory factors: bird track diagrams. Review: the renormalization group. Explicit Feynman

More information

Lecture 6 The Super-Higgs Mechanism

Lecture 6 The Super-Higgs Mechanism Lecture 6 The Super-Higgs Mechanism Introduction: moduli space. Outline Explicit computation of moduli space for SUSY QCD with F < N and F N. The Higgs mechanism. The super-higgs mechanism. Reading: Terning

More information

The Affleck Dine Seiberg superpotential

The Affleck Dine Seiberg superpotential The Affleck Dine Seiberg superpotential SUSY QCD Symmetry SUN) with F flavors where F < N SUN) SUF ) SUF ) U1) U1) R Φ, Q 1 1 F N F Φ, Q 1-1 F N F Recall that the auxiliary D a fields: D a = gφ jn T a

More information

Lecture 7: N = 2 supersymmetric gauge theory

Lecture 7: N = 2 supersymmetric gauge theory Lecture 7: N = 2 supersymmetric gauge theory José D. Edelstein University of Santiago de Compostela SUPERSYMMETRY Santiago de Compostela, November 22, 2012 José D. Edelstein (USC) Lecture 7: N = 2 supersymmetric

More information

Lecture 7 SUSY breaking

Lecture 7 SUSY breaking Lecture 7 SUSY breaking Outline Spontaneous SUSY breaking in the WZ-model. The goldstino. Goldstino couplings. The goldstino theorem. Reading: Terning 5.1, 5.3-5.4. Spontaneous SUSY Breaking Reminder:

More information

Seiberg Duality: SUSY QCD

Seiberg Duality: SUSY QCD Seiberg Duality: SUSY QCD Outline: SYM for F N In this lecture we begin the study of SUSY SU(N) Yang-Mills theory with F N flavors. This setting is very rich! Higlights of the next few lectures: The IR

More information

Introduction to Supersymmetry

Introduction to Supersymmetry Introduction to Supersymmetry Unreasonable effectiveness of the SM L Yukawa = y t H 0 t L t R + h.c. H 0 = H 0 + h 0 = v + h 0 m t = y t v t, L t R h 0 h 0 Figure 1: The top loop contribution to the Higgs

More information

The Strong Interaction and LHC phenomenology

The Strong Interaction and LHC phenomenology The Strong Interaction and LHC phenomenology Juan Rojo STFC Rutherford Fellow University of Oxford Theoretical Physics Graduate School course Lecture 2: The QCD Lagrangian, Symmetries and Feynman Rules

More information

Anomaly and gaugino mediation

Anomaly and gaugino mediation Anomaly and gaugino mediation Supergravity mediation X is in the hidden sector, P l suppressed couplings SUSY breaking VEV W = ( W hid (X) + W vis ) (ψ) f = δj i ci j X X ψ j e V ψ 2 i +... Pl τ = θ Y

More information

Lecture III: Higgs Mechanism

Lecture III: Higgs Mechanism ecture III: Higgs Mechanism Spontaneous Symmetry Breaking The Higgs Mechanism Mass Generation for eptons Quark Masses & Mixing III.1 Symmetry Breaking One example is the infinite ferromagnet the nearest

More information

Lecture 12 Holomorphy: Gauge Theory

Lecture 12 Holomorphy: Gauge Theory Lecture 12 Holomorphy: Gauge Theory Outline SUSY Yang-Mills theory as a chiral theory: the holomorphic coupling and the holomorphic scale. Nonrenormalization theorem for SUSY YM: the gauge coupling runs

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory I Contact: Michael Kachelrieß, tel. 99890701 Allowed tools: mathematical tables Some formulas can be found on p.2. 1. Concepts.

More information

Solutions to gauge hierarchy problem. SS 10, Uli Haisch

Solutions to gauge hierarchy problem. SS 10, Uli Haisch Solutions to gauge hierarchy problem SS 10, Uli Haisch 1 Quantum instability of Higgs mass So far we considered only at RGE of Higgs quartic coupling (dimensionless parameter). Higgs mass has a totally

More information

Functional determinants

Functional determinants Functional determinants based on S-53 We are going to discuss situations where a functional determinant depends on some other field and so it cannot be absorbed into the overall normalization of the path

More information

Week 3: Renormalizable lagrangians and the Standard model lagrangian 1 Reading material from the books

Week 3: Renormalizable lagrangians and the Standard model lagrangian 1 Reading material from the books Week 3: Renormalizable lagrangians and the Standard model lagrangian 1 Reading material from the books Burgess-Moore, Chapter Weiberg, Chapter 5 Donoghue, Golowich, Holstein Chapter 1, 1 Free field Lagrangians

More information

Theory of Elementary Particles homework VIII (June 04)

Theory of Elementary Particles homework VIII (June 04) Theory of Elementary Particles homework VIII June 4) At the head of your report, please write your name, student ID number and a list of problems that you worked on in a report like II-1, II-3, IV- ).

More information

8.821 F2008 Lecture 5: SUSY Self-Defense

8.821 F2008 Lecture 5: SUSY Self-Defense 8.8 F008 Lecture 5: SUSY Self-Defense Lecturer: McGreevy Scribe: Iqbal September, 008 Today s lecture will teach you enough supersymmetry to defend yourself against a hostile supersymmetric field theory,

More information

+ µ 2 ) H (m 2 H 2

+ µ 2 ) H (m 2 H 2 I. THE HIGGS POTENTIAL AND THE LIGHT HIGGS BOSON In the previous chapter, it was demonstrated that a negative mass squared in the Higgs potential is generated radiatively for a large range of boundary

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

Reφ = 1 2. h ff λ. = λ f

Reφ = 1 2. h ff λ. = λ f I. THE FINE-TUNING PROBLEM A. Quadratic divergence We illustrate the problem of the quadratic divergence in the Higgs sector of the SM through an explicit calculation. The example studied is that of the

More information

Lectures on Supersymmetry I

Lectures on Supersymmetry I I Carlos E.M. Wagner HEP Division, Argonne National Laboratory Enrico Fermi Institute, University of Chicago Ecole de Physique de Les Houches, France, August 5, 005. PASI 006, Puerto Vallarta, Mexico,

More information

m f f unchanged under the field redefinition (1), the complex mass matrix m should transform into

m f f unchanged under the field redefinition (1), the complex mass matrix m should transform into PHY 396 T: SUSY Solutions or problem set #8. Problem (a): To keep the net quark mass term L QCD L mass = ψ α c m ψ c α + hermitian conjugate (S.) unchanged under the ield redeinition (), the complex mass

More information

Symmetry Groups conservation law quantum numbers Gauge symmetries local bosons mediate the interaction Group Abelian Product of Groups simple

Symmetry Groups conservation law quantum numbers Gauge symmetries local bosons mediate the interaction Group Abelian Product of Groups simple Symmetry Groups Symmetry plays an essential role in particle theory. If a theory is invariant under transformations by a symmetry group one obtains a conservation law and quantum numbers. For example,

More information

A New Regulariation of N = 4 Super Yang-Mills Theory

A New Regulariation of N = 4 Super Yang-Mills Theory A New Regulariation of N = 4 Super Yang-Mills Theory Humboldt Universität zu Berlin Institut für Physik 10.07.2009 F. Alday, J. Henn, J. Plefka and T. Schuster, arxiv:0908.0684 Outline 1 Motivation Why

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk FY3464 Quantum Field Theory II Final exam 0..0 NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory II Contact: Kåre Olaussen, tel. 735 9365/4543770 Allowed tools: mathematical

More information

Introduction to Instantons. T. Daniel Brennan. Quantum Mechanics. Quantum Field Theory. Effects of Instanton- Matter Interactions.

Introduction to Instantons. T. Daniel Brennan. Quantum Mechanics. Quantum Field Theory. Effects of Instanton- Matter Interactions. February 18, 2015 1 2 3 Instantons in Path Integral Formulation of mechanics is based around the propagator: x f e iht / x i In path integral formulation of quantum mechanics we relate the propagator to

More information

Particle Physics I Lecture Exam Question Sheet

Particle Physics I Lecture Exam Question Sheet Particle Physics I Lecture Exam Question Sheet Five out of these 16 questions will be given to you at the beginning of the exam. (1) (a) Which are the different fundamental interactions that exist in Nature?

More information

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten Lecture 4 QCD as a Gauge Theory Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local

More information

Vector Mesons and an Interpretation of Seiberg Duality

Vector Mesons and an Interpretation of Seiberg Duality Vector Mesons and an Interpretation of Seiberg Duality p. 1/?? Vector Mesons and an Interpretation of Seiberg Duality Zohar Komargodski Institute for Advanced Study, Princeton 1010.4105 Vector Mesons and

More information

Supersymmetry Breaking

Supersymmetry Breaking Supersymmetry Breaking LHC Search of SUSY: Part II Kai Wang Phenomenology Institute Department of Physics University of Wisconsin Madison Collider Phemonology Gauge Hierarchy and Low Energy SUSY Gauge

More information

N=1 Global Supersymmetry in D=4

N=1 Global Supersymmetry in D=4 Susy algebra equivalently at quantum level Susy algebra In Weyl basis In this form it is obvious the U(1) R symmetry Susy algebra We choose a Majorana representation for which all spinors are real. In

More information

Quantum Field Theory III

Quantum Field Theory III Quantum Field Theory III Prof. Erick Weinberg April 5, 011 1 Lecture 6 Let s write down the superfield (without worrying about factors of i or Φ = A(y + θψ(y + θθf (y = A(x + θσ θ A + θθ θ θ A + θψ + θθ(

More information

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee Chern-Simons Theory and Its Applications The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee Maxwell Theory Maxwell Theory: Gauge Transformation and Invariance Gauss Law Charge Degrees of

More information

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises SM, EWSB & Higgs MITP Summer School 017 Joint Challenges for Cosmology and Colliders Homework & Exercises Ch!"ophe Grojean Ch!"ophe Grojean DESY (Hamburg) Humboldt University (Berlin) ( christophe.grojean@desy.de

More information

6.1 Quadratic Casimir Invariants

6.1 Quadratic Casimir Invariants 7 Version of May 6, 5 CHAPTER 6. QUANTUM CHROMODYNAMICS Mesons, then are described by a wavefunction and baryons by Φ = q a q a, (6.3) Ψ = ǫ abc q a q b q c. (6.4) This resolves the old paradox that ground

More information

Chiral Symmetry Breaking from Monopoles and Duality

Chiral Symmetry Breaking from Monopoles and Duality Chiral Symmetry Breaking from Monopoles and Duality Thomas Schaefer, North Carolina State University with A. Cherman and M. Unsal, PRL 117 (2016) 081601 Motivation Confinement and chiral symmetry breaking

More information

Supersymmetric Gauge Theories in 3d

Supersymmetric Gauge Theories in 3d Supersymmetric Gauge Theories in 3d Nathan Seiberg IAS Intriligator and NS, arxiv:1305.1633 Aharony, Razamat, NS, and Willett, arxiv:1305.3924 3d SUSY Gauge Theories New lessons about dynamics of quantum

More information

Non-Supersymmetric Seiberg duality Beyond the Planar Limit

Non-Supersymmetric Seiberg duality Beyond the Planar Limit Non-Supersymmetric Seiberg duality Beyond the Planar Limit Input from non-critical string theory, IAP Large N@Swansea, July 2009 A. Armoni, D.I., G. Moraitis and V. Niarchos, arxiv:0801.0762 Introduction

More information

Gauge-Higgs Unification on Flat Space Revised

Gauge-Higgs Unification on Flat Space Revised Outline Gauge-Higgs Unification on Flat Space Revised Giuliano Panico ISAS-SISSA Trieste, Italy The 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions Irvine,

More information

Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013

Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013 Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013 Rogerio Rosenfeld IFT-UNESP Lecture 1: Motivation/QFT/Gauge Symmetries/QED/QCD Lecture 2: QCD tests/electroweak

More information

Dynamical supersymmetry breaking, with Flavor

Dynamical supersymmetry breaking, with Flavor Dynamical supersymmetry breaking, with Flavor Cornell University, November 2009 Based on arxiv: 0911.2467 [Craig, Essig, Franco, Kachru, GT] and arxiv: 0812.3213 [Essig, Fortin, Sinha, GT, Strassler] Flavor

More information

12.2 Problem Set 2 Solutions

12.2 Problem Set 2 Solutions 78 CHAPTER. PROBLEM SET SOLUTIONS. Problem Set Solutions. I will use a basis m, which ψ C = iγ ψ = Cγ ψ (.47) We can define left (light) handed Majorana fields as, so that ω = ψ L + (ψ L ) C (.48) χ =

More information

Vacuum Energy and Effective Potentials

Vacuum Energy and Effective Potentials Vacuum Energy and Effective Potentials Quantum field theories have badly divergent vacuum energies. In perturbation theory, the leading term is the net zero-point energy E zeropoint = particle species

More information

The Standard Model and beyond

The Standard Model and beyond The Standard Model and beyond In this chapter we overview the structure of the Standard Model (SM) of particle physics, its shortcomings, and different ideas for physics beyond the Standard Model (BSM)

More information

Spontaneous breaking of supersymmetry

Spontaneous breaking of supersymmetry Spontaneous breaking of supersymmetry Hiroshi Suzuki Theoretical Physics Laboratory Nov. 18, 2009 @ Theoretical science colloquium in RIKEN Hiroshi Suzuki (TPL) Spontaneous breaking of supersymmetry Nov.

More information

The SU(3) Group SU(3) and Mesons Contents Quarks and Anti-quarks SU(3) and Baryons Masses and Symmetry Breaking Gell-Mann Okubo Mass Formulae Quark-Mo

The SU(3) Group SU(3) and Mesons Contents Quarks and Anti-quarks SU(3) and Baryons Masses and Symmetry Breaking Gell-Mann Okubo Mass Formulae Quark-Mo Lecture 2 Quark Model The Eight Fold Way Adnan Bashir, IFM, UMSNH, Mexico August 2014 Culiacán Sinaloa The SU(3) Group SU(3) and Mesons Contents Quarks and Anti-quarks SU(3) and Baryons Masses and Symmetry

More information

Introduction to the SM (5)

Introduction to the SM (5) Y. Grossman The SM (5) TES-HEP, July 12, 2015 p. 1 Introduction to the SM (5) Yuval Grossman Cornell Y. Grossman The SM (5) TES-HEP, July 12, 2015 p. 2 Yesterday... Yesterday: Symmetries Today SSB the

More information

Minimal Supersymmetric Standard Model (MSSM). Nausheen R. Shah

Minimal Supersymmetric Standard Model (MSSM). Nausheen R. Shah Minimal Supersymmetric Standard Model (MSSM). Nausheen R. Shah June 8, 2003 1 Introduction Even though the Standard Model has had years of experimental success, it has been known for a long time that it

More information

Roni Harnik LBL and UC Berkeley

Roni Harnik LBL and UC Berkeley Roni Harnik LBL and UC Berkeley with Daniel Larson and Hitoshi Murayama, hep-ph/0309224 Supersymmetry and Dense QCD? What can we compare b/w QCD and SQCD? Scalars with a chemical potential. Exact Results.

More information

EDMs from the QCD θ term

EDMs from the QCD θ term ACFI EDM School November 2016 EDMs from the QCD θ term Vincenzo Cirigliano Los Alamos National Laboratory 1 Lecture II outline The QCD θ term Toolbox: chiral symmetries and their breaking Estimate of the

More information

Symmetries, Groups Theory and Lie Algebras in Physics

Symmetries, Groups Theory and Lie Algebras in Physics Symmetries, Groups Theory and Lie Algebras in Physics M.M. Sheikh-Jabbari Symmetries have been the cornerstone of modern physics in the last century. Symmetries are used to classify solutions to physical

More information

Textbook Problem 4.2: We begin by developing Feynman rules for the theory at hand. The Hamiltonian clearly decomposes into Ĥ = Ĥ0 + ˆV where

Textbook Problem 4.2: We begin by developing Feynman rules for the theory at hand. The Hamiltonian clearly decomposes into Ĥ = Ĥ0 + ˆV where PHY 396 K. Solutions for problem set #11. Textbook Problem 4.2: We begin by developing Feynman rules for the theory at hand. The Hamiltonian clearly decomposes into Ĥ = Ĥ0 + ˆV where Ĥ 0 = Ĥfree Φ + Ĥfree

More information

Non Abelian Higgs Mechanism

Non Abelian Higgs Mechanism Non Abelian Higgs Mechanism When a local rather than global symmetry is spontaneously broken, we do not get a massless Goldstone boson. Instead, the gauge field of the broken symmetry becomes massive,

More information

1 Susy in 4d- Notes by Horatiu Nastase A very basic introduction (survival guide)

1 Susy in 4d- Notes by Horatiu Nastase A very basic introduction (survival guide) 1 Susy in 4d- Notes by Horatiu Nastase A very basic introduction (survival guide) 1.1 Algebras 2-component notation for 4d spinors ( ) ψα ψ = χ α (1) C matrix ( ɛαβ 0 C AB = 0 ɛ α β ) ; ɛ αβ = ɛ α β =

More information

THE STANDARD MODEL. II. Lagrangians 7 A. Scalars 9 B. Fermions 10 C. Fermions and scalars 10

THE STANDARD MODEL. II. Lagrangians 7 A. Scalars 9 B. Fermions 10 C. Fermions and scalars 10 THE STANDARD MODEL Contents I. Introduction to the Standard Model 2 A. Interactions and particles 2 B. Problems of the Standard Model 4 C. The Scale of New Physics 5 II. Lagrangians 7 A. Scalars 9 B. Fermions

More information

GAUGE THEORY AMPLITUDES, SCALAR GRAPHS AND TWISTOR SPACE

GAUGE THEORY AMPLITUDES, SCALAR GRAPHS AND TWISTOR SPACE GAUGE THEORY AMPLITUES, SCALAR GRAPHS AN TWISTOR SPACE VALENTIN V. KHOZE epartment of Physics and IPPP University of urham urham, H1 3LE United Kingdom We discuss a remarkable new approach initiated by

More information

SUSY Breaking in Gauge Theories

SUSY Breaking in Gauge Theories SUSY Breaking in Gauge Theories Joshua Berger With the Witten index constraint on SUSY breaking having been introduced in last week s Journal club, we proceed to explicitly determine the constraints on

More information

Donoghue, Golowich, Holstein Chapter 4, 6

Donoghue, Golowich, Holstein Chapter 4, 6 1 Week 7: Non linear sigma models and pion lagrangians Reading material from the books Burgess-Moore, Chapter 9.3 Donoghue, Golowich, Holstein Chapter 4, 6 Weinberg, Chap. 19 1 Goldstone boson lagrangians

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Motivation Different phases of QCD occur in the universe Neutron Stars, Big Bang Exploring the phase diagram is important to understanding

More information

QED and the Standard Model Autumn 2014

QED and the Standard Model Autumn 2014 QED and the Standard Model Autumn 2014 Joel Goldstein University of Bristol Joel.Goldstein@bristol.ac.uk These lectures are designed to give an introduction to the gauge theories of the standard model

More information

Non-Abelian SU(2) H and Two-Higgs Doublets

Non-Abelian SU(2) H and Two-Higgs Doublets Non-Abelian SU(2) H and Two-Higgs Doublets Technische Universität Dortmund Wei- Chih Huang 25 Sept 2015 Kavli IPMU arxiv:1510.xxxx(?) with Yue-Lin Sming Tsai, Tzu-Chiang Yuan Plea Please do not take any

More information

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002 Physics at e + e - Linear Colliders 4. Supersymmetric particles M. E. Peskin March, 2002 In this final lecture, I would like to discuss supersymmetry at the LC. Supersymmetry is not a part of the Standard

More information

Two Examples of Seiberg Duality in Gauge Theories With Less Than Four Supercharges. Adi Armoni Swansea University

Two Examples of Seiberg Duality in Gauge Theories With Less Than Four Supercharges. Adi Armoni Swansea University Two Examples of Seiberg Duality in Gauge Theories With Less Than Four Supercharges Adi Armoni Swansea University Queen Mary, April 2009 1 Introduction Seiberg duality (Seiberg 1994) is a highly non-trivial

More information

Goldstone Bosons and Chiral Symmetry Breaking in QCD

Goldstone Bosons and Chiral Symmetry Breaking in QCD Goldstone Bosons and Chiral Symmetry Breaking in QCD Michael Dine Department of Physics University of California, Santa Cruz May 2011 Before reading this handout, carefully read Peskin and Schroeder s

More information

Theory toolbox. Chapter Chiral effective field theories

Theory toolbox. Chapter Chiral effective field theories Chapter 3 Theory toolbox 3.1 Chiral effective field theories The near chiral symmetry of the QCD Lagrangian and its spontaneous breaking can be exploited to construct low-energy effective theories of QCD

More information

Supersymmetry, Dark Matter, and Neutrinos

Supersymmetry, Dark Matter, and Neutrinos Supersymmetry, Dark Matter, and Neutrinos The Standard Model and Supersymmetry Dark Matter Neutrino Physics and Astrophysics The Physics of Supersymmetry Gauge Theories Gauge symmetry requires existence

More information

Defining Chiral Gauge Theories Beyond Perturbation Theory

Defining Chiral Gauge Theories Beyond Perturbation Theory Defining Chiral Gauge Theories Beyond Perturbation Theory Lattice Regulating Chiral Gauge Theories Dorota M Grabowska UC Berkeley Work done with David B. Kaplan: Phys. Rev. Lett. 116 (2016), no. 21 211602

More information

t Hooft Anomaly Matching for QCD

t Hooft Anomaly Matching for QCD UCB-PTH-97-3 LBNL-41477 t Hooft Anomaly Matching for QCD John Terning Department of Physics, University of California, Berkeley, CA 9470 and Theory Group, Lawrence Berkeley National Laboratory, Berkeley,

More information

Masses and the Higgs Mechanism

Masses and the Higgs Mechanism Chapter 8 Masses and the Higgs Mechanism The Z, like the W ± must be very heavy. This much can be inferred immediately because a massless Z boson would give rise to a peculiar parity-violating long-range

More information

Introduction to Supersymmetry

Introduction to Supersymmetry Introduction to Supersymmetry I. Antoniadis Albert Einstein Center - ITP Lecture 5 Grand Unification I. Antoniadis (Supersymmetry) 1 / 22 Grand Unification Standard Model: remnant of a larger gauge symmetry

More information

The rudiments of Supersymmetry 1/ 53. Supersymmetry I. A. B. Lahanas. University of Athens Nuclear and Particle Physics Section Athens - Greece

The rudiments of Supersymmetry 1/ 53. Supersymmetry I. A. B. Lahanas. University of Athens Nuclear and Particle Physics Section Athens - Greece The rudiments of Supersymmetry 1/ 53 Supersymmetry I A. B. Lahanas University of Athens Nuclear and Particle Physics Section Athens - Greece The rudiments of Supersymmetry 2/ 53 Outline 1 Introduction

More information

2T-physics and the Standard Model of Particles and Forces Itzhak Bars (USC)

2T-physics and the Standard Model of Particles and Forces Itzhak Bars (USC) 2T-physics and the Standard Model of Particles and Forces Itzhak Bars (USC) hep-th/0606045 Success of 2T-physics for particles on worldlines. Field theory version of 2T-physics. Standard Model in 4+2 dimensions.

More information

Universal Extra Dimensions

Universal Extra Dimensions Universal Extra Dimensions Add compact dimension(s) of radius R ~ ant crawling on tube Kaluza-Klein tower of partners to SM particles due to curled-up extra dimensions of radius R n = quantum number for

More information

An Introduction to Dynamical Supersymmetry Breaking

An Introduction to Dynamical Supersymmetry Breaking An Introduction to Dynamical Supersymmetry Breaking Thomas Walshe September 28, 2009 Submitted in partial fulfillment of the requirements for the degree of Master of Science of Imperial College London

More information

Spectral action, scale anomaly. and the Higgs-Dilaton potential

Spectral action, scale anomaly. and the Higgs-Dilaton potential Spectral action, scale anomaly and the Higgs-Dilaton potential Fedele Lizzi Università di Napoli Federico II Work in collaboration with A.A. Andrianov (St. Petersburg) and M.A. Kurkov (Napoli) JHEP 1005:057,2010

More information

An extended standard model and its Higgs geometry from the matrix model

An extended standard model and its Higgs geometry from the matrix model An extended standard model and its Higgs geometry from the matrix model Jochen Zahn Universität Wien based on arxiv:1401.2020 joint work with Harold Steinacker Bayrischzell, May 2014 Motivation The IKKT

More information

Supersymmetric Gauge Theories, Matrix Models and Geometric Transitions

Supersymmetric Gauge Theories, Matrix Models and Geometric Transitions Supersymmetric Gauge Theories, Matrix Models and Geometric Transitions Frank FERRARI Université Libre de Bruxelles and International Solvay Institutes XVth Oporto meeting on Geometry, Topology and Physics:

More information

S-CONFINING DUALITIES

S-CONFINING DUALITIES DIMENSIONAL REDUCTION of S-CONFINING DUALITIES Cornell University work in progress, in collaboration with C. Csaki, Y. Shirman, F. Tanedo and J. Terning. 1 46 3D Yang-Mills A. M. Polyakov, Quark Confinement

More information

Kaluza-Klein Masses and Couplings: Radiative Corrections to Tree-Level Relations

Kaluza-Klein Masses and Couplings: Radiative Corrections to Tree-Level Relations Kaluza-Klein Masses and Couplings: Radiative Corrections to Tree-Level Relations Sky Bauman Work in collaboration with Keith Dienes Phys. Rev. D 77, 125005 (2008) [arxiv:0712.3532 [hep-th]] Phys. Rev.

More information

Quantum Field Theory 2 nd Edition

Quantum Field Theory 2 nd Edition Quantum Field Theory 2 nd Edition FRANZ MANDL and GRAHAM SHAW School of Physics & Astromony, The University of Manchester, Manchester, UK WILEY A John Wiley and Sons, Ltd., Publication Contents Preface

More information

The Higgs Mechanism and the Higgs Particle

The Higgs Mechanism and the Higgs Particle The Higgs Mechanism and the Higgs Particle Heavy-Ion Seminar... or the Anderson-Higgs-Brout-Englert-Guralnik-Hagen-Kibble Mechanism Philip W. Anderson Peter W. Higgs Tom W. B. Gerald Carl R. François Robert

More information

THE STANDARD MODEL AND THE GENERALIZED COVARIANT DERIVATIVE

THE STANDARD MODEL AND THE GENERALIZED COVARIANT DERIVATIVE THE STANDAD MODEL AND THE GENEALIZED COVAIANT DEIVATIVE arxiv:hep-ph/9907480v Jul 999 M. Chaves and H. Morales Escuela de Física, Universidad de Costa ica San José, Costa ica E-mails: mchaves@cariari.ucr.ac.cr,

More information

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University 1/N Expansions in String and Gauge Field Theories Adi Armoni Swansea University Oberwoelz, September 2010 1 Motivation It is extremely difficult to carry out reliable calculations in the strongly coupled

More information

Models of Neutrino Masses

Models of Neutrino Masses Models of Neutrino Masses Fernando Romero López 13.05.2016 1 Introduction and Motivation 3 2 Dirac and Majorana Spinors 4 3 SU(2) L U(1) Y Extensions 11 4 Neutrino masses in R-Parity Violating Supersymmetry

More information

Aspects of N = 2 Supersymmetric Gauge Theories in Three Dimensions

Aspects of N = 2 Supersymmetric Gauge Theories in Three Dimensions hep-th/9703110, RU-97-10, IASSNS-HEP-97/18 Aspects of N = 2 Supersymmetric Gauge Theories in Three Dimensions O. Aharony 1, A. Hanany 2, K. Intriligator 2, N. Seiberg 1, and M.J. Strassler 2,3 1 Dept.

More information

Higgs Boson Phenomenology Lecture I

Higgs Boson Phenomenology Lecture I iggs Boson Phenomenology Lecture I Laura Reina TASI 2011, CU-Boulder, June 2011 Outline of Lecture I Understanding the Electroweak Symmetry Breaking as a first step towards a more fundamental theory of

More information

July 2, SISSA Entrance Examination. PhD in Theoretical Particle Physics Academic Year 2018/2019. olve two among the three problems presented.

July 2, SISSA Entrance Examination. PhD in Theoretical Particle Physics Academic Year 2018/2019. olve two among the three problems presented. July, 018 SISSA Entrance Examination PhD in Theoretical Particle Physics Academic Year 018/019 S olve two among the three problems presented. Problem I Consider a theory described by the Lagrangian density

More information

Axial symmetry in the chiral symmetric phase

Axial symmetry in the chiral symmetric phase Axial symmetry in the chiral symmetric phase Swagato Mukherjee June 2014, Stoney Brook, USA Axial symmetry in QCD massless QCD Lagrangian is invariant under U A (1) : ψ (x) e i α ( x) γ 5 ψ(x) μ J 5 μ

More information

Konishi Anomaly. 32π 2 ǫκλµν F κλ F µν. (5)

Konishi Anomaly. 32π 2 ǫκλµν F κλ F µν. (5) Konishi Anomaly Consider the SQED with massless charged fields A and B. Classically, it has an axial symmetry A e +iϕ A, B e +iϕ B and hence a conserved axial current J ax = Ae +2gV A + B e 2gV B, () D

More information

Anomalies and discrete chiral symmetries

Anomalies and discrete chiral symmetries Anomalies and discrete chiral symmetries Michael Creutz BNL & U. Mainz Three sources of chiral symmetry breaking in QCD spontaneous breaking ψψ 0 explains lightness of pions implicit breaking of U(1) by

More information

Anomaly. Kenichi KONISHI University of Pisa. College de France, 14 February 2006

Anomaly. Kenichi KONISHI University of Pisa. College de France, 14 February 2006 Anomaly Kenichi KONISHI University of Pisa College de France, 14 February 2006 Abstract Symmetry and quantization U A (1) anomaly and π 0 decay Origin of anomalies Chiral and nonabelian anomaly Anomally

More information

Two-Higgs-Doublet Model

Two-Higgs-Doublet Model Two-Higgs-Doublet Model Logan A. Morrison University of California, Santa Cruz loanmorr@ucsc.edu March 18, 016 Logan A. Morrison (UCSC) HDM March 18, 016 1 / 7 Overview 1 Review of SM HDM Formalism HDM

More information

Lectures on Chiral Perturbation Theory

Lectures on Chiral Perturbation Theory Lectures on Chiral Perturbation Theory I. Foundations II. Lattice Applications III. Baryons IV. Convergence Brian Tiburzi RIKEN BNL Research Center Chiral Perturbation Theory I. Foundations Low-energy

More information

Lecture 24 Seiberg Witten Theory III

Lecture 24 Seiberg Witten Theory III Lecture 24 Seiberg Witten Theory III Outline This is the third of three lectures on the exact Seiberg-Witten solution of N = 2 SUSY theory. The third lecture: The Seiberg-Witten Curve: the elliptic curve

More information

Axions Theory SLAC Summer Institute 2007

Axions Theory SLAC Summer Institute 2007 Axions Theory p. 1/? Axions Theory SLAC Summer Institute 2007 Helen Quinn Stanford Linear Accelerator Center Axions Theory p. 2/? Lectures from an Axion Workshop Strong CP Problem and Axions Roberto Peccei

More information

Electroweak physics and the LHC an introduction to the Standard Model

Electroweak physics and the LHC an introduction to the Standard Model Electroweak physics and the LHC an introduction to the Standard Model Paolo Gambino INFN Torino LHC School Martignano 12-18 June 2006 Outline Prologue on weak interactions Express review of gauge theories

More information

Finding the Higgs boson

Finding the Higgs boson Finding the Higgs boson Sally Dawson, BN XIII Mexican School of Particles and Fields ecture 1, Oct, 008 Properties of the Higgs boson Higgs production at the Tevatron and HC Discovery vs spectroscopy Collider

More information

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included Pati-Salam, 73; Georgi-Glashow, 74 Grand Unification Strong, weak, electromagnetic unified at Q M X M Z Simple group G M X SU(3) SU() U(1) Gravity not included (perhaps not ambitious enough) α(q ) α 3

More information

Particle Physics 2018 Final Exam (Answers with Words Only)

Particle Physics 2018 Final Exam (Answers with Words Only) Particle Physics 2018 Final Exam (Answers with Words Only) This was a hard course that likely covered a lot of new and complex ideas. If you are feeling as if you could not possibly recount all of the

More information