Supersymmetry, Dark Matter, and Neutrinos

Size: px
Start display at page:

Download "Supersymmetry, Dark Matter, and Neutrinos"

Transcription

1 Supersymmetry, Dark Matter, and Neutrinos The Standard Model and Supersymmetry Dark Matter Neutrino Physics and Astrophysics The Physics of Supersymmetry

2 Gauge Theories Gauge symmetry requires existence of (apparently) massless spin-1 (vector, gauge) bosons Interactions prescribed up to group, representations, gauge coupling Analogous to QED (U(1)), but gauge self interactions for nonabelian groups Standard model: SU(3) SU(2) U(1) Application to strong (short range) confinement Application to weak (short range) spontaneous symmetry breaking (Higgs or dynamical) Unique renormalizable field theory for spin-1

3 QED Free electron equation, ( iγ µ ) x m ψ = 0, µ is invariant under U(1) (phase) transformations, ( iγ µ ) x m ψ = 0, where ψ e iβ ψ µ Not invariant under local (gauge) transf., ψ ψ e iβ(x) ψ, x ( x, t)

4 Introduce vector field A µ ( A, φ): ( iγ µ ) x + µ gγµ A µ m ψ = 0, (g = e = gauge coupling) is invariant under ψ e iβ(x) ψ, A µ A µ 1 β g x µ Quantization of A µ massless gauge boson Gauge invariance γ, long range force, prescribed (up to g) amplitude for emission/absorption e e p γ p

5 Non-Abelian n non-interacting fermions of same mass m: ( iγ µ ) x m ψ µ a = 0, a = 1 n, invariant under (global) SU(n) group, ψ 1. ψ n exp( i N β i L i ) ψ 1. ψ n i=1. L i are n n generator matrices; β i are real parameters; N = n 2 1. Generalize to other groups, representations, chiral (L R)

6 Gauge (local) transformation: β i β i (x) ( iγ µ x µδ ab + g ) N γ µ A iµ (L i ) ab mδ ab ψ b = 0. i=1 Gauge invariance implies: N (apparently) massless gauge bosons A iµ Specified interactions (up to g, group, representations), including self interactions g g 2 ψ a A iµ ψ b ig(l i ) ab γ µ

7 The Standard Model Gauge group SU(3) SU(2) U(1); gauge couplings g s, g, g ( u d ) L ( u d ) L ( u d ) L ( νe e ) u R u R u R ν er (?) d R d R d R e R ( L = left-handed, R = right-handed) L SU(3): u u u, d d d (gluons) SU(2): u L d L, ν el e L (W ± ); phases (W 0 ) U(1): phases (B) Heavy families (c, s, ν µ, µ ), (t, b, ν τ, τ )

8 Strong Interactions (QCD) Group SU(3), gauge coupling g s 8 massless gluons (G) Emission/absorption amplitude g s = O(1) (α s = gs 2 /4π 0.12) λ i are 3 3 SU(3) (Gell-Mann) matrices Diagonal in flavor Off diagonal in color Purely vector (parity conserving) u β i g s G i µ uα 2 λi αβ γ µ

9 Strength + gluon self-interactions confinement Yukawa model dipole-dipole QCD now very well established Short distance behavior (asymptotic freedom) Confinement, light hadron spectrum (lattice) Approximate global SU(3) L SU(3) R symmetry and breaking (π, K, η are pseudogoldstone bosons) Unique field theory of strong interactions

10 Electroweak Interactions Group SU(2) U(1); gauge bosons (W ±, W 0 ), B Gauge couplings g, g tan θ W g /g; e = g sin θ W W i µ ( ) i g 2 τ i 1 γ5 γ µ 2 B µ ig yγ µ ( ) 1 γ5 2 L, R transform differently parity violation (γ 5 ) y = weak hypercharge (U(1)); electric charge: q = τ y

11 The Weak Charged Current Fermi theory + W ± incorporated in SM and made renormalizable (β decay) n pe ν e ν µ N µ + hadrons Fermi constant G F 2 g2 8M 2 W Muon lifetime τ 1 = G2 F m5 µ 192π 3 G F = (2) 10 5 GeV 2 W mass from Higgs mechanism

12 Maximal P and C violation; CP conserved except for phases associated with family mixing (Cabibbo-Kobashi-Maskawa matrix) Excellent description of β, K, hyperon, heavy quark, µ, and τ decays, ν µ e µ ν e, ν µ n µ p, ν µ N µ X

13 Quantum Electrodynamics (QED) Incorporated into standard model e p γ e V (r) = q 1q 2 r e = g sin θ W p Photon field (massless) Orthogonal Z field (massive) γ = +B cos θ W + W 0 sin θ W Z = B sin θ W + W 0 cos θ W

14 Positron electric charge: e = g sin θ W, where tan θ W g /g Flavor and color diagonal Purely vector (parity conserving): L and R fields have same charge Spectacularly successful Many low energy tests (e.g., cesium hfs, e anomalous magnetic moment, etc., to few 10 8 ) m γ < ev Muon g 2 sensitive to new physics. Anomaly? Running α(q 2 ) observed High energy well-measured

15 The Weak Neutral Current Prediction of SU(2) U(1) Neutral boson orthogonal to photon Z = B sin θ W + W 0 cos θ W Massive by Higgs mechanism Purely weak processes: ν µ p ν µ p

16 Parity-violating interference with electromagetic e e p γ p e e p Z p WNC discovered 1973: Gargamelle at CERN, HPW at FNAL Flavor and color diagonal Parity violated but not maximally Fermion couplings depend on sin 2 θ W Strength G F 2 = g2 + g 2 8M 2 Z = g2 8M 2 W Tested in many processes: νe νe, νn νn, νn νx; e D ex; atomic parity violation; e + e, Z-pole reactions

17 Gauge Self-Interactions Three and four-point interactions predicted by gauge invariance Indirectly verified by radiative corrections, α s running in QCD, etc. Strong cancellations in high energy amplitudes would be upset by anomalous couplings Tree-level diagrams contributing to e + e W + W

18

19 Spontaneous Symmetry Breaking Gauge invariance implies massless gauge bosons and fermions Weak interactions short ranged spontaneous symmetry breaking for mass; also for fermions Color confinement for QCD gluons remain massless Allow classical (ground state) expectation value for spin-0 field v = 0 ϕ 0 = constant µ v 0 increases energy, but important for monopoles, strings, domain walls

20 SU(2) U(1): introduce Higgs doublet ϕ = ( ϕ + ϕ 0 ) Allow 0 ϕ 0 0 = ν/ 2 (ν = real) Minimize potential energy (from equations of motion) V (ν) = 1 2 µ2 ν λν4, with λ > 0, to find ν For µ 2 < 0, minimum at V (ν) = ν(µ 2 + λν 2 ) = 0 ν = ( µ 2 /λ ) 1/2

21 ϕ 0 is neutral, so U(1) Q unbroken SU(2) U(1) Y U(1) Q, where Q = L 3 + Y Interaction with classical field ν gives effective masses to W, Z, and fermions W g 2 W ν M W = gν 2 ν ψ L h ψ ψ R ν = 2 ϕ 0 m ψ = h ψ ν Fermi constant G F 2 g2 8M 2 W = 1 ν 246 GeV (electroweak scale) 2ν2 Muon lifetime τ 1 = G2 F m5 µ 192π 3 G F = (2) 10 5 GeV 2

22 g = e/ sin θ W, where α = e 2 /4π 1/ M W = M Z cos θ W (πα/ 2G F ) 1/2 sin θ W Weak neutral current: sin 2 θ W 0.23 M W 78 GeV, and M Z 89 GeV (increased by 2 GeV by loop corrections) Discovered at CERN: UA1 and UA2, 1983 Current: M Z = ± M W = ± 0.034

23 The Higgs Scalar H Quantize around classical value of ϕ ϕ 1 2 ( 0 ν + H ) Higgs potential: V µ4 4λ µ2 H 2 + λνh 3 + λ 4 H4 Fourth term: Quartic self-interaction Third: Induced cubic self-interaction Second: (Tree level) H mass-squared, M H = 2µ 2 = 2λν

24 No a priori constraint on λ except vacuum stability (λ > 0 0 < M H < ), but Theoretical constraints (SM): 115 GeV < M H < 750 GeV Experimental bound (LEP 2), e + e Z ZH M H GeV at 95% cl Hint of signal at 115 GeV Indirect (precision tests): M H < 215 GeV, 95% cl MSSM: much of parameter space has standard-like Higgs with M H < 130 GeV >

25 Γ, σ, R, R Z had l q asymmetries ν scattering M W m t 200 all data 90% CL M H [GeV] excluded m t [GeV]

26 First term in V : vacuum energy 0 V 0 = µ 4 /4λ No effect on microscopic interactions, contribution to cosmological constant but gives negative Λ SSB = 8πG N 0 V Λ obs Require fine-tuned cancellation Λ cosm = Λ bare + Λ SSB Also, QCD contribution from SSB of global chiral symmetry

27 Precision Electroweak Tests WNC, W, and Z are primary test/prediction of electroweak model

28 The Z Pole Observables: LEP and SLC (01/03) Quantity Group(s) Value Standard Model pull M Z [GeV] LEP ± ± Γ Z [GeV] LEP ± ± Γ(had) [GeV] LEP ± ± Γ(inv) [MeV] LEP ± ± 0.15 Γ(l + l ) [MeV] LEP ± ± σ had [nb] LEP ± ± R e LEP ± ± R µ LEP ± ± R τ LEP ± ± A F B (e) LEP ± ± A F B (µ) LEP ± A F B (τ ) LEP ±

29 Quantity Group(s) Value Standard Model pull R b LEP/SLD ± ± R c LEP/SLD ± ± R s,d /R (d+u+s) OPAL ± ± A F B (b) LEP ± ± A F B (c) LEP ± ± A F B (s) DELPHI/OPAL ± ± A b SLD ± ± A c SLD ± ± A s SLD ± ± A LR (hadrons) SLD ± ± A LR (leptons) SLD ± A µ SLD ± A τ SLD ± A e (Q LR ) SLD ± A τ (P τ ) LEP ± A e (P τ ) LEP ± Q F B LEP ± ±

30 Implications SM correct and unique to zeroth approx. (gauge principle, group, representations) SM correct at loop level (renorm gauge theory; m t, α s, M H ) TeV physics severely constrained (unification vs compositeness) Precise gauge couplings (gauge unification)

31

32 Problems with the Standard Model Standard model: SU(2) U(1) (extended to include ν masses) + general relativity Mathematically consistent, renormalizable theory Correct to cm However, too much arbitrariness and fine-tuning (O(20) parameters, not including ν masses/mixings, which add at least 7 more, and electric charges)

33 Gauge Problem complicated gauge group with 3 couplings charge quantization ( q e = q p ) unexplained Possible solutions: strings; grand unification; magnetic monopoles (partial); anomaly constraints (partial) Fermion problem Fermion masses, mixings, families unexplained Neutrino masses, nature? CP violation inadequate to explain baryon asymmetry Possible solutions: strings; brane worlds; family symmetries; compositeness; radiative hierarchies. New sources of CP violation.

34 Higgs/hierarchy problem Expect M 2 H = O(M 2 W ) higher order corrections: δm 2 H /M 2 W 1034 Possible solutions: supersymmetry; dynamical symmetry breaking; large extra dimensions; Little Higgs Strong CP problem Can add θ 32π 2 g 2 s F F to QCD (breaks, P, T, CP) d N θ < 10 9 but δθ weak 10 3 Possible solutions: spontaneously broken global U(1) (Peccei- Quinn) axion; unbroken global U(1) (massless u quark); spontaneously broken CP + other symmetries

35 Graviton problem gravity not unified quantum gravity not renormalizable cosmological constant: Λ SSB = 8πG N V > Λ obs ( for GUTs, strings) Possible solutions: supergravity and Kaluza Klein unify strings yield finite gravity. Λ?

36 The Two Paths: Unification or Compositeness The Bang unification of interactions grand desert to unification (GUT) or Planck scale elementary Higgs, supersymmetry (SUSY), GUTs, strings possibility of probing to M P and very early universe hint from coupling constant unification tests light (< GeV) Higgs (LEP 2, TeV, LHC) absence of deviations in precision tests (usually) supersymmetry (LHC) possible: m b, proton decay, ν mass, rare decays SUSY-safe: Z ; seq/mirror/exotic fermions; singlets variant versions: large dimensions, low fundamental scale, brane worlds

37 The Whimper onion-like layers composite fermions, scalars (dynamical sym. breaking) not like to atom nucleus +e p + n quark at most one more layer accessible (LHC) rare decays (e.g., K µe) severe problem no realistic models effects (typically, few %) expected at LEP & other precision observables (4-f ops; Zb b; ρ 0 ; S, T, U) anomalous V V V, new particles, future W W W W recent variant: Little Higgs

38 Supersymmetry Fermion Boson symmetry Motivations stabilize weak scale M SUSY < O(1 TeV) supergravity (gauged supersymmetry): unification of gravity (non-renormalizable) string/m theory (finite TOE) coupling constants in supersymmetric grand unification decoupling of heavy particles (precision, CP, FCNC)

39 Consequences additional charged and neutral Higgs particles M 2 < cos 2 2βM 2 H 0 Z + H.O.T. (O(m4 t )) < (150 GeV)2 cf., standard model: M H 0 < 750 GeV superpartners q q, scalar quark (spin-0) l l, scalar lepton (spin-0) H H, Higgsino (spin-1/2) G g, gluino (spin-1/2) W w, wino (spin-1/2) γ γ, photino (spin-1/2) Z z, zino (spin-1/2) typical scale: several hundred GeV LSP: cold dark matter candidate SUSY breaking large m t

Beyond the Standard Model

Beyond the Standard Model Beyond the Standard Model The Standard Model Problems with the Standard Model New Physics Supersymmetry Extended Electroweak Symmetry Grand Unification References: 2008 TASI lectures: arxiv:0901.0241 [hep-ph]

More information

Introduction to the Standard Model

Introduction to the Standard Model Introduction to the Standard Model Origins of the Electroweak Theory Gauge Theories The Standard Model Lagrangian Spontaneous Symmetry Breaking The Gauge Interactions Problems With the Standard Model (

More information

Status and Phenomenology of the Standard Model

Status and Phenomenology of the Standard Model Status and Phenomenology of the Standard Model The new standard model Experimental tests, unique features, anomalies, hints of new physics Precision tests Higgs Heavy quarks Neutrinos FCNC and EDMs Astrophysics

More information

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1 Physics 662 Particle Physics Phenomenology February 21, 2002 Physics 662, lecture 13 1 Physics Beyond the Standard Model Supersymmetry Grand Unified Theories: the SU(5) GUT Unification energy and weak

More information

Electroweak Physics. Precision Experiments: Historical Perspective. LEP/SLC Physics. Probing the Standard Model. Beyond the Standard Model

Electroweak Physics. Precision Experiments: Historical Perspective. LEP/SLC Physics. Probing the Standard Model. Beyond the Standard Model Electroweak Physics Precision Experiments: Historical Perspective LEP/SLC Physics Probing the Standard Model Beyond the Standard Model The Z, the W, and the Weak Neutral Current Primary prediction and

More information

Electroweak Theory, SSB, and the Higgs: Lecture 2

Electroweak Theory, SSB, and the Higgs: Lecture 2 1 Electroweak Theory, SSB, and the iggs: Lecture Spontaneous symmetry breaking (iggs mechanism) - Gauge invariance implies massless gauge bosons and fermions - Weak interactions short ranged spontaneous

More information

Electroweak Theory: 3

Electroweak Theory: 3 Electroweak Theory: 3 Introduction QED The Fermi theory The standard model Precision tests CP violation; K and B systems Higgs physics Prospectus STIAS January, 2011 Paul Langacker IAS 55 References Slides

More information

Lecture 18 - Beyond the Standard Model

Lecture 18 - Beyond the Standard Model Lecture 18 - Beyond the Standard Model Why is the Standard Model incomplete? Grand Unification Baryon and Lepton Number Violation More Higgs Bosons? Supersymmetry (SUSY) Experimental signatures for SUSY

More information

The Standard Model and Beyond

The Standard Model and Beyond The Standard Model and Beyond Nobuchika Okada Department of Physics and Astronomy The University of Alabama 2011 BCVSPIN ADVANCED STUDY INSTITUTE IN PARTICLE PHYSICS AND COSMOLOGY Huê, Vietnam, 25-30,

More information

Elements of Grand Unification

Elements of Grand Unification Elements of Grand Unification Problems with the Standard Model The Two Paths Grand Unification The Georgi-Glashow SU(5) Model Beyond SU(5) arger Groups Supersymmetry Extra Dimensions Additional Implications

More information

Introduction to the Standard Model

Introduction to the Standard Model Introduction to the Standard Model Origins of the Electroweak Theory Gauge Theories The Standard Model Lagrangian Spontaneous Symmetry Breaking The Gauge Interactions Problems With the Standard Model (

More information

SUPERSYMETRY FOR ASTROPHYSICISTS

SUPERSYMETRY FOR ASTROPHYSICISTS Dark Matter: From the Cosmos to the Laboratory SUPERSYMETRY FOR ASTROPHYSICISTS Jonathan Feng University of California, Irvine 29 Jul 1 Aug 2007 SLAC Summer Institute 30 Jul 1 Aug 07 Feng 1 Graphic: N.

More information

Introduction to Supersymmetry

Introduction to Supersymmetry Introduction to Supersymmetry I. Antoniadis Albert Einstein Center - ITP Lecture 5 Grand Unification I. Antoniadis (Supersymmetry) 1 / 22 Grand Unification Standard Model: remnant of a larger gauge symmetry

More information

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model Scalar from November 24, 2014 1 2 3 4 5 What is the? Gauge theory that explains strong weak, and electromagnetic forces SU(3) C SU(2) W U(1) Y Each generation (3) has 2 quark flavors (each comes in one

More information

The mass of the Higgs boson

The mass of the Higgs boson The mass of the Higgs boson LHC : Higgs particle observation CMS 2011/12 ATLAS 2011/12 a prediction Higgs boson found standard model Higgs boson T.Plehn, M.Rauch Spontaneous symmetry breaking confirmed

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

The Standard Model and Beyond

The Standard Model and Beyond Paul Langacker The Standard Model and Beyond CRC PRESS Boca Raton Ann Arbor London Tokyo Contents Preface xi 1 Notation and Conventions 1 1.1 Problems............................. 5 2 Review of Perturbative

More information

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model Lecture 03 The Standard Model of Particle Physics Part III Extensions of the Standard Model Where the SM Works Excellent description of 3 of the 4 fundamental forces Explains nuclear structure, quark confinement,

More information

Is SUSY still alive? Dmitri Kazakov JINR

Is SUSY still alive? Dmitri Kazakov JINR 2 1 0 2 The l o o h c S n a e p o r Eu y g r e n E h g i of H s c i s y PAnhjou, France 2 1 0 2 e n 6 19 Ju Is SUSY still alive? Dmitri Kazakov JINR 1 1 Why do we love SUSY? Unifying various spins SUSY

More information

Search for SUperSYmmetry SUSY

Search for SUperSYmmetry SUSY PART 3 Search for SUperSYmmetry SUSY SUPERSYMMETRY Symmetry between fermions (matter) and bosons (forces) for each particle p with spin s, there exists a SUSY partner p~ with spin s-1/2. q ~ g (s=1)

More information

Introduction to the Standard Model

Introduction to the Standard Model Introduction to the Standard Model Origins of the Electroweak Theory Gauge Theories The Standard Model References: 2008 TASI lectures: arxiv:0901.0241 [hep-ph] and The Standard Model and Beyond, CRC Press

More information

Weak Interactions and Neutrinos in the LHC Era

Weak Interactions and Neutrinos in the LHC Era Weak Interactions and Neutrinos in the LHC Era The standard model Testing the standard model Problems Beyond the standard model Where are we going? The New Standard Model Standard model, Majorana): supplemented

More information

The Physics of Heavy Z-prime Gauge Bosons

The Physics of Heavy Z-prime Gauge Bosons The Physics of Heavy Z-prime Gauge Bosons Tevatron LHC LHC LC LC 15fb -1 100fb -1 14TeV 1ab -1 14TeV 0.5TeV 1ab -1 P - =0.8 P + =0.6 0.8TeV 1ab -1 P - =0.8 P + =0.6 χ ψ η LR SSM 0 2 4 6 8 10 12 2σ m Z'

More information

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included Pati-Salam, 73; Georgi-Glashow, 74 Grand Unification Strong, weak, electromagnetic unified at Q M X M Z Simple group G M X SU(3) SU() U(1) Gravity not included (perhaps not ambitious enough) α(q ) α 3

More information

May 7, Physics Beyond the Standard Model. Francesco Fucito. Introduction. Standard. Model- Boson Sector. Standard. Model- Fermion Sector

May 7, Physics Beyond the Standard Model. Francesco Fucito. Introduction. Standard. Model- Boson Sector. Standard. Model- Fermion Sector - Boson - May 7, 2017 - Boson - The standard model of particle physics is the state of the art in quantum field theory All the knowledge we have developed so far in this field enters in its definition:

More information

Higgs Signals and Implications for MSSM

Higgs Signals and Implications for MSSM Higgs Signals and Implications for MSSM Shaaban Khalil Center for Theoretical Physics Zewail City of Science and Technology SM Higgs at the LHC In the SM there is a single neutral Higgs boson, a weak isospin

More information

Physics Beyond the Standard Model. Marina Cobal Fisica Sperimentale Nucleare e Sub-Nucleare

Physics Beyond the Standard Model. Marina Cobal Fisica Sperimentale Nucleare e Sub-Nucleare Physics Beyond the Standard Model Marina Cobal Fisica Sperimentale Nucleare e Sub-Nucleare Increasingly General Theories Grand Unified Theories of electroweak and strong interactions Supersymmetry

More information

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov Gauge coupling unification without leptoquarks Mikhail Shaposhnikov March 9, 2017 Work with Georgios Karananas, 1703.02964 Heidelberg, March 9, 2017 p. 1 Outline Motivation Gauge coupling unification without

More information

The Matter-Antimatter Asymmetry and New Interactions

The Matter-Antimatter Asymmetry and New Interactions The Matter-Antimatter Asymmetry and New Interactions The baryon (matter) asymmetry The Sakharov conditions Possible mechanisms A new very weak interaction Recent Reviews M. Trodden, Electroweak baryogenesis,

More information

Little Higgs Models Theory & Phenomenology

Little Higgs Models Theory & Phenomenology Little Higgs Models Theory Phenomenology Wolfgang Kilian (Karlsruhe) Karlsruhe January 2003 How to make a light Higgs (without SUSY) Minimal models The Littlest Higgs and the Minimal Moose Phenomenology

More information

E 6 Spectra at the TeV Scale

E 6 Spectra at the TeV Scale E 6 Spectra at the TeV Scale Instituts-Seminar Kerne und Teilchen, TU Dresden Alexander Knochel Uni Freiburg 24.06.2010 Based on: F. Braam, AK, J. Reuter, arxiv:1001.4074 [hep-ph], JHEP06(2010)013 Outline

More information

SUSY and Exotics. UK HEP Forum"From the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1

SUSY and Exotics. UK HEP ForumFrom the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1 SUSY and Exotics Standard Model and the Origin of Mass Puzzles of Standard Model and Cosmology Bottom-up and top-down motivation Extra dimensions Supersymmetry - MSSM -NMSSM -E 6 SSM and its exotics UK

More information

The Standard Model and beyond

The Standard Model and beyond The Standard Model and beyond In this chapter we overview the structure of the Standard Model (SM) of particle physics, its shortcomings, and different ideas for physics beyond the Standard Model (BSM)

More information

Kiwoon Choi (KAIST) 3 rd GCOE Symposium Feb (Tohoku Univ.)

Kiwoon Choi (KAIST) 3 rd GCOE Symposium Feb (Tohoku Univ.) Exploring New Physics beyond the Standard Model of Particle Physics Kiwoon Choi (KAIST) 3 rd GCOE Symposium Feb. 2011 (Tohoku Univ.) We are confronting a critical moment of particle physics with the CERN

More information

The Electro-Weak Sector. Precision Experiments before LEP LEP Physics Probing the Standard Model Beyond the Standard Model

The Electro-Weak Sector. Precision Experiments before LEP LEP Physics Probing the Standard Model Beyond the Standard Model The Electro-Weak Sector Precision Experiments before LEP LEP Physics Probing the Standard Model Beyond the Standard Model P. Langacker CERN, LEP Fest 11 October, 2000 The Z, the W, and the Weak Neutral

More information

Properties of the Higgs Boson, and its interpretation in Supersymmetry

Properties of the Higgs Boson, and its interpretation in Supersymmetry Properties of the Higgs Boson, and its interpretation in Supersymmetry U. Ellwanger, LPT Orsay The quartic Higgs self coupling and Supersymmetry The Next-to-Minimal Supersymmetric Standard Model Higgs

More information

Fundamental Particles and Forces

Fundamental Particles and Forces Fundamental Particles and Forces A Look at the Standard Model and Interesting Theories André Gras PHYS 3305 SMU 1 Overview Introduction to Fundamental Particles and Forces Brief History of Discovery The

More information

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00 Kaluza-Klein Theories - basic idea Fig. from B. Greene, 00 Kaluza-Klein Theories - basic idea mued mass spectrum Figure 3.2: (Taken from [46]). The full spectrum of the UED model at the first KK level,

More information

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM Lecture 03 The Standard Model of Particle Physics Part II The Higgs Boson Properties of the SM The Standard Model So far we talked about all the particles except the Higgs If we know what the particles

More information

U(1) Gauge Extensions of the Standard Model

U(1) Gauge Extensions of the Standard Model U(1) Gauge Extensions of the Standard Model Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA U(1) Gauge Extensions of the Standard Model (int08) back to start

More information

Elementary Particles, Flavour Physics and all that...

Elementary Particles, Flavour Physics and all that... Elementary Particles, Flavour Physics and all that... 1 Flavour Physics The term Flavour physics was coined in 1971 by Murray Gell-Mann and his student at the time, Harald Fritzsch, at a Baskin-Robbins

More information

Supersymmetry and a Candidate for Dark Matter

Supersymmetry and a Candidate for Dark Matter Supersymmetry and a Candidate for Dark Matter Elizabeth Lockner Department of Physics, University of Maryland College Park, MD 20742 April 20, 2007. The Standard Model has been a powerful tool in understanding

More information

Electroweak Physics. Precision Experiments: Historical Perspective LEP/SLD Physics Probing the Standard Model Beyond the Standard Model

Electroweak Physics. Precision Experiments: Historical Perspective LEP/SLD Physics Probing the Standard Model Beyond the Standard Model Electroweak Physics Precision Experiments: Historical Perspective LEP/SLD Physics Probing the Standard Model Beyond the Standard Model P. Langacker Madrid 27/09/02 The Z, the W, and the Weak Neutral Current

More information

Supersymmetry Basics. J. Hewett SSI J. Hewett

Supersymmetry Basics. J. Hewett SSI J. Hewett Supersymmetry Basics J. Hewett SSI 2012 J. Hewett Basic SUSY References A Supersymmetry Primer, Steve Martin hep-ph/9709356 Theory and Phenomenology of Sparticles, Manual Drees, Rohini Godbole, Probir

More information

PHYSICS BEYOND SM AND LHC. (Corfu 2010)

PHYSICS BEYOND SM AND LHC. (Corfu 2010) PHYSICS BEYOND SM AND LHC (Corfu 2010) We all expect physics beyond SM Fantastic success of SM (LEP!) But it has its limits reflected by the following questions: What is the origin of electroweak symmetry

More information

Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013

Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013 Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013 Rogerio Rosenfeld IFT-UNESP Lecture 1: Motivation/QFT/Gauge Symmetries/QED/QCD Lecture 2: QCD tests/electroweak

More information

EDMs and flavor violation in SUSY models

EDMs and flavor violation in SUSY models EDMs and flavor violation in SUSY models Junji Hisano Institute for Cosmic Ray Research (ICRR), University of Tokyo The 3rd International Symposium on LEPTON MOMENTS Cape Cod, June 2006 Contents of my

More information

Search for physics beyond the Standard Model at LEP 2

Search for physics beyond the Standard Model at LEP 2 Search for physics beyond the Standard Model at LEP 2 Theodora D. Papadopoulou NTU Athens DESY Seminar 28/10/03 1 Outline Introduction about LEP Alternatives to the Higgs mechanism Technicolor Contact

More information

The Higgs discovery - a portal to new physics

The Higgs discovery - a portal to new physics The Higgs discovery - a portal to new physics Department of astronomy and theoretical physics, 2012-10-17 1 / 1 The Higgs discovery 2 / 1 July 4th 2012 - a historic day in many ways... 3 / 1 July 4th 2012

More information

Supersymmetry and other theories of Dark Matter Candidates

Supersymmetry and other theories of Dark Matter Candidates Supersymmetry and other theories of Dark Matter Candidates Ellie Lockner 798G Presentation 3/1/07 798G 3/1/07 1 Overview Why bother with a new theory? Why is Supersymmetry a good solution? Basics of Supersymmetry

More information

Lectures on Supersymmetry I

Lectures on Supersymmetry I I Carlos E.M. Wagner HEP Division, Argonne National Laboratory Enrico Fermi Institute, University of Chicago Ecole de Physique de Les Houches, France, August 5, 005. PASI 006, Puerto Vallarta, Mexico,

More information

W + W - The Z pole. e + e hadrons SLC. Cross-section (pb) Centre-of-mass energy (GeV) P529 Spring,

W + W - The Z pole. e + e hadrons SLC. Cross-section (pb) Centre-of-mass energy (GeV) P529 Spring, The Z pole Cross-section (pb) 10 5 10 4 Z e + e hadrons 10 3 10 2 CESR DORIS PEP W + W - 10 KEKB PEP-II PETRA TRISTAN SLC LEP I LEP II 0 20 40 60 80 100 120 140 160 180 200 220 Centre-of-mass energy (GeV)

More information

Origin of the Universe - 2 ASTR 2120 Sarazin. What does it all mean?

Origin of the Universe - 2 ASTR 2120 Sarazin. What does it all mean? Origin of the Universe - 2 ASTR 2120 Sarazin What does it all mean? Fundamental Questions in Cosmology 1. Why did the Big Bang occur? 2. Why is the Universe old? 3. Why is the Universe made of matter?

More information

SUSY Phenomenology & Experimental searches

SUSY Phenomenology & Experimental searches SUSY Phenomenology & Experimental searches Slides available at: Alex Tapper http://www.hep.ph.ic.ac.uk/~tapper/lecture.html Objectives - Know what Supersymmetry (SUSY) is - Understand qualitatively the

More information

Supersymmetry Breaking

Supersymmetry Breaking Supersymmetry Breaking LHC Search of SUSY: Part II Kai Wang Phenomenology Institute Department of Physics University of Wisconsin Madison Collider Phemonology Gauge Hierarchy and Low Energy SUSY Gauge

More information

Introduction to Elementary Particles

Introduction to Elementary Particles David Criffiths Introduction to Elementary Particles Second, Revised Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Preface to the First Edition IX Preface to the Second Edition XI Formulas and Constants

More information

Implications of a Heavy Z Gauge Boson

Implications of a Heavy Z Gauge Boson Implications of a Heavy Z Gauge Boson Motivations A (string-motivated) model Non-standard Higgs sector, CDM, g µ 2 Electroweak baryogenesis FCNC and B s B s mixing References T. Han, B. McElrath, PL, hep-ph/0402064

More information

Universal Extra Dimensions

Universal Extra Dimensions Universal Extra Dimensions Add compact dimension(s) of radius R ~ ant crawling on tube Kaluza-Klein tower of partners to SM particles due to curled-up extra dimensions of radius R n = quantum number for

More information

The Standard Model of particle physics and beyond

The Standard Model of particle physics and beyond The Standard Model of particle physics and beyond - Lecture 3: Beyond the Standard Model Avelino Vicente IFIC CSIC / U. Valencia Physics and astrophysics of cosmic rays in space Milano September 2016 1

More information

Minimal Supersymmetric Standard Model (MSSM). Nausheen R. Shah

Minimal Supersymmetric Standard Model (MSSM). Nausheen R. Shah Minimal Supersymmetric Standard Model (MSSM). Nausheen R. Shah June 8, 2003 1 Introduction Even though the Standard Model has had years of experimental success, it has been known for a long time that it

More information

Introduction to particle physics Lecture 13: The Standard Model

Introduction to particle physics Lecture 13: The Standard Model Introduction to particle physics Lecture 13: The Standard Model Frank Krauss IPPP Durham U Durham, Epiphany term 2010 1 / 23 Outline 1 The Standard Model: Construction 2 The Standard Model: Tests and status

More information

A first trip to the world of particle physics

A first trip to the world of particle physics A first trip to the world of particle physics Itinerary Massimo Passera Padova - 13/03/2013 1 Massimo Passera Padova - 13/03/2013 2 The 4 fundamental interactions! Electromagnetic! Weak! Strong! Gravitational

More information

Foundations of Physics III Quantum and Particle Physics Lecture 13

Foundations of Physics III Quantum and Particle Physics Lecture 13 Foundations of Physics III Quantum and Particle Physics Lecture 13 Frank Krauss February 27, 2012 1 Construction of the Standard Model 2 The Standard Model: Tests and status 3 Beyond the Standard Model?

More information

Models of Neutrino Masses

Models of Neutrino Masses Models of Neutrino Masses Fernando Romero López 13.05.2016 1 Introduction and Motivation 3 2 Dirac and Majorana Spinors 4 3 SU(2) L U(1) Y Extensions 11 4 Neutrino masses in R-Parity Violating Supersymmetry

More information

+ µ 2 ) H (m 2 H 2

+ µ 2 ) H (m 2 H 2 I. THE HIGGS POTENTIAL AND THE LIGHT HIGGS BOSON In the previous chapter, it was demonstrated that a negative mass squared in the Higgs potential is generated radiatively for a large range of boundary

More information

Standard Model & Beyond

Standard Model & Beyond XI SERC School on Experimental High-Energy Physics National Institute of Science Education and Research 13 th November 2017 Standard Model & Beyond Lecture III Sreerup Raychaudhuri TIFR, Mumbai 2 Fermions

More information

SUSY Phenomenology a

SUSY Phenomenology a KEK-TH-606 November 1998 SUSY Phenomenology a Yasuhiro Okada KEK, Oho 1-1, Tsukuba, 305-0801 Japan Three topics on phenomenology in supersymmetric models are reviewed, namely, the Higgs sector in the supersymmetric

More information

Crosschecks for Unification

Crosschecks for Unification Crosschecks for Unification Hans Peter Nilles Physikalisches Institut Universität Bonn Crosschecks for Unification, Planck09, Padova, May 2009 p. 1/39 Questions Do present observations give us hints for

More information

Kaluza-Klein Dark Matter

Kaluza-Klein Dark Matter Kaluza-Klein Dark Matter Hsin-Chia Cheng UC Davis Pre-SUSY06 Workshop Complementary between Dark Matter Searches and Collider Experiments Introduction Dark matter is the best evidence for physics beyond

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction 1.1 Fundamental Forces Particle physics is concerned with the fundamental constituents of matter and the fundamental forces through which the fundamental constituents interact among

More information

Patrick Kirchgaeßer 07. Januar 2016

Patrick Kirchgaeßer 07. Januar 2016 Patrick Kirchgaeßer 07. Januar 2016 INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) PHYSICS FACULTY KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

More information

STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT. (Two lectures)

STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT. (Two lectures) STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT (Two lectures) Lecture 1: Mass scales in particle physics - naturalness in QFT Lecture 2: Renormalisable or non-renormalisable effective electroweak

More information

Speculations on extensions of symmetry and interctions to GUT energies Lecture 16

Speculations on extensions of symmetry and interctions to GUT energies Lecture 16 Speculations on extensions of symmetry and interctions to GUT energies Lecture 16 1 Introduction The use of symmetry, as has previously shown, provides insight to extensions of present physics into physics

More information

Where are we heading?

Where are we heading? Where are we heading? PiTP 2013 Nathan Seiberg IAS Purpose of this talk A brief, broad brush status report of particle physics Where we are How we got here (some historical perspective) What are the problems

More information

Tales From The Dark Side of Particle Physics (The Dark-Light Connection) William J. Marciano

Tales From The Dark Side of Particle Physics (The Dark-Light Connection) William J. Marciano Tales From The Dark Side of Particle Physics (The Dark-Light Connection) Based on H. Davoudiasl, H-S Lee &WJM Viewer Discretion Advised Beware the Ides of March! William J. Marciano The Best of Times or

More information

Exceptional Supersymmetry. at the Large Hadron Collider

Exceptional Supersymmetry. at the Large Hadron Collider Exceptional Supersymmetry at the Large Hadron Collider E 6 SSM model and motivation Contents Why go beyond the Standard Model? Why consider non-minimal SUSY? Exceptional SUSY Structure, particle content

More information

Beyond the SM, Supersymmetry

Beyond the SM, Supersymmetry Beyond the SM, 1/ 44 Beyond the SM, A. B. Lahanas University of Athens Nuclear and Particle Physics Section Athens - Greece Beyond the SM, 2/ 44 Outline 1 Introduction 2 Beyond the SM Grand Unified Theories

More information

The Constrained E 6 SSM

The Constrained E 6 SSM The Constrained E 6 SSM and its signatures at the LHC Work with Moretti and Nevzorov; Howl; Athron, Miller, Moretti, Nevzorov Related work: Demir, Kane, T.Wang; Langacker, Nelson; Morrissey, Wells; Bourjaily;

More information

Beyond the MSSM (BMSSM)

Beyond the MSSM (BMSSM) Beyond the MSSM (BMSSM) Nathan Seiberg Strings 2007 SUSY 2012 Based on M. Dine, N.S., and S. Thomas, to appear Assume The LHC (or the Tevatron) will discover some of the particles in the MSSM. These include

More information

Electroweak physics and the LHC an introduction to the Standard Model

Electroweak physics and the LHC an introduction to the Standard Model Electroweak physics and the LHC an introduction to the Standard Model Paolo Gambino INFN Torino LHC School Martignano 12-18 June 2006 Outline Prologue on weak interactions Express review of gauge theories

More information

IX. Electroweak unification

IX. Electroweak unification IX. Electroweak unification The problem of divergence A theory of weak interactions only by means of W ± bosons leads to infinities e + e - γ W - W + e + W + ν e ν µ e - W - µ + µ Divergent integrals Figure

More information

Fundamental Symmetries - 2

Fundamental Symmetries - 2 HUGS 2018 Jefferson Lab, Newport News, VA May 29- June 15 2018 Fundamental Symmetries - 2 Vincenzo Cirigliano Los Alamos National Laboratory Plan of the lectures Review symmetry and symmetry breaking Introduce

More information

Tests of the Electroweak Theory

Tests of the Electroweak Theory Tests of the Electroweak Theory History/introduction Weak charged current QED Weak neutral current Precision tests Rare processes CP violation and B decays Neutrino mass FNAL (December 13, 2005) Paul Langacker

More information

FYS3510 Subatomic Physics. Exam 2016

FYS3510 Subatomic Physics. Exam 2016 FYS3510 Subatomic Physics VS 2015 Farid Ould-Saada Exam 2016 In addition to the items marked in blue, don t forget all examples and related material given in the slides, including the ones presented during

More information

QUANTUM FIELD THEORY. A Modern Introduction MICHIO KAKU. Department of Physics City College of the City University of New York

QUANTUM FIELD THEORY. A Modern Introduction MICHIO KAKU. Department of Physics City College of the City University of New York QUANTUM FIELD THEORY A Modern Introduction MICHIO KAKU Department of Physics City College of the City University of New York New York Oxford OXFORD UNIVERSITY PRESS 1993 Contents Quantum Fields and Renormalization

More information

The Standard Model Part. II

The Standard Model Part. II Our Story Thus Far The Standard Model Part. II!!We started with QED (and!)!!we extended this to the Fermi theory of weak interactions! Adding G F!!Today we will extended this to Glashow-Weinberg-Salam

More information

Gauge-Higgs Unification on Flat Space Revised

Gauge-Higgs Unification on Flat Space Revised Outline Gauge-Higgs Unification on Flat Space Revised Giuliano Panico ISAS-SISSA Trieste, Italy The 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions Irvine,

More information

Discovery Physics at the Large Hadron Collider

Discovery Physics at the Large Hadron Collider + / 2 GeV N evt 4 10 3 10 2 10 CMS 2010 Preliminary s=7 TeV -1 L dt = 35 pb R > 0.15 R > 0.20 R > 0.25 R > 0.30 R > 0.35 R > 0.40 R > 0.45 R > 0.50 10 1 100 150 200 250 300 350 400 [GeV] M R Discovery

More information

Introduction to particle physics Lecture 6

Introduction to particle physics Lecture 6 Introduction to particle physics Lecture 6 Frank Krauss IPPP Durham U Durham, Epiphany term 2009 Outline 1 Fermi s theory, once more 2 From effective to full theory: Weak gauge bosons 3 Massive gauge bosons:

More information

Supersymmetry. Physics Colloquium University of Virginia January 28, Stephen P. Martin Northern Illinois University

Supersymmetry. Physics Colloquium University of Virginia January 28, Stephen P. Martin Northern Illinois University Supersymmetry Physics Colloquium University of Virginia January 28, 2011 Stephen P. Martin Northern Illinois University 1 The Standard Model of particle physics The Hierarchy Problem : why is the Higgs

More information

Chapter 2 Theoretical Framework and Motivation

Chapter 2 Theoretical Framework and Motivation Chapter 2 Theoretical Framework and Motivation The Standard Model is currently the most precise theoretical framework to describe the sub-atomic particles and their behavior, and a large number of precision

More information

Unsolved Problems in Theoretical Physics V. BASHIRY CYPRUS INTRNATIONAL UNIVERSITY

Unsolved Problems in Theoretical Physics V. BASHIRY CYPRUS INTRNATIONAL UNIVERSITY Unsolved Problems in Theoretical Physics V. BASHIRY CYPRUS INTRNATIONAL UNIVERSITY 1 I am going to go through some of the major unsolved problems in theoretical physics. I mean the existing theories seem

More information

SUSY PHENOMENOLOGY. A Dissertation BO HU

SUSY PHENOMENOLOGY. A Dissertation BO HU SUSY PHENOMENOLOGY A Dissertation by BO HU Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2004

More information

Finding the Higgs boson

Finding the Higgs boson Finding the Higgs boson Sally Dawson, BN XIII Mexican School of Particles and Fields ecture 1, Oct, 008 Properties of the Higgs boson Higgs production at the Tevatron and HC Discovery vs spectroscopy Collider

More information

The Higgs Mechanism and the Higgs Particle

The Higgs Mechanism and the Higgs Particle The Higgs Mechanism and the Higgs Particle Heavy-Ion Seminar... or the Anderson-Higgs-Brout-Englert-Guralnik-Hagen-Kibble Mechanism Philip W. Anderson Peter W. Higgs Tom W. B. Gerald Carl R. François Robert

More information

Electron-positron pairs can be produced from a photon of energy > twice the rest energy of the electron.

Electron-positron pairs can be produced from a photon of energy > twice the rest energy of the electron. Particle Physics Positron - discovered in 1932, same mass as electron, same charge but opposite sign, same spin but magnetic moment is parallel to angular momentum. Electron-positron pairs can be produced

More information

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G and Signatures of D-Type Gauge Mediation Ken Hsieh Michigan State Univeristy KH, Ph. D. Thesis (2007) ArXiv:0708.3970 [hep-ph] Other works with M. Luty and Y. Cai (to appear) MSU HEP Seminar November 6,

More information

The God particle at last? Astronomy Ireland, Oct 8 th, 2012

The God particle at last? Astronomy Ireland, Oct 8 th, 2012 The God particle at last? Astronomy Ireland, Oct 8 th, 2012 Cormac O Raifeartaigh Waterford Institute of Technology CERN July 4 th 2012 (ATLAS and CMS ) A new particle of mass 125 GeV I The Higgs boson

More information

PHY323:Lecture 11 SUSY and UED Higgs and Supersymmetry The Neutralino Extra Dimensions How WIMPs interact

PHY323:Lecture 11 SUSY and UED Higgs and Supersymmetry The Neutralino Extra Dimensions How WIMPs interact PHY323:Lecture 11 SUSY and UED Higgs and Supersymmetry The Neutralino Extra Dimensions How WIMPs interact Candidates for Dark Matter III The New Particle Zoo Here are a few of the candidates on a plot

More information

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC Peter Krieger Carleton University Physics Motivations Experimental Theoretical New particles searches Standard Model Higgs

More information