Simplified differential equations approach for NNLO calculations

Size: px
Start display at page:

Download "Simplified differential equations approach for NNLO calculations"

Transcription

1 Simplified differential equations approach for NNLO calculations Costas. G. Papadopoulos INPP, NCSR Demokritos, Athens UCLA, June 19, 2015 Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

2 Perturbative QCD at NNLO What do we need for an NNLO calculation? p 1, p 2 p 3,..., p m+2 Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

3 Perturbative QCD at NNLO What do we need for an NNLO calculation? p 1, p 2 p 3,..., p m+2 σ NNLO + + m ( dφ m 2Re(M m (0) M m (2) ) + M m (1) 2) J m (Φ) ( )) dφ m+1 (2Re M (0) m+1 M(1) m+1 J m+1 (Φ) M (0) dφ m+2 2 J m+2 (Φ) m+1 m+2 m+2 VV RV RR RV + RR Talks by M. Czakon, Currie, Abelof, Boughezal, Somogyi,... STRIPPER,... Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

4 Perturbative QCD at NNLO What do we need for an NNLO calculation? p 1, p 2 p 3,..., p m+2 σ NNLO + + m ( dφ m 2Re(M m (0) M m (2) ) + M m (1) 2) J m (Φ) ( )) dφ m+1 (2Re M (0) m+1 M(1) m+1 J m+1 (Φ) M (0) dφ m+2 2 J m+2 (Φ) m+1 m+2 m+2 VV RV RR RV + RR Talks by M. Czakon, Currie, Abelof, Boughezal, Somogyi,... STRIPPER,... Radcor > LoopFest Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

5 OPP at two loops Write the OPP-type equation at two loops N (l 1, l 2 ; {p i }) D 1 D 2... D n = min(n,8) m=1 (l i1i2...im 1, l 2 ; {p i }) D i1 D i2... D im S m;n S m;n stands for all subsets of m indices out of the n ones Talk by G.Ossola Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

6 The new master formula N(q) D 0 D1 D m 1 = m 1 d(i 0 i 1 i 2 i 3 ) + d(q; i 0 i 1 i 2 i 3 ) D i i0 Di1 Di2 Di2 0<i 1<i 2<i 3 m 1 c(i 0 i 1 i 2 ) + c(q; i 0 i 1 i 2 ) D i i0 Di1 Di2 0<i 1<i 2 m 1 b(i 0 i 1 ) + b(q; i0 i 1 ) D i i0 D i1 0<i 1 m 1 a(i 0 ) + ã(q; i 0 ) D i i0 0 + rational terms CutTools, Samurai, Ninja,... ( ) ( m m c 4 + c ) + c 2 ( m 2 Talk by G.Ossola ) Cm 4 Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

7 Reduction at the integrand level Over the last few years very important activity to extend unitarity and integrand level reduction ideas beyond one loop J. Gluza, K. Kajda and D. A. Kosower, Towards a Basis for Planar Two-Loop Integrals, Phys. Rev. D 83 (2011) [arxiv: [hep-th]]. D. A. Kosower and K. J. Larsen, Maximal Unitarity at Two Loops, Phys. Rev. D 85 (2012) [arxiv: [hep-th]]. P. Mastrolia and G. Ossola, On the Integrand-Reduction Method for Two-Loop Scattering Amplitudes, JHEP 1111 (2011) 014 [arxiv: [hep-ph]]. [arxiv: [hep-ph]]. S. Badger, H. Frellesvig and Y. Zhang, Hepta-Cuts of Two-Loop Scattering Amplitudes, JHEP 1204 (2012) 055 Y. Zhang, Integrand-Level Reduction of Loop Amplitudes by Computational Algebraic Geometry Methods, JHEP 1209 (2012) 042 [arxiv: [hep-ph]]. P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Integrand-Reduction for Two-Loop Scattering Amplitudes through Multivariate Polynomial Division, arxiv: [hep-ph]. P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Multiloop Integrand Reduction for Dimensionally Regulated Amplitudes, arxiv: [hep-ph]. Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

8 Multivariate Division and Groebner Basis D. Cox, J. Little, D. O Shea Ideals, Varieties and Algorithms multivariate polynomial division Given any set of polynomials π i, the ideal I, f = i π ih i, we can define a unique Groebner basis up to ordering < g 1,..., g s > Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

9 Multivariate Division and Groebner Basis D. Cox, J. Little, D. O Shea Ideals, Varieties and Algorithms multivariate polynomial division Given any set of polynomials π i, the ideal I, f = i π ih i, we can define a unique Groebner basis up to ordering < g 1,..., g s > f = h 1 g h n g n + r Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

10 Multivariate Division and Groebner Basis D. Cox, J. Little, D. O Shea Ideals, Varieties and Algorithms multivariate polynomial division Given any set of polynomials π i, the ideal I, f = i π ih i, we can define a unique Groebner basis up to ordering < g 1,..., g s > f = h 1 g h n g n + r Strategy: Start with a set of denominators, pick up a 4d parametrisation, define an ideal, I =< D 1,..., D n >, even D 2 i Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

11 Multivariate Division and Groebner Basis D. Cox, J. Little, D. O Shea Ideals, Varieties and Algorithms multivariate polynomial division Given any set of polynomials π i, the ideal I, f = i π ih i, we can define a unique Groebner basis up to ordering < g 1,..., g s > f = h 1 g h n g n + r Strategy: Start with a set of denominators, pick up a 4d parametrisation, define an ideal, I =< D 1,..., D n >, even D 2 i Find the GB of I, G =< g 1,..., g s > Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

12 Multivariate Division and Groebner Basis D. Cox, J. Little, D. O Shea Ideals, Varieties and Algorithms multivariate polynomial division Given any set of polynomials π i, the ideal I, f = i π ih i, we can define a unique Groebner basis up to ordering < g 1,..., g s > f = h 1 g h n g n + r Strategy: Start with a set of denominators, pick up a 4d parametrisation, define an ideal, I =< D 1,..., D n >, even D 2 i Find the GB of I, G =< g 1,..., g s > Perform the division of an arbitrary polynomial N Express back g i in terms of D i N = h 1 g h n g s + v N = h 1 D h n D n + v Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

13 OPP at two loops Write the OPP-type equation at two loops N (l 1, l 2 ; {p i }) D 1 D 2... D n = min(n,8) m=1 (l i1i2...im 1, l 2 ; {p i }) D i1 D i2... D im S m;n i1i2...i m (l 1, l 2 ; {p i }) spurious ISP irreducible integrals D i1 D i2... D im Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

14 OPP at two loops Write the OPP-type equation at two loops N (l 1, l 2 ; {p i }) D 1 D 2... D n = min(n,8) m=1 (l i1i2...im 1, l 2 ; {p i }) D i1 D i2... D im S m;n i1i2...i m (l 1, l 2 ; {p i }) spurious ISP irreducible integrals D i1 D i2... D im ISP-irreducible integrals use IBPI to Master Integrals Libraries in the future: QCD2LOOP, TwOLOop Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

15 The one loop paradigm basis of scalar integrals: G. Passarino and M. J. G. Veltman, Nucl. Phys. B 160 (1979) 151. Z. Bern, L. J. Dixon, D. C. Dunbar and D. A. Kosower, Nucl. Phys. B 425 (1994) 217 [arxiv:hep-ph/ ]. A = d i1 i 2 i 3 i 4 + c i1 i 2 i 3 + b i1 i 2 + a i1 + R a, b, c, d cut-constructible part R rational terms A = I {0,1,,m 1} µ (4 d)d d q (2π) d NI ( q) i I D i ( q) D 0, C 0, B 0, A 0, scalar one-loop integrals: t Hooft and Veltman QCDLOOP Ellis & Zanderighi ; OneLOop A. van Hameren Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

16 OPP at two loops - Rational terms Rational terms ( l 1 l 1 + l (2ε) 1, l 2 l 2 + l (2ε) 2, l 1,2 l (2ε) 1,2 = 0 l (2ε) 1 ) 2 ( = µ11, { } l (4) 1, l (4) 2 Welcome: I = I prime ideal l (2ε) 2 ) 2 = µ22, l (2ε) S. Badger, talk in Amplitudes l (2ε) 2 = µ 12 { l (4) 1, l (4) 2, µ 11, µ 22, µ 12 } Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

17 OPP at two loops - Rational terms Rational terms ( l 1 l 1 + l (2ε) 1, l 2 l 2 + l (2ε) 2, l 1,2 l (2ε) 1,2 = 0 l (2ε) 1 ) 2 ( = µ11, { } l (4) 1, l (4) 2 Welcome: I = I prime ideal l (2ε) 2 ) 2 = µ22, l (2ε) S. Badger, talk in Amplitudes l (2ε) 2 = µ 12 { l (4) 1, l (4) 2, µ 11, µ 22, µ 12 } R 2 terms: hopefully à la 1 loop Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

18 Rational Terms Numerically treat D = 4 2ɛ, means 4 1 Expand in D-dimensions? D i = D i + q 2 N(q) = m 1 i 0<i 1<i 2<i 3 m 1 i 0<i 1<i 2 i 0<i 1 [ ] m 1 d(i 0 i 1 i 2 i 3 ; q 2 ) + d(q; i 0 i 1 i 2 i 3 ; q 2 ) D i i i 0,i 1,i 2,i 3 [ c(i0 i 1 i 2 ; q 2 ) + c(q; i 0 i 1 i 2 ; q 2 ) ] m 1 m 1 [ ] m 1 b(i 0 i 1 ; q 2 ) + b(q; i 0 i 1 ; q 2 ) D i i i 0,i 1 i i 0,i 1,i 2 Di m 1 [ a(i0 ; q 2 ) + ã(q; i 0 ; q 2 ) ] m 1 m 1 Di + P(q) Di Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

19 Rational Terms Numerically treat D = 4 2ɛ, means 4 1 Expand in D-dimensions? N(q) = m 1 i 0<i 1<i 2<i 3 m 1 i 0<i 1<i 2 i 0<i 1 [ ] m 1 d(i 0 i 1 i 2 i 3 ; q 2 ) + d(q; i 0 i 1 i 2 i 3 ; q 2 ) Di i i 0,i 1,i 2,i 3 [ c(i0 i 1 i 2 ; q 2 ) + c(q; i 0 i 1 i 2 ; q 2 ) ] m 1 m 1 [ b(i 0 i 1 ; q 2 ) + b(q; ] m 1 i 0 i 1 ; q 2 ) Di i i 0,i 1 m 1 [ a(i0 ; q 2 ) + ã(q; i 0 ; q 2 ) ] m 1 i 0 i i 0 i i 0,i 1,i 2 Di m 1 D i + P(q) i D i m 2 i m 2 i q 2 Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

20 Rational Terms Numerically treat D = 4 2ɛ, means 4 1 Expand in D-dimensions? N(q) = m 1 i 0<i 1<i 2<i 3 m 1 i 0<i 1<i 2 i 0<i 1 [ ] m 1 d(i 0 i 1 i 2 i 3 ; q 2 ) + d(q; i 0 i 1 i 2 i 3 ; q 2 ) Di i i 0,i 1,i 2,i 3 [ c(i0 i 1 i 2 ; q 2 ) + c(q; i 0 i 1 i 2 ; q 2 ) ] m 1 m 1 [ b(i 0 i 1 ; q 2 ) + b(q; ] m 1 i 0 i 1 ; q 2 ) Di i i 0,i 1 m 1 [ a(i0 ; q 2 ) + ã(q; i 0 ; q 2 ) ] m 1 i 0 i i 0 i i 0,i 1,i 2 Di m 1 D i + P(q) i D i m 2 i m 2 i q 2 Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

21 Rational Terms In practice, once the 4-dimensional coefficients have been determined, one can redo the fits for different values of q 2, in order to determine b (2) (ij), c (2) (ijk) and d (2m 4). R 1 = i 96π 2 d (2m 4) i 32π 2 m 1 i 32π 2 b (2) (i 0 i 1 ) i 0<i 1 m 1 G. Ossola, C. G. Papadopoulos and R. Pittau,arXiv: [hep-ph] c (2) (i 0 i 1 i 2 ) i 0<i 1<i 2 (m 2i0 + m 2i1 (p i 0 p i1 ) 2 ). 3 Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

22 Rational Terms - R 2 A different source of Rational Terms, called R 2, can also be generated from the ɛ-dimensional part of N(q) N( q) = N(q) + Ñ( q2, ɛ; q) R 2 1 (2π) 4 d n q Ñ( q 2, ɛ; q) D 0 D1 D 1 m 1 (2π) 4 d n q R 2 q = q + q, γ µ = γ µ + γ µ, ḡ µ ν = g µν + g µ ν. New vertices Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

23 The one-loop calculation in a nutshell The computation of pp(p p) e + ν eµ ν µb b involves up to six-point functions. A(q) = N(6) i (q) + N(5) i (q) + N(4) i (q) + N(3) i (q) + D i0 D i1 D i5 D i0 D i1 D i4 D i0 D i1 D i3 D i0 D i1 D i2 }{{}}{{}}{{}}{{} In order to apply the OPP reduction, HELAC evaluates numerically the numerators Ni 6(q), N5 i (q),... with the values of the loop momentum q provided by CutTools generates all inequivalent partitions of 6,5,4,3... blobs attached to the loop, and check all possible flavours (and colours) that can be consistently running inside hard-cuts the loop (q is fixed) to get a n + 2 tree-like process The R 2 contributions (rational terms) are calculated in the same way as the tree-order amplitude, taking into account extra vertices MadGraph, RECOLA, OpenLoops, Talks by S.Uccirati, V.Hirschi,... Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

24 Towards a full NNLO solution From Feynman Diagrams to recursive equations: taming the n!. Dyson-Schwinger Recursive Equations Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

25 Towards a full NNLO solution From Feynman Diagrams to recursive equations: taming the n!. The Dyson-Schwinger recursion Dyson-Schwinger Recursive Equations Imagine a theory with 3- and 4- point vertices and just one field. A. Kanaki and C. G. Papadopoulos, Comput. Phys. Commun. 132 (2000) 306 [arxiv:hep-ph/ ]. Then it is straightforward to write an equation that gives the amplitude for 1 n F. A. Berends and W. T. Giele, Nucl. Phys. B 306 (1988) 759. F. Caravaglios and M. Moretti, Phys. Lett. B 358 (1995) 332. = Unfortunately not so much on the second line! HEP - NCSR Democritos S. Weinzierl Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

26 Integrand reduction at two loops Amplitude level (explicit color, helicity) Using t Hooft-Veltman scheme, d = 4 ME Fully automated Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

27 Integrand reduction at two loops Amplitude level (explicit color, helicity) Using t Hooft-Veltman scheme, d = 4 ME Fully automated MG5 amc> add process p p > e+ ve j j 0 MG5 amc> add process p p > e+ ve j j 1 MG5 amc> add process p p > e+ ve j j 2 Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

28 Master Integrals: The current approach m independent momenta l loops, N = l(l + 1)/2 + lm scalar products basis composed by D 1... D N, allows to express all scalar products D i = ({k, l} + p i ) 2 M 2 i F [a 1,..., a N ] = d d kd d l {k µ, l µ } d d kd d 1 l D a Da N N ( {k µ, l µ, υ µ ) } D a = 0 Da N N IBP Laporta: FIRE, AIR, Reduze reduce these to MI MI computed, Feynman parameters, Mellin-Barnes, Differential Equations Z. Bern, L. J. Dixon and D. A. Kosower, Phys. Lett. B 302 (1993) 299. T. Gehrmann and E. Remiddi, Nucl. Phys. B 580 (2000) 485 [hep-ph/ ]. J. M. Henn, Phys. Rev. Lett. 110 (2013) 25, [arxiv: [hep-th]]. Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

29 Master Integrals: The current approach m independent momenta l loops, N = l(l + 1)/2 + lm scalar products basis composed by D 1... D N, allows to express all scalar products D i = ({k, l} + p i ) 2 M 2 i F [a 1,..., a N ] = d d kd d l {k µ, l µ } d d kd d 1 l D a Da N N ( {k µ, l µ, υ µ ) } D a = 0 Da N N IBP Laporta: FIRE, AIR, Reduze reduce these to MI MI computed, Feynman parameters, Mellin-Barnes, Differential Equations Z. Bern, L. J. Dixon and D. A. Kosower, Phys. Lett. B 302 (1993) 299. T. Gehrmann and E. Remiddi, Nucl. Phys. B 580 (2000) 485 [hep-ph/ ]. J. M. Henn, Phys. Rev. Lett. 110 (2013) 25, [arxiv: [hep-th]]. Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

30 Master Integrals: The current approach m independent momenta l loops, N = l(l + 1)/2 + lm scalar products basis composed by D 1... D N, allows to express all scalar products D i = ({k, l} + p i ) 2 M 2 i F [a 1,..., a N ] = d d kd d l {k µ, l µ } d d kd d 1 l D a Da N N ( {k µ, l µ, υ µ ) } D a = 0 Da N N IBP Laporta: FIRE, AIR, Reduze reduce these to MI MI computed, Feynman parameters, Mellin-Barnes, Differential Equations Z. Bern, L. J. Dixon and D. A. Kosower, Phys. Lett. B 302 (1993) 299. T. Gehrmann and E. Remiddi, Nucl. Phys. B 580 (2000) 485 [hep-ph/ ]. J. M. Henn, Phys. Rev. Lett. 110 (2013) 25, [arxiv: [hep-th]]. Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

31 Master Integrals: The current approach m independent momenta l loops, N = l(l + 1)/2 + lm scalar products basis composed by D 1... D N, allows to express all scalar products D i = ({k, l} + p i ) 2 M 2 i F [a 1,..., a N ] = d d kd d l {k µ, l µ } d d kd d 1 l D a Da N N ( {k µ, l µ, υ µ ) } D a = 0 Da N N IBP Laporta: FIRE, AIR, Reduze reduce these to MI MI computed, Feynman parameters, Mellin-Barnes, Differential Equations Z. Bern, L. J. Dixon and D. A. Kosower, Phys. Lett. B 302 (1993) 299. T. Gehrmann and E. Remiddi, Nucl. Phys. B 580 (2000) 485 [hep-ph/ ]. J. M. Henn, Phys. Rev. Lett. 110 (2013) 25, [arxiv: [hep-th]]. Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

32 Master Integrals: The current approach m independent momenta l loops, N = l(l + 1)/2 + lm scalar products basis composed by D 1... D N, allows to express all scalar products D i = ({k, l} + p i ) 2 M 2 i F [a 1,..., a N ] = d d kd d l {k µ, l µ } d d kd d 1 l D a Da N N ( {k µ, l µ, υ µ ) } D a = 0 Da N N IBP Laporta: FIRE, AIR, Reduze reduce these to MI MI computed, Feynman parameters, Mellin-Barnes, Differential Equations Z. Bern, L. J. Dixon and D. A. Kosower, Phys. Lett. B 302 (1993) 299. T. Gehrmann and E. Remiddi, Nucl. Phys. B 580 (2000) 485 [hep-ph/ ]. J. M. Henn, Phys. Rev. Lett. 110 (2013) 25, [arxiv: [hep-th]]. Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

33 Differential Equations Approach Iterated Integrals K. T. Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977) 831 Polylogarithms, Symbol algebra A. B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Phys. Rev. Lett. 105 (2010) C. Duhr, H. Gangl and J. R. Rhodes, JHEP 1210 (2012) 075 [arxiv: [math-ph]]. C. Bogner and F. Brown G (a n,..., a 1, x) = x with the special cases, G(x) = 1 and 0 1 dt G (a n 1,..., a 1, t) t a n G 0,... 0, x = 1 }{{} n! logn (x) n Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

34 Differential Equations Approach Iterated Integrals K. T. Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977) 831 Polylogarithms, Symbol algebra A. B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Phys. Rev. Lett. 105 (2010) C. Duhr, H. Gangl and J. R. Rhodes, JHEP 1210 (2012) 075 [arxiv: [math-ph]]. C. Bogner and F. Brown G (a n,..., a 1, x) = x with the special cases, G(x) = 1 and 0 1 dt G (a n 1,..., a 1, t) t a n G 0,... 0, x = 1 }{{} n! logn (x) n Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

35 Differential Equations Approach The integral is a function of external momenta, so one can set-up differential equations by differentiating and using IBP p µ j p µ i G[a 1,..., a n ] C a 1,...,a n G[a 1,..., a n] Find the proper parametrization; Bring the system of equations in a form suitable to express the MI in terms of GPs m f (ε, {x i }) = εa m ({x i }) f (ε, {x i }) m A n n A m = 0 [A m, A n ] = 0 J. M. Henn, Phys. Rev. Lett. 110 (2013) 25, [arxiv: [hep-th]]. Boundary conditions: expansion by regions or regularity conditions. B. Jantzen, A. V. Smirnov and V. A. Smirnov, Eur. Phys. J. C 72 (2012) 2139 [arxiv: [hep-ph]]. Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

36 Differential Equations Approach The integral is a function of external momenta, so one can set-up differential equations by differentiating and using IBP p µ j p µ i G[a 1,..., a n ] C a 1,...,a n G[a 1,..., a n] Find the proper parametrization; Bring the system of equations in a form suitable to express the MI in terms of GPs m f (ε, {x i }) = εa m ({x i }) f (ε, {x i }) m A n n A m = 0 [A m, A n ] = 0 J. M. Henn, Phys. Rev. Lett. 110 (2013) 25, [arxiv: [hep-th]]. Boundary conditions: expansion by regions or regularity conditions. B. Jantzen, A. V. Smirnov and V. A. Smirnov, Eur. Phys. J. C 72 (2012) 2139 [arxiv: [hep-ph]]. Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

37 Differential Equations Approach The integral is a function of external momenta, so one can set-up differential equations by differentiating and using IBP p µ j p µ i G[a 1,..., a n ] C a 1,...,a n G[a 1,..., a n] Find the proper parametrization; Bring the system of equations in a form suitable to express the MI in terms of GPs m f (ε, {x i }) = εa m ({x i }) f (ε, {x i }) m A n n A m = 0 [A m, A n ] = 0 J. M. Henn, Phys. Rev. Lett. 110 (2013) 25, [arxiv: [hep-th]]. Boundary conditions: expansion by regions or regularity conditions. B. Jantzen, A. V. Smirnov and V. A. Smirnov, Eur. Phys. J. C 72 (2012) 2139 [arxiv: [hep-ph]]. Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

38 Differential Equations Approach J. M. Henn, K. Melnikov and V. A. Smirnov, arxiv: [hep-ph]. T. Gehrmann, A. von Manteuffel and L. Tancredi, arxiv: [hep-ph]. p p p 3 p 4 S = (q 1 + q 2 ) 2 = (q 3 + q 4 ) 2, T = (q 1 q 3 ) 2 = (q 2 q 4 ) 2, U = (q 1 q 4 ) 2 = (q 2 q 3 ) 2 ; S M 2 3 = (1 + x)(1 + xy), T M 2 3 = xz, M 2 4 M 2 3 = x 2 y. d f (x, y, z; ɛ) = ɛ d Ã(x, y, z) f (x, y, z; ɛ) 15 Ã = Ã αi log(α i ) i=1 α = {x, y, z, 1 + x, 1 y, 1 z, 1 + xy, z y, 1 + y(1 + x) z, xy + z, 1 + x(1 + y z), 1 + xz, 1 + y z, z + x(z y) + xyz, z y + yz + xyz}. Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

39 The Simplified Differential Equations Approach C. G. Papadopoulos, arxiv: [hep-ph]. Making the whole procedure systematic (algorithmic) and straightforwardly expressible in terms of GPs. Introduce one parameter G (x) = d d k 1 iπ d/2 (k 2 ) (k + x p 1 ) 2 (k + p 1 + p 2 ) 2... (k + p 1 + p p n) 2 Now the integral becomes a function of x, which allows to define a differential equation with respect to x, schematically given by x G (x) = 1 x G (x) + xp 2 1 G x G and using IBPI we obtain, for instance for the one-loop 3 off-shell legs ( ) ( ) m 1 xg x G 021 = 1 x d 4 G x m 3 /m ( ) ( ) + d 3 1 m 1 m 3 x 1 1 G101 G 110 x m 3 /m 1 x Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

40 The Simplified Differential Equations Approach C. G. Papadopoulos, arxiv: [hep-ph]. Making the whole procedure systematic (algorithmic) and straightforwardly expressible in terms of GPs. Introduce one parameter G (x) = d d k 1 iπ d/2 (k 2 ) (k + x p 1 ) 2 (k + p 1 + p 2 ) 2... (k + p 1 + p p n) 2 Now the integral becomes a function of x, which allows to define a differential equation with respect to x, schematically given by x G (x) = 1 x G (x) + xp 2 1 G x G and using IBPI we obtain, for instance for the one-loop 3 off-shell legs ( ) ( ) m 1 xg x G 021 = 1 x d 4 G x m 3 /m ( ) ( ) + d 3 1 m 1 m 3 x 1 1 G101 G 110 x m 3 /m 1 x Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

41 The Simplified Differential Equations Approach C. G. Papadopoulos, arxiv: [hep-ph]. Making the whole procedure systematic (algorithmic) and straightforwardly expressible in terms of GPs. Introduce one parameter G (x) = d d k 1 iπ d/2 (k 2 ) (k + x p 1 ) 2 (k + p 1 + p 2 ) 2... (k + p 1 + p p n) 2 Now the integral becomes a function of x, which allows to define a differential equation with respect to x, schematically given by x G (x) = 1 x G (x) + xp 2 1 G x G and using IBPI we obtain, for instance for the one-loop 3 off-shell legs ( ) ( ) m 1 xg x G 021 = 1 x d 4 G x m 3 /m ( ) ( ) + d 3 1 m 1 m 3 x 1 1 G101 G 110 x m 3 /m 1 x Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

42 The Simplified Differential Equations Approach The integrating factor M is given by and the DE takes the form, d = 4 2ε, M = x (1 x) 4 d 2 ( m 3 + m 1 x) 4 d 2 x MG 1 ( 111 = c Γ ε (1 x) 1+ε ( m 3 + m 1 x) 1+ε ( m1 x 2) ε ( m3 ) ε) Integrating factors ɛ = 0 do not have branch points DE can be straightforwardly integrated order by order GPs. Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

43 The Simplified Differential Equations Approach The integrating factor M is given by and the DE takes the form, d = 4 2ε, M = x (1 x) 4 d 2 ( m 3 + m 1 x) 4 d 2 x MG 1 ( 111 = c Γ ε (1 x) 1+ε ( m 3 + m 1 x) 1+ε ( m1 x 2) ε ( m3 ) ε) Integrating factors ɛ = 0 do not have branch points DE can be straightforwardly integrated order by order GPs. Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

44 The Simplified Differential Equations Approach G 111 = c Γ (m 1 m 3 )x I x 1 = (1 x) ɛ ( ( m1) ε + ( m3) ε + ( m1) ε ( m3) ε) x1 I = ε 2 ( ( m1) ε ( m3) ε) ( ) ( m3 x1g, 1 ( m1) ε ( m3) ε) ( ( ) ( )) m3 m3 G, 1 G, x m 1 m 1 m 1 + ε ( + ( m1) ε ( m3) ε) ( ( ) ( ) ( m3 m3 m3 G, 1 G, x G, m3 ) ( m3, 1 G, m3 )) (, x + x1 2G(0, 1, x) ( m1) ε m1 m1 m1 m1 m1 m1 ( + 2G 0, m3 ) ( ) (, x ( m1) ε m3 + 2G, 1, x ( m1) ε m3 + G, m3 ) ( ), 1 ( m1) ε m3 G, x log(1 x) ( m1) ε m1 m1 m1 m1 m1 ( ) ( ) ( m3 m3 m3 ) 2G, x log(x) ( m1) ε + 2 log(1 x) log(x) ( m1) ε 2 ( m3) ε G, 1, x ( m3) ε G,, 1 m1 m1 m1 m1 ( ( m1) ε ( m3) ε) ( ) ( ( ) ) ( ) ) m3 m3 G, 1 G, x log(1 x) + ( m3) ε m3 G, x log(1 x) m1 m1 m1 ( ( + ε ( m1) ε ( m3) ε) ( ( ) ( m3 m3 G, x G, m3 ) ( ) ( m3 m3, 1 G, 1 G, m3 ) ( m3, x G, m3, m3 ), 1 m1 m1 m1 m1 m1 m1 m1 m1 m1 ( m3 + G, m3, m3 )), x + 1 ( ( 2 x1 ( m1) ε ( m3) ε) ( ) ( ( m3 G, 1 log 2 m3 (1 x) + 2G, m3 )), x m1 m1 m1 m1 m1 m1 ( ) ( m3 + G, x 4 log 2 ( (x) 2 ( m1) ε ( m3) ε) ( m3 G, m3 ) (, ( m3) ε ( m1) ε) ( ) ) m3 G, 1 log(1 x) m1 m1 m1 m1 ( ( ) ( ) m3 + 2 G, m3, m3, 1 ( m1) ε m3 + G, m3, 1 log(1 x) ( m1) ε 2 log(1 x) log 2 (x) 4G(0, 0, 1, x) m1 m1 m1 m1 m1 ( + 4G 0, 0, m3 ) (, x 2G(0, 1, 1, x) + 4G 0, m3 ) (, 1, x 2G 0, m3, m3 ) ( ) ( m3 m3, x + 2G, 0, 1, x 2G, 0, m3 ), x m1 m1 m1 m1 m1 m1 m1 ( m3 ) ( m3 ) ( m3) ε G,,, 1 ( m3) ε G,, 1 log(1 x) + log 2 (1 x) log(x) m1 m1 m1 m1 m1 ( + 4G(0, 1, x) log(x) 4G 0, m3 ) ( ) ( m3 m3, x log(x) 4G, 1, x log(x) + 2G, m3 ) ))), x log(x) m1 m1 m1 m1 It is straightforward to see that by taking now the limit x 1, as described above, we Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

45 The Simplified Differential Equations Approach The two-loop 3-off-shell-legs triangle Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

46 The Simplified Differential Equations Approach We are interested in G The DE involves also the MI G , so we have a system of two coupled DE, as follows: x f (x) = A 3 (2 3ε)(1 x) 2ε x 1+ε (m 1 x m 3 ) 2ε 2ε(2ε 1) + m 1 ε(1 x) 2ε (m 1 x m 3 ) 2ε g(x) 2ε 1 x g(x) = A 3 (3ε 2)(3ε 1)( m 1) 2ε (1 x) 2ε 1 x 3ε (m 1 x m 3 ) 2ε 1 2ε 2 +(2ε 1)(3ε 1)(1 x) 2ε 1 (m 1 x m 3 ) 2ε 1 f (x) where f (x) M G and g (x) M G , M = (1 x) 2ε x ε+1 (m 1 x m 3 ) 2ε and M = x ε Solve sequentially in ε expansion Reproduce limit ε 0 Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

47 The Simplified Differential Equations Approach The singularity at x = 0 is proportional to x 1+ε and can easily be integrated by the following decomposition x dt t 1+ε x F (t) = F (0) dt t 1+ε x + dt = F (0) xε x ε + F (t) F (0) dt t 0 F (t) F (0) t ε t ( 1 + ε log (t) ε2 log 2 (t) +... ) Reproduce correctly boundary term x = 0 Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

48 The Simplified Differential Equations Approach General setup m: number of denominators x G m+1 = H ({s ij }, ɛ; x) G m+1 + m 0 = 3 in the case of two loops m m m 0 R ({s ij }, ɛ; x) G m, Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

49 The Simplified Differential Equations Approach General setup m: number of denominators x G m+1 = H ({s ij }, ɛ; x) G m+1 + m 0 = 3 in the case of two loops x M = MH x (MG m+1 ) = M m m m m 0 R ({s ij }, ɛ; x) G m, m m 0 R ({s ij }, ɛ; x) G m. Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

50 The Simplified Differential Equations Approach General setup m: number of denominators m x G m+1 = H ({s ij }, ɛ; x) G m+1 + R ({s ij }, ɛ; x) G m, m m 0 m 0 = 3 in the case of two loops x M = MH x (MG m+1 ) = M m m m 0 R ({s ij }, ɛ; x) G m. m M R ({s ij }, ɛ; x) G m =: x 1+β i ɛ Ĩ (i) sin ({s ij}, ɛ) + Ĩreg ({s ij }, ɛ; x). m m 0 i withcostas. β being G. Papadopoulos typically rational numbers. NNLO Radcor-Loopfest, LA, / 39

51 The Simplified Differential Equations Approach MG m+1 = C({s ij }, ɛ) + i x β i ɛ x β i ɛ Ĩ (i) sin ({s ij}, ɛ) + dx Ĩ reg ({s ij }, ɛ; x ), 0 Integrating factors M rational functions of x in the limit ɛ 0 Sufficient condition DE solvable in terms of GPs. All re-summed parts at x 0 fully determined by the one-scale MI involved in the system Two-point integrals, two three-point integrals and double one-loop integrals homogenous differential equations. C({s ij }, ɛ) = 0: no independent calculation of boundary terms needed. Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

52 The Simplified Differential Equations Approach MG m+1 = C({s ij }, ɛ) + i x β i ɛ x β i ɛ Ĩ (i) sin ({s ij}, ɛ) + dx Ĩ reg ({s ij }, ɛ; x ), 0 Integrating factors M rational functions of x in the limit ɛ 0 Sufficient condition DE solvable in terms of GPs. All re-summed parts at x 0 fully determined by the one-scale MI involved in the system Two-point integrals, two three-point integrals and double one-loop integrals homogenous differential equations. C({s ij }, ɛ) = 0: no independent calculation of boundary terms needed. Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

53 The Simplified Differential Equations Approach MG m+1 = C({s ij }, ɛ) + i x β i ɛ x β i ɛ Ĩ (i) sin ({s ij}, ɛ) + dx Ĩ reg ({s ij }, ɛ; x ), 0 Integrating factors M rational functions of x in the limit ɛ 0 Sufficient condition DE solvable in terms of GPs. All re-summed parts at x 0 fully determined by the one-scale MI involved in the system Two-point integrals, two three-point integrals and double one-loop integrals homogenous differential equations. C({s ij }, ɛ) = 0: no independent calculation of boundary terms needed. Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

54 The Simplified Differential Equations Approach MG m+1 = C({s ij }, ɛ) + i x β i ɛ x β i ɛ Ĩ (i) sin ({s ij}, ɛ) + dx Ĩ reg ({s ij }, ɛ; x ), 0 Integrating factors M rational functions of x in the limit ɛ 0 Sufficient condition DE solvable in terms of GPs. All re-summed parts at x 0 fully determined by the one-scale MI involved in the system Two-point integrals, two three-point integrals and double one-loop integrals homogenous differential equations. C({s ij }, ɛ) = 0: no independent calculation of boundary terms needed. Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

55 The Simplified Differential Equations Approach MG m+1 = C({s ij }, ɛ) + i x β i ɛ x β i ɛ Ĩ (i) sin ({s ij}, ɛ) + dx Ĩ reg ({s ij }, ɛ; x ), 0 Integrating factors M rational functions of x in the limit ɛ 0 Sufficient condition DE solvable in terms of GPs. All re-summed parts at x 0 fully determined by the one-scale MI involved in the system Two-point integrals, two three-point integrals and double one-loop integrals homogenous differential equations. C({s ij }, ɛ) = 0: no independent calculation of boundary terms needed. Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

56 The Simplified Differential Equations Approach MG m+1 = C({s ij }, ɛ) + i x β i ɛ x β i ɛ Ĩ (i) sin ({s ij}, ɛ) + dx Ĩ reg ({s ij }, ɛ; x ), 0 Integrating factors M rational functions of x in the limit ɛ 0 Sufficient condition DE solvable in terms of GPs. All re-summed parts at x 0 fully determined by the one-scale MI involved in the system Two-point integrals, two three-point integrals and double one-loop integrals homogenous differential equations. C({s ij }, ɛ) = 0: no independent calculation of boundary terms needed. Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

57 The Simplified Differential Equations Approach When the DE are coupled x Gm+1 = H ({s ij }, ɛ; x) G m+1 + m m m 0 R ({s ij }, ɛ; x) G m, M D : x M D = M D H D, where H D is the diagonal part of H. H =: M D (H H D ) M 1 D of the reduced system of DE is then a strictly triangular matrix at order ɛ 0 and the system becomes effectively uncoupled. Problem: In very few specific cases, C x 2+β i ɛ appears in the matrix H, Solution: x 1/x back to x 1+β i ɛ in the inhomogeneous part of the DE. more details talk by C. Wever Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

58 The Simplified Differential Equations Approach When the DE are coupled x Gm+1 = H ({s ij }, ɛ; x) G m+1 + m m m 0 R ({s ij }, ɛ; x) G m, M D : x M D = M D H D, where H D is the diagonal part of H. H =: M D (H H D ) M 1 D of the reduced system of DE is then a strictly triangular matrix at order ɛ 0 and the system becomes effectively uncoupled. Problem: In very few specific cases, C x 2+β i ɛ appears in the matrix H, Solution: x 1/x back to x 1+β i ɛ in the inhomogeneous part of the DE. more details talk by C. Wever Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

59 The Simplified Differential Equations Approach When the DE are coupled x Gm+1 = H ({s ij }, ɛ; x) G m+1 + m m m 0 R ({s ij }, ɛ; x) G m, M D : x M D = M D H D, where H D is the diagonal part of H. H =: M D (H H D ) M 1 D of the reduced system of DE is then a strictly triangular matrix at order ɛ 0 and the system becomes effectively uncoupled. Problem: In very few specific cases, C x 2+β i ɛ appears in the matrix H, Solution: x 1/x back to x 1+β i ɛ in the inhomogeneous part of the DE. more details talk by C. Wever Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

60 The Simplified Differential Equations Approach When the DE are coupled x Gm+1 = H ({s ij }, ɛ; x) G m+1 + m m m 0 R ({s ij }, ɛ; x) G m, M D : x M D = M D H D, where H D is the diagonal part of H. H =: M D (H H D ) M 1 D of the reduced system of DE is then a strictly triangular matrix at order ɛ 0 and the system becomes effectively uncoupled. Problem: In very few specific cases, C x 2+β i ɛ appears in the matrix H, Solution: x 1/x back to x 1+β i ɛ in the inhomogeneous part of the DE. more details talk by C. Wever Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

61 The Simplified Differential Equations Approach When the DE are coupled x Gm+1 = H ({s ij }, ɛ; x) G m+1 + m m m 0 R ({s ij }, ɛ; x) G m, M D : x M D = M D H D, where H D is the diagonal part of H. H =: M D (H H D ) M 1 D of the reduced system of DE is then a strictly triangular matrix at order ɛ 0 and the system becomes effectively uncoupled. Problem: In very few specific cases, C x 2+β i ɛ appears in the matrix H, Solution: x 1/x back to x 1+β i ɛ in the inhomogeneous part of the DE. more details talk by C. Wever Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

62 Two-loop, four-point, two off-shell legs p(q 1 )p (q 2 ) V 1 ( q 3 )V 2 ( q 4 ), q 2 1 = q 2 2 = 0, q 2 3 = M 2 3, q 2 4 = M 2 4. Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

63 Two-loop, four-point, two off-shell legs p(q 1 )p (q 2 ) V 1 ( q 3 )V 2 ( q 4 ), q 2 1 = q 2 2 = 0, q 2 3 = M 2 3, q 2 4 = M 2 4. q 1 = xp 1, q 2 = xp 2, q 3 = p 123 xp 12, q 4 = p 123, p 2 i = 0, s 12 := p 2 12, s 23 := p 2 23, q := p 2 123, Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

64 Two-loop, four-point, two off-shell legs p(q 1 )p (q 2 ) V 1 ( q 3 )V 2 ( q 4 ), q 2 1 = q 2 2 = 0, q 2 3 = M 2 3, q 2 4 = M 2 4. q 1 = xp 1, q 2 = xp 2, q 3 = p 123 xp 12, q 4 = p 123, p 2 i = 0, s 12 := p 2 12, s 23 := p 2 23, q := p 2 123, S = (q 1 + q 2 ) 2 T = (q 1 + q 3 ) 2 S = s 12 x 2, T = q (s 12 + s 23 )x, M 2 3 = (1 x)(q s 12 x), M 2 4 = q. U = (q 1 + q 4 ) 2 : S + T + U = M M2 4. Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

65 Two-loop, four-point, two off-shell legs xp1 p123 xp2 xp1 xp1 p123 xp2 p123 xp12 p123 xp12 p123 p123 xp12 xp2 Figure : The parametrization of external momenta for the three planar double boxes of the families P 12 (left), P 13 (middle) and P 23 (right) contributing to pair production at the LHC. All external momenta are incoming. xp1 p123 xp2 xp1 xp1 p123 xp2 p123 xp12 p123 xp12 p123 xp2 p123 xp12 Figure : The parametrization of external momenta for the three non-planar double boxes of the families N 12 (left), N 13 (middle) and N 34 (right) contributing to pair production at the LHC. All external momenta are incoming. Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

66 Two-loop, four-point, two off-shell legs Triangle rule: xp 1 p 12 p 12 xp 1 Figure : Required parametrization for off mass-shell triangles after possible pinching of internal line(s). more details talk by C. Wever Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

67 Two-loop, four-point, two off-shell legs Planar topologies G P 12 d a (x, s, ɛ) := e 2γ E ɛ d d k1 d k2 1 1 a 9 iπ d/2 iπ d/2 k 2a 1 1 (k 1 + xp 1 ) 2a 2 (k 1 + xp 12 ) 2a 3 (k 1 + p 123 ) 2a 4 1 k 2a 5 2 (k 2 xp 1 ) 2a 6 (k 2 xp 12 ) 2a 7 (k 2 p 123 ) 2a 8 (k 1 + k 2 ) 2a 9, G P 13 d a (x, s, ɛ) := e 2γ E ɛ d d k1 d k2 1 1 a 9 iπ d/2 iπ d/2 k 2a 1 1 (k 1 + xp 1 ) 2a 2 (k 1 + xp 12 ) 2a 3 (k 1 + p 123 ) 2a 4 1 k 2a 5 2 (k 2 xp 1 ) 2a 6 (k 2 p 12 ) 2a 7 (k 2 p 123 ) 2a 8 (k 1 + k 2 ) 2a 9, G P 23 d a (x, s, ɛ) := e 2γ E ɛ d d k1 d k2 1 1 a 9 iπ d/2 iπ d/2 k 2a 1 1 (k 1 + xp 1 ) 2a 2 (k 1 + p 123 xp 2 ) 2a 3 (k 1 + p 123 ) 2a 4 1 k 2a 5 2 (k 2 p 1 ) 2a 6 (k 2 + xp 2 p 123 ) 2a 7 (k 2 p 123 ) 2a 8 (k 1 + k 2 ) 2a 9, Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

68 Two-loop, four-point, two off-shell legs Planar topologies P 12 : { , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 111m10111, 11101m111}, P 13 : { , , , , , , , , , , , , , , , , , , , , , , , , , , , , m }, P 23 : { , , , , , , , , , , , , , , , , , , , , , , , , , , , 111m10111}. Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

69 Two-loop, four-point, two off-shell legs Non-planar topologies G N 12 d a (x, s, ɛ) := e 2γ E ɛ d d k1 d k2 1 1 a 9 iπ d/2 iπ d/2 k 2a 1 1 (k 1 + xp 1 ) 2a 2 (k 1 + xp 12 ) 2a 3 (k 1 + p 123 ) 2a 4 1 k 2a 5 2 (k 2 xp 1 ) 2a 6 (k 2 p 123 ) 2a 7 (k 1 + k 2 + xp 2 ) 2a 8 (k 1 + k 2 ) 2a 9, G N 13 d a (x, s, ɛ) := e 2γ E ɛ d d k1 d k2 1 1 a 9 iπ d/2 iπ d/2 k 2a 1 1 (k 1 + xp 1 ) 2a 2 (k 1 + xp 12 ) 2a 3 (k 1 + p 123 ) 2a 4 1 k 2a 5 2 (k 2 xp 12 ) 2a 6 (k 2 p 123 ) 2a 7 (k 1 + k 2 + xp 1 ) 2a 8 (k 1 + k 2 ) 2a 9, G N 34 d a (x, s, ɛ) := e 2γ E ɛ d d k1 d k2 1 1 a 9 iπ d/2 iπ d/2 k 2a 1 1 (k 1 + xp 1 ) 2a 2 (k 1 + xp 12 ) 2a 3 (k 1 + p 123 ) 2a 4 1 k 2a 5 2 (k 2 xp 1 ) 2a 6 (k 2 p 123 ) 2a 7 (k 1 + k 2 + xp 12 p 123 ) 2a 8 (k 1 + k 2 ) 2a 9. Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

70 Two-loop, four-point, two off-shell legs Non-planar topologies N 12 : { , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 1m , , 0m , , 1m , 1m1111m11}, N 13 : { , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , m , , m , 0m , 00111m111, , , , , m }, N 34 : { , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 11m010111, 110m10111, 11001m111, , m , 011m10111, 01101m111, , , , , 111m10111}. Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

71 Two-loop, four-point, two off-shell legs GP-indices { I (P 12 ) = 0, 1, }, q, s 12 s 12 q, q, 1 s 23 q s 23 q, 1 + s 23 s 12, s 12 s 12 + s 23 { } I (P 13 ) = q 0, 1,, s 12 + s 23 q q(q s 23 ),, ξ, ξ +, s 12 s 12 q s 23 q 2 (q + s 12 )s 23, { q I (P 23 ) = 0, 1,, 1 + s 23 q q,,, q s } 23, s 12 s 12 q s 23 s 12 + s 23 s 12 ξ ± = qs 12 ± qs 12 s 23 ( q + s 12 + s 23 ) qs 12 s 12 s 23. I (N 12 ) = I (P 23 ), { s12 I (N 34 ) = I (P 12 ) I (P 23 ), s 12 + s 23 q s 23 q I (N 13 ) = I (P 23 ) { ξ, ξ +, 1 +, q2 qs 23 s 12 s 23, s qs 23 + s 12 s 23 s 12 (q s 23 ) s 12 (s 12 + s 23 ) q s 12 + q q + s 23 }. }, Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

72 Two-loop, four-point, two off-shell legs Example { G P (x, s, ɛ) = A 3 (ɛ) 1 x 2 s 12 ( q + x(q s 23 )) 2 2ɛ ( ( ) ( ) q q ɛ 3 GP ; x + 2 GP ; x s 12 q s GP(0; x) GP(1; x) + log ( s 12 ) + 9 ) + 1 ( ( ) ( ) q q 4 4ɛ 2 18 GP ; x 36 GP ; x s 12 q s 23 ( ) ( ) ( ) ) q q s23 q 8 GP 0, ; x + 16 GP 0, ; x + 8 GP + 1, ; x + s 12 q s 23 s 12 q s ( ( ( ) ) ( ( ) ) ) q q 9 GP 0, ; x + GP(0, 1; x) 4 GP 0, 0, ; x + GP(0, 0, 1; x) + ɛ s 12 s ( GP ( 0, 0, 1, ξ ; x ) + GP (0, 0, 1, ξ +; x) ) ( ) } q q (q s 23 ) 2 GP 0, 0,, q s 23 q 2 s 23 (q + s 12 ) ; x +. A 3 (ɛ) = e 2γ E ɛ Γ(1 ɛ)3 Γ(1 + 2ɛ). Γ(3 3ɛ) C. G. Papadopoulos, D. Tommasini and C. Wever, arxiv: [hep-ph]. Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

73 The Simplified Differential Equations Approach Summary & Outlook One-loop up to 5-point at order ɛ: 6 scales, GP-weight 3(4) (look forward for pentaboxes) Two-loop triangles and 4-point MI Double boxes with two external off-shell legs (more than 100 MI) P12 P13 P23 N12 N13 N34 topologies completed and tested! Completing the list of all MI with arbitrary off-shell legs (m = 0). Talk by Tancredi Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

74 The Simplified Differential Equations Approach Summary & Outlook One-loop up to 5-point at order ɛ: 6 scales, GP-weight 3(4) (look forward for pentaboxes) Two-loop triangles and 4-point MI Double boxes with two external off-shell legs (more than 100 MI) P12 P13 P23 N12 N13 N34 topologies completed and tested! Completing the list of all MI with arbitrary off-shell legs (m = 0). Talk by Tancredi Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

75 The Simplified Differential Equations Approach Summary & Outlook One-loop up to 5-point at order ɛ: 6 scales, GP-weight 3(4) (look forward for pentaboxes) Two-loop triangles and 4-point MI Double boxes with two external off-shell legs (more than 100 MI) P12 P13 P23 N12 N13 N34 topologies completed and tested! Completing the list of all MI with arbitrary off-shell legs (m = 0). Talk by Tancredi Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

76 The Simplified Differential Equations Approach Summary & Outlook One-loop up to 5-point at order ɛ: 6 scales, GP-weight 3(4) (look forward for pentaboxes) Two-loop triangles and 4-point MI Double boxes with two external off-shell legs (more than 100 MI) P12 P13 P23 N12 N13 N34 topologies completed and tested! Completing the list of all MI with arbitrary off-shell legs (m = 0). Talk by Tancredi Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

77 The Simplified Differential Equations Approach Summary & Outlook Get DE in one parameter, that always go to the argument of GPs, all weights being independent of x, therefore no limitation on the number of scales (multi-leg). Boundary conditions, namely the x 0 limit, extracted from the DE itself All coupled systems of DE (up to fivefold) satisfying the decoupling criterion, i.e. solvable order by order in ɛ Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

78 The Simplified Differential Equations Approach Summary & Outlook Get DE in one parameter, that always go to the argument of GPs, all weights being independent of x, therefore no limitation on the number of scales (multi-leg). Boundary conditions, namely the x 0 limit, extracted from the DE itself All coupled systems of DE (up to fivefold) satisfying the decoupling criterion, i.e. solvable order by order in ɛ Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

79 The Simplified Differential Equations Approach Summary & Outlook Get DE in one parameter, that always go to the argument of GPs, all weights being independent of x, therefore no limitation on the number of scales (multi-leg). Boundary conditions, namely the x 0 limit, extracted from the DE itself All coupled systems of DE (up to fivefold) satisfying the decoupling criterion, i.e. solvable order by order in ɛ Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

80 NNLO in the future The NNLO automation to come In a few years the new wish list should be completed pp t t, pp W + W, pp W /Z + nj, pp H + nj,... Virtual amplitudes: Reduction at the integrand level IBP Master Integrals Virtual-Real & Real-Real STRIPPER, M. Czakon, Phys. Lett. B 693 (2010) 259 [arxiv: [hep-ph]]. Gabor Somogyi, Zoltan Trocsanyi D. Kosower, A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover R. Boughezal, X. Liu and F. Petriello, Phys. Rev. D 91 (2015) 9, [arxiv: [hep-ph]]. A HELAC-NNLO framework? HELAC-LO: 1999 HELAC-NLO: 2009 HELAC-NNLO:? Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

81 NNLO in the future The NNLO automation to come In a few years the new wish list should be completed pp t t, pp W + W, pp W /Z + nj, pp H + nj,... Virtual amplitudes: Reduction at the integrand level IBP Master Integrals Virtual-Real & Real-Real STRIPPER, M. Czakon, Phys. Lett. B 693 (2010) 259 [arxiv: [hep-ph]]. Gabor Somogyi, Zoltan Trocsanyi D. Kosower, A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover R. Boughezal, X. Liu and F. Petriello, Phys. Rev. D 91 (2015) 9, [arxiv: [hep-ph]]. A HELAC-NNLO framework? HELAC-LO: 1999 HELAC-NLO: 2009 HELAC-NNLO:? Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

82 NNLO in the future The NNLO automation to come In a few years the new wish list should be completed pp t t, pp W + W, pp W /Z + nj, pp H + nj,... Virtual amplitudes: Reduction at the integrand level IBP Master Integrals Virtual-Real & Real-Real STRIPPER, M. Czakon, Phys. Lett. B 693 (2010) 259 [arxiv: [hep-ph]]. Gabor Somogyi, Zoltan Trocsanyi D. Kosower, A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover R. Boughezal, X. Liu and F. Petriello, Phys. Rev. D 91 (2015) 9, [arxiv: [hep-ph]]. A HELAC-NNLO framework? HELAC-LO: 1999 HELAC-NLO: 2009 HELAC-NNLO:? Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

83 NNLO in the future The NNLO automation to come In a few years the new wish list should be completed pp t t, pp W + W, pp W /Z + nj, pp H + nj,... Virtual amplitudes: Reduction at the integrand level IBP Master Integrals Virtual-Real & Real-Real STRIPPER, M. Czakon, Phys. Lett. B 693 (2010) 259 [arxiv: [hep-ph]]. Gabor Somogyi, Zoltan Trocsanyi D. Kosower, A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover R. Boughezal, X. Liu and F. Petriello, Phys. Rev. D 91 (2015) 9, [arxiv: [hep-ph]]. A HELAC-NNLO framework? HELAC-LO: 1999 HELAC-NLO: 2009 HELAC-NNLO:? Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

84 NNLO in the future The NNLO automation to come In a few years the new wish list should be completed pp t t, pp W + W, pp W /Z + nj, pp H + nj,... Virtual amplitudes: Reduction at the integrand level IBP Master Integrals Virtual-Real & Real-Real STRIPPER, M. Czakon, Phys. Lett. B 693 (2010) 259 [arxiv: [hep-ph]]. Gabor Somogyi, Zoltan Trocsanyi D. Kosower, A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover R. Boughezal, X. Liu and F. Petriello, Phys. Rev. D 91 (2015) 9, [arxiv: [hep-ph]]. A HELAC-NNLO framework? HELAC-LO: 1999 HELAC-NLO: 2009 HELAC-NNLO:? Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

85 NNLO in the future The NNLO automation to come In a few years the new wish list should be completed pp t t, pp W + W, pp W /Z + nj, pp H + nj,... Virtual amplitudes: Reduction at the integrand level IBP Master Integrals Virtual-Real & Real-Real STRIPPER, M. Czakon, Phys. Lett. B 693 (2010) 259 [arxiv: [hep-ph]]. Gabor Somogyi, Zoltan Trocsanyi D. Kosower, A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover R. Boughezal, X. Liu and F. Petriello, Phys. Rev. D 91 (2015) 9, [arxiv: [hep-ph]]. A HELAC-NNLO framework? HELAC-LO: 1999 HELAC-NLO: 2009 HELAC-NNLO:? Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

86 NNLO in the future NNLO: the next frontier. These are the voyages at Radcor-Loopfest conferences. Its five-year mission: to explore strange new subtraction schemes, to seek out new methods to calculate Master Integrals and new tools to perform Integrand Reduction, to boldly go where no man has gone before. Thanks! Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, / 39

The Pentabox Master Integrals with the Simplified Differential Equations approach

The Pentabox Master Integrals with the Simplified Differential Equations approach The Pentabox Master Integrals with the Simplified Differential Equations approach Costas G. Papadopoulos INPP, NCSR Demokritos Zurich, August 25, 2016 C.G.Papadopoulos (INPP) 5box QCD@LHC 2016 1 / 36 Introduction

More information

Simplified differential equations approach for the calculation of multi-loop integrals

Simplified differential equations approach for the calculation of multi-loop integrals Simplified differential equations approach for the calculation of multi-loop integrals Chris Wever (N.C.S.R. Demokritos) 1 C. Papadopoulos [arxiv: 1401.6057 [hep-ph]] C. Papadopoulos, D. Tommasini, C.

More information

Reduction at the integrand level beyond NLO

Reduction at the integrand level beyond NLO Reduction at the integrand level beyond NLO Costas G. Papadopoulos NCSR Demokritos, Athens, Greece & CERN, Geneva, Switzerland Corfu 2012, September 15, 2012 Costas G. Papadopoulos (NCSR-D & CERN) NNLO

More information

Multiloop integrals in dimensional regularization made simple

Multiloop integrals in dimensional regularization made simple Multiloop integrals in dimensional regularization made simple Johannes M. Henn Institute for Advanced Study based on PRL 110 (2013) [arxiv:1304.1806], JHEP 1307 (2013) 128 [arxiv:1306.2799] with A. V.

More information

Reduction of one-loop amplitudes at the integrand level-nlo QCD calculations

Reduction of one-loop amplitudes at the integrand level-nlo QCD calculations Reduction of one-loop amplitudes at the integrand level-nlo QCD calculations Costas G. Papadopoulos NCSR Demokritos, Athens Epiphany 2008, Krakow, 3-6 January 2008 Costas G. Papadopoulos (Athens) OPP Reduction

More information

Recent developments in automated NLO calculations

Recent developments in automated NLO calculations Recent developments in automated NLO calculations Giuseppe Bevilacqua NCSR Demokritos, Athens Workshop on Standard Model and Beyond and Standard Cosmology Corfu - August 31, 2009 In collaboration with

More information

Reducing full one-loop amplitudes at the integrand level

Reducing full one-loop amplitudes at the integrand level Reducing full one-loop amplitudes at the integrand level Costas Papadopoulos, Les Houches 2007 In collaboration with G. Ossola and R. Pittau 27/06/2007 HEP-NCSR DEMOKRITOS 1 The History Passarino-Veltman

More information

The Pentabox Master Integrals with the Simplified Differential Equations approach

The Pentabox Master Integrals with the Simplified Differential Equations approach Prepared for submission to JHEP TTP15-042 The Pentabox Master Integrals with the Simplified Differential Equations approach Costas G. Papadopoulos ab Damiano Tommasini a and Christopher Wever ac a Institute

More information

Evaluating multiloop Feynman integrals by Mellin-Barnes representation

Evaluating multiloop Feynman integrals by Mellin-Barnes representation April 7, 004 Loops&Legs 04 Evaluating multiloop Feynman integrals by Mellin-Barnes representation V.A. Smirnov Nuclear Physics Institute of Moscow State University Mellin-Barnes representation as a tool

More information

Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method

Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method Matteo Becchetti Supervisor Roberto Bonciani University of Rome La Sapienza 24/01/2017 1 The subject of

More information

NNLO antenna subtraction with two hadronic initial states

NNLO antenna subtraction with two hadronic initial states NNLO antenna subtraction with two hadronic initial states Institut für Theoretische Physik, Universität Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland E-mail: radja@physik.uzh.ch Aude Gehrmann-De

More information

Automatic calculation of one-loop amplitudes

Automatic calculation of one-loop amplitudes The H. Niewodniczański Institute of Nuclear Physics Polisch Academy of Sciences Radzikowskiego, - Krakow, Poland E-mail: hameren@if.edu.pl C.G. Papadopoulos Institute of Nuclear Physics, NCSR Demokritos,

More information

NLO QCD calculations with the OPP method

NLO QCD calculations with the OPP method A. van Hameren The H. Niewodniczański Institute of Nuclear Physics Polisch Academy of Sciences Radzikowskiego 15, 31-3 Krakow, Poland E-mail: hameren@if.edu.pl Institute of Nuclear Physics, NCSR Demokritos,

More information

The rare decay H Zγ in perturbative QCD

The rare decay H Zγ in perturbative QCD The rare decay H Zγ in perturbative QCD [arxiv: hep-ph/1505.00561] Thomas Gehrmann, Sam Guns & Dominik Kara June 15, 2015 RADCOR 2015 AND LOOPFEST XIV - UNIVERSITY OF CALIFORNIA, LOS ANGELES Z Z H g q

More information

The Two-Loop Five-Point Amplitude in N=4 Super-Yang-Mills Theory and N=8 Supergravity

The Two-Loop Five-Point Amplitude in N=4 Super-Yang-Mills Theory and N=8 Supergravity The Two-Loop Five-Point Amplitude in N=4 Super-Yang-Mills Theory and N=8 Supergravity Lance Dixon (SLAC) S. Abreu, LD, E. Herrmann, B. Page and M. Zeng 1812.08941, 1901.nnnnn DESY Zeuthen, 24 January 2019

More information

arxiv: v2 [hep-th] 7 Jul 2016

arxiv: v2 [hep-th] 7 Jul 2016 Integration-by-parts reductions from unitarity cuts and algebraic geometry arxiv:1606.09447v [hep-th] 7 Jul 016 Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland E-mail: Kasper.Larsen@phys.ethz.ch

More information

Maximal Unitarity at Two Loops

Maximal Unitarity at Two Loops Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon Caron- Huot & Kasper Larsen 1108.1180, 1205.0801,

More information

Differential Equations for Feynman Integrals

Differential Equations for Feynman Integrals for Feynman Integrals Ulrich Schubert Max-Planck-Institut für Physik Föhringer Ring 6, München January 18, 2015 based on work with M. Argeri, S. Di Vita, P. Mastrolia, E. Mirabella, J. Schlenk, L. Tancredi,

More information

W + W + jet compact analytic results

W + W + jet compact analytic results W + W + jet compact analytic results Tania Robens. based on. J. Campbell, D. Miller, TR (arxiv:1506.xxxxx) IKTP, TU Dresden 2015 Radcor-Loopfest UCLA, Los Angeles, California WW + jet: Motivation from

More information

Discontinuities of Feynman Integrals

Discontinuities of Feynman Integrals CEA Saclay Brown University, Twelfth Workshop on Non-Perturbative Quantum Chromodynamics June 10, 2013 Outline Landau and Cutkosky Classic unitarity cuts I I I Dispersion relations Modern unitarity method,

More information

Multiloop scattering amplitudes in the LHC Era

Multiloop scattering amplitudes in the LHC Era Multiloop scattering amplitudes in the LHC Era Francesco Moriello Based on arxiv:1609.06685 In collaboration with: R. Bonciani, V. Del Duca, H. Frellesvig, J.M. Henn, V. Smirnov October 26, 2016 Outline

More information

One-Mass Two-Loop Master Integrals for Mixed

One-Mass Two-Loop Master Integrals for Mixed One-Mass Two-Loop Master Integrals for Mixed α s -Electroweak Drell-Yan Production work ongoing with Andreas von Manteuffel The PRISMA Cluster of Excellence and Institute of Physics Johannes Gutenberg

More information

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases.

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases. Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases. Lorenzo Tancredi TTP, KIT - Karlsruhe Bologna, 18 Novembre 2014 Based on collaboration with Thomas Gehrmann,

More information

NNLO antenna subtraction with one hadronic initial state

NNLO antenna subtraction with one hadronic initial state antenna subtraction with one hadronic initial state Alejandro Daleo, Aude Gehrmann-De Ridder Institute for Theoretical Physics, ETH Zürich E-mail: adaleo@phys.ethz.ch, gehra@phys.ethz.ch Thomas Gehrmann,

More information

arxiv: v1 [hep-ph] 28 Dec 2018

arxiv: v1 [hep-ph] 28 Dec 2018 MPP-208-06 All master integrals for three-jet production at NNLO D. Chicherin a, T. Gehrmann b, J. M. Henn a, P. Wasser c, Y. Zhang a, S. Zoia a a Max-Planck-Institut für Physik, Werner-Heisenberg-Institut,

More information

Precision Calculations for the LHC

Precision Calculations for the LHC Precision Calculations for the LHC LHC Olympics 2006 Zvi Bern, UCLA with Carola Berger, Lance Dixon, Darren Forde and David Kosower hep-ph/0501240 hep-ph/0505055 hep-ph/0507005 hep-ph/0604195 hep-ph/0607014

More information

Two-loop Remainder Functions in N = 4 SYM

Two-loop Remainder Functions in N = 4 SYM Two-loop Remainder Functions in N = 4 SYM Claude Duhr Institut für theoretische Physik, ETH Zürich, Wolfgang-Paulistr. 27, CH-8093, Switzerland E-mail: duhrc@itp.phys.ethz.ch 1 Introduction Over the last

More information

N = 4 SYM and new insights into

N = 4 SYM and new insights into N = 4 SYM and new insights into QCD tree-level amplitudes N = 4 SUSY and QCD workshop LPTHE, Jussieu, Paris Dec 12, 2008 Henrik Johansson, UCLA Bern, Carrasco, HJ, Kosower arxiv:0705.1864 [hep-th] Bern,

More information

Non-planar two-loop Feynman integrals contributing to Higgs plus jet production

Non-planar two-loop Feynman integrals contributing to Higgs plus jet production Non-planar two-loop Feynman integrals contributing to Higgs plus jet production Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of Technology Engesserstraße 7, D-76128 Karlsruhe,

More information

Higher Order Calculations

Higher Order Calculations Higher Order Calculations Zoltan Kunszt, ETH, Zurich QCD at the LHC St Andrews, Scotland, August 23, 2011 C The predictions of the SM for LHC are given in perturbation theory in the QCD improved standard

More information

Automation of One-Loop Calculations with Golem/Samurai

Automation of One-Loop Calculations with Golem/Samurai Automation of One-Loop Calculations with Golem/Samurai Giovanni Ossola New York City College of Technology City University of New York (CUNY) In collaboration with: G. Cullen, N. Greiner, G. Heinrich,

More information

Integrand-Reduction Techniques for NLO Calculations and Beyond

Integrand-Reduction Techniques for NLO Calculations and Beyond Integrand-Reduction Techniques for NLO Calculations and Beyond Giovanni Ossola New York City College of Technology City University of New York (CUNY) RadCor-LoopFest 2015 @ UCLA, June 15-19, 2015 Based

More information

From Tensor Integral to IBP

From Tensor Integral to IBP From Tensor Integral to IBP Mohammad Assadsolimani, in collaboration with P. Kant, B. Tausk and P. Uwer 11. Sep. 2012 Mohammad Assadsolimani From Tensor Integral to IBP 1 Contents Motivation NNLO Tensor

More information

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS Germán F. R. Sborlini Departamento de Física, FCEyN, UBA (Argentina) 10/12/2012 - IFIC CONTENT Introduction Collinear limits Splitting functions Computing splitting

More information

arxiv: v2 [hep-ph] 25 Sep 2018

arxiv: v2 [hep-ph] 25 Sep 2018 Applications of integrand reduction to two-loop five-point scattering amplitudes in QCD arxiv:1807.09709v2 [hep-ph] 25 Sep 2018 Institute for Particle Physics Phenomenology, Department of Physics, Durham

More information

One-loop computations in QFT: a modern perspective

One-loop computations in QFT: a modern perspective One-loop computations in QFT: a modern perspective Kirill Melnikov Johns Hopkins University December 2012 Lectures based on R.K. Ellis, Z. Kunszt, K. Melnikov, G. Zanderighi, ``One-loop computations in

More information

Bootstrapping One-Loop 2 n Amplitudes

Bootstrapping One-Loop 2 n Amplitudes Bootstrapping One-Loop 2 n Amplitudes Carola F. Berger Stanford Linear Accelerator Center with Zvi Bern, Lance Dixon, Darren Forde, David Kosower Loopfest V June 19th, 2006 [1] Z. Bern, L. J. Dixon, D.

More information

Automation of Multi-leg One-loop virtual Amplitudes

Automation of Multi-leg One-loop virtual Amplitudes Automation of Multi-leg One-loop virtual Amplitudes Institute for Particle Physics Phenomenology University of Durham Science Laboratories South Rd DURHAM DH1 3LE, UK E-mail: daniel.maitre@durham.ac.uk

More information

Towards One-Loop MHV Techniques

Towards One-Loop MHV Techniques Towards One-Loop MHV Techniques Carola F. Berger Snowmass - August 22, 2005 Carola F. Berger, SLAC Snowmass - August 22, 2005 Towards One-Loop MHV Techniques Carola F. Berger Snowmass - August 22, 2005

More information

Analytic 2-loop Form factor in N=4 SYM

Analytic 2-loop Form factor in N=4 SYM Analytic 2-loop Form factor in N=4 SYM Gang Yang University of Hamburg Nordic String Theory Meeting Feb 20-21, 2012, NBI Based on the work Brandhuber, Travaglini, GY 1201.4170 [hep-th] Brandhuber, Gurdogan,

More information

Reduction to Master Integrals. V.A. Smirnov Atrani, September 30 October 05, 2013 p.1

Reduction to Master Integrals. V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction to Master Integrals V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction to Master Integrals IBP (integration by parts) V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction

More information

BACKGROUND EXPERIENCE AND THEORY INNOVATION FOR LHC

BACKGROUND EXPERIENCE AND THEORY INNOVATION FOR LHC BACKGROUND EXPERIENCE AND THEORY INNOVATION FOR LHC Babis Anastasiou ETH Zurich PADOVA 20-01-2010 A theory revolution Deeper understanding of the structure of gauge theories Sharp theoretical predictions

More information

On-Shell Recursion Relations for Multi-Parton One-Loop Amplitudes

On-Shell Recursion Relations for Multi-Parton One-Loop Amplitudes for Multi-Parton One-Loop Amplitudes Carola F. Berger Stanford Linear Accelerator Center with Zvi Bern, Lance Dixon, Darren Forde, David Kosower SUSY06 June 13th, 2006 [1] Z. Bern, L. J. Dixon, D. A. Kosower,

More information

Linear reducibility of Feynman integrals

Linear reducibility of Feynman integrals Linear reducibility of Feynman integrals Erik Panzer Institute des Hautes Études Scientifiques RADCOR/LoopFest 2015 June 19th, 2015 UCLA, Los Angeles Feynman integrals: special functions and numbers Some

More information

Master integrals without subdivergences

Master integrals without subdivergences Master integrals without subdivergences Joint work with Andreas von Manteuffel and Robert Schabinger Erik Panzer 1 (CNRS, ERC grant 257638) Institute des Hautes Études Scientifiques 35 Route de Chartres

More information

Feynman Integrals, Polylogarithms and Symbols

Feynman Integrals, Polylogarithms and Symbols Feynman Integrals, Polylogarithms and Symbols Vittorio Del Duca INFN LNF based on work with Claude Duhr & Volodya Smirnov ACAT2011 7 September 2011 let us consider l-loop n-point Feynman integrals example:

More information

MHV Diagrams and Tree Amplitudes of Gluons

MHV Diagrams and Tree Amplitudes of Gluons Institute for Advanced Study, Princeton, NJ 08540 U.S.A. E-mail: cachazo@ias.edu Institute for Advanced Study, Princeton, NJ 08540 U.S.A. E-mail: cachazo@ias.edu Recently, a new perturbation expansion

More information

Reduction of Feynman integrals to master integrals

Reduction of Feynman integrals to master integrals Reduction of Feynman integrals to master integrals A.V. Smirnov Scientific Research Computing Center of Moscow State University A.V. Smirnov ACAT 2007 p.1 Reduction problem for Feynman integrals A review

More information

Numerical Evaluation of Loop Integrals

Numerical Evaluation of Loop Integrals Numerical Evaluation of Loop Integrals Institut für Theoretische Physik Universität Zürich Tsukuba, April 22 nd 2006 In collaboration with Babis Anastasiou Rationale (Why do we need complicated loop amplitudes?)

More information

Automation of NLO computations using the FKS subtraction method

Automation of NLO computations using the FKS subtraction method Automation of NLO computations using the FKS subtraction method Institute for Theoretical Physics, Universität Zürich E-mail: frederix@physik.uzh.ch In this talk the FKS subtraction method for next-to-leading

More information

N-jettiness as a subtraction scheme for NNLO

N-jettiness as a subtraction scheme for NNLO N-jettiness as a subtraction scheme for NNLO! Xiaohui Liu based on:! arxiv:1504.02131, Boughezal, Focke, XL and Petriello arxiv:1505.03893, Boughezal, Focke, Giele, XL and Petriello arxiv:1504.02540, Boughezal,

More information

Numerical multi-loop calculations: tools and applications

Numerical multi-loop calculations: tools and applications Journal of Physics: Conference Series PAPER OPEN ACCESS Numerical multi-loop calculations: tools and applications To cite this article: S. Borowka et al 2016 J. Phys.: Conf. Ser. 762 012073 Related content

More information

Evaluating double and triple (?) boxes

Evaluating double and triple (?) boxes Evaluating double and triple (?) boxes V.A. Smirnov a hep-ph/0209295 September 2002 a Nuclear Physics Institute of Moscow State University, Moscow 9992, Russia A brief review of recent results on analytical

More information

arxiv:hep-lat/ v1 30 Sep 2005

arxiv:hep-lat/ v1 30 Sep 2005 September 2005 Applying Gröbner Bases to Solve Reduction Problems for Feynman Integrals arxiv:hep-lat/0509187v1 30 Sep 2005 A.V. Smirnov 1 Mechanical and Mathematical Department and Scientific Research

More information

Towards improved predictions for electroweak vector boson pair production at the LHC

Towards improved predictions for electroweak vector boson pair production at the LHC Towards improved predictions for electroweak vector boson pair production at the LHC Kirill Melnikov TTP KIT Based on collaboration with M. Dowling, F. Caola, J. Henn, A. Smirnov, V. Smirnov Outline 1)

More information

Scattering amplitudes and AdS/CFT

Scattering amplitudes and AdS/CFT Scattering amplitudes and AdS/CFT Cristian Vergu Brown University BOX 1843 Providence, RI 02912 1 Introduction and notation Scattering amplitudes in the maximally supersymmetric N = 4 gauge theory are

More information

Precision Physics at the LHC

Precision Physics at the LHC Precision Physics at the LHC V. Ravindran The Institute of Mathematical Sciences, Chennai, India IMHEP-2019, IOP, Bhubaneswar, 17-22 Jan 2019 Precision Physics Plan Why Precision Calculation (PC) Impact

More information

arxiv: v2 [hep-th] 26 Aug 2015

arxiv: v2 [hep-th] 26 Aug 2015 Prepared for submission to JHEP arxiv:1507.06310v2 [hep-th] 26 Aug 2015 Two-loop Integral Reduction from Elliptic and Hyperelliptic Curves Alessandro Georgoudis a Yang Zhang a a ETH Zürich, Institute for

More information

e + e 3j at NNLO: Results for all QED-type Colour Factors p.1

e + e 3j at NNLO: Results for all QED-type Colour Factors p.1 e + e 3j at NNLO: Results for all QED-type Colour Factors Thomas Gehrmann Universität ürich UNIVERSITAS TURICENSIS MDCCC XXXIII in collaboration with A. Gehrmann De Ridder, E.W.N. Glover, G. Heinrich Loopfest

More information

A New Identity for Gauge Theory Amplitudes

A New Identity for Gauge Theory Amplitudes A New Identity for Gauge Theory Amplitudes Hidden Structures workshop, NBI Sept 10, 2008 Henrik Johansson, UCLA Z. Bern, J.J. Carrasco, HJ arxive:0805 :0805.3993 [hep-ph[ hep-ph] Z. Bern, J.J. Carrasco,

More information

Status of Higgs plus one jet at NNLO

Status of Higgs plus one jet at NNLO Status of Higgs plus one jet at NNLO Matthieu Jaquier Physics Institute University of Zürich Radcor-Loopfest UCLA 7 th June 205 Based on work with X. Chen, T. Gehrmann and E.W.N. Glover Matthieu Jaquier

More information

The forward-backward asymmetry in electron-positron annihilation. Stefan Weinzierl

The forward-backward asymmetry in electron-positron annihilation. Stefan Weinzierl The forward-backward asymmetry in electron-positron annihilation Stefan Weinzierl Universität Mainz Introduction: I.: II: III: IV.: Electroweak precision physics Higher order corrections Infrared-safe

More information

arxiv: v1 [hep-ph] 26 Nov 2017

arxiv: v1 [hep-ph] 26 Nov 2017 Recent Developments in Higher-Order Calculations: Hard Functions at NLO with GoSam arxiv:1711.09462v1 [hep-ph] 26 Nov 2017 Alessandro Broggio a alessandro.broggio@tum.de Andrea Ferroglia b,c aferroglia@citytech.cuny.edu

More information

One-Loop Calculations with BlackHat

One-Loop Calculations with BlackHat July 2008 MIT-CTP 3963 Saclay-IPhT-T08/117 SLAC-PUB-13295 UCLA/08/TEP/21 One-Loop Calculations with BlackHat C. F. Berger a, Z. Bern b, L. J. Dixon c, F. Febres Cordero b, D. Forde c, H. Ita b, D. A. Kosower

More information

Towards Jet Cross Sections at NNLO

Towards Jet Cross Sections at NNLO Towards Jet Cross Sections at HP.4, September, MPI Munich Expectations at LHC Large production rates for Standard Model processes single jet inclusive and differential di-jet cross section will be measured

More information

arxiv: v1 [hep-ph] 5 Aug 2016

arxiv: v1 [hep-ph] 5 Aug 2016 arxiv:608.0800v [hep-ph] 5 Aug 206, Félix Driencourt-Mangin, Germán F. R. Sborlini Instituto de Física Corpuscular, Universitat de València Consejo Superior de Investigaciones Científicas, Parc Científic,

More information

The Non-commutative S matrix

The Non-commutative S matrix The Suvrat Raju Harish-Chandra Research Institute 9 Dec 2008 (work in progress) CONTEMPORARY HISTORY In the past few years, S-matrix techniques have seen a revival. (Bern et al., Britto et al., Arkani-Hamed

More information

Feynman integrals and multiple polylogarithms. Stefan Weinzierl

Feynman integrals and multiple polylogarithms. Stefan Weinzierl Feynman integrals and multiple polylogarithms Stefan Weinzierl Universität Mainz I. Basic techniques II. Nested sums and iterated integrals III. Multiple Polylogarithms IV. Applications The need for precision

More information

arxiv: v2 [hep-th] 1 Aug 2018

arxiv: v2 [hep-th] 1 Aug 2018 Differential equations for loop integrals in Baikov representation Jorrit Bosma 1 Kasper J Larsen and Yang Zhang 1 3 1 ETH Zürich Wolfang-Pauli-Strasse 7 893 Zürich Switzerland School of Physics and Astronomy

More information

Jet production in the colorful NNLO framework

Jet production in the colorful NNLO framework Jet production in the colorful NNLO framework Adam Kardos! University of Debrecen, MTA-DE Particle Physics Research Group and NCSR Demokritos", Athens! QCD matters High precision experiments demand high

More information

Next-to-leading order multi-leg processes for the Large Hadron Collider

Next-to-leading order multi-leg processes for the Large Hadron Collider Next-to-leading order multi-leg processes for the Large Hadron Collider, Thomas Reiter School of Physics, The University of Edinburgh, Edinburgh EH9 3JZ, UK. E-mail: binoth@ph.ed.ac.uk,thomas.reiter@ed.ac.uk

More information

Coefficients of one-loop integral

Coefficients of one-loop integral functions by recursion International Workshop: From Twistors to Amplitudes 1 Niels Emil Jannik Bjerrum-Bohr together with Zvi Bern, David Dunbar and Harald Ita Motivation The LHC collider at CERN is approaching

More information

Feynman integrals as Periods

Feynman integrals as Periods Feynman integrals as Periods Pierre Vanhove Amplitudes 2017, Higgs Center, Edinburgh, UK based on [arxiv:1309.5865], [arxiv:1406.2664], [arxiv:1601.08181] Spencer Bloch, Matt Kerr Pierre Vanhove (IPhT)

More information

The Higgs pt distribution

The Higgs pt distribution The Higgs pt distribution Chris Wever (TUM) In collaboration with: F. Caola, K. Kudashkin, J. Lindert, K. Melnikov, P. Monni, L. Tancredi GGI: Amplitudes in the LHC era, Florence 16 Oktober, 2018 Outline

More information

Multiple polylogarithms and Feynman integrals

Multiple polylogarithms and Feynman integrals Multiple polylogarithms and Feynman integrals Erik Panzer Institute des Hautes E tudes Scientifiques Amplitudes 215 July 7th ETH/University of Zu rich Topics 1 hyperlogarithms & iterated integrals 2 multiple

More information

Precision Phenomenology and Collider Physics p.1

Precision Phenomenology and Collider Physics p.1 Precision Phenomenology and Collider Physics Nigel Glover IPPP, University of Durham Computer algebra and particle physics, DESY Zeuthen, April 4, 2005 Precision Phenomenology and Collider Physics p.1

More information

Functions associated to scattering amplitudes. Stefan Weinzierl

Functions associated to scattering amplitudes. Stefan Weinzierl Functions associated to scattering amplitudes Stefan Weinzierl Institut für Physik, Universität Mainz I: Periodic functions and periods II: III: Differential equations The two-loop sun-rise diagramm in

More information

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with: J. Carter and G. Heinrich Based on arxiv:124.4152 [hep-ph] http://secdec.hepforge.org DESY-HU

More information

NNLO Phenomenology Using Jettiness Subtraction

NNLO Phenomenology Using Jettiness Subtraction NNLO Phenomenology Using Jettiness Subtraction Radja Boughezal Radcor/Loopfest 2015, June 15-19, UCLA 1 Outline Motivation IR subtraction schemes at NNLO (local and non-local subtractions) The N-jettiness

More information

arxiv: v2 [hep-ph] 17 Jan 2019

arxiv: v2 [hep-ph] 17 Jan 2019 Preprint typeset in JHEP style - HYPER VERSION TTP19-4 P3H-19-1 arxiv:191.513v [hep-ph] 17 Jan 19 Integrated triple-collinear counter-terms for the nested soft-collinear subtraction scheme Maximilian Delto

More information

arxiv:hep-ph/ v1 26 May 1994

arxiv:hep-ph/ v1 26 May 1994 ETH-TH/94-4 KLTE-DTP/94-3 May 5, 994 arxiv:hep-ph/9405386v 6 May 994 One-loop radiative corrections to the helicity amplitudes of QCD processes involving four quarks and one gluon Zoltan Kunszt a, Adrian

More information

Multi-loop calculations: numerical methods and applications

Multi-loop calculations: numerical methods and applications Journal of Physics: Conference Series PAPER OPEN ACCESS Multi-loop calculations: numerical methods and applications To cite this article: S. Borowka et al 217 J. Phys.: Conf. Ser. 92 123 View the article

More information

Multiple polylogarithms and Feynman integrals

Multiple polylogarithms and Feynman integrals Multiple polylogarithms and Feynman integrals Erik Panzer Institute des Hautes E tudes Scientifiques Amplitudes 215 July 7th ETH/University of Zu rich Topics 1 hyperlogarithms & iterated integrals 2 multiple

More information

Modern Feynman Diagrammatic One-Loop Calculations

Modern Feynman Diagrammatic One-Loop Calculations Modern Feynman Diagrammatic One-Loop Calculations G. Cullen, a N. Greiner, b A. Guffanti, c J.P. Guillet, d G. Heinrich, e S. Karg, f N. Kauer, g T. Kleinschmidt, e M. Koch-Janusz, h G. Luisoni, e P. Mastrolia,

More information

Feynman Integrals, Regulators and Elliptic Polylogarithms

Feynman Integrals, Regulators and Elliptic Polylogarithms Feynman Integrals, Regulators and Elliptic Polylogarithms Pierre Vanhove Automorphic Forms, Lie Algebras and String Theory March 5, 2014 based on [arxiv:1309.5865] and work in progress Spencer Bloch, Matt

More information

Computing amplitudes using Wilson loops

Computing amplitudes using Wilson loops Computing amplitudes using Wilson loops Paul Heslop Queen Mary, University of London NBIA, Copenhagen 13th August 2009 based on: 0707.1153 Brandhuber, Travaglini, P.H. 0902.2245 Anastasiou, Brandhuber,

More information

Generalized Prescriptive Unitarity. Jacob Bourjaily University of Copenhagen QCD Meets Gravity 2017 University of California, Los Angeles

Generalized Prescriptive Unitarity. Jacob Bourjaily University of Copenhagen QCD Meets Gravity 2017 University of California, Los Angeles Generalized Prescriptive Unitarity Jacob Bourjaily University of Copenhagen QCD Meets Gravity 2017 University of California, Los Angeles Organization and Outline Overview: Generalized & Prescriptive Unitarity

More information

Theoretical Predictions For Top Quark Pair Production At NLO QCD

Theoretical Predictions For Top Quark Pair Production At NLO QCD Theoretical Predictions For Top Quark Pair Production At NLO QCD Malgorzata Worek Wuppertal Uni. HP2: High Precision for Hard Processes, 4-7 September 2012, MPI, Munich 1 Motivations Successful running

More information

Recent Progress in One-Loop Multi-Parton Calculations

Recent Progress in One-Loop Multi-Parton Calculations SLAC-PUB-6658 hep-ph/940914 September, 1994 (M) Recent Progress in One-Loop Multi-Parton Calculations Zvi Bern Department of Physics University of California, Los Angeles Los Angeles, CA 9004 Lance Dixon

More information

Tord Riemann. DESY, Zeuthen, Germany

Tord Riemann. DESY, Zeuthen, Germany 1/ v. 2010-08-31 1:2 T. Riemann Tensor reduction Corfu 2010, Greece Algebraic tensor Feynman integral reduction Tord Riemann DESY, Zeuthen, Germany Based on work done in collaboration with Jochem Fleischer

More information

GoSam: automated multi-process scattering amplitudes at one loop

GoSam: automated multi-process scattering amplitudes at one loop GoSam: automated multi-process scattering amplitudes at one loop Gionata Luisoni luisonig@mpp.mpg.de Max Planck Institute for Physics Munich In collaboration with: G.Cullen, N. Greiner, G.Heinrich, P.Mastrolia,

More information

Non-Planar N =4 SYM at Four Loops and Supersum Structures

Non-Planar N =4 SYM at Four Loops and Supersum Structures Non-Planar N =4 SYM at Four Loops and Supersum Structures NBIA workshop Aug 12, 2009 Henrik Johansson UCLA & IPhT Saclay 0903.5348[hep-th]: Z.Bern, J.J.Carrasco, H.Ita, HJ, R.Roiban to appear: Z.Bern,

More information

Some variations of the reduction of one-loop Feynman tensor integrals

Some variations of the reduction of one-loop Feynman tensor integrals Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 1 / 6 Some variations of the reduction of one-loop Feynman tensor integrals Tord Riemann DESY, Zeuthen in

More information

W + W Production with Many Jets at the LHC

W + W Production with Many Jets at the LHC W + W Production with Many Jets at the LHC NLO QCD with BlackHat+Sherpa Fernando Febres Cordero Department of Physics, University of Freiburg Radcor-Loopfest 2015, UCLA June 2015 With Philipp Hofmann and

More information

One-loop amplitudes with off-shell gluons

One-loop amplitudes with off-shell gluons Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Kraków, Poland E-mail: hameren@ifj.edu.pl I report on recent progress in the calculation of cross sections within factorization prescriptions

More information

Numerical multi-loop calculations with SecDec

Numerical multi-loop calculations with SecDec Journal of Physics: Conference Series OPEN ACCESS Numerical multi-loop calculations with SecDec To cite this article: Sophia Borowka and Gudrun Heinrich 214 J. Phys.: Conf. Ser. 523 1248 View the article

More information

Elliptic dilogarithms and two-loop Feynman integrals

Elliptic dilogarithms and two-loop Feynman integrals Elliptic dilogarithms and two-loop Feynman integrals Pierre Vanhove 12th Workshop on Non-Perturbative Quantum Chromodynamics IAP, Paris June, 10 2013 based on work to appear with Spencer Bloch Pierre Vanhove

More information

Summary. Keith Ellis Fermilab

Summary. Keith Ellis Fermilab Summary Keith Ellis Fermilab A world created with us in mind The most significant result of Run I of the LHC is the discovery of the Higgs boson in 2012 Higgs boson (produced predominantly by gluon fusion)

More information

Scalar One-Loop Integrals using the Negative-Dimension Approach

Scalar One-Loop Integrals using the Negative-Dimension Approach DTP/99/80 hep-ph/9907494 Scalar One-Loop Integrals using the Negative-Dimension Approach arxiv:hep-ph/9907494v 6 Jul 999 C. Anastasiou, E. W. N. Glover and C. Oleari Department of Physics, University of

More information

arxiv: v2 [hep-ph] 2 Jul 2014

arxiv: v2 [hep-ph] 2 Jul 2014 arxiv:1406.7652v2 [hep-ph] 2 Jul 2014 Color decomposition of multi-quark one-loop QCD amplitudes Institute for Theoretical Physics, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany. E-mail:

More information