Linear reducibility of Feynman integrals

Size: px
Start display at page:

Download "Linear reducibility of Feynman integrals"

Transcription

1 Linear reducibility of Feynman integrals Erik Panzer Institute des Hautes Études Scientifiques RADCOR/LoopFest 2015 June 19th, 2015 UCLA, Los Angeles

2 Feynman integrals: special functions and numbers Some FI are expressible via multiple polylogarithms (MPL) k z 1 1 Li n1,...,n d (z 1,..., z d ) = zk d d k n 1 0<k 1 < <k d 1 kn d d Example (p1 2 = 1, p2 2 = z z, p3 2 = (1 z)(1 z)) ( ) Φ = 4i Im [Li 2(z) + log(1 z) log z ] z z 1 / 24

3 Feynman integrals: special functions and numbers Some FI are expressible via multiple polylogarithms (MPL) k z 1 1 Li n1,...,n d (z 1,..., z d ) = zk d d k n 1 0<k 1 < <k d 1 kn d d Example (massless propagators) ( ) ( ) Φ = 6ζ 3, Φ = 252ζ 3 ζ ζ 3, ζ4 2 1 / 24

4 Feynman integrals: special functions and numbers Some FI are expressible via multiple polylogarithms (MPL) k z 1 1 Li n1,...,n d (z 1,..., z d ) = zk d d k n 1 0<k 1 < <k d 1 kn d d Example (massless propagators) ( ) ( ) Φ = 6ζ 3, Φ = 252ζ 3 ζ ζ 3, ζ4 2 Questions 1 What comes beyond MPL? [Weinzierl s talk] 2 How to tell if a FI evaluates to MPL? What is the alphabet? 3 How to compute it explicitly? 1 / 24

5 Feynman integrals: special functions and numbers Some FI are expressible via multiple polylogarithms (MPL) k z 1 1 Li n1,...,n d (z 1,..., z d ) = zk d d k n 1 0<k 1 < <k d 1 kn d d Example (massless propagators) ( ) ( ) Φ = 6ζ 3, Φ = 252ζ 3 ζ ζ 3, ζ4 2 Questions 1 What comes beyond MPL? [Weinzierl s talk] 2 How to tell if a FI evaluates to MPL? What is the alphabet? 3 How to compute it explicitly in an automated way? 1 / 24

6 Tools to study Feynman integrals integral representations momentum space [IBP, unitarity] position space [Gardi s talk, Drummond & Schnetz graphical functions] twistor space [Trnka s talk] parametric space [this talk] Mellin-Barnes sum representations [Schneider s talk] differential equations [Smirnov s talk] 2 / 24

7 Tools to study Feynman integrals integral representations momentum space [IBP, unitarity] position space [Gardi s talk, Drummond & Schnetz graphical functions] twistor space [Trnka s talk] parametric space [this talk] Mellin-Barnes sum representations [Schneider s talk] differential equations [Smirnov s talk] Plan of the talk 1 predicting bounds on the singularities of an integral 2 nice (linearly reducible) integral representations can be integrated in terms of MPL 3 good parametrizations for FI via Laplace transform 2 / 24

8 Definite integral representations hypergeometric functions p F q ( ; z) 2F 1 ( a, b c ) z = Appell s functions F 1, F 2, F 3, F 4 ( α, α ) γ x F 3 y β, β = 1 1 v 0 0 Γ(c) 1 t b 1 (1 t) c b 1 (1 zt) a dt Γ(b)Γ(c b) 0 Γ(γ) Γ(β)Γ(β )Γ(γ β β ) u β 1 v β 1 (1 u v) γ β β 1 (1 ux) α (1 vy) α dudv Feynman integrals in Schwinger parameters Phase-space integrals... 3 / 24

9 Schwinger parameters With the superficial degree of divergence sdd = E(G) D/2 loops(g), Φ(G) = Γ(sdd) ( ) 1 ψ sdd e Γ(a e) (0, ) E ψ D/2 δ(1 α N ) αe ae 1 dα e ϕ e Graph polynomials: ψ = α e T e / T ϕ = q 2 (T 1 ) α e + ψ e / F e F =T 1 T 2 m 2 eα e 4 / 24

10 Schwinger parameters With the superficial degree of divergence sdd = E(G) D/2 loops(g), Φ(G) = Γ(sdd) ( ) 1 ψ sdd e Γ(a e) (0, ) E ψ D/2 δ(1 α N ) αe ae 1 dα e ϕ e Graph polynomials: ψ = α e T e / T ϕ = q 2 (T 1 ) α e + ψ e / F e F =T 1 T 2 m 2 eα e Example (D = 4) p 3 1 p 2 ψ = G = 2 1 p 3 ϕ = Φ(G) = dα2 dα 3 ψϕ α1 =1 4 / 24

11 Schwinger parameters With the superficial degree of divergence sdd = E(G) D/2 loops(g), Φ(G) = Γ(sdd) ( ) 1 ψ sdd e Γ(a e) (0, ) E ψ D/2 δ(1 α N ) αe ae 1 dα e ϕ e Graph polynomials: ψ = α e T e / T ϕ = q 2 (T 1 ) α e + ψ e / F e F =T 1 T 2 m 2 eα e Example (D = 4) p 3 1 p 2 ψ = α1 + α 2 + α 3 G = 2 1 p 3 ϕ = Φ(G) = dα2 dα 3 ψϕ α1 =1 4 / 24

12 Schwinger parameters With the superficial degree of divergence sdd = E(G) D/2 loops(g), Φ(G) = Γ(sdd) ( ) 1 ψ sdd e Γ(a e) (0, ) E ψ D/2 δ(1 α N ) αe ae 1 dα e ϕ e Graph polynomials: ψ = α e T e / T ϕ = q 2 (T 1 ) α e + ψ e / F e F =T 1 T 2 m 2 eα e Example (D = 4) p 3 1 p 2 ψ = α1 + α 2 + α 3 G = 2 1 p 3 ϕ = Φ(G) = dα2 dα 3 ψϕ α1 =1 4 / 24

13 Schwinger parameters With the superficial degree of divergence sdd = E(G) D/2 loops(g), Φ(G) = Γ(sdd) ( ) 1 ψ sdd e Γ(a e) (0, ) E ψ D/2 δ(1 α N ) αe ae 1 dα e ϕ e Graph polynomials: ψ = α e T e / T ϕ = q 2 (T 1 ) α e + ψ e / F e F =T 1 T 2 m 2 eα e Example (D = 4) p 3 1 p 2 ψ = α1 + α 2 + α 3 G = 2 1 p 3 ϕ = Φ(G) = dα2 dα 3 ψϕ α1 =1 4 / 24

14 Schwinger parameters With the superficial degree of divergence sdd = E(G) D/2 loops(g), Φ(G) = Γ(sdd) ( ) 1 ψ sdd e Γ(a e) (0, ) E ψ D/2 δ(1 α N ) αe ae 1 dα e ϕ e Graph polynomials: ψ = α e T e / T ϕ = q 2 (T 1 ) α e + ψ e / F e F =T 1 T 2 m 2 eα e Example (D = 4) p 3 1 p 2 ψ = α 1 + α 2 + α 3 G = 2 1 p 3 ϕ = p1α 2 2 α 3 + p2α 2 1 α 3 + p3α 2 1 α 2 dα2 dα 3 Φ(G) = ψϕ α1 =1 4 / 24

15 Schwinger parameters With the superficial degree of divergence sdd = E(G) D/2 loops(g), Φ(G) = Γ(sdd) ( ) 1 ψ sdd e Γ(a e) (0, ) E ψ D/2 δ(1 α N ) αe ae 1 dα e ϕ e Graph polynomials: ψ = α e T e / T ϕ = q 2 (T 1 ) α e + ψ e / F e F =T 1 T 2 m 2 eα e Example (D = 4) p 3 1 p 2 ψ = α 1 + α 2 + α 3 G = 2 1 p 3 ϕ = p1α 2 2 α 3 + p2α 2 1 α 3 + p3α 2 1 α 2 dα2 dα 3 Φ(G) = ψϕ α1 =1 4 / 24

16 Schwinger parameters With the superficial degree of divergence sdd = E(G) D/2 loops(g), Φ(G) = Γ(sdd) ( ) 1 ψ sdd e Γ(a e) (0, ) E ψ D/2 δ(1 α N ) αe ae 1 dα e ϕ e Graph polynomials: ψ = α e T e / T ϕ = q 2 (T 1 ) α e + ψ e / F e F =T 1 T 2 m 2 eα e Example (D = 4) p 3 1 p 2 ψ = α 1 + α 2 + α 3 G = 2 1 p 3 ϕ = p1α 2 2 α 3 + p2α 2 1 α 3 + p3α 2 1 α 2 dα2 dα 3 Φ(G) = ψϕ α1 =1 4 / 24

17 Schwinger parameters With the superficial degree of divergence sdd = E(G) D/2 loops(g), Φ(G) = Γ(sdd) ( ) 1 ψ sdd e Γ(a e) (0, ) E ψ D/2 δ(1 α N ) αe ae 1 dα e ϕ e Graph polynomials: ψ = α e T e / T ϕ = q 2 (T 1 ) α e + ψ e / F e F =T 1 T 2 m 2 eα e Example (D = 4) p 3 1 p 2 ψ = α 1 + α 2 + α 3 G = 2 1 p 3 ϕ = p1α 2 2 α 3 + p2α 2 1 α 3 + p3α 2 1 α 2 dα2 dα 3 Φ(G) = ψϕ α1 =1 4 / 24

18 Example: massless triangle ( ) Φ = dα 2 dα 3 (1 + α 2 + α 3 )(α 2 α 3 + z zα 3 + (1 z)(1 z)α 2 ) 5 / 24

19 Example: massless triangle ( ) Φ = dα 2 dα 3 (1 + α 2 + α 3 )(α 2 α 3 + z zα 3 + (1 z)(1 z)α 2 ) Singularities of the original integrand: S = {ψ, ϕ}, i.e. at α 3 = σ i for σ 1 = 1 α 2 and σ 2 = α 2(1 z)(1 z) α 2 + z z 5 / 24

20 Example: massless triangle ( ) Φ = = dα 2 dα 3 (1 + α 2 + α 3 )(α 2 α 3 + z zα 3 + (1 z)(1 z)α 2 ) dα 2 (z + α 2 )( z + α 2 ) log (1 + α 2)(z z + α 2 ) (1 z)(1 z)α 2 Singularities of the original integrand: S = {ψ, ϕ}, i.e. at α 3 = σ i for σ 1 = 1 α 2 and σ 2 = α 2(1 z)(1 z) α 2 + z z After integrating α 1 from 0 to, the integrand has singularities S 3 = { } 1 + α }{{ 2, α } 2, 1 z, 1 z, α }{{} 2 + z z, z + α }{{} 2, z + α }{{ 2 } σ 1 =0 σ 2 =0 σ 2 = σ 1 =σ 2 (pinch) 5 / 24

21 Example: massless triangle ( ) Φ = = dα 2 dα 3 (1 + α 2 + α 3 )(α 2 α 3 + z zα 3 + (1 z)(1 z)α 2 ) dα 2 (z + α 2 )( z + α 2 ) log (1 + α 2)(z z + α 2 ) (1 z)(1 z)α 2 Singularities of the original integrand: S = {ψ, ϕ}, i.e. at α 3 = σ i for σ 1 = 1 α 2 and σ 2 = α 2(1 z)(1 z) α 2 + z z After integrating α 1 from 0 to, the integrand has singularities S 3 = { } 1 + α }{{ 2, α } 2, 1 z, 1 z, α }{{} 2 + z z, z + α }{{} 2, z + α }{{ 2 } σ 1 =0 σ 2 =0 σ 2 = σ 1 =σ 2 (pinch) With the same logic, predict the possible singularities after 0 dα 2 : S 3,2 = {z, z, 1 z, 1 z, z z, z z 1} 5 / 24

22 Example: massless triangle ( ) Φ = = 1 z z dα 2 dα 3 (1 + α 2 + α 3 )(α 2 α 3 + z zα 3 + (1 z)(1 z)α 2 ) ( dα2 α 2 + z dα ) 2 log (α 2 + 1)(α 2 + z z) α 2 + z (1 z)(1 z)α 2 Singularities of the original integrand: S = {ψ, ϕ}, i.e. at α 3 = σ i for σ 1 = 1 α 2 and σ 2 = α 2(1 z)(1 z) α 2 + z z After integrating α 1 from 0 to, the integrand has singularities S 3 = { } 1 + α }{{ 2, α } 2, 1 z, 1 z, α }{{} 2 + z z, z + α }{{} 2, z + α }{{ 2 } σ 1 =0 σ 2 =0 σ 2 = σ 1 =σ 2 (pinch) With the same logic, predict the possible singularities after 0 dα 2 : S 3,2 = {z, z, 1 z, 1 z, z z, z z 1} 5 / 24

23 Polynomial reduction [F. Brown] Definition Let S denote a set of polynomials, then S e are the irreducible factors of { } lead e (f ), f, D αe=0 e(f ): f S and {[f, g] e : f, g S}. Lemma If the singularities of F are cointained in S, then the singularities of 0 F dα e are contained in S e. 6 / 24

24 Polynomial reduction [F. Brown] Definition Let S denote a set of polynomials, then S e are the irreducible factors of { } lead e (f ), f, D αe=0 e(f ): f S and {[f, g] e : f, g S}. Lemma If the singularities of F are cointained in S, then the singularities of 0 F dα e are contained in S e. This gives only very coarse upper bounds. For example, z z 1 is spurious: It drops out in S 2,3 S 3,2 = {z, z, 1 z, 1 z, z z} because S 2,3 = {z, z, 1 z, 1 z, z z, z z z z}. Improvements Fubini: intersect over different orders Compatibility graphs 6 / 24

25 Compatibility graphs Keep track of compatibilities C ( S 2) between polynomials for S e, we only need the resultants [f, g] e for compatible {f, g} C only pairs [f, g] e, [g, h] e (with one polynomial in common) become compatible in C e Example (triangle) 1+α 2 α 2 (1 z)(1 z) z +α 2 z +α 2 z z +α 2 Since z zα 1 + α 2 and α 1 + α 2 are not compatible, their resultant 1 z z does not occur. 7 / 24

26 HyperInt: massive triangle Graph polynomials: > E:=[[2,3],[1,3],[1,2]]: > M:=[[1,s1],[2,s2],[3,s3]],[m1ˆ2,m2ˆ2,m3ˆ3]: > psi:=graphpolynomial(e): > phi:=secondpolynomial(e,m): Polynomial reduction: > L[{}]:=[{psi,phi}, {{psi,phi}}]: > cgreduction(l, {s1,s2,s3,m1,m2,m3}, 2): > L[{x[1],x[2]}][1]; s i + (m j ± m k ) 2, si 2 s i s j i i j s 1s 2 s 3 si 2 mi 2 + s i (mi 2 mj 2 )(mi 2 mk) 2 + i i i<j s i s j (mi 2 + mj 2 ) 8 / 24

27 Linear reducibility Definition If for some order of variables (edges), all S 1,...,k are linear in α k+1, then S (the Feynman graph G with S = {ψ, ϕ}) is called linearly reducible. Lemma If S is linearly reducible, the integral e dα e f of any rational function f with singularities in S is a MPL with symbol letters in S 1,...,N. 0 9 / 24

28 Linear reducibility Definition If for some order of variables (edges), all S 1,...,k are linear in α k+1, then S (the Feynman graph G with S = {ψ, ϕ}) is called linearly reducible. Lemma If S is linearly reducible, the integral e dα e f of any rational function f with singularities in S is a MPL with symbol letters in S 1,...,N. Integration of linearly reducible integrands in terms of MPL can be automatized via hyperlogarithms. Definition (Hyperlogarithms, Lappo-Danilevsky 1927) G(σ 1,..., σ w ; z) := z 0 0 dz 1 z 1 σ 1 G(σ 2,..., σ w ; z 1 ) 9 / 24

29 Linear reducibility Definition If for some order of variables (edges), all S 1,...,k are linear in α k+1, then S (the Feynman graph G with S = {ψ, ϕ}) is called linearly reducible. Lemma If S is linearly reducible, the integral e dα e f of any rational function f with singularities in S is a MPL with symbol letters in S 1,...,N. Integration of linearly reducible integrands in terms of MPL can be automatized via hyperlogarithms. 0 Definition (Hyperlogarithms, Lappo-Danilevsky 1927) G(σ 1,..., σ w ; z) := z 0 dz 1 z 1 σ 1 z1 0 dz 2 z 2 σ 2 zw 1 0 dz w z w σ w 9 / 24

30 Symbolic integration: Rewriting hyperlogarithms Problem: Given G( σ(α); z), write it as hyperlogarithm with constant letters and final argument α. Recursive solution via dg( σ; z) = n i=1 G(, σ i, ; z) d log σ i σ i 1 σ i σ i+1 σ 0 := z, σ n+1 := 0 Example α G (0, α; 1) = 1 G( α; 1) α 10 / 24

31 Symbolic integration: Rewriting hyperlogarithms Problem: Given G( σ(α); z), write it as hyperlogarithm with constant letters and final argument α. Recursive solution via dg( σ; z) = n i=1 G(, σ i, ; z) d log σ i σ i 1 σ i σ i+1 σ 0 := z, σ n+1 := 0 Example α G (0, α; 1) = 1 [G(0; α) G( 1; α)] α 10 / 24

32 Symbolic integration: Rewriting hyperlogarithms Problem: Given G( σ(α); z), write it as hyperlogarithm with constant letters and final argument α. Recursive solution via dg( σ; z) = n i=1 G(, σ i, ; z) d log σ i σ i 1 σ i σ i+1 σ 0 := z, σ n+1 := 0 Example α G (0, α; 1) = 1 [G(0; α) G( 1; α)] α G (0, α; 1) = G(0, 0; α) + G(0, 1; α) 10 / 24

33 Symbolic integration: Rewriting hyperlogarithms Problem: Given G( σ(α); z), write it as hyperlogarithm with constant letters and final argument α. Recursive solution via dg( σ; z) = n i=1 G(, σ i, ; z) d log σ i σ i 1 σ i σ i+1 σ 0 := z, σ n+1 := 0 Example α G (0, α; 1) = 1 [G(0; α) G( 1; α)] α G (0, α; 1) = G(0, 0; α) + G(0, 1; α) + ζ 2 10 / 24

34 Symbolic integration: Rewriting hyperlogarithms Problem: Given G( σ(α); z), write it as hyperlogarithm with constant letters and final argument α. Recursive solution via dg( σ; z) = n i=1 G(, σ i, ; z) d log σ i σ i 1 σ i σ i+1 σ 0 := z, σ n+1 := 0 Example α G (0, α; 1) = 1 [G(0; α) G( 1; α)] α G (0, α; 1) = G(0, 0; α) + G(0, 1; α) + ζ 2 Computation of integration constants relies on shuffle algebra G( σ; z) G( τ; z) = G( σ τ; z). All this is implemented in the Maple program HyperInt. Similar things can be done with other programs. 10 / 24

35 HyperInt open source Maple program integration of hyperlogarithms transformations of MPL to G( ; z) Note: No further simplification (e.g. rewrite as Li 2,2 ) provided! polynomial reduction graph polynomials symbolic computation of constants (no numerics) Example > read "HyperInt.mpl": > hyperint(polylog(2,-x)*polylog(3,-1/x)/x,x=0..infinity): > fibrationbasis(%); 8 7 ζ3 2 computes 0 Li 2 ( x) Li 3 ( 1/x)dx = 8 7 ζ / 24

36 HyperInt: propagator > E := [[2,1],[2,3],[2,5],[5,1],[5,3],[5,4],[4,1],[4,3]]: > psi := graphpolynomial(e): > phi := secondpolynomial(e, [[1,1], [3,1]]): > add((epsilon*log(psiˆ5/phiˆ4))ˆn/n!,n=0..2)/psiˆ2: > hyperint(eval(%,x[8]=1), [seq(x[n],n=1..7)]): > collect(fibrationbasis(%), epsilon); ( 254ζ ζ 5 200ζ 2 ζ 5 196ζ ζ ) ε 2 ( + 28ζ ζ ) 7 ζ3 2 ε + 20ζ ζ2 2ζ 3 12 / 24

37 HyperInt: triangle Graph polynomials: > E:=[[1,2],[2,3],[3,1]]: > M:=[[3,1],[1,z*zz],[2,(1-z)*(1-zz)]]: > psi:=graphpolynomial(e): > phi:=secondpolynomial(e,m): Integration: > hyperint(eval(1/psi/phi,x[3]=1),[x[1],x[2]]): > factor(fibrationbasis(%,[z,zz])); (Hlog (1; z) Hlog (0; zz) Hlog (0; z) Hlog (1; zz) + Hlog (0, 1; zz) Hlog (1, 0; zz) + Hlog (1, 0; z) Hlog (0, 1; z))/(z zz) Polynomial reduction: > L[{}]:=[{psi,phi}, {{psi,phi}}]: > cgreduction(l): > L[{x[1],x[2]}][1]; { 1 + z, 1 + zz, zz + z} 13 / 24

38 Linearly reducible families (fixed loop order) 1 all 4 loop massless propagators (Panzer) 14 / 24

39 Linearly reducible families (fixed loop order) 1 all 4 loop massless propagators (Panzer) 2 all 3 loop massless off-shell 3-point (Chavez & Duhr, Panzer) 14 / 24

40 Linearly reducible families (fixed loop order) 1 all 4 loop massless propagators (Panzer) 2 all 3 loop massless off-shell 3-point (Chavez & Duhr, Panzer) 14 / 24

41 Linearly reducible families (fixed loop order) 1 all 4 loop massless propagators (Panzer) 2 all 3 loop massless off-shell 3-point (Chavez & Duhr, Panzer) 3 all 2 loop massless on-shell 4-point (Lüders) 14 / 24

42 Linearly reducible massive graphs (some examples) 15 / 24

43 Linearly reducible families (infinite) 3-constructible graphs (3-point functions) [Brown, Schnetz, Panzer] Example 16 / 24

44 Linearly reducible families (infinite) 3-constructible graphs (3-point functions) [Brown, Schnetz, Panzer] Example 16 / 24

45 Linearly reducible families (infinite) 3-constructible graphs (3-point functions) [Brown, Schnetz, Panzer] Example 16 / 24

46 Linearly reducible families (infinite) 3-constructible graphs (3-point functions) [Brown, Schnetz, Panzer] Example 16 / 24

47 Linearly reducible families (infinite) 3-constructible graphs (3-point functions) [Brown, Schnetz, Panzer] Example 16 / 24

48 Linearly reducible families (infinite) 3-constructible graphs (3-point functions) [Brown, Schnetz, Panzer] Example 16 / 24

49 Linearly reducible families (infinite) 3-constructible graphs (3-point functions) [Brown, Schnetz, Panzer] Example 16 / 24

50 Linearly reducible families (infinite) 3-constructible graphs (3-point functions) [Brown, Schnetz, Panzer] Theorem (Panzer) All ɛ-coefficients of these graphs (off-shell) are MPL over the alphabet {z, z, 1 z, 1 z, z z, 1 z z, 1 z z, z z z z}. 16 / 24

51 Linearly reducible families (infinite) 3-constructible graphs (3-point functions) [Brown, Schnetz, Panzer] Theorem (Panzer) All ɛ-coefficients of these graphs (off-shell) are MPL over the alphabet {z, z, 1 z, 1 z, z z, 1 z z, 1 z z, z z z z}. minors of ladder-boxes (up to 2 legs off-shell) Theorem (Panzer) All ɛ-coefficients of these graphs are MPL. For the massless case, the alphabet is just {x, 1 + x} for x = s/t. 16 / 24

52 4-point recursions Start with the box and repeat, in any order: Appending a vertex: v 1 v 4 v 1 v 4 G = G = e v 2 v 3 v 2 v 3 Adding an edge: v 1 v 4 G = v 1 v 3 or v 1 v 4 v 2 v 3 v 4 e v 4 G = v 2 v 3 v 2 v 3 e Example v v 4 v 1 v 4 v 1 v 4 v 1 v 4 v 2 v 3 v 2 v 3 v 2 v 3 v 2 v 3 17 / 24

53 Forest polynomials Let f 3, f 4, f 12 and f 14 denote the spanning forest polynomials such that ϕ = F = (p 1 + p 2 ) 2 f 12 + (p 1 + p 4 ) 2 f 14 + p 2 3f 3 + p 2 4f 4 Example v v 4 v 2 v 3 ψ = α 1 + α 2 + α 3 + α 4 f 12 = α 2 α 4 f 14 = α 1 α 3 f 3 = α 2 α 3 f 4 = α 3 α 4 18 / 24

54 Forest polynomials Let f 3, f 4, f 12 and f 14 denote the spanning forest polynomials such that ϕ = F = (p 1 + p 2 ) 2 f 12 + (p 1 + p 4 ) 2 f 14 + p 2 3f 3 + p 2 4f 4 Definition F (G; z) := R E + ψ D/2 G δ (4) ( f ψ z ) e E dα ae 1 e α e ( R 4 + R + ) Example v v 4 v 2 v 3 ψ = α 1 + α 2 + α 3 + α 4 f 12 = α 2 α 4 f 14 = α 1 α 3 f 3 = α 2 α 3 f 4 = α 3 α 4 18 / 24

55 Forest polynomials Let f 3, f 4, f 12 and f 14 denote the spanning forest polynomials such that ϕ = F = (p 1 + p 2 ) 2 f 12 + (p 1 + p 4 ) 2 f 14 + p 2 3f 3 + p 2 4f 4 Definition F (G; z) := R E + ψ D/2 G δ (4) ( f ψ z ) e E dα ae 1 e α e ( R 4 + R + ) Example 1 v 1 v 4 (D = 4) z 4 3 z 4 F 1 3 ; z 2 = z 12 [z v 2 v 12 (z 14 + z 3 + z 4 ) + z 3 z 4 ] 3 2 (D = 6) }{{} Q 18 / 24

56 Forest polynomials Let f 3, f 4, f 12 and f 14 denote the spanning forest polynomials such that ϕ = F = (p 1 + p 2 ) 2 f 12 + (p 1 + p 4 ) 2 f 14 + p 2 3f 3 + p 2 4f 4 Definition Φ(G) = Γ(sdd) e Γ(a e) 0 F (G; z) Ω [ (p1 + p 2 ) 2 z 12 + (p 1 + p 4 ) 2 z 14 + p 2 3 z 3 + p2 4 z 4] sdd Example 1 v 1 v 4 (D = 4) z 4 3 z 4 F 1 3 ; z 2 = z 12 [z v 2 v 12 (z 14 + z 3 + z 4 ) + z 3 z 4 ] 3 2 (D = 6) }{{} Q 18 / 24

57 Appending a vertex G = v 1 v 2 v 3 v 4 G = v 1 v 4 e v 2 v 3 Using (f 12, f 14, f 3, f 4, ψ ) = (f 12, f 14, f 3, f 4 + α e ψ, ψ), F (G ; z) = z4 0 v 3 or v 1 v 4 v 2 v 3 F (G; z 12, z 14, z 3, z 4 α e ) αe ae 1 dα e e v 4 19 / 24

58 Appending a vertex G = v 1 v 2 v 3 v 4 G = v 1 v 4 e v 2 v 3 Using (f 12, f 14, f 3, f 4, ψ ) = (f 12, f 14, f 3, f 4 + α e ψ, ψ), F (G ; z) = z4 0 v 3 or v 1 v 4 v 2 v 3 F (G; z 12, z 14, z 3, z 4 α e ) αe ae 1 dα e e v 4 Example (D = 6 and a e = 1) v 4 ; z F v 1 v 2 v 3 = z3 0 F v v 4 v 2 v 3 ; z 12, z 14, z 3, z 4 dz 3 19 / 24

59 Appending a vertex G = v 1 v 2 v 3 v 4 G = v 1 v 4 e v 2 v 3 Using (f 12, f 14, f 3, f 4, ψ ) = (f 12, f 14, f 3, f 4 + α e ψ, ψ), F (G ; z) = z4 0 v 3 or v 1 v 4 v 2 v 3 F (G; z 12, z 14, z 3, z 4 α e ) αe ae 1 dα e e v 4 Example (D = 6 and a e = 1) v 1 v 4 z3 z F ; z 12 dz 3 = [z 12 (z 14 + z 3 + z 4) + z 3 z 4] 2 = z 3 (z 14 + z 4 ) Q v 2 v / 24

60 Appending a vertex G = v 1 v 2 v 3 v 4 G = v 1 v 4 e v 2 v 3 Using (f 12, f 14, f 3, f 4, ψ ) = (f 12, f 14, f 3, f 4 + α e ψ, ψ), F (G ; z) = z4 0 v 3 or v 1 v 4 v 2 v 3 F (G; z 12, z 14, z 3, z 4 α e ) αe ae 1 dα e e v 4 Example (D = 6 and a e = 1) v 1 v 4 z3 z F ; z 12 dz 3 = [z 12 (z 14 + z 3 + z 4) + z 3 z 4] 2 = z 3 (z 14 + z 4 ) Q v 2 v 3 v 4 ; z F v 1 v 2 v 3 = 0 z4 0 F v 1 v 4 ; z 12, z 14, z 3, z 4 dz 4 v 2 v 3 19 / 24

61 Appending a vertex G = v 1 v 2 v 3 v 4 G = v 1 v 4 e v 2 v 3 Using (f 12, f 14, f 3, f 4, ψ ) = (f 12, f 14, f 3, f 4 + α e ψ, ψ), F (G ; z) = z4 0 v 3 or v 1 v 4 v 2 v 3 F (G; z 12, z 14, z 3, z 4 α e ) αe ae 1 dα e e v 4 Example (D = 6 and a e = 1) v 1 v 4 z3 z F ; z 12 dz 3 = [z 12 (z 14 + z 3 + z 4) + z 3 z 4] 2 = z 3 (z 14 + z 4 ) Q v 2 v 3 v 4 ; z F v 1 v 2 v 3 = 0 1 ln z 12(z 3 + z 14 )(z 4 + z 14 ) z 12 z 14 z 14 Q 19 / 24

62 Adding an edge v 1 v 4 G = v 1 v 4 G = v 2 v 3 v 2 v 3 e z12 F G (z) [ = Q ae+sdd D x D/2 2 Q D/2 sdd F G ]z dx 12 =z 12 x 0 20 / 24

63 Adding an edge v 1 v 4 G = v 1 v 4 G = v 2 v 3 v 2 v 3 e z12 F G (z) [ = Q ae+sdd D x D/2 2 Q D/2 sdd F G ]z dx 12 =z 12 x Example (D = 6 and a e = 1) v 1 v 4 F ; z = 1 z12 Q 2 F v 2 v v 1 v 4 v 2 v 3 ; z 12 x, z 14, z 3, z 4 xdx 20 / 24

64 Adding an edge v 1 v 4 G = v 1 v 4 G = v 2 v 3 v 2 v 3 e z12 F G (z) [ = Q ae+sdd D x D/2 2 Q D/2 sdd F G ]z dx 12 =z 12 x Example (D = 6 and a e = 1) v 1 v 4 F ; z = 1 z12 Q 2 F v 2 v 3 = z 12 z 14 Q 2 + z 12 z 14 Q 2 Li 2 [ ln Q ( z3 z 4 Q 0 0 v 1 v 4 v 2 v 3 ; z 12 x, z 14, z 3, z 4 xdx ln (z ( )] 14 + z 3 )(z 14 + z 4 ) z 3 z 4 z 14 (z 14 + z 3 + z 4 ) Li z3 z 4 (z 14 z 12 ) 2 z 14 Q ) + z 12 Q 2 ln z 14 z 3 z 4 z 12 (z 14 + z 3 )(z 14 + z 4 ) ln(z 3z 4 /Q) Q(z 14 + z 3 + z 4 ) 20 / 24

65 Compatibility graph of box-ladders z 12 z 14 z 12 +z 3 Q z 12 +z 4 z 14 +z 3 +z 4 z 14 +z 3 z 14 +z 4 21 / 24

66 Summary Holy grail: Infer analytic structure of a FI from combinatorial structure, i.e. by looking at the graph (vs. case-by-case) 22 / 24

67 Summary Holy grail: Infer analytic structure of a FI from combinatorial structure, i.e. by looking at the graph (vs. case-by-case) extremely difficult 22 / 24

68 Summary Holy grail: Infer analytic structure of a FI from combinatorial structure, i.e. by looking at the graph (vs. case-by-case) extremely difficult so far, only very few results 22 / 24

69 Summary Holy grail: Infer analytic structure of a FI from combinatorial structure, i.e. by looking at the graph (vs. case-by-case) extremely difficult so far, only very few results Problem: Find linearly reducible integral representations 22 / 24

70 Summary Holy grail: Infer analytic structure of a FI from combinatorial structure, i.e. by looking at the graph (vs. case-by-case) extremely difficult so far, only very few results Problem: Find linearly reducible integral representations Schwinger parameters are not always optimal (e.g. for K 4 ) 22 / 24

71 Summary Holy grail: Infer analytic structure of a FI from combinatorial structure, i.e. by looking at the graph (vs. case-by-case) extremely difficult so far, only very few results Problem: Find linearly reducible integral representations Schwinger parameters are not always optimal (e.g. for K 4 ) try to tailor the variables towards the graph 22 / 24

72 Summary Holy grail: Infer analytic structure of a FI from combinatorial structure, i.e. by looking at the graph (vs. case-by-case) extremely difficult so far, only very few results Problem: Find linearly reducible integral representations Schwinger parameters are not always optimal (e.g. for K 4 ) try to tailor the variables towards the graph Once a linearly reducible representation is found, programs can do all the work for you! 22 / 24

73 Summary Holy grail: Infer analytic structure of a FI from combinatorial structure, i.e. by looking at the graph (vs. case-by-case) extremely difficult so far, only very few results Problem: Find linearly reducible integral representations Schwinger parameters are not always optimal (e.g. for K 4 ) try to tailor the variables towards the graph Once a linearly reducible representation is found, programs can do all the work for you! Polynomial reduction can be a guideline to find parametrizations 22 / 24

74 Summary Holy grail: Infer analytic structure of a FI from combinatorial structure, i.e. by looking at the graph (vs. case-by-case) extremely difficult so far, only very few results Problem: Find linearly reducible integral representations Schwinger parameters are not always optimal (e.g. for K 4 ) try to tailor the variables towards the graph Once a linearly reducible representation is found, programs can do all the work for you! Polynomial reduction can be a guideline to find parametrizations not restricted to FI 22 / 24

75 Summary Holy grail: Infer analytic structure of a FI from combinatorial structure, i.e. by looking at the graph (vs. case-by-case) extremely difficult so far, only very few results Problem: Find linearly reducible integral representations Schwinger parameters are not always optimal (e.g. for K 4 ) try to tailor the variables towards the graph Once a linearly reducible representation is found, programs can do all the work for you! Polynomial reduction can be a guideline to find parametrizations not restricted to FI for divergent integrals, choose finite masters 22 / 24

76 Summary Holy grail: Infer analytic structure of a FI from combinatorial structure, i.e. by looking at the graph (vs. case-by-case) extremely difficult so far, only very few results Problem: Find linearly reducible integral representations Schwinger parameters are not always optimal (e.g. for K 4 ) try to tailor the variables towards the graph Once a linearly reducible representation is found, programs can do all the work for you! Polynomial reduction can be a guideline to find parametrizations not restricted to FI for divergent integrals, choose finite masters 22 / 24

77 Summary Holy grail: Infer analytic structure of a FI from combinatorial structure, i.e. by looking at the graph (vs. case-by-case) extremely difficult so far, only very few results Problem: Find linearly reducible integral representations Schwinger parameters are not always optimal (e.g. for K 4 ) try to tailor the variables towards the graph Once a linearly reducible representation is found, programs can do all the work for you! Polynomial reduction can be a guideline to find parametrizations not restricted to FI for divergent integrals, choose finite masters Thank you! 22 / 24

78 Massless φ 4 theory: primitive sixth roots of unity P 7,11 = is not linearly reducible! Tenth denominator: d 10 = α 2 α 2 4α 1 + α 2 α 2 4α 3 α 1 α 2 α 3 α 4 + α 2 2α 4 α 1 + α 2 2α 4 α 3 2α 2 α 2 3α 4 α 2 2α 2 3 2α 2 2α 3 α 1 2α 2 α 2 3α 1 α 2 3α 2 4 2α 2 3α 4 α 1 α 2 2α 2 1 2α 2 α 3 α 2 1 α 2 3α 2 1. Change variables: α 3 = α 3 α 1 α 1 +α 2 +α 4, α 4 = α 4 (α 2 + α 3 ) and α 1 = α 1 α 4, d 10 = (α 2 + α 3)(α 2 + α 2 α 4 α 1)(α 1α 4 + α 2 + α 2 α 4 + α 3α 4) Final result: not a multiple zeta value, instead MPL at e iπ/3 23 / 24

79 3 P(P7,11 ) ( ) = Im ζ 9 Li ζ 7 Li ζ3( Li 2,3 7ζ 3 Li 2 ) 9675 π3 ζ 3, (36 Im Li 2,2,2,5 +27 Li 2,2,3,4 +9 Li 2,2,4,3 +9 Li 2,3,2,4 +3 Li 2,3,3,3 ) 43ζ 3 (Li 2,3,3 +3 Li 2,2,4 ) π Im ( Li 8 ζ Li 2, π2 Im Li 6 ζ Li 3,8 ) Li 4, Li 5,6 ( Li 2, Li 6 ζ Li 4, Li 3,6 ) ( + π ζ ζ ,7 215 Re(3 Li 4,6 +10 Li 3,7 ) ) Abbreviation: Li n1,...,n r := Li n1,...,n r (e iπ/3 ) 24 / 24

Symbolic integration of multiple polylogarithms

Symbolic integration of multiple polylogarithms Symbolic integration of multiple polylogarithms Erik Panzer Institute des Hautes E tudes Scientifiques Applications of Computer Algebra July 22nd, 215 Kalamata, Greece Problem: Multiple integrals of rational

More information

HyperInt - exact integration with hyperlogarithms

HyperInt - exact integration with hyperlogarithms HyperInt - exact integration with hyperlogarithms Erik Panzer erikpanzer@ihes.fr (CNRS, ERC grant 257638, F. Brown) Institute des Hautes Études Scientifiques 35 Route de Chartres 9144 Bures-sur-Yvette

More information

Multiple polylogarithms and Feynman integrals

Multiple polylogarithms and Feynman integrals Multiple polylogarithms and Feynman integrals Erik Panzer Institute des Hautes E tudes Scientifiques Amplitudes 215 July 7th ETH/University of Zu rich Topics 1 hyperlogarithms & iterated integrals 2 multiple

More information

Multiple polylogarithms and Feynman integrals

Multiple polylogarithms and Feynman integrals Multiple polylogarithms and Feynman integrals Erik Panzer Institute des Hautes E tudes Scientifiques Amplitudes 215 July 7th ETH/University of Zu rich Topics 1 hyperlogarithms & iterated integrals 2 multiple

More information

Master integrals without subdivergences

Master integrals without subdivergences Master integrals without subdivergences Joint work with Andreas von Manteuffel and Robert Schabinger Erik Panzer 1 (CNRS, ERC grant 257638) Institute des Hautes Études Scientifiques 35 Route de Chartres

More information

Combinatorial and physical content of Kirchhoff polynomials

Combinatorial and physical content of Kirchhoff polynomials Combinatorial and physical content of Kirchhoff polynomials Karen Yeats May 19, 2009 Spanning trees Let G be a connected graph, potentially with multiple edges and loops in the sense of a graph theorist.

More information

Combinatorial Hopf algebras in particle physics I

Combinatorial Hopf algebras in particle physics I Combinatorial Hopf algebras in particle physics I Erik Panzer Scribed by Iain Crump May 25 1 Combinatorial Hopf Algebras Quantum field theory (QFT) describes the interactions of elementary particles. There

More information

Evaluating multiloop Feynman integrals by Mellin-Barnes representation

Evaluating multiloop Feynman integrals by Mellin-Barnes representation April 7, 004 Loops&Legs 04 Evaluating multiloop Feynman integrals by Mellin-Barnes representation V.A. Smirnov Nuclear Physics Institute of Moscow State University Mellin-Barnes representation as a tool

More information

Functional equations for Feynman integrals

Functional equations for Feynman integrals Functional equations for Feynman integrals O.V. Tarasov JINR, Dubna, Russia October 9, 016, Hayama, Japan O.V. Tarasov (JINR) Functional equations for Feynman integrals 1 / 34 Contents 1 Functional equations

More information

Differential Equations and Associators for Periods

Differential Equations and Associators for Periods Differential Equations and Associators for Periods Stephan Stieberger, MPP München Workshop on Geometry and Physics in memoriam of Ioannis Bakas November 2-25, 26 Schloß Ringberg, Tegernsee based on: St.St.,

More information

Amplitudes in φ4. Francis Brown, CNRS (Institut de Mathe matiques de Jussieu)

Amplitudes in φ4. Francis Brown, CNRS (Institut de Mathe matiques de Jussieu) Amplitudes in φ4 Francis Brown, CNRS (Institut de Mathe matiques de Jussieu) DESY Hamburg, 6 March 2012 Overview: 1. Parametric Feynman integrals 2. Graph polynomials 3. Symbol calculus 4. Point-counting

More information

MPL - a program for computations with iterated integrals on moduli spaces of curves of genus zero

MPL - a program for computations with iterated integrals on moduli spaces of curves of genus zero arxiv:1510.04562v1 [physics.comp-ph] 14 Oct 2015 MPL - a program for computations with iterated integrals on moduli spaces of curves of genus zero Christian Bogner Institut für Physik, Humboldt-Universität

More information

Linear polynomial reduction for Feynman integrals

Linear polynomial reduction for Feynman integrals Linear polynomial reduction for Feynman integrals MASTERTHESIS for attainment of the academic degree of Master of Science (M. Sc.) submitted at Mathematisch-Naturwissenschaftliche Fakultät I Institut für

More information

Periods, Galois theory and particle physics

Periods, Galois theory and particle physics Periods, Galois theory and particle physics Francis Brown All Souls College, Oxford Gergen Lectures, 21st-24th March 2016 1 / 29 Reminders We are interested in periods I = γ ω where ω is a regular algebraic

More information

Scalar One-Loop Integrals using the Negative-Dimension Approach

Scalar One-Loop Integrals using the Negative-Dimension Approach DTP/99/80 hep-ph/9907494 Scalar One-Loop Integrals using the Negative-Dimension Approach arxiv:hep-ph/9907494v 6 Jul 999 C. Anastasiou, E. W. N. Glover and C. Oleari Department of Physics, University of

More information

(Elliptic) multiple zeta values in open superstring amplitudes

(Elliptic) multiple zeta values in open superstring amplitudes (Elliptic) multiple zeta values in open superstring amplitudes Johannes Broedel Humboldt University Berlin based on joint work with Carlos Mafra, Nils Matthes and Oliver Schlotterer arxiv:42.5535, arxiv:57.2254

More information

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases.

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases. Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases. Lorenzo Tancredi TTP, KIT - Karlsruhe Bologna, 18 Novembre 2014 Based on collaboration with Thomas Gehrmann,

More information

arxiv: v2 [hep-th] 1 Feb 2018

arxiv: v2 [hep-th] 1 Feb 2018 Prepared for submission to JHEP CERN-TH-07-09 CP-7- Edinburgh 07/09 FR-PHENO-07-00 TCDMATH-7-09 Diagrammatic Hopf algebra of cut Feynman integrals: the one-loop case arxiv:704.079v [hep-th] Feb 08 Samuel

More information

Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method

Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method Matteo Becchetti Supervisor Roberto Bonciani University of Rome La Sapienza 24/01/2017 1 The subject of

More information

Reduction of Feynman integrals to master integrals

Reduction of Feynman integrals to master integrals Reduction of Feynman integrals to master integrals A.V. Smirnov Scientific Research Computing Center of Moscow State University A.V. Smirnov ACAT 2007 p.1 Reduction problem for Feynman integrals A review

More information

MaPhy-AvH/ FEYNMAN INTEGRALS AND ITERATED INTEGRALS ON MODULI SPACES OF CURVES OF GENUS ZERO. 1. Introduction. ta i

MaPhy-AvH/ FEYNMAN INTEGRALS AND ITERATED INTEGRALS ON MODULI SPACES OF CURVES OF GENUS ZERO. 1. Introduction. ta i MaPhy-AvH/2014-10 FEYNMAN INTEGRALS AND ITERATED INTEGRALS ON MODULI SPACES OF CURVES OF GENUS ZERO CHRISTIAN BOGNER AND FRANCIS BROWN Abstract. This paper describes algorithms for the exact symbolic computation

More information

arxiv: v1 [math.ag] 10 Apr 2008

arxiv: v1 [math.ag] 10 Apr 2008 THE MASSLESS HIGHER-LOOP TWO-POINT FUNCTION arxiv:84.66v [math.ag] Apr 28 FRANCIS BROWN, CNRS, IMJ Abstract. We introduce a new method for computing massless Feynman integrals analytically in parametric

More information

Feynman integrals and multiple polylogarithms. Stefan Weinzierl

Feynman integrals and multiple polylogarithms. Stefan Weinzierl Feynman integrals and multiple polylogarithms Stefan Weinzierl Universität Mainz I. Basic techniques II. Nested sums and iterated integrals III. Multiple Polylogarithms IV. Applications The need for precision

More information

TENSOR STRUCTURE FROM SCALAR FEYNMAN MATROIDS

TENSOR STRUCTURE FROM SCALAR FEYNMAN MATROIDS TENSOR STRUCTURE FROM SCALAR FEYNMAN MATROIDS Dirk KREIMER and Karen YEATS Institut des Hautes Études Scientifiques 35, route de Chartres 91440 Bures-sur-Yvette (France) Novembre 2010 IHES/P/10/40 TENSOR

More information

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS Germán F. R. Sborlini Departamento de Física, FCEyN, UBA (Argentina) 10/12/2012 - IFIC CONTENT Introduction Collinear limits Splitting functions Computing splitting

More information

Feynman Integrals, Regulators and Elliptic Polylogarithms

Feynman Integrals, Regulators and Elliptic Polylogarithms Feynman Integrals, Regulators and Elliptic Polylogarithms Pierre Vanhove Automorphic Forms, Lie Algebras and String Theory March 5, 2014 based on [arxiv:1309.5865] and work in progress Spencer Bloch, Matt

More information

arxiv: v1 [hep-ph] 30 Dec 2015

arxiv: v1 [hep-ph] 30 Dec 2015 June 3, 8 Derivation of functional equations for Feynman integrals from algebraic relations arxiv:5.94v [hep-ph] 3 Dec 5 O.V. Tarasov II. Institut für Theoretische Physik, Universität Hamburg, Luruper

More information

The Pentabox Master Integrals with the Simplified Differential Equations approach

The Pentabox Master Integrals with the Simplified Differential Equations approach The Pentabox Master Integrals with the Simplified Differential Equations approach Costas G. Papadopoulos INPP, NCSR Demokritos Zurich, August 25, 2016 C.G.Papadopoulos (INPP) 5box QCD@LHC 2016 1 / 36 Introduction

More information

Structural Aspects of Numerical Loop Calculus

Structural Aspects of Numerical Loop Calculus Structural Aspects of Numerical Loop Calculus Do we need it? What is it about? Can we handle it? Giampiero Passarino Dipartimento di Fisica Teorica, Università di Torino, Italy INFN, Sezione di Torino,

More information

arxiv: v3 [hep-ph] 20 Apr 2017

arxiv: v3 [hep-ph] 20 Apr 2017 MITP/14-76 A quasi-finite basis for multi-loop Feynman integrals arxiv:1411.7392v3 [hep-ph] 2 Apr 217 Andreas von Manteuffel, a Erik Panzer, b, c and Robert M. Schabinger a a PRISMA Cluster of Excellence

More information

Multiloop integrals in dimensional regularization made simple

Multiloop integrals in dimensional regularization made simple Multiloop integrals in dimensional regularization made simple Johannes M. Henn Institute for Advanced Study based on PRL 110 (2013) [arxiv:1304.1806], JHEP 1307 (2013) 128 [arxiv:1306.2799] with A. V.

More information

Simplified differential equations approach for NNLO calculations

Simplified differential equations approach for NNLO calculations Simplified differential equations approach for NNLO calculations Costas. G. Papadopoulos INPP, NCSR Demokritos, Athens UCLA, June 19, 2015 Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, 2015 1 / 39

More information

The Steinmann Cluster Bootstrap for N = 4 SYM Amplitudes

The Steinmann Cluster Bootstrap for N = 4 SYM Amplitudes The Steinmann Cluster Bootstrap for N = 4 SYM Amplitudes Georgios Papathanasiou 1412.3763 w/ Drummond,Spradlin 1612.08976 w/ Dixon,Drummond,Harrington,McLeod,Spradlin + in progress w/ Caron-Huot,Dixon,McLeod,von

More information

arxiv: v1 [hep-th] 20 May 2014

arxiv: v1 [hep-th] 20 May 2014 arxiv:405.4964v [hep-th] 20 May 204 Quantum fields, periods and algebraic geometry Dirk Kreimer Abstract. We discuss how basic notions of graph theory and associated graph polynomials define questions

More information

One-Mass Two-Loop Master Integrals for Mixed

One-Mass Two-Loop Master Integrals for Mixed One-Mass Two-Loop Master Integrals for Mixed α s -Electroweak Drell-Yan Production work ongoing with Andreas von Manteuffel The PRISMA Cluster of Excellence and Institute of Physics Johannes Gutenberg

More information

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with: J. Carter and G. Heinrich Based on arxiv:124.4152 [hep-ph] http://secdec.hepforge.org DESY-HU

More information

The Non-commutative S matrix

The Non-commutative S matrix The Suvrat Raju Harish-Chandra Research Institute 9 Dec 2008 (work in progress) CONTEMPORARY HISTORY In the past few years, S-matrix techniques have seen a revival. (Bern et al., Britto et al., Arkani-Hamed

More information

Discontinuities of Feynman Integrals

Discontinuities of Feynman Integrals CEA Saclay Brown University, Twelfth Workshop on Non-Perturbative Quantum Chromodynamics June 10, 2013 Outline Landau and Cutkosky Classic unitarity cuts I I I Dispersion relations Modern unitarity method,

More information

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with G. Heinrich Based on arxiv:124.4152 [hep-ph] HP 8 :Workshop on High Precision for Hard Processes,

More information

Lecture 3. Frits Beukers. Arithmetic of values of E- and G-function. Lecture 3 E- and G-functions 1 / 20

Lecture 3. Frits Beukers. Arithmetic of values of E- and G-function. Lecture 3 E- and G-functions 1 / 20 Lecture 3 Frits Beukers Arithmetic of values of E- and G-function Lecture 3 E- and G-functions 1 / 20 G-functions, definition Definition An analytic function f (z) given by a powerseries a k z k k=0 with

More information

Triangle diagrams in the Standard Model

Triangle diagrams in the Standard Model Triangle diagrams in the Standard Model A. I. Davydychev and M. N. Dubinin Institute for Nuclear Physics, Moscow State University, 119899 Moscow, USSR Abstract Method of massive loop Feynman diagrams evaluation

More information

Two-loop Remainder Functions in N = 4 SYM

Two-loop Remainder Functions in N = 4 SYM Two-loop Remainder Functions in N = 4 SYM Claude Duhr Institut für theoretische Physik, ETH Zürich, Wolfgang-Paulistr. 27, CH-8093, Switzerland E-mail: duhrc@itp.phys.ethz.ch 1 Introduction Over the last

More information

Understanding the log expansions in quantum field theory combinatorially

Understanding the log expansions in quantum field theory combinatorially Understanding the log expansions in quantum field theory combinatorially Karen Yeats CCC and BCCD, February 5, 2016 Augmented generating functions Take a combinatorial class C. Build a generating function

More information

Simplified differential equations approach for the calculation of multi-loop integrals

Simplified differential equations approach for the calculation of multi-loop integrals Simplified differential equations approach for the calculation of multi-loop integrals Chris Wever (N.C.S.R. Demokritos) 1 C. Papadopoulos [arxiv: 1401.6057 [hep-ph]] C. Papadopoulos, D. Tommasini, C.

More information

Introduction The MPLs Hopf algebra Application to Feynman integrals. Federico Granata. Ph.D. XXIX cicle 16/09/2014 Tutor: Carlo Oleari

Introduction The MPLs Hopf algebra Application to Feynman integrals. Federico Granata. Ph.D. XXIX cicle 16/09/2014 Tutor: Carlo Oleari Federico Granata Ph.D. XXIX cicle 16/09/2014 Tutor: Carlo Oleari Seminar based on NNLO ante portas summer school 18-25 June 2014, Debrecen Hungary) Polylogarithms The analytic computation of Feynman scalar

More information

Evaluating double and triple (?) boxes

Evaluating double and triple (?) boxes Evaluating double and triple (?) boxes V.A. Smirnov a hep-ph/0209295 September 2002 a Nuclear Physics Institute of Moscow State University, Moscow 9992, Russia A brief review of recent results on analytical

More information

Blobbed Topological Recursion for Tensor Models

Blobbed Topological Recursion for Tensor Models Quantum Gravity in Paris Institut Henri Poincaré, Paris 2017 Outline 1 2 3 The case for a tensor model 4 5 Matrix models for 2d quantum gravity Integrals of matrices with Feynman graphs = poly-angulations

More information

5 Infrared Divergences

5 Infrared Divergences 5 Infrared Divergences We have already seen that some QED graphs have a divergence associated with the masslessness of the photon. The divergence occurs at small values of the photon momentum k. In a general

More information

One-Loop Integrals at vanishing external momenta and appli. Higgs potentials reconstructions CALC Mikhail Dolgopolov. Samara State University

One-Loop Integrals at vanishing external momenta and appli. Higgs potentials reconstructions CALC Mikhail Dolgopolov. Samara State University One-Loop Integrals at vanishing external momenta and applications for extended Higgs potentials reconstructions CALC 2012 Samara State University 1. Basic examples and an idea for extended Higgs potentials

More information

Computer Algebra Algorithms for Special Functions in Particle Physics.

Computer Algebra Algorithms for Special Functions in Particle Physics. Computer Algebra Algorithms for Special Functions in Particle Physics. Jakob Ablinger RISC, J. Kepler Universität Linz, Austria joint work with J. Blümlein (DESY) and C. Schneider (RISC) 7. Mai 2012 Definition

More information

Harmonic Mappings and Shear Construction. References. Introduction - Definitions

Harmonic Mappings and Shear Construction. References. Introduction - Definitions Harmonic Mappings and Shear Construction KAUS 212 Stockholm, Sweden Tri Quach Department of Mathematics and Systems Analysis Aalto University School of Science Joint work with S. Ponnusamy and A. Rasila

More information

arxiv:hep-lat/ v1 30 Sep 2005

arxiv:hep-lat/ v1 30 Sep 2005 September 2005 Applying Gröbner Bases to Solve Reduction Problems for Feynman Integrals arxiv:hep-lat/0509187v1 30 Sep 2005 A.V. Smirnov 1 Mechanical and Mathematical Department and Scientific Research

More information

Lorentz invariant scattering cross section and phase space

Lorentz invariant scattering cross section and phase space Chapter 3 Lorentz invariant scattering cross section and phase space In particle physics, there are basically two observable quantities : Decay rates, Scattering cross-sections. Decay: p p 2 i a f p n

More information

Calculating four-loop massless propagators with Forcer

Calculating four-loop massless propagators with Forcer Calculating four-loop massless propagators with Forcer Takahiro Ueda Nikhef, The Netherlands Collaboration with: Ben Ruijl and Jos Vermaseren 18 Jan. 2016 ACAT2016, UTFSM, Valparaíso 1 / 30 Contents Introduction

More information

Towards One-Loop MHV Techniques

Towards One-Loop MHV Techniques Towards One-Loop MHV Techniques Carola F. Berger Snowmass - August 22, 2005 Carola F. Berger, SLAC Snowmass - August 22, 2005 Towards One-Loop MHV Techniques Carola F. Berger Snowmass - August 22, 2005

More information

Let X be a topological space. We want it to look locally like C. So we make the following definition.

Let X be a topological space. We want it to look locally like C. So we make the following definition. February 17, 2010 1 Riemann surfaces 1.1 Definitions and examples Let X be a topological space. We want it to look locally like C. So we make the following definition. Definition 1. A complex chart on

More information

Poles at Infinity in Gravity

Poles at Infinity in Gravity Poles at Infinity in Gravity Enrico Herrmann QCD Meets Gravity Workshop @ UCLA Based on: arxiv:1412.8584, 1512.08591, 1604.03479. in collaboration with:. Zvi Bern, Sean Litsey, James Stankowicz, Jaroslav

More information

arxiv: v2 [hep-th] 7 Jul 2016

arxiv: v2 [hep-th] 7 Jul 2016 Integration-by-parts reductions from unitarity cuts and algebraic geometry arxiv:1606.09447v [hep-th] 7 Jul 016 Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland E-mail: Kasper.Larsen@phys.ethz.ch

More information

Notes on the Matrix-Tree theorem and Cayley s tree enumerator

Notes on the Matrix-Tree theorem and Cayley s tree enumerator Notes on the Matrix-Tree theorem and Cayley s tree enumerator 1 Cayley s tree enumerator Recall that the degree of a vertex in a tree (or in any graph) is the number of edges emanating from it We will

More information

Lecture 1. Frits Beukers. October 23, Lecture 1 October 23, / 34

Lecture 1. Frits Beukers. October 23, Lecture 1 October 23, / 34 Lecture 1 Frits Beukers October 23, 2018 Lecture 1 October 23, 2018 1 / 34 Gauss hypergeometric function Euler and Gauss defined 2F 1 ( α β γ ) z = n=0 (α) n (β) n n!(γ) n z n where (x) n = x(x + 1) (x

More information

QFT. Chapter 14: Loop Corrections to the Propagator

QFT. Chapter 14: Loop Corrections to the Propagator QFT Chapter 14: Loop Corrections to the Propagator Overview Here we turn to our next major topic: loop order corrections. We ll consider the effect on the propagator first. This has at least two advantages:

More information

Feynman integrals and hyperlogarithms

Feynman integrals and hyperlogarithms Feynman integrals and hyperlogarithms Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) im Fach Mathematik eingereicht an der Mathematisch-Naturwissenschaftlichen

More information

New series expansions of the Gauss hypergeometric function

New series expansions of the Gauss hypergeometric function New series expansions of the Gauss hypergeometric function José L. López and Nico. M. Temme 2 Departamento de Matemática e Informática, Universidad Pública de Navarra, 36-Pamplona, Spain. e-mail: jl.lopez@unavarra.es.

More information

MORE CONSEQUENCES OF CAUCHY S THEOREM

MORE CONSEQUENCES OF CAUCHY S THEOREM MOE CONSEQUENCES OF CAUCHY S THEOEM Contents. The Mean Value Property and the Maximum-Modulus Principle 2. Morera s Theorem and some applications 3 3. The Schwarz eflection Principle 6 We have stated Cauchy

More information

Feynman integrals as Periods

Feynman integrals as Periods Feynman integrals as Periods Pierre Vanhove Amplitudes 2017, Higgs Center, Edinburgh, UK based on [arxiv:1309.5865], [arxiv:1406.2664], [arxiv:1601.08181] Spencer Bloch, Matt Kerr Pierre Vanhove (IPhT)

More information

Functions associated to scattering amplitudes. Stefan Weinzierl

Functions associated to scattering amplitudes. Stefan Weinzierl Functions associated to scattering amplitudes Stefan Weinzierl Institut für Physik, Universität Mainz I: Periodic functions and periods II: III: Differential equations The two-loop sun-rise diagramm in

More information

Numerical Evaluation of Loop Integrals

Numerical Evaluation of Loop Integrals Numerical Evaluation of Loop Integrals Institut für Theoretische Physik Universität Zürich Tsukuba, April 22 nd 2006 In collaboration with Babis Anastasiou Rationale (Why do we need complicated loop amplitudes?)

More information

Modern Approaches to Scattering Amplitudes

Modern Approaches to Scattering Amplitudes Ph.D. Workshop, 10 October 2017 Outline Scattering Amplitudes 1 Scattering Amplitudes Introduction The Standard Method 2 On-Shell vs Off-Shell On-Shell building blocks BCFW Recursion Relations 3 Amplitudes

More information

Particles I, Tutorial notes Sessions I-III: Roots & Weights

Particles I, Tutorial notes Sessions I-III: Roots & Weights Particles I, Tutorial notes Sessions I-III: Roots & Weights Kfir Blum June, 008 Comments/corrections regarding these notes will be appreciated. My Email address is: kf ir.blum@weizmann.ac.il Contents 1

More information

The propagator seagull: general evaluation of a two loop diagram

The propagator seagull: general evaluation of a two loop diagram Prepared for submission to JHEP arxiv:1809.05040v [hep-th] 11 Oct 018 The propagator seagull: general evaluation of a two loop diagram Barak Kol and Ruth Shir The Racah Institute of Physics, The Hebrew

More information

Math Homework 2

Math Homework 2 Math 73 Homework Due: September 8, 6 Suppose that f is holomorphic in a region Ω, ie an open connected set Prove that in any of the following cases (a) R(f) is constant; (b) I(f) is constant; (c) f is

More information

The Pentabox Master Integrals with the Simplified Differential Equations approach

The Pentabox Master Integrals with the Simplified Differential Equations approach Prepared for submission to JHEP TTP15-042 The Pentabox Master Integrals with the Simplified Differential Equations approach Costas G. Papadopoulos ab Damiano Tommasini a and Christopher Wever ac a Institute

More information

Euler and the modern mathematician. V. S. Varadarajan Department of Mathematics, UCLA. University of Bologna

Euler and the modern mathematician. V. S. Varadarajan Department of Mathematics, UCLA. University of Bologna Euler and the modern mathematician V. S. Varadarajan Department of Mathematics, UCLA University of Bologna September 2008 Abstract It is remarkable that Euler, who preceded Gauss and Riemann, is still

More information

Combinatorial Dyson-Schwinger equations and systems I Feynma. Feynman graphs, rooted trees and combinatorial Dyson-Schwinger equations

Combinatorial Dyson-Schwinger equations and systems I Feynma. Feynman graphs, rooted trees and combinatorial Dyson-Schwinger equations Combinatorial and systems I, rooted trees and combinatorial Potsdam November 2013 Combinatorial and systems I Feynma In QFT, one studies the behaviour of particles in a quantum fields. Several types of

More information

Reduction to Master Integrals. V.A. Smirnov Atrani, September 30 October 05, 2013 p.1

Reduction to Master Integrals. V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction to Master Integrals V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction to Master Integrals IBP (integration by parts) V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction

More information

PHY 396 L. Solutions for homework set #20.

PHY 396 L. Solutions for homework set #20. PHY 396 L. Solutions for homework set #. Problem 1 problem 1d) from the previous set): At the end of solution for part b) we saw that un-renormalized gauge invariance of the bare Lagrangian requires Z

More information

arxiv: v1 [hep-ph] 19 Apr 2007

arxiv: v1 [hep-ph] 19 Apr 2007 DESY 07-037 HEPTOOLS 07-009 SFB/CPP-07-14 arxiv:0704.2423v1 [hep-ph] 19 Apr 2007 AMBRE a Mathematica package for the construction of Mellin-Barnes representations for Feynman integrals Abstract J. Gluza,

More information

Asymptotic Expansions of Feynman Integrals on the Mass Shell in Momenta and Masses

Asymptotic Expansions of Feynman Integrals on the Mass Shell in Momenta and Masses Asymptotic Expansions of Feynman Integrals on the Mass Shell in Momenta and Masses arxiv:hep-ph/9708423v 2 Aug 997 V.A. Smirnov Nuclear Physics Institute of Moscow State University Moscow 9899, Russia

More information

1 What s the big deal?

1 What s the big deal? This note is written for a talk given at the graduate student seminar, titled how to solve quantum mechanics with x 4 potential. What s the big deal? The subject of interest is quantum mechanics in an

More information

Maximal Unitarity at Two Loops

Maximal Unitarity at Two Loops Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon Caron- Huot & Kasper Larsen 1108.1180, 1205.0801,

More information

Cellular Multizeta Values. Sarah Carr

Cellular Multizeta Values. Sarah Carr Cellular Multizeta Values Sarah Carr August, 2007 Goals The following is joint work with Francis Brown and Leila Schneps based on a combinatorial theory of pairs of polygons. 1. Objects: Periods on M 0,n

More information

Differential Equations for Feynman Integrals

Differential Equations for Feynman Integrals for Feynman Integrals Ulrich Schubert Max-Planck-Institut für Physik Föhringer Ring 6, München January 18, 2015 based on work with M. Argeri, S. Di Vita, P. Mastrolia, E. Mirabella, J. Schlenk, L. Tancredi,

More information

Periods (and why the fundamental theorem of calculus conjecturely is a fundamental theorem)

Periods (and why the fundamental theorem of calculus conjecturely is a fundamental theorem) Periods (and why the fundamental theorem of calculus conjecturely is a fundamental theorem) by J.M. Commelin Saturday, the 28 th of November, 2015 0.1 abstract. In 2001 M. Kontsevich and D. Zagier posed

More information

Algebraic number theory Revision exercises

Algebraic number theory Revision exercises Algebraic number theory Revision exercises Nicolas Mascot (n.a.v.mascot@warwick.ac.uk) Aurel Page (a.r.page@warwick.ac.uk) TA: Pedro Lemos (lemos.pj@gmail.com) Version: March 2, 20 Exercise. What is the

More information

10 Cut Construction. We shall outline the calculation of the colour ordered 1-loop MHV amplitude in N = 4 SUSY using the method of cut construction.

10 Cut Construction. We shall outline the calculation of the colour ordered 1-loop MHV amplitude in N = 4 SUSY using the method of cut construction. 10 Cut Construction We shall outline the calculation of the colour ordered 1-loop MHV amplitude in N = 4 SUSY using the method of cut construction All 1-loop N = 4 SUSY amplitudes can be expressed in terms

More information

One-loop computations in QFT: a modern perspective

One-loop computations in QFT: a modern perspective One-loop computations in QFT: a modern perspective Kirill Melnikov Johns Hopkins University December 2012 Lectures based on R.K. Ellis, Z. Kunszt, K. Melnikov, G. Zanderighi, ``One-loop computations in

More information

The evaluation of integrals of Bessel functions via G-function identities

The evaluation of integrals of Bessel functions via G-function identities The evaluation of integrals of Bessel functions via G-function identities Victor Adamchik Wolfram earch Inc., 1 Trade Center Dr., Champaign, IL 6182, USA Abstract A few transformations are presented for

More information

Elliptic dilogarithms and two-loop Feynman integrals

Elliptic dilogarithms and two-loop Feynman integrals Elliptic dilogarithms and two-loop Feynman integrals Pierre Vanhove 12th Workshop on Non-Perturbative Quantum Chromodynamics IAP, Paris June, 10 2013 based on work to appear with Spencer Bloch Pierre Vanhove

More information

LOOP-TREE DUALITY AND QUANTUM FIELD THEORY IN 4D

LOOP-TREE DUALITY AND QUANTUM FIELD THEORY IN 4D LOOP-TREE DUALITY AND QUANTUM FIELD THEORY IN 4D Germán F. R. Sborlini in collaboration with R. Hernández-Pinto and G. Rodrigo Institut de Física Corpuscular, UV- CSIC (Spain) and Departamento de Física,

More information

Feynman integrals and Mirror symmetry

Feynman integrals and Mirror symmetry Feynman integrals and Mirror symmetry Pierre Vanhove & Amplitudes and Periods, HIM, Bonn based on 1309.5865, 1406.2664, 1601.08181 and work in progress Spencer Bloch, Matt Kerr, Charles Doran, Andrey Novoseltsev

More information

AN EXACT SEQUENCE FOR THE BROADHURST-KREIMER CONJECTURE

AN EXACT SEQUENCE FOR THE BROADHURST-KREIMER CONJECTURE AN EXACT SEQUENCE FOR THE BROADHURST-KREIMER CONJECTURE FRANCIS BROWN Don Zagier asked me whether the Broadhurst-Kreimer conjecture could be reformulated as a short exact sequence of spaces of polynomials

More information

2. Complex Analytic Functions

2. Complex Analytic Functions 2. Complex Analytic Functions John Douglas Moore July 6, 2011 Recall that if A and B are sets, a function f : A B is a rule which assigns to each element a A a unique element f(a) B. In this course, we

More information

The algebra of cell-zeta values

The algebra of cell-zeta values The algebra of cell-zeta values Sarah Carr May 0, 200 A multizeta value or MZV is a real number, ζ(k i,..., k d ) = X n > >n d >0 Abstract n k nk d d, k i Z, k 2. () We are interested in studying the Q

More information

arxiv:hep-ph/ v1 28 Mar 2006

arxiv:hep-ph/ v1 28 Mar 2006 DESY-06-0 SFB/CPP-06- Hypergeometric representation of the two-loop equal mass sunrise diagram arxiv:hep-ph/0607v 8 Mar 006 O.V. Tarasov Deutsches Elektronen - Synchrotron DESY Platanenallee 6, D-578 Zeuthen,

More information

Generalizations of polylogarithms for Feynman integrals

Generalizations of polylogarithms for Feynman integrals Journal of Physics: Conference Series PAPER OPEN ACCESS Generalizations of polylogarithms for Feynman integrals To cite this article: Christian Bogner 6 J. Phys.: Conf. Ser. 76 67 View the article online

More information

Hopf algebras and factorial divergent power series: Algebraic tools for graphical enumeration

Hopf algebras and factorial divergent power series: Algebraic tools for graphical enumeration Hopf algebras and factorial divergent power series: Algebraic tools for graphical enumeration Michael Borinsky 1 Humboldt-University Berlin Departments of Physics and Mathematics Workshop on Enumerative

More information

On rational approximation of algebraic functions. Julius Borcea. Rikard Bøgvad & Boris Shapiro

On rational approximation of algebraic functions. Julius Borcea. Rikard Bøgvad & Boris Shapiro On rational approximation of algebraic functions http://arxiv.org/abs/math.ca/0409353 Julius Borcea joint work with Rikard Bøgvad & Boris Shapiro 1. Padé approximation: short overview 2. A scheme of rational

More information

1. Introduction Interest in this project began with curiosity about the Laplace transform of the Digamma function, e as ψ(s + 1)ds,

1. Introduction Interest in this project began with curiosity about the Laplace transform of the Digamma function, e as ψ(s + 1)ds, ON THE LAPLACE TRANSFORM OF THE PSI FUNCTION M. LAWRENCE GLASSER AND DANTE MANNA Abstract. Guided by numerical experimentation, we have been able to prove that Z 8 / x x + ln dx = γ + ln) [cosx)] and to

More information

Relations and Functions (for Math 026 review)

Relations and Functions (for Math 026 review) Section 3.1 Relations and Functions (for Math 026 review) Objective 1: Understanding the s of Relations and Functions Relation A relation is a correspondence between two sets A and B such that each element

More information

Hopf algebras and factorial divergent power series: Algebraic tools for graphical enumeration

Hopf algebras and factorial divergent power series: Algebraic tools for graphical enumeration Hopf algebras and factorial divergent power series: Algebraic tools for graphical enumeration Michael Borinsky 1 Humboldt-University Berlin Departments of Physics and Mathematics Workshop on Enumerative

More information