HyperInt - exact integration with hyperlogarithms

Size: px
Start display at page:

Download "HyperInt - exact integration with hyperlogarithms"

Transcription

1

2 HyperInt - exact integration with hyperlogarithms Erik Panzer erikpanzer@ihes.fr (CNRS, ERC grant , F. Brown) Institute des Hautes Études Scientifiques 35 Route de Chartres 9144 Bures-sur-Yvette France Higgs Centre for Theoretical Physics Edinburgh April 3th, 215

3 Feynman integrals: special functions and numbers Many (not all) FI are expressible via multiple polylogarithms (MPL) k z 1 1 Li n1,...,n d (z 1,..., z d ) = zk d d k n 1 <k 1 < <k d 1 kn d d and there special values, like multiple zeta values (MZV) ζ n1,...,n d = Li n1,...,n d (1,..., 1). 1 / 18

4 Feynman integrals: special functions and numbers Many (not all) FI are expressible via multiple polylogarithms (MPL) k z 1 1 Li n1,...,n d (z 1,..., z d ) = zk d d k n 1 <k 1 < <k d 1 kn d d and there special values, like multiple zeta values (MZV) ζ n1,...,n d = Li n1,...,n d (1,..., 1). Example (p1 2 = 1, p2 2 = z 2, p3 2 = 1 z 2 ) ( ) Φ = 252ζ 3 ζ ζ 3, ζ4 2 ( ) Φ = 4i Im [Li 2(z) + log(1 z) log z ] z z 1 / 18

5 Feynman integrals: special functions and numbers Many (not all) FI are expressible via multiple polylogarithms (MPL) k z 1 1 Li n1,...,n d (z 1,..., z d ) = zk d d k n 1 <k 1 < <k d 1 kn d d and there special values, like multiple zeta values (MZV) ζ n1,...,n d = Li n1,...,n d (1,..., 1). Example (p1 2 = 1, p2 2 = z 2, p3 2 = 1 z 2 ) ( ) Φ = 252ζ 3 ζ ζ 3, ζ4 2 ( ) Φ = 4i Im [Li 2(z) + log(1 z) log z ] z z Questions on MPL from FI Why? When? How? 1 / 18

6 Properties of MPL locally analytic (multivalued) functions non-analytic on divisors z k z k+1 z d {, 1, }, called alphabet at worst logarithmic divergences span an algebra (shuffle and stuffle) plenty of functional equations like Li 2 (1 z) = ζ 2 Li 2 (z) log(1 z) log(z) numerical evaluation solved iterated integrals: path-concatenation and monodromy formulas with rational prefactors: closed under differentiation and integration MPL are well-understood, suitable for computer algebra and therefore particularly useful representations of Feynman integrals. Several tools are available (for example HPL, Ginac, HyperInt). 2 / 18

7 Parametric integration

8 Schwinger parameters Scalar propagators (p 2 e + m 2 e) ae, sdd = e a e D/2 loops(g): Φ(G) = Γ(sdd) e Γ(a e) (, ) E Volume form: Ω = δ(1 α N ) e dα e ( ) Ω ψ sdd ψ D/2 αe ae 1 ϕ e E 3 / 18

9 Schwinger parameters Scalar propagators (p 2 e + m 2 e) ae, sdd = e a e D/2 loops(g): Φ(G) = Γ(sdd) e Γ(a e) (, ) E ( ) Ω ψ sdd ψ D/2 αe ae 1 ϕ e E Volume form: Ω = δ(1 α N ) e dα e, graph polynomials: ψ = U = α e ϕ = F = q 2 (T 1 ) α e + ψ T e / T e / F e F =T 1 T 2 m 2 eα e 3 / 18

10 Schwinger parameters Scalar propagators (p 2 e + m 2 e) ae, sdd = e a e D/2 loops(g): Φ(G) = Γ(sdd) e Γ(a e) (, ) E ( ) Ω ψ sdd ψ D/2 αe ae 1 ϕ e E Volume form: Ω = δ(1 α N ) e dα e, graph polynomials: ψ = U = α e ϕ = F = q 2 (T 1 ) α e + ψ T e / T e / F e F =T 1 T 2 m 2 eα e Example (D = 4 2ε, a e = 1) ψ = α 1 + α 2 + α 3 ϕ = p 2 1α 2 α 3 + p 2 2α 1 α 3 + m 2 α 3 (α 1 + α 2 + α 3 ) 3 p 1 p 2 G = 2 1 Φ(G) = Γ(1 + ε) (, ) E p 3 Ω ψ 1 2ε ϕ 1+ε 3 / 18

11 Schwinger parameters Scalar propagators (p 2 e + m 2 e) ae, sdd = e a e D/2 loops(g): Φ(G) = Γ(sdd) e Γ(a e) (, ) E ( ) Ω ψ sdd ψ D/2 αe ae 1 ϕ e E Volume form: Ω = δ(1 α N ) e dα e, graph polynomials: ψ = U = α e ϕ = F = q 2 (T 1 ) α e + ψ T e / T e / F e F =T 1 T 2 m 2 eα e Example (D = 4 2ε, a e = 1) ψ = α 1 + α 2 + α 3 ϕ = p 2 1α 2 α 3 + p 2 2α 1 α 3 + m 2 α 3 (α 1 + α 2 + α 3 ) 3 p 1 p 2 G = 2 1 Φ(G) = Γ(1 + ε) p 3 n= ε n n! (, ) E Ω ψ2 logn ψϕ ϕ 3 / 18

12 Integration with hyperlogarithms proposed by Brown, applications by Chavez & Duhr, Wißbrock, Anastasiou et. al. Idea: integrate out one variable after the other, f n = f n 1 dα n. 4 / 18

13 Integration with hyperlogarithms proposed by Brown, applications by Chavez & Duhr, Wißbrock, Anastasiou et. al. Idea: integrate out one variable after the other, f n = f n 1 dα n. Definition (Hyperlogarithms, Lappo-Danilevsky 1927) G(σ 1,..., σ }{{ w ; z) := } σ z dz 1 z 1 σ 1 z1 dz 2 z 2 σ 2 zw 1 dz w z w σ w 4 / 18

14 Integration with hyperlogarithms proposed by Brown, applications by Chavez & Duhr, Wißbrock, Anastasiou et. al. Idea: integrate out one variable after the other, f n = f n 1 dα n. Definition (Hyperlogarithms, Lappo-Danilevsky 1927) Strategy: G(σ 1,..., σ }{{ w ; z) := } σ z dz 1 z 1 σ 1 z1 1 Write f n 1 in terms of hyperlogarithms: f n 1 = σ,τ,k dz 2 z 2 σ 2 zw 1 dz w z w σ w G( σ; α n ) (α n τ) k λ σ,τ,k with σ and τ independent of α n. 4 / 18

15 Integration with hyperlogarithms proposed by Brown, applications by Chavez & Duhr, Wißbrock, Anastasiou et. al. Idea: integrate out one variable after the other, f n = f n 1 dα n. Definition (Hyperlogarithms, Lappo-Danilevsky 1927) Strategy: G(σ 1,..., σ }{{ w ; z) := } σ z dz 1 z 1 σ 1 z1 1 Write f n 1 in terms of hyperlogarithms: f n 1 = σ,τ,k dz 2 z 2 σ 2 zw 1 dz w z w σ w G( σ; α n ) (α n τ) k λ σ,τ,k with σ and τ independent of α n. 2 Construct an antiderivative αn F = f n 1. 4 / 18

16 Integration with hyperlogarithms proposed by Brown, applications by Chavez & Duhr, Wißbrock, Anastasiou et. al. Idea: integrate out one variable after the other, f n = f n 1 dα n. Definition (Hyperlogarithms, Lappo-Danilevsky 1927) Strategy: G(σ 1,..., σ }{{ w ; z) := } σ z dz 1 z 1 σ 1 z1 1 Write f n 1 in terms of hyperlogarithms: f n 1 = σ,τ,k dz 2 z 2 σ 2 zw 1 dz w z w σ w G( σ; α n ) (α n τ) k λ σ,τ,k with σ and τ independent of α n. 2 Construct an antiderivative αn F = f n 1. 3 Evaluate the limits f n := f n 1 dα n = lim F (α α n n) lim F (α n). α n 4 / 18

17 Integration with hyperlogarithms Example: massless triangle ( ) Φ = = = 1 z z Ω (α 1 + α 2 + α 3 )(α 2 α 3 + z zα 1 α 2 + (1 z)(1 z)α 2 α 3 ) Ω (zα 1 + α 2 )( zα 1 + α 2 ) log (α 1 + α 2 )(z zα 1 + α 2 ) (1 z)(1 z)α 1 α 2 ( 1 dα 2 α 2 + z 1 ) log (α 2 + 1)(α 2 + z z) α 2 + z (1 z)(1 z)α 2 = 2 Li 2(z) 2 Li 2 ( z) + [log(1 z) log(1 z)] log(z z) z z 5 / 18

18 Integration with hyperlogarithms Example: massless triangle ( ) Φ = = = 1 z z Ω (α 1 + α 2 + α 3 )(α 2 α 3 + z zα 1 α 2 + (1 z)(1 z)α 2 α 3 ) Ω (zα 1 + α 2 )( zα 1 + α 2 ) log (α 1 + α 2 )(z zα 1 + α 2 ) (1 z)(1 z)α 1 α 2 ( 1 dα 2 α 2 + z 1 ) log (α 2 + 1)(α 2 + z z) α 2 + z (1 z)(1 z)α 2 = 2 Li 2(z) 2 Li 2 ( z) + [log(1 z) log(1 z)] log(z z) z z Remark MPL can be rewritten as hyperlogarithms and back: G( n d 1, σ d,..., n 1 1, σ 1 ; z) = ( 1) d Li n1,...,n d ( σ2 σ 1,, σ d σ d 1, z σ d ) 5 / 18

19 Linear reducibility We need that all partial integrals f n := f n 1 dα n = f dα 1 dα n (, ) n ( f = ) ψsdd D/2 ϕ sdd αe ae 1 e are hyperlogarithms in α n+1 with rational prefactors. 6 / 18

20 Linear reducibility We need that all partial integrals f n := f n 1 dα n = f dα 1 dα n (, ) n ( f = ) ψsdd D/2 ϕ sdd αe ae 1 e are hyperlogarithms in α n+1 with rational prefactors. Definition If this holds for some ordering e 1,..., e N of its edges, the Feynman graph G is called linearly reducible. 6 / 18

21 Linear reducibility We need that all partial integrals f n := f n 1 dα n = f dα 1 dα n (, ) n ( f = ) ψsdd D/2 ϕ sdd αe ae 1 e are hyperlogarithms in α n+1 with rational prefactors. Definition If this holds for some ordering e 1,..., e N of its edges, the Feynman graph G is called linearly reducible. condition on the polynomials ψ and ϕ only; independent of ε-order and expansion point (D, a) ε= 2N Z N sufficient criteria: polynomial reduction algorithms (Brown, Panzer) 6 / 18

22 Polynomial reduction Denote alphabets (divisors) by sets S of irreducible polynomials. Definition Let S denote a set of polynomials f = f e α e + f e linear in α e. Then with [f, g] e := f e g e f e g e, S e shall be the set of irreducible factors of Example (massless triangle) {f e, f e : f S} and {[f, g] e : f, g S}. S = {ψ, ϕ} = {α 1 + α 2 + α 3, α 2 α 3 + z zα 1 α 3 + (1 z)(1 z)α 1 α 2 } [ϕ, ψ] 3 = (α 1 + α 2 )(α 2 + α 1 z z) (1 z)(1 z)α 1 α 2 7 / 18

23 Polynomial reduction Denote alphabets (divisors) by sets S of irreducible polynomials. Definition Let S denote a set of polynomials f = f e α e + f e linear in α e. Then with [f, g] e := f e g e f e g e, S e shall be the set of irreducible factors of Example (massless triangle) {f e, f e : f S} and {[f, g] e : f, g S}. S = {ψ, ϕ} = {α 1 + α 2 + α 3, α 2 α 3 + z zα 1 α 3 + (1 z)(1 z)α 1 α 2 } [ϕ, ψ] 3 = (zα 1 + α 2 )( zα 1 + α 2 ) S 3 = {α 1 + α 2, zα 1 + α 2, zα 1 + α 2, z zα 1 + α 2, α 1, α 2, 1 z, 1 z} 7 / 18

24 Polynomial reduction Denote alphabets (divisors) by sets S of irreducible polynomials. Definition Let S denote a set of polynomials f = f e α e + f e linear in α e. Then with [f, g] e := f e g e f e g e, S e shall be the set of irreducible factors of Example (massless triangle) {f e, f e : f S} and {[f, g] e : f, g S}. S = {ψ, ϕ} = {α 1 + α 2 + α 3, α 2 α 3 + z zα 1 α 3 + (1 z)(1 z)α 1 α 2 } [ϕ, ψ] 3 = (zα 1 + α 2 )( zα 1 + α 2 ) S 3 = {α 1 + α 2, zα 1 + α 2, zα 1 + α 2, z zα 1 + α 2, α 1, α 2, 1 z, 1 z} Lemma If the singularities of F are cointained in S, then the singularities of F dα e are contained in S e. 7 / 18

25 Polynomial reduction Corollary (linear reducibility) If all S k := (S k 1 ) k are linear in α k+1, then any MPL F with alphabet in S integrates to a MPL F n e=1 dα e with alphabet in S n. Example (massless triangle) S = {ψ, ϕ} = {α 1 + α 2 + α 3, α 2 α 3 + z zα 1 α 3 + (1 z)(1 z)α 1 α 2 } S 3 = {α 1 + α 2, zα 1 + α 2, zα 1 + α 2, z zα 1 + α 2, α 1, α 2, 1 z, 1 z} S 3,2 = {z, z, 1 z, 1 z, z z, z z 1} This gives only very coarse upper bounds, for example z z 1 is spurious: It drops out in S 2,3 S 3,2 = {z, z, 1 z, 1 z, z z} because S 2,3 = {z, z, 1 z, 1 z, z z, z z z z}. 8 / 18

26 Polynomial reduction Corollary (linear reducibility) If all S k := (S k 1 ) k are linear in α k+1, then any MPL F with alphabet in S integrates to a MPL F n e=1 dα e with alphabet in S n. Example (massless triangle) S = {ψ, ϕ} = {α 1 + α 2 + α 3, α 2 α 3 + z zα 1 α 3 + (1 z)(1 z)α 1 α 2 } S 3 = {α 1 + α 2, zα 1 + α 2, zα 1 + α 2, z zα 1 + α 2, α 1, α 2, 1 z, 1 z} S 3,2 = {z, z, 1 z, 1 z, z z, z z 1} This gives only very coarse upper bounds, for example z z 1 is spurious: It drops out in S 2,3 S 3,2 = {z, z, 1 z, 1 z, z z} because S 2,3 = {z, z, 1 z, 1 z, z z, z z z z}. There are more sophisticated (and much more powerful) polynomial reduction alorithms (Fubini and several variants of compatibility graphs). 8 / 18

27 Linearly reducible graphs

28 Linear reducibility: Schwinger parameters Definition (vertex-width 3 (Brown), 3-constructible (Schnetz)) The class of 3-point graphs including star, triangle and closed under and Example 9 / 18

29 Linear reducibility: Schwinger parameters Definition (vertex-width 3 (Brown), 3-constructible (Schnetz)) The class of 3-point graphs including star, triangle and closed under and Example 9 / 18

30 Linear reducibility: Schwinger parameters Definition (vertex-width 3 (Brown), 3-constructible (Schnetz)) The class of 3-point graphs including star, triangle and closed under and Example 9 / 18

31 Linear reducibility: Schwinger parameters Definition (vertex-width 3 (Brown), 3-constructible (Schnetz)) The class of 3-point graphs including star, triangle and closed under and Example 9 / 18

32 Linear reducibility: Schwinger parameters Definition (vertex-width 3 (Brown), 3-constructible (Schnetz)) The class of 3-point graphs including star, triangle and closed under and Example 9 / 18

33 Linear reducibility: Schwinger parameters Definition (vertex-width 3 (Brown), 3-constructible (Schnetz)) The class of 3-point graphs including star, triangle and closed under and Example 9 / 18

34 Linear reducibility: Schwinger parameters Definition (vertex-width 3 (Brown), 3-constructible (Schnetz)) The class of 3-point graphs including star, triangle and closed under and Example Linearly reducible: 1 3-constructible massless propagators (Brown) 9 / 18

35 Linear reducibility: Schwinger parameters Definition (vertex-width 3 (Brown), 3-constructible (Schnetz)) The class of 3-point graphs including star, triangle and closed under and Linearly reducible: 1 3-constructible massless propagators (Brown) 9 / 18

36 Linear reducibility: Schwinger parameters Definition (vertex-width 3 (Brown), 3-constructible (Schnetz)) The class of 3-point graphs including star, triangle and closed under and Linearly reducible: 1 3-constructible massless propagators (Brown) 2 all 4-loop massless propagators (Panzer) 9 / 18

37 Linear reducibility: Schwinger parameters Definition (vertex-width 3 (Brown), 3-constructible (Schnetz)) The class of 3-point graphs including star, triangle and closed under and Linearly reducible: 1 3-constructible massless propagators (Brown) 2 all 4-loop massless propagators (Panzer) 3 all massless off-shell 3-point with 2 loops (Chavez & Duhr) 9 / 18

38 Linear reducibility: Schwinger parameters Definition (vertex-width 3 (Brown), 3-constructible (Schnetz)) The class of 3-point graphs including star, triangle and closed under and Linearly reducible: 1 3-constructible massless propagators (Brown) 2 all 4-loop massless propagators (Panzer) 3 all massless off-shell 3-point with 3 loops (Panzer) 9 / 18

39 Linear reducibility: Schwinger parameters Definition (vertex-width 3 (Brown), 3-constructible (Schnetz)) The class of 3-point graphs including star, triangle and closed under and Linearly reducible: 1 3-constructible massless propagators (Brown) 2 all 4-loop massless propagators (Panzer) 3 all massless off-shell 3-point with 3 loops (Panzer) 4 massless on-shell 4-point up to 2 loops (Lüders) 9 / 18

40 Linear reducibility: Forest functions Theorem (Panzer) All 3-constructible massless 3-point graphs evaluate to MPL. 1 / 18

41 All minors of ladder boxes (with p 2 1 = p2 2 = ) evaluate to MPL. 1 / 18 Linear reducibility: Forest functions Theorem (Panzer) All 3-constructible massless 3-point graphs evaluate to MPL. Minors of ladder boxes are closed under the operations v 1 v 4 v 1 v 4 v 1 v v e,,v e v 2 v 3 v 2 v 3 v 3 v 2 v 3 v 2 v 4 e v 3 Example v v 4 v 1 v 4 v 1 v 4 v 1 v 4 v 2 v 3 v 2 v 3 v 2 v 3 v 2 v 3 Theorem (Panzer)

42 HyperInt

43 HyperInt open source Maple program integration of hyperlogarithms transformations of arguments (functional equations) polynomial reduction graph polynomials 11 / 18

44 HyperInt open source Maple program integration of hyperlogarithms transformations of arguments (functional equations) polynomial reduction graph polynomials symbolic computation of constants (no numerics) 11 / 18

45 HyperInt Example open source Maple program integration of hyperlogarithms transformations of arguments (functional equations) polynomial reduction graph polynomials symbolic computation of constants (no numerics) > read "HyperInt.mpl": > hyperint(polylog(2,-x)*polylog(3,-1/x)/x,x=..infinity): > fibrationbasis(%); 8 7 ζ3 2 computes Li 2 ( x) Li 3 ( 1/x)dx = 8 7 ζ / 18

46 HyperInt: propagator > E := [[2,1],[2,3],[2,5],[5,1],[5,3],[5,4],[4,1],[4,3]]: > psi := graphpolynomial(e): > phi := secondpolynomial(e, [[1,1], [3,1]]): > add((epsilon*log(psiˆ5/phiˆ4))ˆn/n!,n=..2)/psiˆ2: > hyperint(eval(%,x[8]=1), [seq(x[n],n=1..7)]): > collect(fibrationbasis(%), epsilon); ( 254ζ ζ 5 2ζ 2 ζ 5 196ζ ζ ) ε 2 ( + 28ζ ζ ) 7 ζ3 2 ε + 2ζ ζ2 2ζ 3 12 / 18

47 HyperInt: triangle Graph polynomials: > E:=[[1,2],[2,3],[3,1]]: > M:=[[3,1],[1,z*zz],[2,(1-z)*(1-zz)]]: > psi:=graphpolynomial(e): > phi:=secondpolynomial(e,m): Integration: > hyperint(eval(1/psi/phi,x[3]=1),[x[1],x[2]]): > factor(fibrationbasis(%,[z,zz])); (Hlog (z, [1]) Hlog (zz, []) Hlog (z, []) Hlog (zz, [1]) + Hlog (zz, [, 1]) Hlog (zz, [1, ]) + Hlog (z, [1, ]) Hlog (z, [, 1]))/(z zz) Polynomial reduction: > L[{}]:=[{psi,phi}, {{psi,phi}}]: > cgreduction(l): > L[{x[1],x[2]}][1]; { 1 + z, 1 + zz, zz + z} 13 / 18

48 HyperInt: MGEW s s 2 t 1 s 1 t 2 1 Linearly reducible representation: 1 1 F (2) (2,2) (α) = dx 1 dx 2 p (x 1, α)p (x 2, α)g (2) (2,2) (x 1, x 2 ) ( ) G (2) (2,2) (x x1 1 x 2 1, x 2 ) = θ(x 1 x 2 ) ln 1 x 1 x ( 2 ) 1 p ɛ (x, γ) = x + 1/(α 1) 1 1 ɛ x α/(α 1) 2 14 / 18

49 HyperInt: MGEW s s 2 t 1 s 1 t 2 Lemma 1 2 Linearly reducible representation: 1 1 F (2) (2,2) (α) = dx 1 dx 2 p (x 1, α)p (x 2, α)g (2) (2,2) (x 1, x 2 ) ( ) G (2) (2,2) (x x1 1 x 2 1, x 2 ) = θ(x 1 x 2 ) ln 1 x 1 x ( 2 ) 1 p ɛ (x, γ) = x + 1/(α 1) 1 1 ɛ x α/(α 1) All gluon-exchange graphs with two Wilson lines are linearly reducible (can be integrated directly) and give MPL with alphabet {A, 1 A} (A := α 2 ). > web2([2,1]); 4ζ 3 + Hlog (,,, [A]) 2Hlog (, 1,, [A]) + 2ζ 2 Hlog (, [A]) (1 A) 2 14 / 18

50 HyperInt: MGEW s Angles between pairs (β i, β j ) of Wilson lines: γ ij = 2β i β j β 2 i β 2 j = α ij 1 α ij F (n) (D) φ (n) D (x i; ɛ) = 1 1 n k=1 n 1 [dx k p ɛ (x k, γ k )] φ (n) D (x; ɛ) dy k (1 y k ) 1+2ɛ y 1+2kɛ k Θ D [{x k, y k }] 15 / 18

51 HyperInt: MGEW s Angles between pairs (β i, β j ) of Wilson lines: γ ij = 2β i β j β 2 i β 2 j = α ij 1 α ij F (n) (D) φ (n) D (x i; ɛ) = 1 1 n k=1 n 1 [dx k p ɛ (x k, γ k )] φ (n) D (x; ɛ) dy k (1 y k ) 1+2ɛ y 1+2kɛ k Θ D [{x k, y k }] Conjecturally, subtracted webs are expressible in terms of (A := α 2 ) [ 1 M n,k,l = ds 1 + s 1 ] k (s + 1)(s + A) ln ln l α s + A A + s A s lnn s + 1, which themselves are MPL over the alphabet {A, 1 A}. > Msq(2,,); 2Hlog (A, [,, ]) 4ζ 3 8ζ 2 Hlog (A, [1]) 4Hlog (A, [1,, ]) +4ζ 2 Hlog (A, []) + 8Hlog (A, [1, 1, ]) 4Hlog (A, [, 1, ]) 15 / 18

52 Divergences in Schwinger parameters 3 p 1 p 2 ψ = α1 + α 2 + α 3 G = 2 1 ϕ = p 2 1 α 2α 3 + p 2 2 α 1α 3 + m 2 α 3 (α 1 + α 2 + α 3 ) p 3 16 / 18

53 Divergences in Schwinger parameters 3 p 1 p 2 ψ = α1 + α 2 + α 3 G = 2 1 p 3 ϕ = p 2 1 α 2α 3 + p 2 2 α 1α 3 + m 2 α 3 (α 1 + α 2 + α 3 ) = α 3 ϕ In D = 4 2ε, subdivergence dα 3 α 3 at ε = : ( ) Ω Φ D = Γ(1 + ε) ψ 1 2ε ϕ 1+ε α3 1+ε 16 / 18

54 Divergences in Schwinger parameters 3 p 1 p 2 ψ = α1 + α 2 + α 3 G = 2 1 p 3 ϕ = p 2 1 α 2α 3 + p 2 2 α 1α 3 + m 2 α 3 (α 1 + α 2 + α 3 ) = α 3 ϕ In D = 4 2ε, subdivergence dα 3 α 3 at ε = : ( ) Ω Φ D = Γ(1 + ε) ψ 1 2ε ϕ 1+ε α3 1+ε Regularization: integrate by parts Ω α ε 3 ψ 1 2ε ϕ 1+ε α3 1+ε = εψ 1 2ε ϕ 1+ε + 1 α 3 = ε = 1 [ Ωα 3 2ε 1 ε ψ 1 2ε ϕ 1+ε ψ Ω α3 ε ψ 1+2ε ϕ 1 ε α 3 (1 + ε)α 3m 2 ϕ ] 16 / 18

55 Divergences in Schwinger parameters 3 p 1 p 2 ψ = α1 + α 2 + α 3 G = 2 1 p 3 ϕ = p 2 1 α 2α 3 + p 2 2 α 1α 3 + m 2 α 3 (α 1 + α 2 + α 3 ) = α 3 ϕ In D = 4 2ε, subdivergence dα 3 α 3 at ε = : ( ) Φ D = ( 2 1 ε ) Φ D+2 ( ) 2m2 ε Φ D+2 Regularization: integrate by parts Ω α ε 3 ψ 1 2ε ϕ 1+ε α3 1+ε = εψ 1 2ε ϕ 1+ε + 1 α 3 = ε = 1 [ Ωα 3 2ε 1 ε ψ 1 2ε ϕ 1+ε ψ ( ) Ω α3 ε ψ 1+2ε ϕ 1 ε α 3 (1 + ε)α 3m 2 ϕ ] 16 / 18

56 Regularization of subdivergences Theorem Every Euclidean Feynman integral is a finite linear combination of Feynman integrals without subdivergences. 17 / 18

57 Regularization of subdivergences Theorem Every Euclidean Feynman integral is a finite linear combination of Feynman integrals without subdivergences. only the original Feynman graph occurs, with shifted D and a e preserves linear reducibility! decomposition computable by partial integrations allows for numeric integration reproves: coefficients of ε-expansion are periods (Bogner & Weinzierl) 17 / 18

58 Regularization of subdivergences Theorem Every Euclidean Feynman integral is a finite linear combination of Feynman integrals without subdivergences. only the original Feynman graph occurs, with shifted D and a e preserves linear reducibility! decomposition computable by partial integrations allows for numeric integration reproves: coefficients of ε-expansion are periods (Bogner & Weinzierl) Corollary (IBP, Euclidean kinematics) One can choose master integrals to be scalar and free of subdivergences, given that one allows for shifted dimensions D + 2, D + 4,... and dots. 17 / 18

59 Summary polynomial reduction lots of linearly reducible graphs with non-trivial kinematics few easily recognizable, infinite families 18 / 18

60 Summary polynomial reduction lots of linearly reducible graphs with non-trivial kinematics few easily recognizable, infinite families HyperInt 18 / 18

61 Summary polynomial reduction lots of linearly reducible graphs with non-trivial kinematics few easily recognizable, infinite families HyperInt analytic regularization in terms of Feynman graphs 18 / 18

62 Summary polynomial reduction lots of linearly reducible graphs with non-trivial kinematics few easily recognizable, infinite families HyperInt analytic regularization in terms of Feynman graphs Schwinger parameters are not always optimal: sometimes Φ(G) is MPL, but not linearly reducible 18 / 18

63 Thank you! Questions?

64 Forest polynomials Definition Spanning forest polynomial Φ A,B := F separate the vertices A and B. e / F α e over 2-forests F which f 12 := Φ {1,2},{3,4} f 3 := Φ {3},{1,2,4} f 14 := Φ {1,4},{2,3} f 4 := Φ {4},{1,2,3} Example v v 4 v 2 v 3 ψ = α 1 + α 2 + α 3 + α 4 f 12 = α 2 α 4 f 14 = α 1 α 3 f 3 = α 2 α 3 f 4 = α 3 α 4 ϕ = F = (p 1 + p 2 ) 2 f 12 + (p 1 + p 4 ) 2 f 14 + p 2 3f 3 + p 2 4f 4 1 / 15

65 Restricting forest polynomials Definition F G (z) := R E + ψ D/2 G δ (4) ( f ψ z ) e E Example (a 1 = a 2 = a 3 = a 4 = 1) α ae 1 e dα e ( R 4 + R + ) 1 v 1 v 4 (D = 4) z 4 3 z 4 F 1 3 ; z 2 = z 12 [z v 2 v 12 (z 14 + z 3 + z 4 ) + z 3 z 4 ] 3 2 (D = 6) }{{} Q 2 / 15

66 Appending a vertex G = v 1 v 2 v 3 v 4 G = v 1 v 4 e v 2 v 3 v 3 or v 1 v 2 v 3 Using (f 12, f 14, f 3, f 4, ψ ) = (f 12, f 14, f 3, f 4 + α e ψ, ψ) where x = α e, F G (z) = z4 F G (z 12, z 14, z 3, z 4 x) x ae 1 dx v 4 e v 4 3 / 15

67 Appending a vertex G = v 1 v 2 v 3 v 4 G = v 1 v 4 e v 2 v 3 v 3 or v 1 v 4 v 2 v 3 Using (f 12, f 14, f 3, f 4, ψ ) = (f 12, f 14, f 3, f 4 + α e ψ, ψ) where x = α e, F G (z) = z4 F G (z 12, z 14, z 3, z 4 x) x ae 1 dx e v 4 Example (D = 6 and a e = 1) v 4 ; z F v 1 v 2 v 3 = z3 F v v 4 v 2 v 3 ; z 12, z 14, z 3, z 4 dz 3 3 / 15

68 Appending a vertex G = v 1 v 2 v 3 v 4 G = v 1 v 4 e v 2 v 3 v 3 or v 1 v 4 v 2 v 3 Using (f 12, f 14, f 3, f 4, ψ ) = (f 12, f 14, f 3, f 4 + α e ψ, ψ) where x = α e, F G (z) = z4 F G (z 12, z 14, z 3, z 4 x) x ae 1 dx e v 4 Example (D = 6 and a e = 1) v 1 v 4 z3 z F ; z 12 dz 3 = [z 12 (z 14 + z 3 + z 4 ) + z 3 z 4 ] 2 = z 3 (z 14 + z 4 ) Q v 2 v 3 3 / 15

69 Appending a vertex G = v 1 v 2 v 3 v 4 G = v 1 v 4 e v 2 v 3 v 3 or v 1 v 4 v 2 v 3 Using (f 12, f 14, f 3, f 4, ψ ) = (f 12, f 14, f 3, f 4 + α e ψ, ψ) where x = α e, F G (z) = z4 F G (z 12, z 14, z 3, z 4 x) x ae 1 dx e v 4 Example (D = 6 and a e = 1) v 1 v 4 z3 z F ; z 12 dz 3 = [z 12 (z 14 + z 3 + z 4 ) + z 3 z 4 ] 2 = z 3 (z 14 + z 4 ) Q v 2 v 3 v 4 ; z F v 1 v 2 v 3 = z4 F v 1 v 4 ; z 12, z 14, z 3, z 4 dz 4 v 2 v 3 3 / 15

70 Appending a vertex G = v 1 v 2 v 3 v 4 G = v 1 v 4 e v 2 v 3 v 3 or v 1 v 4 v 2 v 3 Using (f 12, f 14, f 3, f 4, ψ ) = (f 12, f 14, f 3, f 4 + α e ψ, ψ) where x = α e, F G (z) = z4 F G (z 12, z 14, z 3, z 4 x) x ae 1 dx e v 4 Example (D = 6 and a e = 1) v 1 v 4 z3 z F ; z 12 dz 3 = [z 12 (z 14 + z 3 + z 4 ) + z 3 z 4 ] 2 = z 3 (z 14 + z 4 ) Q v 2 v 3 v 4 ; z F v 1 v 2 v 3 = 1 ln z 12(z 3 + z 14 )(z 4 + z 14 ) z 12 z 14 z 14 Q 3 / 15

71 Adding an edge v 1 v 4 G = v 1 v 4 G = v 2 v 3 v 2 v 3 e 4 / 15

72 Adding an edge v 1 v 1 v 4 v 4 G = G = e v 2 v 3 v 2 v 3 Dodgson-identities between spanning forest polynomials: ( ) = f 12 (f 14 + f 3 + f 4 ) + f 3 f 4 = Q(f ) = ψ Φ {1,2},{3},{4} 4 / 15

73 Adding an edge v 1 v 1 v 4 v 4 G = G = e v 2 v 3 v 2 v 3 Dodgson-identities between spanning forest polynomials: ( ) = f 12 (f 14 + f 3 + f 4 ) + f 3 f 4 = Q(f ) = ψ Φ {1,2},{3},{4} z12 F G (z) [ = Q ae+sdd D x D/2 ae 1 Q D/2 sdd F G ]z dx 12 =z 12 x 4 / 15

74 Adding an edge v 1 v 4 G = v 1 v 4 G = v 2 v 3 v 2 v 3 e z12 F G (z) [ = Q ae+sdd D x D/2 ae 1 Q D/2 sdd F G ]z dx 12 =z 12 x Example (D = 6 and a e = 1) v 1 v 4 F ; z = 1 z12 Q 2 F v 2 v 3 = z 12 z 14 Q 2 + z 12 z 14 Q 2 Li 2 [ ln Q ( z3 z 4 Q v 1 v 4 v 2 v 3 ; z 12 x, z 14, z 3, z 4 xdx ln (z ( )] 14 + z 3 )(z 14 + z 4 ) z 3 z 4 z 14 (z 14 + z 3 + z 4 ) Li z3 z 4 (z 14 z 12 ) 2 z 14 Q ) + z 12 Q 2 ln z 14 z 3 z 4 z 12 (z 14 + z 3 )(z 14 + z 4 ) ln(z 3z 4 /Q) Q(z 14 + z 3 + z 4 ) 4 / 15

75 Kinematics from forest functions Corollary Φ(G) = ϕ = F = (p 1 + p 2 ) 2 f 12 + (p 1 + p 4 ) 2 f 14 + p 2 3f 3 + p 2 4f 4 Γ(sdd) F G (z) Ω e Γ(a [ e) (p1 + p 2 ) 2 z 12 + (p 1 + p 4 ) 2 z 14 + p3 2z 3 + p2 4 z sdd 4] Example (kinematics: s = (p 1 + p 2 ) 2 and u = (p 1 + p 4 ) 2 ) Φ ( ) = = dz 12 sz 12 + u z 12 dz 3 dz 4 [z 12 (1 + z 3 + z 4 ) + z 4 z 3 ] 2 dz 12 ln z 12 (sz 12 + u)(z 12 1) = π2 + ln 2 (s/u) 2(s + u) 5 / 15

76 Compatibility graph of box-ladders z 12 z 14 z 12 +z 3 Q z 12 +z 4 z 14 +z 3 +z 4 z 14 +z 3 z 14 +z 4 6 / 15

77 Two-loop non-planar form factor: regularization (4 2ɛ) = 4(1 ɛ)(3 4ɛ)(1 4ɛ) ɛs 2 (6 2ɛ) 1 65ɛ + 131ɛ2 74ɛ 3 ɛ 3 s 2 (6 2ɛ) ɛ + 355ɛ2 42ɛ ɛ 4 (1 2ɛ)ɛ 3 s 3 (4 2ɛ) 7 / 15

78 Divergences in Schwinger parameters In D = 4 2ε dimensions, Φ = Γ(2 + 3ε) Ω ϕ 2+3ε ψ 4ε where ϕ = α 4 ( ) + α 5 ( ) + α 4 α 5 ( ) vanishes at α 4 = α 5 =. Rescale α 4 λα 4 and α 5 λα 5, so ϕ λ ϕ and ψ ψ: Ωψ 4ε Ωψ 4ε ϕ 2+3ε = ϕ 2+3ε δ(α 4 + α 5 λ) dλ 8 / 15

79 Divergences in Schwinger parameters In D = 4 2ε dimensions, Φ = Γ(2 + 3ε) Ω ϕ 2+3ε ψ 4ε where ϕ = α 4 ( ) + α 5 ( ) + α 4 α 5 ( ) vanishes at α 4 = α 5 =. Rescale α 4 λα 4 and α 5 λα 5, so ϕ λ ϕ and ψ ψ: Ωψ 4ε ϕ 2+3ε = dλ ψ 4ε Ω δ(α 4 + α 5 1) λ 1+3ε ϕ 2+3ε 8 / 15

80 Divergences in Schwinger parameters In D = 4 2ε dimensions, Φ = Γ(2 + 3ε) Ω ϕ 2+3ε ψ 4ε where ϕ = α 4 ( ) + α 5 ( ) + α 4 α 5 ( ) vanishes at α 4 = α 5 =. Rescale α 4 λα 4 and α 5 λα 5, so ϕ λ ϕ and ψ ψ: Ωψ 4ε ( 1 ( ) ϕ 2+3ε = dλ ψ Ω δ(α 4 + α 5 1) 3ε) 4ε λ 3ε λ ϕ 2+3ε 8 / 15

81 Divergences in Schwinger parameters In D = 4 2ε dimensions, Φ = Γ(2 + 3ε) Ω ϕ 2+3ε ψ 4ε where ϕ = α 4 ( ) + α 5 ( ) + α 4 α 5 ( ) vanishes at α 4 = α 5 =. Rescale α 4 λα 4 and α 5 λα 5, so ϕ λ ϕ and ψ ψ: Ωψ 4ε { Ωψ 4ε 4 ϕ 2+3ε = 1 ψ ϕ 2+3ε 3 ψ λ 2 + 3ε } 1 ϕ 3ε ϕ λ λ=1 8 / 15

82 Divergences in Schwinger parameters In D = 4 2ε dimensions, Φ = Γ(2 + 3ε) Ω ϕ 2+3ε ψ 4ε where ϕ = α 4 ( ) + α 5 ( ) + α 4 α 5 ( ) vanishes at α 4 = α 5 =. Rescale α 4 λα 4 and α 5 λα 5, so ϕ λ ϕ and ψ ψ: Ωψ 4ε { Ωψ 4ε 4 ϕ 2+3ε = 1 ψ ϕ 2+3ε 3 ψ λ 2 + 3ε } 1 ϕ 3ε ϕ λ λ=1 Numerator monomials correspond to squared propagators: ( Φ D ( ) = 1 3ε Φ D Φ D+2 ( ) ) 8 / 15

83 Sector decomposition Subdivergences (IR and UV) of Feynman integrals result in (higher order) poles in ɛ (dimensional regularization) and obstruct both analytical and numerical evaluation. Standard solution: Sector decomposition. 1 Split original integral into several sectors: f (x) dx 1 dx N = f (x) dx 1 dx N i S i 2 Change of variables in each sector (monomialise): ( N ) 1 f (x) dx 1 dx N = x β k 1 k dx k S i k=1 such that f (x) is bounded on [, 1]N i 3 Regulate all (now normal crossing) divergences at zero: 1 f i (x) x β 1 k dx k f i (x) = 1 β f (x) x k =1 1 1 x β k β dx k xk f i (x) 9 / 15

84 Undesirable features of sector decomposition Many different terms (sectors and subtraction terms) to consider Spurious structures (cancellation between sectors): An individual sector is more complicated than the total sum. 1 1 ln(1 + x) x(1 + x) dx = 1 2 ζ(2) 1 2 ln2 (2) ln(1 + x) x(1 + x) dx = 1 2 ζ(2) ln2 (2) Changes of variables are different in each sector and can destroy linear reducibility, a property allowing for analytical evaluation Idea Avoid sector decomposition and write the integral as a linear combination of subdivergence-free ( primitive or quasi-finite ) Feynman integrals. 1 / 15

85 Double box: IBP reduction to primitive master integrals (4 2ɛ) (6 2ɛ) (6 2ɛ) = A 1 + A 2 + A 3 ɛ 2 (6 2ɛ) + A 4 ɛ 2 (6 2ɛ) + A 5 ɛ 3 (4 2ɛ) + A 6 ɛ 3 (6 2ɛ) + A 7 ɛ 4 (6 2ɛ) + A 8 ɛ 3 (4 2ɛ) 11 / 15

86 Linear reducibility: Massive examples 12 / 15

87 Periods of cocommutative graphs The Feynman period of log. div. graphs depends on the renormalization scheme/point. Cocommutative graphs are an exception. Example (wheels in wheels) P ( ) = 72ζ ζ 7 P = 72ζ 3 3 P + = 48ζ 3 ζ 5 4ζ ζ 9 13 / 15

88 Massless φ 4 theory: primitive sixth roots of unity P 7,11 = is not linearly reducible! Tenth denominator: d 1 = α 2 α 2 4α 1 + α 2 α 2 4α 3 α 1 α 2 α 3 α 4 + α 2 2α 4 α 1 + α 2 2α 4 α 3 2α 2 α 2 3α 4 α 2 2α 2 3 2α 2 2α 3 α 1 2α 2 α 2 3α 1 α 2 3α 2 4 2α 2 3α 4 α 1 α 2 2α 2 1 2α 2 α 3 α 2 1 α 2 3α 2 1. Change variables: α 3 = α 3 α 1 α 1 +α 2 +α 4, α 4 = α 4 (α 2 + α 3 ) and α 1 = α 1 α 4, d 1 = (α 2 + α 3)(α 2 + α 2 α 4 α 1)(α 1α 4 + α 2 + α 2 α 4 + α 3α 4) Final result: not a multiple zeta value, instead MPL at e iπ/3 14 / 15

89 3 P(P7,11 ) ( ) = Im ζ 9 Li ζ 7 Li 4 +24ζ3( Li 2,3 7ζ 3 Li 2 ) 9675 π3 ζ 3, (36 Im Li 2,2,2,5 +27 Li 2,2,3,4 +9 Li 2,2,4,3 +9 Li 2,3,2,4 +3 Li 2,3,3,3 ) 43ζ 3 (Li 2,3,3 +3 Li 2,2,4 ) π Im ( Li 8 ζ Li 2, π2 Im Li 6 ζ Li 3,8 ) Li 4, Li 5,6 ( Li 2, Li 6 ζ Li 4, Li 3,6 ) ( + π ζ ζ ,7 215 Re(3 Li 4,6 +1 Li 3,7 ) ) Abbreviation: Li n1,...,n r := Li n1,...,n r (e iπ/3 ) 15 / 15

Linear reducibility of Feynman integrals

Linear reducibility of Feynman integrals Linear reducibility of Feynman integrals Erik Panzer Institute des Hautes Études Scientifiques RADCOR/LoopFest 2015 June 19th, 2015 UCLA, Los Angeles Feynman integrals: special functions and numbers Some

More information

Master integrals without subdivergences

Master integrals without subdivergences Master integrals without subdivergences Joint work with Andreas von Manteuffel and Robert Schabinger Erik Panzer 1 (CNRS, ERC grant 257638) Institute des Hautes Études Scientifiques 35 Route de Chartres

More information

Symbolic integration of multiple polylogarithms

Symbolic integration of multiple polylogarithms Symbolic integration of multiple polylogarithms Erik Panzer Institute des Hautes E tudes Scientifiques Applications of Computer Algebra July 22nd, 215 Kalamata, Greece Problem: Multiple integrals of rational

More information

Multiple polylogarithms and Feynman integrals

Multiple polylogarithms and Feynman integrals Multiple polylogarithms and Feynman integrals Erik Panzer Institute des Hautes E tudes Scientifiques Amplitudes 215 July 7th ETH/University of Zu rich Topics 1 hyperlogarithms & iterated integrals 2 multiple

More information

Multiple polylogarithms and Feynman integrals

Multiple polylogarithms and Feynman integrals Multiple polylogarithms and Feynman integrals Erik Panzer Institute des Hautes E tudes Scientifiques Amplitudes 215 July 7th ETH/University of Zu rich Topics 1 hyperlogarithms & iterated integrals 2 multiple

More information

Amplitudes in φ4. Francis Brown, CNRS (Institut de Mathe matiques de Jussieu)

Amplitudes in φ4. Francis Brown, CNRS (Institut de Mathe matiques de Jussieu) Amplitudes in φ4 Francis Brown, CNRS (Institut de Mathe matiques de Jussieu) DESY Hamburg, 6 March 2012 Overview: 1. Parametric Feynman integrals 2. Graph polynomials 3. Symbol calculus 4. Point-counting

More information

arxiv: v3 [hep-ph] 20 Apr 2017

arxiv: v3 [hep-ph] 20 Apr 2017 MITP/14-76 A quasi-finite basis for multi-loop Feynman integrals arxiv:1411.7392v3 [hep-ph] 2 Apr 217 Andreas von Manteuffel, a Erik Panzer, b, c and Robert M. Schabinger a a PRISMA Cluster of Excellence

More information

Combinatorial Hopf algebras in particle physics I

Combinatorial Hopf algebras in particle physics I Combinatorial Hopf algebras in particle physics I Erik Panzer Scribed by Iain Crump May 25 1 Combinatorial Hopf Algebras Quantum field theory (QFT) describes the interactions of elementary particles. There

More information

MPL - a program for computations with iterated integrals on moduli spaces of curves of genus zero

MPL - a program for computations with iterated integrals on moduli spaces of curves of genus zero arxiv:1510.04562v1 [physics.comp-ph] 14 Oct 2015 MPL - a program for computations with iterated integrals on moduli spaces of curves of genus zero Christian Bogner Institut für Physik, Humboldt-Universität

More information

Combinatorial and physical content of Kirchhoff polynomials

Combinatorial and physical content of Kirchhoff polynomials Combinatorial and physical content of Kirchhoff polynomials Karen Yeats May 19, 2009 Spanning trees Let G be a connected graph, potentially with multiple edges and loops in the sense of a graph theorist.

More information

Linear polynomial reduction for Feynman integrals

Linear polynomial reduction for Feynman integrals Linear polynomial reduction for Feynman integrals MASTERTHESIS for attainment of the academic degree of Master of Science (M. Sc.) submitted at Mathematisch-Naturwissenschaftliche Fakultät I Institut für

More information

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with: J. Carter and G. Heinrich Based on arxiv:124.4152 [hep-ph] http://secdec.hepforge.org DESY-HU

More information

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with G. Heinrich Based on arxiv:124.4152 [hep-ph] HP 8 :Workshop on High Precision for Hard Processes,

More information

Structural Aspects of Numerical Loop Calculus

Structural Aspects of Numerical Loop Calculus Structural Aspects of Numerical Loop Calculus Do we need it? What is it about? Can we handle it? Giampiero Passarino Dipartimento di Fisica Teorica, Università di Torino, Italy INFN, Sezione di Torino,

More information

Introduction The MPLs Hopf algebra Application to Feynman integrals. Federico Granata. Ph.D. XXIX cicle 16/09/2014 Tutor: Carlo Oleari

Introduction The MPLs Hopf algebra Application to Feynman integrals. Federico Granata. Ph.D. XXIX cicle 16/09/2014 Tutor: Carlo Oleari Federico Granata Ph.D. XXIX cicle 16/09/2014 Tutor: Carlo Oleari Seminar based on NNLO ante portas summer school 18-25 June 2014, Debrecen Hungary) Polylogarithms The analytic computation of Feynman scalar

More information

MaPhy-AvH/ FEYNMAN INTEGRALS AND ITERATED INTEGRALS ON MODULI SPACES OF CURVES OF GENUS ZERO. 1. Introduction. ta i

MaPhy-AvH/ FEYNMAN INTEGRALS AND ITERATED INTEGRALS ON MODULI SPACES OF CURVES OF GENUS ZERO. 1. Introduction. ta i MaPhy-AvH/2014-10 FEYNMAN INTEGRALS AND ITERATED INTEGRALS ON MODULI SPACES OF CURVES OF GENUS ZERO CHRISTIAN BOGNER AND FRANCIS BROWN Abstract. This paper describes algorithms for the exact symbolic computation

More information

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases.

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases. Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases. Lorenzo Tancredi TTP, KIT - Karlsruhe Bologna, 18 Novembre 2014 Based on collaboration with Thomas Gehrmann,

More information

Differential Equations and Associators for Periods

Differential Equations and Associators for Periods Differential Equations and Associators for Periods Stephan Stieberger, MPP München Workshop on Geometry and Physics in memoriam of Ioannis Bakas November 2-25, 26 Schloß Ringberg, Tegernsee based on: St.St.,

More information

Evaluating multiloop Feynman integrals by Mellin-Barnes representation

Evaluating multiloop Feynman integrals by Mellin-Barnes representation April 7, 004 Loops&Legs 04 Evaluating multiloop Feynman integrals by Mellin-Barnes representation V.A. Smirnov Nuclear Physics Institute of Moscow State University Mellin-Barnes representation as a tool

More information

AN EXACT SEQUENCE FOR THE BROADHURST-KREIMER CONJECTURE

AN EXACT SEQUENCE FOR THE BROADHURST-KREIMER CONJECTURE AN EXACT SEQUENCE FOR THE BROADHURST-KREIMER CONJECTURE FRANCIS BROWN Don Zagier asked me whether the Broadhurst-Kreimer conjecture could be reformulated as a short exact sequence of spaces of polynomials

More information

Periods, Galois theory and particle physics

Periods, Galois theory and particle physics Periods, Galois theory and particle physics Francis Brown All Souls College, Oxford Gergen Lectures, 21st-24th March 2016 1 / 29 Reminders We are interested in periods I = γ ω where ω is a regular algebraic

More information

Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method

Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method Matteo Becchetti Supervisor Roberto Bonciani University of Rome La Sapienza 24/01/2017 1 The subject of

More information

Functions associated to scattering amplitudes. Stefan Weinzierl

Functions associated to scattering amplitudes. Stefan Weinzierl Functions associated to scattering amplitudes Stefan Weinzierl Institut für Physik, Universität Mainz I: Periodic functions and periods II: III: Differential equations The two-loop sun-rise diagramm in

More information

arxiv: v1 [math.ag] 10 Apr 2008

arxiv: v1 [math.ag] 10 Apr 2008 THE MASSLESS HIGHER-LOOP TWO-POINT FUNCTION arxiv:84.66v [math.ag] Apr 28 FRANCIS BROWN, CNRS, IMJ Abstract. We introduce a new method for computing massless Feynman integrals analytically in parametric

More information

Feynman Integrals, Regulators and Elliptic Polylogarithms

Feynman Integrals, Regulators and Elliptic Polylogarithms Feynman Integrals, Regulators and Elliptic Polylogarithms Pierre Vanhove Automorphic Forms, Lie Algebras and String Theory March 5, 2014 based on [arxiv:1309.5865] and work in progress Spencer Bloch, Matt

More information

arxiv: v2 [hep-th] 1 Feb 2018

arxiv: v2 [hep-th] 1 Feb 2018 Prepared for submission to JHEP CERN-TH-07-09 CP-7- Edinburgh 07/09 FR-PHENO-07-00 TCDMATH-7-09 Diagrammatic Hopf algebra of cut Feynman integrals: the one-loop case arxiv:704.079v [hep-th] Feb 08 Samuel

More information

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules Unitarity, Dispersion Relations, Cutkosky s Cutting Rules 04.06.0 For more information about unitarity, dispersion relations, and Cutkosky s cutting rules, consult Peskin& Schröder, or rather Le Bellac.

More information

Feynman integrals as Periods

Feynman integrals as Periods Feynman integrals as Periods Pierre Vanhove Amplitudes 2017, Higgs Center, Edinburgh, UK based on [arxiv:1309.5865], [arxiv:1406.2664], [arxiv:1601.08181] Spencer Bloch, Matt Kerr Pierre Vanhove (IPhT)

More information

TENSOR STRUCTURE FROM SCALAR FEYNMAN MATROIDS

TENSOR STRUCTURE FROM SCALAR FEYNMAN MATROIDS TENSOR STRUCTURE FROM SCALAR FEYNMAN MATROIDS Dirk KREIMER and Karen YEATS Institut des Hautes Études Scientifiques 35, route de Chartres 91440 Bures-sur-Yvette (France) Novembre 2010 IHES/P/10/40 TENSOR

More information

On rational approximation of algebraic functions. Julius Borcea. Rikard Bøgvad & Boris Shapiro

On rational approximation of algebraic functions. Julius Borcea. Rikard Bøgvad & Boris Shapiro On rational approximation of algebraic functions http://arxiv.org/abs/math.ca/0409353 Julius Borcea joint work with Rikard Bøgvad & Boris Shapiro 1. Padé approximation: short overview 2. A scheme of rational

More information

Periods (and why the fundamental theorem of calculus conjecturely is a fundamental theorem)

Periods (and why the fundamental theorem of calculus conjecturely is a fundamental theorem) Periods (and why the fundamental theorem of calculus conjecturely is a fundamental theorem) by J.M. Commelin Saturday, the 28 th of November, 2015 0.1 abstract. In 2001 M. Kontsevich and D. Zagier posed

More information

1. If 1, ω, ω 2, -----, ω 9 are the 10 th roots of unity, then (1 + ω) (1 + ω 2 ) (1 + ω 9 ) is A) 1 B) 1 C) 10 D) 0

1. If 1, ω, ω 2, -----, ω 9 are the 10 th roots of unity, then (1 + ω) (1 + ω 2 ) (1 + ω 9 ) is A) 1 B) 1 C) 10 D) 0 4 INUTES. If, ω, ω, -----, ω 9 are the th roots of unity, then ( + ω) ( + ω ) ----- ( + ω 9 ) is B) D) 5. i If - i = a + ib, then a =, b = B) a =, b = a =, b = D) a =, b= 3. Find the integral values for

More information

Functional equations for Feynman integrals

Functional equations for Feynman integrals Functional equations for Feynman integrals O.V. Tarasov JINR, Dubna, Russia October 9, 016, Hayama, Japan O.V. Tarasov (JINR) Functional equations for Feynman integrals 1 / 34 Contents 1 Functional equations

More information

arxiv: v1 [hep-ph] 30 Dec 2015

arxiv: v1 [hep-ph] 30 Dec 2015 June 3, 8 Derivation of functional equations for Feynman integrals from algebraic relations arxiv:5.94v [hep-ph] 3 Dec 5 O.V. Tarasov II. Institut für Theoretische Physik, Universität Hamburg, Luruper

More information

Feynman integrals and multiple polylogarithms. Stefan Weinzierl

Feynman integrals and multiple polylogarithms. Stefan Weinzierl Feynman integrals and multiple polylogarithms Stefan Weinzierl Universität Mainz I. Basic techniques II. Nested sums and iterated integrals III. Multiple Polylogarithms IV. Applications The need for precision

More information

Radcor-Loopfest 2015

Radcor-Loopfest 2015 E H U N I V E R S I T T Y O H F E D I N B U R G Radcor-Loopfest 205 Long-distance singularities in multi-leg scattering amplitudes Einan Gardi Higgs Centre for theoretical physics, Edinburgh! new 3-loop

More information

The Non-commutative S matrix

The Non-commutative S matrix The Suvrat Raju Harish-Chandra Research Institute 9 Dec 2008 (work in progress) CONTEMPORARY HISTORY In the past few years, S-matrix techniques have seen a revival. (Bern et al., Britto et al., Arkani-Hamed

More information

Two-loop Remainder Functions in N = 4 SYM

Two-loop Remainder Functions in N = 4 SYM Two-loop Remainder Functions in N = 4 SYM Claude Duhr Institut für theoretische Physik, ETH Zürich, Wolfgang-Paulistr. 27, CH-8093, Switzerland E-mail: duhrc@itp.phys.ethz.ch 1 Introduction Over the last

More information

The Pentabox Master Integrals with the Simplified Differential Equations approach

The Pentabox Master Integrals with the Simplified Differential Equations approach The Pentabox Master Integrals with the Simplified Differential Equations approach Costas G. Papadopoulos INPP, NCSR Demokritos Zurich, August 25, 2016 C.G.Papadopoulos (INPP) 5box QCD@LHC 2016 1 / 36 Introduction

More information

Analytic continuation of functional renormalization group equations

Analytic continuation of functional renormalization group equations Analytic continuation of functional renormalization group equations Stefan Flörchinger (CERN) Aachen, 07.03.2012 Short outline Quantum effective action and its analytic continuation Functional renormalization

More information

Scalar One-Loop Integrals using the Negative-Dimension Approach

Scalar One-Loop Integrals using the Negative-Dimension Approach DTP/99/80 hep-ph/9907494 Scalar One-Loop Integrals using the Negative-Dimension Approach arxiv:hep-ph/9907494v 6 Jul 999 C. Anastasiou, E. W. N. Glover and C. Oleari Department of Physics, University of

More information

arxiv: v1 [hep-th] 20 May 2014

arxiv: v1 [hep-th] 20 May 2014 arxiv:405.4964v [hep-th] 20 May 204 Quantum fields, periods and algebraic geometry Dirk Kreimer Abstract. We discuss how basic notions of graph theory and associated graph polynomials define questions

More information

Supersymmetric Gauge Theories, Matrix Models and Geometric Transitions

Supersymmetric Gauge Theories, Matrix Models and Geometric Transitions Supersymmetric Gauge Theories, Matrix Models and Geometric Transitions Frank FERRARI Université Libre de Bruxelles and International Solvay Institutes XVth Oporto meeting on Geometry, Topology and Physics:

More information

Discontinuities of Feynman Integrals

Discontinuities of Feynman Integrals CEA Saclay Brown University, Twelfth Workshop on Non-Perturbative Quantum Chromodynamics June 10, 2013 Outline Landau and Cutkosky Classic unitarity cuts I I I Dispersion relations Modern unitarity method,

More information

7 Veltman-Passarino Reduction

7 Veltman-Passarino Reduction 7 Veltman-Passarino Reduction This is a method of expressing an n-point loop integral with r powers of the loop momentum l in the numerator, in terms of scalar s-point functions with s = n r, n. scalar

More information

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS Germán F. R. Sborlini Departamento de Física, FCEyN, UBA (Argentina) 10/12/2012 - IFIC CONTENT Introduction Collinear limits Splitting functions Computing splitting

More information

On the singularities of non-linear ODEs

On the singularities of non-linear ODEs On the singularities of non-linear ODEs Galina Filipuk Institute of Mathematics University of Warsaw G.Filipuk@mimuw.edu.pl Collaborators: R. Halburd (London), R. Vidunas (Tokyo), R. Kycia (Kraków) 1 Plan

More information

Lecture 8: 1-loop closed string vacuum amplitude

Lecture 8: 1-loop closed string vacuum amplitude Lecture 8: 1-loop closed string vacuum amplitude José D. Edelstein University of Santiago de Compostela STRING THEORY Santiago de Compostela, March 5, 2013 José D. Edelstein (USC) Lecture 8: 1-loop vacuum

More information

Sector Decomposition

Sector Decomposition Sector Decomposition J. Carter Institute for Particle Physics Phenomenology University of Durham Student Seminar, 06/05/2009 Outline 1 What is Sector Decomposition? Why is Sector Decomposition Important?

More information

Differential Equations for Feynman Integrals

Differential Equations for Feynman Integrals for Feynman Integrals Ulrich Schubert Max-Planck-Institut für Physik Föhringer Ring 6, München January 18, 2015 based on work with M. Argeri, S. Di Vita, P. Mastrolia, E. Mirabella, J. Schlenk, L. Tancredi,

More information

Lecture 3. Frits Beukers. Arithmetic of values of E- and G-function. Lecture 3 E- and G-functions 1 / 20

Lecture 3. Frits Beukers. Arithmetic of values of E- and G-function. Lecture 3 E- and G-functions 1 / 20 Lecture 3 Frits Beukers Arithmetic of values of E- and G-function Lecture 3 E- and G-functions 1 / 20 G-functions, definition Definition An analytic function f (z) given by a powerseries a k z k k=0 with

More information

arxiv:hep-lat/ v1 30 Sep 2005

arxiv:hep-lat/ v1 30 Sep 2005 September 2005 Applying Gröbner Bases to Solve Reduction Problems for Feynman Integrals arxiv:hep-lat/0509187v1 30 Sep 2005 A.V. Smirnov 1 Mechanical and Mathematical Department and Scientific Research

More information

Irrationality proofs, moduli spaces, and dinner parties

Irrationality proofs, moduli spaces, and dinner parties Irrationality proofs, moduli spaces, and dinner parties Francis Brown, IHÉS-CNRS las, Members Colloquium 17th October 2014 1 / 32 Part I History 2 / 32 Zeta values and Euler s theorem Recall the Riemann

More information

One-Mass Two-Loop Master Integrals for Mixed

One-Mass Two-Loop Master Integrals for Mixed One-Mass Two-Loop Master Integrals for Mixed α s -Electroweak Drell-Yan Production work ongoing with Andreas von Manteuffel The PRISMA Cluster of Excellence and Institute of Physics Johannes Gutenberg

More information

Transcendental Numbers and Hopf Algebras

Transcendental Numbers and Hopf Algebras Transcendental Numbers and Hopf Algebras Michel Waldschmidt Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 1 Algebraic groups (commutative, linear, over Q) Exponential polynomials Transcendence

More information

10 Cut Construction. We shall outline the calculation of the colour ordered 1-loop MHV amplitude in N = 4 SUSY using the method of cut construction.

10 Cut Construction. We shall outline the calculation of the colour ordered 1-loop MHV amplitude in N = 4 SUSY using the method of cut construction. 10 Cut Construction We shall outline the calculation of the colour ordered 1-loop MHV amplitude in N = 4 SUSY using the method of cut construction All 1-loop N = 4 SUSY amplitudes can be expressed in terms

More information

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial.

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial. Lecture 3 Usual complex functions MATH-GA 245.00 Complex Variables Polynomials. Construction f : z z is analytic on all of C since its real and imaginary parts satisfy the Cauchy-Riemann relations and

More information

Feynman integrals and hyperlogarithms

Feynman integrals and hyperlogarithms Feynman integrals and hyperlogarithms Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) im Fach Mathematik eingereicht an der Mathematisch-Naturwissenschaftlichen

More information

Triangle diagrams in the Standard Model

Triangle diagrams in the Standard Model Triangle diagrams in the Standard Model A. I. Davydychev and M. N. Dubinin Institute for Nuclear Physics, Moscow State University, 119899 Moscow, USSR Abstract Method of massive loop Feynman diagrams evaluation

More information

Donoghue, Golowich, Holstein Chapter 4, 6

Donoghue, Golowich, Holstein Chapter 4, 6 1 Week 7: Non linear sigma models and pion lagrangians Reading material from the books Burgess-Moore, Chapter 9.3 Donoghue, Golowich, Holstein Chapter 4, 6 Weinberg, Chap. 19 1 Goldstone boson lagrangians

More information

Numerical Evaluation of Loop Integrals

Numerical Evaluation of Loop Integrals Numerical Evaluation of Loop Integrals Institut für Theoretische Physik Universität Zürich Tsukuba, April 22 nd 2006 In collaboration with Babis Anastasiou Rationale (Why do we need complicated loop amplitudes?)

More information

Five-loop massive tadpoles

Five-loop massive tadpoles Five-loop massive tadpoles York Schröder (Univ del Bío-Bío, Chillán, Chile) recent work with Thomas Luthe and earlier work with: J. Möller, C. Studerus Radcor, UCLA, Jun 0 Motivation pressure of hot QCD

More information

Multiple divisor functions, their algebraic structure and the relation to multiple zeta values

Multiple divisor functions, their algebraic structure and the relation to multiple zeta values Multiple divisor functions, their algebraic structure and the relation to multiple zeta values Kyushu University - 13th November 2013 joint work: H.B., Ulf Kühn, arxiv:1309.3920 [math.nt] Multiple

More information

Computer Algebra Algorithms for Special Functions in Particle Physics.

Computer Algebra Algorithms for Special Functions in Particle Physics. Computer Algebra Algorithms for Special Functions in Particle Physics. Jakob Ablinger RISC, J. Kepler Universität Linz, Austria joint work with J. Blümlein (DESY) and C. Schneider (RISC) 7. Mai 2012 Definition

More information

arxiv: v1 [hep-th] 10 Apr 2014

arxiv: v1 [hep-th] 10 Apr 2014 Prepared for submission to JHEP Iterative structure of finite loop integrals arxiv:404.2922v [hep-th] 0 Apr 204 Simon Caron-Huot a,b Johannes M. Henn a a Institute for Advanced Study, Princeton, NJ 08540,

More information

1. Partial Fraction Expansion All the polynomials in this note are assumed to be complex polynomials.

1. Partial Fraction Expansion All the polynomials in this note are assumed to be complex polynomials. Partial Fraction Expansion All the polynomials in this note are assumed to be complex polynomials A rational function / is a quotient of two polynomials P, Q with 0 By Fundamental Theorem of algebra, =

More information

Generating series of multiple divisor sums and other interesting q-series

Generating series of multiple divisor sums and other interesting q-series Generating series of multiple divisor sums and other interesting q-series 1th July 2014 Content of this talk We are interested in a family of q-series which arises in a theory which combines multiple zeta

More information

COMPLEX ANALYSIS Spring 2014

COMPLEX ANALYSIS Spring 2014 COMPLEX ANALYSIS Spring 204 Cauchy and Runge Under the Same Roof. These notes can be used as an alternative to Section 5.5 of Chapter 2 in the textbook. They assume the theorem on winding numbers of the

More information

On the proof of the homology conjecture for monomial non-unital algebras

On the proof of the homology conjecture for monomial non-unital algebras On the proof of the homology conjecture for monomial non-unital algebras Natalia IYUDU Institut des Hautes Études Scientifiques 35, route de Chartres 91440 Bures-sur-Yvette (France) Mai 2016 IHES/M/16/15

More information

Lecture 24 Seiberg Witten Theory III

Lecture 24 Seiberg Witten Theory III Lecture 24 Seiberg Witten Theory III Outline This is the third of three lectures on the exact Seiberg-Witten solution of N = 2 SUSY theory. The third lecture: The Seiberg-Witten Curve: the elliptic curve

More information

An example of generalization of the Bernoulli numbers and polynomials to any dimension

An example of generalization of the Bernoulli numbers and polynomials to any dimension An example of generalization of the Bernoulli numbers and polynomials to any dimension Olivier Bouillot, Villebon-Georges Charpak institute, France C.A.L.I.N. team seminary. Tuesday, 29 th March 26. Introduction

More information

8.821 F2008 Lecture 18: Wilson Loops

8.821 F2008 Lecture 18: Wilson Loops 8.821 F2008 Lecture 18: Wilson Loops Lecturer: McGreevy Scribe: Koushik Balasubramanian Decemebr 28, 2008 1 Minimum Surfaces The expectation value of Wilson loop operators W [C] in the CFT can be computed

More information

Generalized Tian-Todorov theorems

Generalized Tian-Todorov theorems Generalized Tian-Todorov theorems M.Kontsevich 1 The classical Tian-Todorov theorem Recall the classical Tian-Todorov theorem (see [4],[5]) about the smoothness of the moduli spaces of Calabi-Yau manifolds:

More information

Exploring the function space of Feynman integrals. Stefan Weinzierl

Exploring the function space of Feynman integrals. Stefan Weinzierl Exploring the function space of Feynman integrals Stefan Weinzierl Institut für Physik, Universität Mainz Mathematics intro: Physics intro: Part I: Part II: Periodic functions and periods Precision calculations

More information

Cyclic inclusion/exclusion

Cyclic inclusion/exclusion Cyclic inclusion/exclusion Valentin Féray LaBRI, CNRS, Bordeaux Journées Combinatoire Algébrique du GDR-IM, Rouen Valentin Féray (LaBRI, CNRS) Cyclic inclusion/exclusion Rouen, 011 06 1 / 16 Introduction

More information

Maximal Unitarity at Two Loops

Maximal Unitarity at Two Loops Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon Caron- Huot & Kasper Larsen 1108.1180, 1205.0801,

More information

MODULAR FORMS IN QUANTUM FIELD THEORY

MODULAR FORMS IN QUANTUM FIELD THEORY MODULAR FORMS IN QUANTUM FIELD THEORY FRANCIS BROWN AND OLIVER SCHNETZ Abstract. The amplitude of a Feynman graph in Quantum Field Theory is related to the point-count over finite fields of the corresponding

More information

Understanding the log expansions in quantum field theory combinatorially

Understanding the log expansions in quantum field theory combinatorially Understanding the log expansions in quantum field theory combinatorially Karen Yeats CCC and BCCD, February 5, 2016 Augmented generating functions Take a combinatorial class C. Build a generating function

More information

The algebra of cell-zeta values

The algebra of cell-zeta values The algebra of cell-zeta values Sarah Carr May 0, 200 A multizeta value or MZV is a real number, ζ(k i,..., k d ) = X n > >n d >0 Abstract n k nk d d, k i Z, k 2. () We are interested in studying the Q

More information

We denote the space of distributions on Ω by D ( Ω) 2.

We denote the space of distributions on Ω by D ( Ω) 2. Sep. 1 0, 008 Distributions Distributions are generalized functions. Some familiarity with the theory of distributions helps understanding of various function spaces which play important roles in the study

More information

1. Introduction Interest in this project began with curiosity about the Laplace transform of the Digamma function, e as ψ(s + 1)ds,

1. Introduction Interest in this project began with curiosity about the Laplace transform of the Digamma function, e as ψ(s + 1)ds, ON THE LAPLACE TRANSFORM OF THE PSI FUNCTION M. LAWRENCE GLASSER AND DANTE MANNA Abstract. Guided by numerical experimentation, we have been able to prove that Z 8 / x x + ln dx = γ + ln) [cosx)] and to

More information

Sample Final Questions: Solutions Math 21B, Winter y ( y 1)(1 + y)) = A y + B

Sample Final Questions: Solutions Math 21B, Winter y ( y 1)(1 + y)) = A y + B Sample Final Questions: Solutions Math 2B, Winter 23. Evaluate the following integrals: tan a) y y dy; b) x dx; c) 3 x 2 + x dx. a) We use partial fractions: y y 3 = y y ) + y)) = A y + B y + C y +. Putting

More information

The Steinmann Cluster Bootstrap for N = 4 SYM Amplitudes

The Steinmann Cluster Bootstrap for N = 4 SYM Amplitudes The Steinmann Cluster Bootstrap for N = 4 SYM Amplitudes Georgios Papathanasiou 1412.3763 w/ Drummond,Spradlin 1612.08976 w/ Dixon,Drummond,Harrington,McLeod,Spradlin + in progress w/ Caron-Huot,Dixon,McLeod,von

More information

1 Running and matching of the QED coupling constant

1 Running and matching of the QED coupling constant Quantum Field Theory-II UZH and ETH, FS-6 Assistants: A. Greljo, D. Marzocca, J. Shapiro http://www.physik.uzh.ch/lectures/qft/ Problem Set n. 8 Prof. G. Isidori Due: -5-6 Running and matching of the QED

More information

arxiv:hep-th/ v1 2 Jul 1998

arxiv:hep-th/ v1 2 Jul 1998 α-representation for QCD Richard Hong Tuan arxiv:hep-th/9807021v1 2 Jul 1998 Laboratoire de Physique Théorique et Hautes Energies 1 Université de Paris XI, Bâtiment 210, F-91405 Orsay Cedex, France Abstract

More information

(Elliptic) multiple zeta values in open superstring amplitudes

(Elliptic) multiple zeta values in open superstring amplitudes (Elliptic) multiple zeta values in open superstring amplitudes Johannes Broedel Humboldt University Berlin based on joint work with Carlos Mafra, Nils Matthes and Oliver Schlotterer arxiv:42.5535, arxiv:57.2254

More information

Feynman integrals and Mirror symmetry

Feynman integrals and Mirror symmetry Feynman integrals and Mirror symmetry Pierre Vanhove & Amplitudes and Periods, HIM, Bonn based on 1309.5865, 1406.2664, 1601.08181 and work in progress Spencer Bloch, Matt Kerr, Charles Doran, Andrey Novoseltsev

More information

Math Homework 2

Math Homework 2 Math 73 Homework Due: September 8, 6 Suppose that f is holomorphic in a region Ω, ie an open connected set Prove that in any of the following cases (a) R(f) is constant; (b) I(f) is constant; (c) f is

More information

Calculating four-loop massless propagators with Forcer

Calculating four-loop massless propagators with Forcer Calculating four-loop massless propagators with Forcer Takahiro Ueda Nikhef, The Netherlands Collaboration with: Ben Ruijl and Jos Vermaseren 18 Jan. 2016 ACAT2016, UTFSM, Valparaíso 1 / 30 Contents Introduction

More information

PHY 396 L. Solutions for homework set #20.

PHY 396 L. Solutions for homework set #20. PHY 396 L. Solutions for homework set #. Problem 1 problem 1d) from the previous set): At the end of solution for part b) we saw that un-renormalized gauge invariance of the bare Lagrangian requires Z

More information

I. INTRODUCTION In a recent paper [1] we managed to derive closed forms for ladder corrections to selfenergy graphs (rainbows) and vertices, in the co

I. INTRODUCTION In a recent paper [1] we managed to derive closed forms for ladder corrections to selfenergy graphs (rainbows) and vertices, in the co Dimensional renormalization in 3 theory: ladders and rainbows R. Delbourgo and D. Elliott University of Tasmania, GPO Box 252-21, Hobart, Tasmania 7001, Australia D.S. McAnally University of Queensland,

More information

arxiv: v2 [math.nt] 23 Sep 2011

arxiv: v2 [math.nt] 23 Sep 2011 ELLIPTIC DIVISIBILITY SEQUENCES, SQUARES AND CUBES arxiv:1101.3839v2 [math.nt] 23 Sep 2011 Abstract. Elliptic divisibility sequences (EDSs) are generalizations of a class of integer divisibility sequences

More information

Numerical multi-loop calculations: tools and applications

Numerical multi-loop calculations: tools and applications Journal of Physics: Conference Series PAPER OPEN ACCESS Numerical multi-loop calculations: tools and applications To cite this article: S. Borowka et al 2016 J. Phys.: Conf. Ser. 762 012073 Related content

More information

Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document

Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document Background knowledge: (a) The arithmetic of integers (including HCFs and LCMs), of fractions, and of real numbers.

More information

Chapter 30 MSMYP1 Further Complex Variable Theory

Chapter 30 MSMYP1 Further Complex Variable Theory Chapter 30 MSMYP Further Complex Variable Theory (30.) Multifunctions A multifunction is a function that may take many values at the same point. Clearly such functions are problematic for an analytic study,

More information

Reduction of Feynman integrals to master integrals

Reduction of Feynman integrals to master integrals Reduction of Feynman integrals to master integrals A.V. Smirnov Scientific Research Computing Center of Moscow State University A.V. Smirnov ACAT 2007 p.1 Reduction problem for Feynman integrals A review

More information

Liouvillian solutions of third order differential equations

Liouvillian solutions of third order differential equations Article Submitted to Journal of Symbolic Computation Liouvillian solutions of third order differential equations Felix Ulmer IRMAR, Université de Rennes, 0 Rennes Cedex, France felix.ulmer@univ-rennes.fr

More information

ITERATED INTEGRALS IN QUANTUM FIELD THEORY

ITERATED INTEGRALS IN QUANTUM FIELD THEORY ITERATED INTEGRALS IN QUANTUM FIELD THEORY Abstract. These notes are based on a series of lectures given to a mixed audience of mathematics and physics students at Villa de Leyva in Colombia in 2009. The

More information

D = 5 maximally supersymmetric Yang-Mills theory diverges at six loops

D = 5 maximally supersymmetric Yang-Mills theory diverges at six loops SLAC PUB 15269 UCLA/12/TEP/104 SU-ITP-12/24 CERN-PH-TH/2012-288 D = 5 maximally supersymmetric Yang-Mills theory diverges at six loops Zvi Bern, (1) John Joseph Carrasco, (2) Lance J. Dixon, (3) Michael

More information

Renormalizability in (noncommutative) field theories

Renormalizability in (noncommutative) field theories Renormalizability in (noncommutative) field theories LIPN in collaboration with: A. de Goursac, R. Gurău, T. Krajewski, D. Kreimer, J. Magnen, V. Rivasseau, F. Vignes-Tourneret, P. Vitale, J.-C. Wallet,

More information