Computer Algebra Algorithms for Special Functions in Particle Physics.

Size: px
Start display at page:

Download "Computer Algebra Algorithms for Special Functions in Particle Physics."

Transcription

1 Computer Algebra Algorithms for Special Functions in Particle Physics. Jakob Ablinger RISC, J. Kepler Universität Linz, Austria joint work with J. Blümlein (DESY) and C. Schneider (RISC) 7. Mai 2012

2 Definition (Harmonic Sums (H-Sums)) For c i Z and n N we define S c1,...,c k (n) = n i 1 i 2 i k 1 sign(c 1 ) i 1 i c 1 1 sign(c k) i k i c k k k is called the depth and w = k i=1 c i is called the weight of the harmonic sum S c1,...,c k (n).

3 Definition (Harmonic Sums (H-Sums)) For c i Z and n N we define S c1,...,c k (n) = n i 1 i 2 i k 1 sign(c 1 ) i 1 i c 1 1 sign(c k) i k i c k k k is called the depth and w = k i=1 c i is called the weight of the harmonic sum S c1,...,c k (n). S 1 (n) = n i=1 1 i

4 Definition (Harmonic Sums (H-Sums)) For c i Z and n N we define S c1,...,c k (n) = n i 1 i 2 i k 1 sign(c 1 ) i 1 i c 1 1 sign(c k) i k i c k k k is called the depth and w = k i=1 c i is called the weight of the harmonic sum S c1,...,c k (n). S 1 (n) = S 2, 3 (n) = n 1 i i=1 n i j=1 i=1 ( 1) j j 3 i 2

5 Definition (Harmonic Sums (H-Sums)) For c i Z and n N we define S c1,...,c k (n) = n i 1 i 2 i k 1 sign(c 1 ) i 1 i c 1 1 sign(c k) i k i c k k k is called the depth and w = k i=1 c i is called the weight of the harmonic sum S c1,...,c k (n). S 1 (n) = S 2, 3 (n) = n 1 i i=1 n i j=1 i=1 Blümlein, Hoffman, Moch, Vermaseren,... ( 1) j j 3 i 2

6 Definition (S-Sums) For c i N and x i R we define S c1,...,c k (x 1,..., x k ; n) = n i 1 i 2 i k 1 x i 1 1 i c 1 1 x ik k i c. k k k is called the depth and w = k i=1 c i is called the weight of the S-sum S c1,...,c k (x 1,..., x k ; n).

7 Definition (S-Sums) For c i N and x i R we define S c1,...,c k (x 1,..., x k ; n) = n i 1 i 2 i k 1 x i 1 1 i c 1 1 x ik k i c. k k k is called the depth and w = k i=1 c i is called the weight of the S-sum S c1,...,c k (x 1,..., x k ; n). S 2,3 (4, 3; n) = n i=1 4 i i j=1 3j j 3 i 2

8 Definition (S-Sums) For c i N and x i R we define S c1,...,c k (x 1,..., x k ; n) = n i 1 i 2 i k 1 x i 1 1 i c 1 1 x ik k i c. k k k is called the depth and w = k i=1 c i is called the weight of the S-sum S c1,...,c k (x 1,..., x k ; n). S 2,3 (4, 3; n) = S 2,3 (1, 1; n) = n i=1 n i=1 4 i i j=1 3j j 3 i 2 1 i i ( 1) j j=1 j 3 i 2 = S 2, 3 (n)

9 Definition (Cyclotomic Harmonic Sums (C-Sums)) Let a i, k N, b i, n N and c i Z we define S (a1,b 1,c 1 ),(a 2,b 2,c 2 ),...,(a k,b k,c k ) (n) = sign(c 1 ) i 1 sign(c 2 ) i 2 = (a 1 i 1 + b 1 ) c 1 (a 2 i 2 + b 2 ) c 2 sign(c k ) ik (a k i k + b k ) c k n i 1 i k 1 k is called the depth and w = k i=1 c i is called the weight of the cyclotomic harmonic sum S (a1,b 1,c 1 ),...,(a k,b k,c k ) (n).

10 Definition (Cyclotomic Harmonic Sums (C-Sums)) Let a i, k N, b i, n N and c i Z we define S (a1,b 1,c 1 ),(a 2,b 2,c 2 ),...,(a k,b k,c k ) (n) = sign(c 1 ) i 1 sign(c 2 ) i 2 = (a 1 i 1 + b 1 ) c 1 (a 2 i 2 + b 2 ) c 2 sign(c k ) ik (a k i k + b k ) c k n i 1 i k 1 k is called the depth and w = k i=1 c i is called the weight of the cyclotomic harmonic sum S (a1,b 1,c 1 ),...,(a k,b k,c k ) (n). S (2,1,2),(3,2,1) (n) = n i=1 i j=1 1 3j+2 (2i + 1) 2

11 Definition (Cyclotomic Harmonic Sums (C-Sums)) Let a i, k N, b i, n N and c i Z we define S (a1,b 1,c 1 ),(a 2,b 2,c 2 ),...,(a k,b k,c k ) (n) = sign(c 1 ) i 1 sign(c 2 ) i 2 = (a 1 i 1 + b 1 ) c 1 (a 2 i 2 + b 2 ) c 2 sign(c k ) ik (a k i k + b k ) c k n i 1 i k 1 k is called the depth and w = k i=1 c i is called the weight of the cyclotomic harmonic sum S (a1,b 1,c 1 ),...,(a k,b k,c k ) (n). S (2,1,2),(3,2,1) (n) = S (1,0,2),(1,0, 3) (n) = n i j=1 1 3j+2 (2i + 1) 2 i=1 n i j=1 i=1 ( 1) j (1j+0) 3 (1i + 0) 2 = S 2, 3 (n)

12 Definition (Cyclotomic S-Sums (CS-Sums)) Let a i, c i, n, k N, b i N and x i R we define S (a1,b 1,c 1 ),(a 2,b 2,c 2 ),...,(a k,b k,c k ) (x 1, x 2,..., x k, n) = = n i 1 i k 1 x i 1 1 (a 1 i 1 + b 1 ) c 1 x i 2 2 (a 2 i 2 + b 2 ) c x ik k 2 (a k i k + b k ) c k k is called the depth and w = k i=1 c i is called the weight of the Cyclotomic S-Sums S (a1,b 1,c 1 ),...,(a k,b k,c k ) (x 1,..., x k ; n).

13 Definition (Cyclotomic S-Sums (CS-Sums)) Let a i, c i, n, k N, b i N and x i R we define S (a1,b 1,c 1 ),(a 2,b 2,c 2 ),...,(a k,b k,c k ) (x 1, x 2,..., x k, n) = = n i 1 i k 1 x i 1 1 (a 1 i 1 + b 1 ) c 1 x i 2 2 (a 2 i 2 + b 2 ) c x ik k 2 (a k i k + b k ) c k k is called the depth and w = k i=1 c i is called the weight of the Cyclotomic S-Sums S (a1,b 1,c 1 ),...,(a k,b k,c k ) (x 1,..., x k ; n). S (2,1,2),(3,2,1) (4, 5, n) = n i=1 i 4 i j=1 j 5 3j+2 (2i + 1) 2

14 Definition (Cyclotomic S-Sums (CS-Sums)) Let a i, c i, n, k N, b i N and x i R we define S (a1,b 1,c 1 ),(a 2,b 2,c 2 ),...,(a k,b k,c k ) (x 1, x 2,..., x k, n) = = n i 1 i k 1 x i 1 1 (a 1 i 1 + b 1 ) c 1 x i 2 2 (a 2 i 2 + b 2 ) c x ik k 2 (a k i k + b k ) c k k is called the depth and w = k i=1 c i is called the weight of the Cyclotomic S-Sums S (a1,b 1,c 1 ),...,(a k,b k,c k ) (x 1,..., x k ; n). S (2,1,2),(3,2,1) (4, 5, n) = S (1,0,2),(1,0,3) (1, 1, n) = n i 4 i j=1 i=1 n i j=1 i=1 j 5 3j+2 (2i + 1) 2 ( 1) j (1j+0) 3 (1i + 0) 2 = S 2, 3 (n)

15 Connection between these nested sums Harmonic Sums

16 Connection between these nested sums S-Sums Harmonic Sums

17 Connection between these nested sums S-Sums Harmonic Sums Cyclotomic Sums

18 Connection between these nested sums Cyclotomic S-Sums S-Sums Harmonic Sums Cyclotomic Sums

19 Example: All N-Results for 3 Loop Ladder Graphs Joint work with J. Blümlein (DESY), C. Schneider (RISC) A. Hasselhuhn (DESY), S. Klein (RWTH) Consider, e.g., the diagram (containing three massive fermion propagators) = Around 1000 sums have to be calculated

20 A typical sum N 2 j+1 j=0 s=1 N+s j 2 r=0 2( 1) s+r ( j+1 s )( j+n+s 2 (N r)(r+1)(r+2)( j+n+σ+1)( j+n+σ+2)( j+n+s+σ)! σ=0 r )(N j)!(s 1)!σ!S 1 (r + 2)

21 A typical sum N 2 j+1 j=0 s=1 N+s j 2 r=0 2( 1) s+r ( j+1 s )( j+n+s 2 (N r)(r+1)(r+2)( j+n+σ+1)( j+n+σ+2)( j+n+s+σ)! σ=0 r )(N j)!(s 1)!σ!S 1 (r + 2) ( 2N 2 + 6N + 5 ) S 2 (N) 2 = + S 2, 1,2 (N) + S 2,1, 2 (N) 2(N + 1)(N + 2) mit, z.b., + S 2,1,1,1 ( 1, 2, 1 2, 1; N) + S 2,1,1,1(1, 1, 1, 2; N) S 2,1,1,1 (1, 1 2, 1, 2; N) = N i=1 i j=1 145 S sums occur k 2 l ( ) 1 j j l l=1 2 k k=1 j i 2

22 Algebraic Relations Harmonic Sums, S-sums, cyclotomic harmonic sums und cyclotomic S-sums form a quasi-shuffle algebra. There are relations of the form: S 1,1,2 (n) = 1 2 ( 2S1 (n) (S 3 (n) S 2,1 (n)) 2S 3,1 (n) + 2S 2,1,1 (n) + S 2 (n)s 1 (n) 2 + S 4 (n) ) S a1,a 1,a 2 (x 1, x 2, x 3 ; n) = S a2 (x 3 ; n) S a1,a 1 (x 1, x 2 ; n) + S a1,a 1+a 2 (x 1, x 2 x 3 ; n) S a1 (x 1 ; n) S a2,a 1 (x 3, x 2 ; n) S a2,2a 1 (x 3, x 1 x 2 ; n) + S a2,a 1,a 1 (x 3, x 2, x 1 ; n) S (2,1,2),(3,2,1),(2,1,2) (n) = 6S (2,1,1),(2,1,2) (n) 6S (2,1,2),(2,1,1) (n) + S (3,2,1) (n)s (2,1,2),(2,1,2) (n) +4S (2,1,2),(2,1,2) (n) + 9S (2,1,2),(3,2,1) (n) + 9S (3,2,1),(2,1,2) (n) S (2,1,2),(2,1,2),(3,2,1) (n) S (3,2,1),(2,1,2),(2,1,2) (n), S (3,2,1),(2,1,2),(2,1,2) (x 2, x 1, x 1 ; n) = 6S (2,1,1),(2,1,2) (x 1 x 2, x 1 ; n) 6S (2,1,2),(2,1,1) (x 1, x 1 x 2 ; n) +S (3,2,1) (x 2 ; n) S (2,1,2),(2,1,2) (x 1, x 1 ; n) + 2S (2,1,2),(2,1,2) (x 1, x 1 x 2 ; n) +2S (2,1,2),(2,1,2) (x 1 x 2, x 1 ; n) + 9S (2,1,2),(3,2,1) (x 1, x 1 x 2 ; n) + 9S (3,2,1),(2,1,2) (x 1 x 2, x 1 ; n) S (2,1,2),(2,1,2),(3,2,1) (x 1, x 1, x 2 ; n) S (2,1,2),(3,2,1),(2,1,2) (x 1, x 2, x 1 ; n)

23 Differential Relations integral representation ( S 1,2,1 2, 1 ) 1 2, 1; n 1 x1 1 x2 = 0 x x x3 x4 n 1 x x 4 1 dx 4dx 3 dx 2 dx 1

24 Differential Relations integral representation ( S 1,2,1 2, 1 ) 1 2, 1; n 1 x1 1 x2 = 0 x x 2 0 differentiation 1 x3 x4 n 1 x x 4 1 dx 4dx 3 dx 2 dx 1 ( S 1,2,1 2, 1 2, 1; n) n = x 1 1 x1 1 x2 1 x x3 x4 n log(x 4) x x 4 1 dx 4dx 3 dx 2 dx 1

25 Differential Relations integral representation ( S 1,2,1 2, 1 ) 1 2, 1; n 1 x1 1 x2 = 0 x x 2 0 differentiation 1 x3 x4 n 1 x x 4 1 dx 4dx 3 dx 2 dx 1 ( S 1,2,1 2, 1 2, 1; n) n = x 1 1 x1 1 x2 1 x x3 x4 n log(x 4) x x 4 1 dx 4dx 3 dx 2 dx 1 integration of right hand side ( S 1,2,1 2, 1 2, 1; n) n = 2H 0,0,1,2,1 (1) 4H 0,0,2,1,1 (1) H 0,1,0,2,1 (1) H 0,1,2,0,1 (1) 2H 0,2,0,1,1 (1) H 0,2,1,0,1 (1) + (H 2 (1)(H 0,1,2 (1) + H 0,2,1 (1)) + 2H 0,0,1,2 (1) + 2H 0,0,2,1 (1) ( ( 3(H0,1,2 (1) + H 0,2,1 (1)) +H 0,1,0,2 (1))S 1 (2; n) + S 2 ( ) + S 1,2 2, 1 )) 2 2 ; n ( H 2 (1)S 1,2,1 2, 1 ) ( 2, 1; n S 1 ( ) S 1,2,1 2, 1 ) ( 2, 1; n S 1,2,2 2, 1 ) 2, 1; n 2S 1,3,1 ( 2, 1 2, 1; n ) S 2,2,1 ( 2, 1 2, 1; n )

26 Number of Basis Sums Example (Harmonic sums) Number of w N S N A N D N H N AD N AH N DH N ADH

27 Number of Basis Sums For w 2 we have N S (w) = 2 3 w 1 N A (w) = 1 ( w ) µ 3 d w d d w N D (w) = 4 3 w 2 N H (w) = 2 3 w 1 2 w 1 N AD (w) = 1 ( w ) µ 3 d 1 ( ) w 1 µ 3 d w d w 1 d d w d w 1 N AH (w) = 1 ( w ) µ [3 d 2 d] w d d w N DH (w) = 4 3 w 2 2 w 2 N ADH (w) = 1 ( w ) [ µ 3 d 2 d] 1 ( ) w 1 [ µ 3 d 2 d] w d w 1 d d w d w 1

28 Number of Basis Sums We consider S (a1,b 1,c 1 ),...,(a k,b k,c k ) (n) with a i {1, 2}, b i {0, 1}, a i > b i and c i Z. Example (Cyclotomic harmonic sums) w N S N A N D N H1 N H1H2 N H1M N H1H2M N AD N AH1H2M N DH1H2M N ADH1H2M

29 Number of Basis Sums N S (w) = 4 5 w 1 w>1 1 ( w ) N A (w) = µ 5 d w d d w N D (w) = N S (w) N S (w 1) w>1 = 16 5 w 2 N H1 (w) = N H2 (w) = N M (w) = N S (w) 2 w 1 = 4 5 w 1 2 w 1 N (w) H1H2 = N S(w) (2 2 w 1 1) = 4 5 w 1 (2 2 w 1 1) N H1M(w) = N H2M(w) = N S (w) 2 2 w 1 = 4 5 w w 1 N H1H2M(w) = N S (w) (3 2 w 1 1) = 4 5 w 1 (3 2 w 1 1) N AD (w) = N A (w) N A (w 1) w>2 1 ( w ) = µ 5 d 1 ( ) w 1 µ 5 d w d w 1 d d w d (w 1) w>1 1 ( w ) N AH1H2M(w) = µ 5 d 3 1 ( w ) µ 2 d 1 w d w d d w d w N DH1H2M(w) = N H1H2M(w) N H1H2M(w 1) w>1 = 16 5 w w 2 N ADH1H2M(w) = N AH1H2M(w) N AH1H2M(w 1) w>2 1 ( w ) = µ (5 d 3 2 d ) w d d w 1 ( ) w 1 µ (5 d 3 2 d ) w 1 d d (w 1)

30 Number of Basis Sums We consider S a1,...,a k (x 1,..., x k ; n) with x i {1, 1, 1/2, 1/2, 2, 2}. Example (S-Sums) Each of the indices {1/2, 1/2, 2, 2} is allowed to appear just once in each sum. Number of Weight N S N A N D N AD

31 Example: continued

32 Example: continued = C. Schneider s Sigma.m Around 1000 sums are calculated containing in total 533 S sums

33 Example: continued = C. Schneider s Sigma.m Around 1000 sums are calculated containing in total 533 S sums = HarmonicSums.m After elimination the following sums remain: S 4 (N), S 3 (N), S 2 (N), S 1 (N), S 2 (N), S 3 (N), S 4 (N), S 3,1 (N), S 2,1 (N), S 2, 2 (N), S 2,1 (N), S 3,1 (N), S 2,1,1 (N), S 2,1,1 (N)

34 Harmonic Polylogarithms (H-Logs) We define f : {0, 1, 1} (0, 1) R by f (0, x) = 1 x, f (1, x) = f ( 1, x) = 1 1 x, x.

35 Harmonic Polylogarithms (H-Logs) We define f : {0, 1, 1} (0, 1) R by f (0, x) = 1 x, f (1, x) = f ( 1, x) = 1 1 x, x. Definition (Harmonic Polylogarithms (H-Logs)) Let m i { 1, 0, 1} we define for x (0, 1) : H(x) = 1, 1 k! (log x)k, if (m 1,..., m k ) H m1,m 2,...,m k (x) = = 0 x 0 f m 1 (y)h m2,...,m k (y)dy, otherwise.

36 Multiple Polylogarithms (M-Logs) Let a R and q = We define f as follows: { a, if a > 0, otherwise f a : (0, q) R { 1 f a (x) = x, if a = 0 otherwise. 1 a sign(a) x,

37 Multiple Polylogarithms (M-Logs) Let a R and q = We define f as follows: { a, if a > 0, otherwise f a : (0, q) R { 1 f a (x) = x, if a = 0 otherwise. 1 a sign(a) x, Definition (Multiple Polylogarithms (M-Logs)) Let m i R and let q = min mi >0 m i we define for x (0, q) : H(x) = 1, 1 k! (log x)k, if (m 1,..., m k ) = 0 H m1,m 2,...,m k (x) = x 0 f m 1 (y)h m2,...,m k (y)dy, otherwise.

38 The first cyclotomic polynomials are given by Φ 1 (x) = x 1 Φ 2 (x) = x + 1 Φ 3 (x) = x 2 + x + 1 Φ 4 (x) = x Φ 5 (x) = x 4 + x 3 + x 2 + x + 1 Φ 6 (x) = x 2 x + 1 Φ 7 (x) = x 6 + x 5 + x 4 + x 3 + x 2 + x + 1 Φ 8 (x) = x Φ 9 (x) = x 6 + x Φ 10 (x) = x 4 x 3 + x 2 x + 1 Φ 11 (x) = x 10 + x 9 + x 8 + x 7 + x 6 + x 5 + x 4 + x 3 + x 2 + x + 1 Φ 12 (x) = x 4 x 2 + 1, etc.

39 Cyclotomic Harmonic Polylogarithms (C-Logs) We now define the alphabet { } { } 1 x l A := x Φ k (x) k N, 0 l < ϕ(k), where Φ k (x) denotes the kth cyclotomic polynomial and ϕ is Euler s totient function.

40 Cyclotomic Harmonic Polylogarithms (C-Logs) We now define the alphabet { } { } 1 x l A := x Φ k (x) k N, 0 l < ϕ(k), where Φ k (x) denotes the kth cyclotomic polynomial and ϕ is Euler s totient function. Definition (Cyclotomic Harmonic Polylogarithms) Let m i A we define for x (0, 1) : H(x) = 1, 1 k! (log x)k, if (m 1,..., m k ) H m1,m 2,...,m k (x) = = ( 1 x,..., 1 x ) x 0 m 1H m2,...,m k (y)dy, otherwise. k is called the depth of H m (x).

41 Connection between these structures S-Sums H-Sums C-Sums ( ) S 12 1,2, 1; n S 1,2 (n) S (2,1, 1) (n)

42 Connection between these structures S-Sums H-Sums C-Sums C-Logs ( ) S 12 1,2, 1; n S 1,2 (n) S (2,1, 1) (n) H (4,1),(0,0) (x) H-Logs H 1,1 (x) M-Logs H 2,3 (x)

43 Connection between these structures integral representation (inv. Mellin transform) S-Sums ( ) S 12 1,2, 1; n H-Sums S 1,2 (n) C-Sums S (2,1, 1) (n) C-Logs H (4,1),(0,0) (x) H-Logs H 1,1 (x) M-Logs H 2,3 (x)

44 Connection between these structures integral representation (inv. Mellin transform) S-Sums ( ) S 12 1,2, 1; n H-Sums S 1,2 (n) C-Sums S (2,1, 1) (n) C-Logs H (4,1),(0,0) (x) H-Logs H 1,1 (x) M-Logs H 2,3 (x) Mellin transform

45 Connection between these structures integral representation (inv. Mellin transform) S-Sums ( ) S 12 1,2, 1; n H-Sums S 1,2 (n) C-Sums S (2,1, 1) (n) C-Logs H (4,1),(0,0) (x) H-Logs H 1,1 (x) M-Logs H 2,3 (x) n Mellin transform ( ) S 12 1,2, 1; S 1,2 ( ) S (2,1, 1) ( )

46 Connection between these structures integral representation (inv. Mellin transform) S-Sums ( ) S 12 1,2, 1; n H-Sums S 1,2 (n) C-Sums S (2,1, 1) (n) C-Logs H (4,1),(0,0) (x) H-Logs H 1,1 (x) M-Logs H 2,3 (x) n Mellin transform x 1 x 1 x c R ( ) S 12 1,2, 1; S 1,2 ( ) S (2,1, 1) ( ) H (4,1),(0,0) (1) H 1,1 (1) H 2,3 (c)

47 Connection between these structures integral representation (inv. Mellin transform) S-Sums ( ) S 12 1,2, 1; n H-Sums S 1,2 (n) C-Sums S (2,1, 1) (n) C-Logs H (4,1),(0,0) (x) H-Logs H 1,1 (x) M-Logs H 2,3 (x) n Mellin transform x 1 x 1 x c R ( ) S 12 1,2, 1; S 1,2 ( ) S (2,1, 1) ( ) H (4,1),(0,0) (1) H 1,1 (1) H 2,3 (c) power series expansion

48 Connection between these structures integral representation (inv. Mellin transform) S-Sums ( ) S 12 1,2, 1; n H-Sums S 1,2 (n) C-Sums S (2,1, 1) (n) C-Logs H (4,1),(0,0) (x) H-Logs H 1,1 (x) M-Logs H 2,3 (x) n Mellin transform x 1 x 1 x c R ( ) S 12 1,2, 1; S 1,2 ( ) S (2,1, 1) ( ) H (4,1),(0,0) (1) H 1,1 (1) H 2,3 (c) power series expansion

49 Asymptotic Expansion of Harmonic Sums We say that the function f : R R is expanded in an asymptotic series a k f (x) x k, x, k=0 where a k are constants, if for all K 0 R K (x) = f (x) K k=0 ( ) a k 1 x k = o x K, x.

50 Why do we need these expansions of harmonic sums? E.g., for limits of the form lim n n ( S 2 (n) ζ 2 S 2,2 (n) + 7 ζ for the approximation of the values of analytic continued harmonic sums at the complex plane S 2, 3 ( i) )

51 Basic Idea ϕ(x) ϕ(1 x) = {}}{ 1 S 1,3 (n) = ( 1) n x n H 1,0,0 (x) x dx + const }{{} a k+1 k! n(n + 1)... (n + k) = k=0 b k n k k=1 ( S 1,3 (n) ( 1) n 1 4n n 4 5 8n n 6 +( 1) n ( 1 2n 1 4n n 4 1 4n 6 a k x k k=0 b 1 = a 1 k 2 b k = ( 1) l Sk l l a k l(k l)! l=0 ) + 3 log(2) ζ 3 4 ) ζ 3 19 ζ2 2 40

52 Basic Idea ϕ(x) ϕ(1 x) = {}}{ 1 S 1,3 (n) = ( 1) n x n H 1,0,0 (x) x dx + const }{{} a k+1 k! n(n + 1)... (n + k) = k=0 b k n k k=1 ( S 1,3 (n) ( 1) n 1 4n n 4 5 8n n 6 +( 1) n ( 1 2n 1 4n n 4 1 4n 6 a k x k k=0 b 1 = a 1 k 2 b k = ( 1) l Sk l l a k l(k l)! l=0 ) + 3 log(2) ζ 3 4 ) ζ 3 19 ζ2 2 40

53 Basic Idea ϕ(x) ϕ(1 x) = {}}{ 1 S 1,3 (n) = ( 1) n x n H 1,0,0 (x) x dx + const }{{} a k+1 k! n(n + 1)... (n + k) = k=0 b k n k k=1 ( S 1,3 (n) ( 1) n 1 4n n 4 5 8n n 6 +( 1) n ( 1 2n 1 4n n 4 1 4n 6 a k x k k=0 b 1 = a 1 k 2 b k = ( 1) l Sk l l a k l(k l)! l=0 ) + 3 log(2) ζ 3 4 ) ζ 3 19 ζ2 2 40

54 Basic Idea ϕ(x) ϕ(1 x) = {}}{ 1 S 1,3 (n) = ( 1) n x n H 1,0,0 (x) x dx + const }{{} a k+1 k! n(n + 1)... (n + k) = k=0 b k n k k=1 ( S 1,3 (n) ( 1) n 1 4n n 4 5 8n n 6 +( 1) n ( 1 2n 1 4n n 4 1 4n 6 a k x k k=0 b 1 = a 1 k 2 b k = ( 1) l Sk l l a k l(k l)! l=0 ) + 3 log(2) ζ 3 4 ) ζ 3 19 ζ2 2 40

55 Basic Idea ϕ(x) ϕ(1 x) = {}}{ 1 S 1,3 (n) = ( 1) n x n H 1,0,0 (x) x dx + const }{{} a k+1 k! n(n + 1)... (n + k) = k=0 b k n k k=1 ( S 1,3 (n) ( 1) n 1 4n n 4 5 8n n 6 +( 1) n ( 1 2n 1 4n n 4 1 4n 6 a k x k k=0 b 1 = a 1 k 2 b k = ( 1) l Sk l l a k l(k l)! l=0 ) + 3 log(2) ζ 3 4 ) ζ 3 19 ζ2 2 40

56 Basic Idea ϕ(x) ϕ(1 x) = {}}{ 1 S 1,3 (n) = ( 1) n x n H 1,0,0 (x) x dx + const }{{} a k+1 k! n(n + 1)... (n + k) = k=0 b k n k k=1 ( S 1,3 (n) ( 1) n 1 4n n 4 5 8n n 6 +( 1) n ( 1 2n 1 4n n 4 1 4n 6 a k x k k=0 b 1 = a 1 k 2 b k = ( 1) l Sk l l a k l(k l)! l=0 ) + 3 log(2) ζ 3 4 ) ζ 3 19 ζ2 2 40

57 Basic Idea ϕ(x) ϕ(1 x) = {}}{ 1 S 1,3 (n) = ( 1) n x n H 1,0,0 (x) x dx + const }{{} a k+1 k! n(n + 1)... (n + k) = k=0 b k n k k=1 ( S 1,3 (n) ( 1) n 1 4n n 4 5 8n n 6 +( 1) n ( 1 2n 1 4n n 4 1 4n 6 a k x k k=0 b 1 = a 1 k 2 b k = ( 1) l Sk l l a k l(k l)! l=0 ) + 3 log(2) ζ 3 4 ) ζ 3 19 ζ2 2 40

58 Asymptotic Expansions this basic idea can be turned into an algorithm: S 1,3(n) ( 1) n ( 1 4n n 4 5 8n n 6 ) + ( 3 log(2) ζ3 1 + ( 1) n 4 2n 1 4n n 4 1 4n 6 ) ζ 3 19 ζ2 2 40

59 Asymptotic Expansions this basic idea can be turned into an algorithm: S 1,3(n) ( 1) n ( 1 4n n 4 5 8n n 6 extension to cyclotomic sums: ) + ( 3 log(2) ζ3 1 + ( 1) n 4 2n 1 4n n 4 1 4n 6 S (2,1,2),(1,0,1) (n) 4 log(2)s (2,1, 1) ( ) 2 8 log(2)s (2,1, 1) ( ) 4 log(2) + 1 9n 3 1 4n + 7ζ3 ( n n 2 1 ) (log(n) + γ) 4n ) ζ 3 19 ζ2 2 40

60 Asymptotic Expansions this basic idea can be turned into an algorithm: S 1,3(n) ( 1) n ( 1 4n n 4 5 8n n 6 extension to cyclotomic sums: ) + ( 3 log(2) ζ3 1 + ( 1) n 4 2n 1 4n n 4 1 4n 6 S (2,1,2),(1,0,1) (n) 4 log(2)s (2,1, 1) ( ) 2 8 log(2)s (2,1, 1) ( ) 4 log(2) + 1 9n 3 1 4n + 7ζ3 ( n n 2 1 ) (log(n) + γ) 4n extension to a subset of the S-Sums: S 2,1(1, 1 3 )(n) S1,2 ( 1 3, 1; ) + 3 n ( 3 ( + (3 n 3 2n n 2 + 3n 2n 3 3 4n n ( 1 6n S 3 ( 1 3 ; ) + H 3(1)3 n ( 3 2n 3 1 2n 2 ) H 0,3(1) + 3 n ( 3 2n 2 1 n ) + 3 n 4n 3 ) ζ 3 19 ζ n n 2 1 ) ( ) 13 S 2 2n ; )) ) ( ) 13 + ζ 2 S 1 ;

61 Asymptotic Expansions this basic idea can be turned into an algorithm: S 1,3(n) ( 1) n ( 1 4n n 4 5 8n n 6 extension to cyclotomic sums: ) + ( 3 log(2) ζ3 1 + ( 1) n 4 2n 1 4n n 4 1 4n 6 S (2,1,2),(1,0,1) (n) 4 log(2)s (2,1, 1) ( ) 2 8 log(2)s (2,1, 1) ( ) 4 log(2) + 1 9n 3 1 4n + 7ζ3 ( n n 2 1 ) (log(n) + γ) 4n extension to a subset of the S-Sums: S 2,1(1, 1 3 )(n) S1,2 ( 1 3, 1; ) + 3 n ( 3 ( + (3 n 3 2n n 2 + 3n 2n 3 3 4n n ( 1 6n S 3 ( 1 3 ; ) + H 3(1)3 n ( 3 2n 3 1 2n 2 extension to a subset of the cyclotomic S-Sums: S (2,1,2) ( 1 2 ; n ) ) H 0,3(1) + 3 n ( 3 2n 2 1 n ) + 3 n 4n 3 ) ζ 3 19 ζ n n 2 1 ) ( ) 13 S 2 2n ; )) ) ( ) 13 + ζ 2 S 1 ; ( ( ) ) π 2 6 8H 1 0,1 2 + log 2 (2) ( 24 2 n n n 4 5 4n ) 4n 2 + 2n

62 The Package HarmonicSums The package HarmonicSums offers functions to find algebraic and structural relations of harmonic sums and their generalizations

63 The Package HarmonicSums The package HarmonicSums offers functions to find algebraic and structural relations of harmonic sums and their generalizations compute the inverse Mellin transform of harmonic sums and their generalizations, this leads to harmonic polylogarithms and their generalizations

64 The Package HarmonicSums The package HarmonicSums offers functions to find algebraic and structural relations of harmonic sums and their generalizations compute the inverse Mellin transform of harmonic sums and their generalizations, this leads to harmonic polylogarithms and their generalizations find algebraic and structural relations of harmonic polylogarithms and their generalizations

65 The Package HarmonicSums The package HarmonicSums offers functions to find algebraic and structural relations of harmonic sums and their generalizations compute the inverse Mellin transform of harmonic sums and their generalizations, this leads to harmonic polylogarithms and their generalizations find algebraic and structural relations of harmonic polylogarithms and their generalizations apply algebraic and structural relations to harmonic sums

66 The Package HarmonicSums The package HarmonicSums offers functions to find algebraic and structural relations of harmonic sums and their generalizations compute the inverse Mellin transform of harmonic sums and their generalizations, this leads to harmonic polylogarithms and their generalizations find algebraic and structural relations of harmonic polylogarithms and their generalizations apply algebraic and structural relations to harmonic sums calculate the asymptotic expansion of harmonic sums and their generalizations

67 The Package HarmonicSums The package HarmonicSums offers functions to find algebraic and structural relations of harmonic sums and their generalizations compute the inverse Mellin transform of harmonic sums and their generalizations, this leads to harmonic polylogarithms and their generalizations find algebraic and structural relations of harmonic polylogarithms and their generalizations apply algebraic and structural relations to harmonic sums calculate the asymptotic expansion of harmonic sums and their generalizations perform several other tasks not mentioned in this talk (see, e.g., my PhD thesis, April 2012)

68 Almkvist Zeilberger Algorithm Two point Feynman integrals in D-dimensional Minkowski space with one time- and (D 1) Euclidean space dimensions, ε = D 4 and ε R with ε 1 of the structure d D p 1 (2π) D... d D p k N (p 1,... p k ; p; m 1... m k ;, N) (2π) D ( p1 2 + m2 1 )l 1... ( p 2 k + mk 2)l k are of relevance for many physical processes at high energy colliders, such as the Large Hadron Collider, LHC, and others. V δ V

69 Almkvist Zeilberger Algorithm Two point Feynman integrals in D-dimensional Minkowski space with one time- and (D 1) Euclidean space dimensions, ε = D 4 and ε R with ε 1 of the structure d D p 1 (2π) D... d D p k N (p 1,... p k ; p; m 1... m k ;, N) (2π) D ( p1 2 + m2 1 )l 1... ( p 2 k + mk 2)l k are of relevance for many physical processes at high energy colliders, such as the Large Hadron Collider, LHC, and others. These integrals can be transformed to integrals of the form V δ V od u d... o1 u 1 F (N; x 1,..., x d, ε)dx 1... dx d

70 Recurrence for the Integrand Apagodu and Zeilberger 2006 where a(x 1,...,x d ) F (n; x 1,..., x d ) = q(n; x 1,..., x d ) e b(x 1,...,x d ) P ( ) S p (x 1,..., x d ) αp s(x1,..., x d ) n, t(x 1,..., x d ) a(x 1,..., x d ), b(x 1,..., x d ), s(x 1,..., x d ), t(x 1,..., x d ), q(n; x 1,..., x d ) K[x 1,..., x d ] and S p (x 1,..., x d ) K[x 1,..., x d ], α p K for 1 p P. With e.g., K = Q(ε, n). p=1

71 Recurrence for the Integrand Apagodu and Zeilberger 2006 where a(x 1,...,x d ) F (n; x 1,..., x d ) = q(n; x 1,..., x d ) e b(x 1,...,x d ) P ( ) S p (x 1,..., x d ) αp s(x1,..., x d ) n, t(x 1,..., x d ) a(x 1,..., x d ), b(x 1,..., x d ), s(x 1,..., x d ), t(x 1,..., x d ), q(n; x 1,..., x d ) K[x 1,..., x d ] and S p (x 1,..., x d ) K[x 1,..., x d ], α p K for 1 p P. With e.g., K = Q(ε, n). p=1 Then there exist L N, e 0 (n), e 1 (n),..., e L (n) K[n], not all zero, and R i (n; x 1,..., x d ) K(n, x 1,..., x d ) such that G i (n; x 1,..., x d ) := R i (n; x 1,..., x d )F (n; x 1,..., x d ) satisfy L d e i (n)f (n + i; x 1,..., x d ) = D xi G i (n; x 1,..., x d ). i=0 i=1

72 Recurrence for the Integrand Apagodu and Zeilberger 2006 where a(x 1,...,x d ) F (n; x 1,..., x d ) = q(n; x 1,..., x d ) e b(x 1,...,x d ) P ( ) S p (x 1,..., x d ) αp s(x1,..., x d ) n, t(x 1,..., x d ) a(x 1,..., x d ), b(x 1,..., x d ), s(x 1,..., x d ), t(x 1,..., x d ), q(n; x 1,..., x d ) K[x 1,..., x d ] and S p (x 1,..., x d ) K[x 1,..., x d ], α p K for 1 p P. With e.g., K = Q(ε, n). p=1 Then there exist L N, e 0 (n), e 1 (n),..., e L (n) K[n], not all zero, and R i (n; x 1,..., x d ) K(n, x 1,..., x d ) such that G i (n; x 1,..., x d ) := R i (n; x 1,..., x d )F (n; x 1,..., x d ) satisfy L d e i (n)f (n + i; x 1,..., x d ) = D xi G i (n; x 1,..., x d ). i=0 i=1

73 Recurrence for the Integral 1 We now consider the integral od o1 a(n) :=... F (n; x 1,..., x d )dx 1... dx d, u d u 1 where for F (n; x 1,..., x d ) we have L d e i (n)f (n + i; x 1,..., x d ) = D xi G i (n; x 1,..., x d ). i=0 i=1

74 Recurrence for the Integral 1 We now consider the integral od o1 a(n) :=... F (n; x 1,..., x d )dx 1... dx d, u d u 1 where for F (n; x 1,..., x d ) we have L d e i (n)f (n + i; x 1,..., x d ) = D xi G i (n; x 1,..., x d ). i=0 i=1 If F (n;..., x i 1, u i, x i+1,... ) = F (n;..., x i 1, o i, x i+1,... ) = 0, we also have G i (n;..., x i 1, u i, x i+1,... ) = G i (n;..., x i 1, o i, x i+1,... ) = 0

75 Recurrence for the Integral 1 We now consider the integral od o1 a(n) :=... F (n; x 1,..., x d )dx 1... dx d, u d u 1 where for F (n; x 1,..., x d ) we have L d e i (n)f (n + i; x 1,..., x d ) = D xi G i (n; x 1,..., x d ). i=0 i=1 If F (n;..., x i 1, u i, x i+1,... ) = F (n;..., x i 1, o i, x i+1,... ) = 0, we also have G i (n;..., x i 1, u i, x i+1,... ) = G i (n;..., x i 1, o i, x i+1,... ) = 0 and hence a(n) satisfies the homogenous linear recurrence L e i (n)a(n + i) = 0. i=0

76 Recurrence for the Integral 2 We again consider the integral a(n) := od o1... F (n; x 1,..., x d )dx 1... dx d, u d u 1 suppose F (n; x 1,..., x d ) does not vanish at the bounds

77 Recurrence for the Integral 2 We again consider the integral a(n) := od u d... o1 u 1 F (n; x 1,..., x d )dx 1... dx d, suppose F (n; x 1,..., x d ) does not vanish at the bounds G i (n; x 1,..., x d ) does not have to vanish at the bounds

78 Recurrence for the Integral 2 We again consider the integral a(n) := od u d... o1 u 1 F (n; x 1,..., x d )dx 1... dx d, suppose F (n; x 1,..., x d ) does not vanish at the bounds G i (n; x 1,..., x d ) does not have to vanish at the bounds then force the G i to vanish at the integration bounds by modifying the ansatz, and look for G i of the form G i (n; x 1,..., x d ) = G i (n; x 1,..., x d )(x i u i )(x i o i ),

79 Recurrence for the Integral 2 We again consider the integral a(n) := od u d... o1 u 1 F (n; x 1,..., x d )dx 1... dx d, suppose F (n; x 1,..., x d ) does not vanish at the bounds G i (n; x 1,..., x d ) does not have to vanish at the bounds then force the G i to vanish at the integration bounds by modifying the ansatz, and look for G i of the form G i (n; x 1,..., x d ) = G i (n; x 1,..., x d )(x i u i )(x i o i ), hence a(n) satisfies again a homogenous linear recurrence of the form L e i (n)a(n + i) = 0. i=0

80 Example 1 1 I (ε, n) = 0 0 (1 + x 1 x 2 ) n (1 + x 1 ) ε } {{ } F (n):= dx 1 dx 2. Note that the integrand does not vanish at the integration bounds.

81 Example 1 1 I (ε, n) = 0 0 (1 + x 1 x 2 ) n (1 + x 1 ) ε } {{ } F (n):= dx 1 dx 2. Note that the integrand does not vanish at the integration bounds. Using our ansatz we find 2(n + 1)(ε n 2)F (n) (n + 2)(5ε 5n 13)F (n + 1) +(n + 3)(4ε 4n 13)F (n + 2) (n + 4)(ε n 4)F (n + 3) = D x1 F (n)(x 1 1) x 1 (x 1 + 1) x 2 ((n + 3)x 1 x 2 + 2) +D x2 F (n)(x 2 1) x 2 ( x 2 2 x 3 1 ( ε + n + 4) (ε 3)x 2 x (n + 2)x 2 x ).

82 Example 1 1 I (ε, n) = 0 0 (1 + x 1 x 2 ) n (1 + x 1 ) ε } {{ } F (n):= dx 1 dx 2. Note that the integrand does not vanish at the integration bounds. Using our ansatz we find 2(n + 1)(ε n 2)F (n) (n + 2)(5ε 5n 13)F (n + 1) +(n + 3)(4ε 4n 13)F (n + 2) (n + 4)(ε n 4)F (n + 3) = D x1 F (n)(x 1 1) x 1 (x 1 + 1) x 2 ((n + 3)x 1 x 2 + 2) +D x2 F (n)(x 2 1) x 2 ( x 2 2 x 3 1 ( ε + n + 4) (ε 3)x 2 x (n + 2)x 2 x ). Integration of this reccurence yields 2(n + 1)(ε n 2)I (ε, n) (n + 2)(5ε 5n 13)I (ε, n + 1) +(n + 3)(4ε 4n 13)I (ε, n + 2) (n + 4)(ε n 4)I (ε, n + 3) = 0.

83 Example 1 1 I (ε, n) = 0 0 (1 + x 1 x 2 ) n (1 + x 1 ) ε } {{ } F (n):= dx 1 dx 2. Note that the integrand does not vanish at the integration bounds. Using our ansatz we find 2(n + 1)(ε n 2)F (n) (n + 2)(5ε 5n 13)F (n + 1) +(n + 3)(4ε 4n 13)F (n + 2) (n + 4)(ε n 4)F (n + 3) = D x1 F (n)(x 1 1) x 1 (x 1 + 1) x 2 ((n + 3)x 1 x 2 + 2) +D x2 F (n)(x 2 1) x 2 ( x 2 2 x 3 1 ( ε + n + 4) (ε 3)x 2 x (n + 2)x 2 x ). Integration of this reccurence yields 2(n + 1)(ε n 2)I (ε, n) (n + 2)(5ε 5n 13)I (ε, n + 1) +(n + 3)(4ε 4n 13)I (ε, n + 2) (n + 4)(ε n 4)I (ε, n + 3) = 0. Solving the recurrence leads to ( n I (ε, n) = 1 1 n + 1 i + ε 1 21 ε i=1 n i=1 ) 2 i i + ε ε (2 ε 2) ε 1

84 Recurrence for the Integral 3 We look again at the integral od o1 a(n) := F (n; x 1,..., x d )dx 1... dx d. u d u 1 Suppose that we found L d e i (n)f (n + i; x 1,..., x d ) = D xi G i (n; x 1,..., x d ) i=0 i=1

85 Recurrence for the Integral 3 We look again at the integral od o1 a(n) := F (n; x 1,..., x d )dx 1... dx d. u d u 1 Suppose that we found L d e i (n)f (n + i; x 1,..., x d ) = D xi G i (n; x 1,..., x d ) i=0 i=1 By integration with respect to x 1,..., x d we get L e i (n)a(n + i) = i=0 d i=1 od d u d od oi 1 oi+1 i=1 u i 1 u d u i 1 u 1 oi 1 oi+1 o1 u i+1 u i+1 o1 u 1 O i (n)dx 1... dx i 1 dx i+1... dx d U i (n)dx 1... dx i 1 dx i+1... dx d with U i (n) := G i (n; x 1,..., x i 1, o i, x i+1..., x d ) O i (n) := G i (n; x 1,..., x i 1, u i, x i+1..., x d ).

86 Recurrence for the Integral 3 We look again at the integral od o1 a(n) := F (n; x 1,..., x d )dx 1... dx d. u d u 1 Suppose that we found L d e i (n)f (n + i; x 1,..., x d ) = D xi G i (n; x 1,..., x d ) i=0 i=1 By integration with respect to x 1,..., x d we get L e i (n)a(n + i) = i=0 d i=1 od d u d od oi 1 oi+1 i=1 u i 1 u d u i 1 u 1 oi 1 oi+1 o1 u i+1 u i+1 o1 u 1 O i (n)dx 1... dx i 1 dx i+1... dx d U i (n)dx 1... dx i 1 dx i+1... dx d with U i (n) := G i (n; x 1,..., x i 1, o i, x i+1..., x d ) O i (n) := G i (n; x 1,..., x i 1, u i, x i+1..., x d ). Note that there are 2 d integrals of dimension d 1, to compute.

87 Example 1 1 I (ε, n) = 0 0 Applying the algorithm leads to (1 + x 1 x 2) n (1 + x 1) ε } {{ } F (n;x1,x2):= dx 1dx 2, (n + 1)F (n; x 1, x 2) + (n + 2)F (n + 1; x 1, x 2) = D x1 0 + D x2 x 2(x 1 x 2 + 1) n+1 (1 + x 1) ε

88 Example 1 1 I (ε, n) = 0 0 Applying the algorithm leads to (1 + x 1 x 2) n (1 + x 1) ε } {{ } F (n;x1,x2):= dx 1dx 2, (n + 1)F (n; x 1, x 2) + (n + 2)F (n + 1; x 1, x 2) = D x1 0 + D x2 x 2(x 1 x 2 + 1) n+1 and hence it follows by integration (1 + x 1) ε 1 1 (n + 1)I (ε, n) + (n + 2)I (ε, n + 1) = (x 1 + 1) n+1 ε dx 1 0dx 1. 0 } {{ } 0 I1(n) In the next step apply the algorithm to I 1(n); we find I 1(ε, n) = 4 2n 2 ε 2 ε (n + 2 ε).

89 Example 1 1 I (ε, n) = 0 0 Applying the algorithm leads to (1 + x 1 x 2) n (1 + x 1) ε } {{ } F (n;x1,x2):= dx 1dx 2, (n + 1)F (n; x 1, x 2) + (n + 2)F (n + 1; x 1, x 2) = D x1 0 + D x2 x 2(x 1 x 2 + 1) n+1 and hence it follows by integration (1 + x 1) ε 1 1 (n + 1)I (ε, n) + (n + 2)I (ε, n + 1) = (x 1 + 1) n+1 ε dx 1 0dx 1. 0 } {{ } 0 I1(n) In the next step apply the algorithm to I 1(n); we find Plugging in yields I 1(ε, n) = 4 2n 2 ε 2 ε (n + 2 ε). (n + 1)I (ε, n) + (n + 2)I (ε, n + 1) = 4 2n 2 ε 2 ε (n + 2 ε).

90 Example 1 1 I (ε, n) = 0 0 Applying the algorithm leads to (1 + x 1 x 2) n (1 + x 1) ε } {{ } F (n;x1,x2):= dx 1dx 2, (n + 1)F (n; x 1, x 2) + (n + 2)F (n + 1; x 1, x 2) = D x1 0 + D x2 x 2(x 1 x 2 + 1) n+1 and hence it follows by integration (1 + x 1) ε 1 1 (n + 1)I (ε, n) + (n + 2)I (ε, n + 1) = (x 1 + 1) n+1 ε dx 1 0dx 1. 0 } {{ } 0 I1(n) In the next step apply the algorithm to I 1(n); we find Plugging in yields I 1(ε, n) = 4 2n 2 ε 2 ε (n + 2 ε). (n + 1)I (ε, n) + (n + 2)I (ε, n + 1) = 4 2n 2 ε 2 ε (n + 2 ε). Solving this recurrence yields ( n ) I (ε, n) = 1 1 n n + 1 i + ε 1 2 i 21 ε i + ε ε (2 ε 2). ε 1 i=1 i=1

91 Laurent Series Expansion of the Integral we look again at the integral I(ε, n) := od o1 F (n; x 1,..., x d )dx 1... dx d. u d u 1 assume that we can write it in the form I(ε, n) = ε l I l (n). l= L

92 Laurent Series Expansion of the Integral we look again at the integral I(ε, n) := od u d o1 assume that we can write it in the form I(ε, n) = u 1 F (n; x 1,..., x d )dx 1... dx d. ε l I l (n). l= L find I L (n), I L+1 (n),..., I u (n) in terms of indefinite nested product-sum expressions.

93 Laurent Series Expansion of the Integral we look again at the integral I(ε, n) := od u d o1 assume that we can write it in the form I(ε, n) = u 1 F (n; x 1,..., x d )dx 1... dx d. ε l I l (n). l= L find I L (n), I L+1 (n),..., I u (n) in terms of indefinite nested product-sum expressions. compute a recurrence for I(ε, n) in the form a 0 (ε, n)t (ε, n)+ +a d (ε, n)t (ε, n+d) = h 0 (n)+ +h u (n)ε u +O(ε u+1 ); use one of the methods presented above

94 Laurent Series Expansion of the Integral we look again at the integral I(ε, n) := od u d o1 assume that we can write it in the form I(ε, n) = u 1 F (n; x 1,..., x d )dx 1... dx d. ε l I l (n). l= L find I L (n), I L+1 (n),..., I u (n) in terms of indefinite nested product-sum expressions. compute a recurrence for I(ε, n) in the form a 0 (ε, n)t (ε, n)+ +a d (ε, n)t (ε, n+d) = h 0 (n)+ +h u (n)ε u +O(ε u+1 ); use one of the methods presented above use algorithm FLSR implemented in Sigma.

95 Example I (ε, n) = (1 + x 1 x 2 ) n (1 + x 1 ) ε } {{ } F (n;x 1,x 2):= dx 1 dx 2,

96 Example I (ε, n) = (1 + x 1 x 2 ) n (1 + x 1 ) ε } {{ } F (n;x 1,x 2):= dx 1 dx 2, Applying the algorithm leads to (n + 1)F (n; x 1, x 2 ) + (n + 2)F (n + 1; x 1, x 2 ) = D x1 0 + D x2 x 2 (x 1 x 2 + 1) n+1 (1 + x 1 ) ε

97 Example I (ε, n) = (1 + x 1 x 2 ) n (1 + x 1 ) ε } {{ } F (n;x 1,x 2):= dx 1 dx 2, Applying the algorithm leads to (n + 1)F (n; x 1, x 2 ) + (n + 2)F (n + 1; x 1, x 2 ) = D x1 0 + D x2 x 2 (x 1 x 2 + 1) n+1 and hence it follows by integration 1 (n + 1)I (ε, n) + (n + 2)I (ε, n + 1) = (x 1 + 1) n+1 ε dx 1 0 } {{ } I 1(n) 1 0 (1 + x 1 ) ε 0dx 1.

98 Example I (ε, n) = (1 + x 1 x 2 ) n (1 + x 1 ) ε } {{ } F (n;x 1,x 2):= dx 1 dx 2, Applying the algorithm leads to (n + 1)F (n; x 1, x 2 ) + (n + 2)F (n + 1; x 1, x 2 ) = D x1 0 + D x2 x 2 (x 1 x 2 + 1) n+1 and hence it follows by integration 1 (n + 1)I (ε, n) + (n + 2)I (ε, n + 1) = (x 1 + 1) n+1 ε dx 1 0 } {{ } I 1(n) In the next step apply the method to I 1 (n); we find I 1 (ε, n) = 2n+2 1 n ε ( 2 n+2 (H 1 (1)(n + 2) 1) 1 ) (n + 2) (1 + x 1 ) ε 0dx 1. + ε2 ( 2 n+1 ( H 1 (1) 2 (n + 2) 2 2H 1 (1)(n + 2) + 2 ) 1 ) (n + 2) 3 + O ( ε 3).

99 Plugging in and solving the resulting recurrence by means of FLSR and combining the solution with the initial values of the integral yields the result. I (ε, n) = S 1(2; n) n + 1 S 1(n) n (n + 1)3 + 4 ( n + 2 n 1) (n + 1) 2 + 2n(n + 1) 2 2(n + 1) ( 4 ( 2 n+2 (n + 1) 2 n+2 n(n + 1) +ε H 1 (1) 2(n + 1) 4 S ) 1(2; n) n + 1 ( 2(n + 1)n 2 + 4(n + 1)n + 2(n + 1) ) S 2 (2; n) + 2(n + 1) 4 S 2(n) n + 1 ) ( ( + 2n+2 (n + 1) 2(n + 1) 2(n + 1) 4 + ε 2 H 1 (1) 2 S1 (2; n) 2(n + 1) + 2n+1 (n 2 ) + 2n + 1) 2(n + 1) 4 ( 2 n+2 n 2 n+2 +H 1 (1) 2(n + 1) 4 S ) ) 2(2; n) + S 3(2; n) n + 1 n + 1 S 3(n) n n+2 2 2(n + 1) 4 +O ( ε 3).

100 The Package MultiIntegrate In[1]:= << Sigma.m In[2]:= << HarmonicSums.m In[3]:= << EvaluateMultiSums.m In[4]:= << MultiIntegrate.m Sigma - A summation package by Carsten Schneider -RISC Linz- V 1.0 (7/7/11) HarmonicSums by Jakob Ablinger -RISC Linz- Version 1.0 (1/3/12) EvaluateMultiSums by Carsten Schneider -RISC Linz- Version 1.0 (11/8/11) MultiIntegrate by Jakob Ablinger -RISC Linz- Version 1.0 (1/3/12) In[5]:= mazintegrate[(1 + x1 x2) n /(1 + x1) ε, {n}, {{x1, 0, 1}, {x2, 0, 1}}] Out[5]= n ι 1 =1 1 ι 1 ɛ+1 n 1 2 n ι 1 =1 2 ι 1 ι 1 +ɛ 1 (n + 1)2 ɛ + 2 ɛ 2 (n + 1)(ɛ 1)2 ɛ

101 The Package MultiIntegrate The following integral occurs in the direct computation of a 3-loop diagram of the ladder-type: 1 1 ( (s(x 1) + t(u 1) + 1) n 0 0 (w 1)(z 1)(sx s + tu t u + 1)(sx s + tu t x + 1) 1 (z( s + tu t + 1) + x((s 1)z + 1)) n + (z 1)(sx s + tu t x + 1) swx + sw + sxz sz tuw + tuz + tw tz + uw u w xz + x + z 1 (u((t 1)w + 1) w(s( x) + s + t 1)) n ) + dudx (w 1)(sx s + tu t u + 1) swx sw sxz + sz + tuw tuz tw + tz uw + u + w + xz x z

102 The Package MultiIntegrate The following integral occurs in the direct computation of a 3-loop diagram of the ladder-type: 1 1 ( (s(x 1) + t(u 1) + 1) n 0 0 (w 1)(z 1)(sx s + tu t u + 1)(sx s + tu t x + 1) 1 (z( s + tu t + 1) + x((s 1)z + 1)) n + (z 1)(sx s + tu t x + 1) swx + sw + sxz sz tuw + tuz + tw tz + uw u w xz + x + z 1 (u((t 1)w + 1) w(s( x) + s + t 1)) n ) + dudx (w 1)(sx s + tu t u + 1) swx sw sxz + sz + tuw tuz tw + tz uw + u + w + xz x z ( ) ( ) 1 (s + t 1)w(z 1) sw sz + z 1 (s + t 1)w(z 1) z(sw sz + z 1) = (S 1,1, ; n S 1,1, ; n (w 1)(z 1)(s + t 1) sw sz + z 1 z 1 sw sz + z 1 w(z 1) ( ) ( ) ( ) (s + t 1)w(z 1) (t 1)(sw sz + z 1) s + t 1 s + t 1 1)(t 1) S 1,1, ; n + S 1,1, (1 t)w; n + S 1,1, (s ; n sw sz + z 1 (s + t 1)(z 1) t 1 t 1 s + t 1 ( ) ( ) ( ) (s + t 1)w(z 1) (sw sz + z 1)(tz 1) s + t 1 s + t 1 +S 1,1, ; n S 1,1 sw sz + z 1 (s + t 1)w(z 1) t 1, 1 t; n 1)(t 1) + S 1,1, (s ; n s 1 s + t 1 ( ) ( ) ( ) (s + t 1)(w 1)z tw + w + tz 1 s + t 1 1)(sw 1) s + t 1 +S 1,1, ; n S 1,1, (t ; n + S 1,1, (1 s)z; n (t 1)w tz + 1 w 1 t 1 s + t 1 s 1 ( ) ( ) ( ) (s + t 1)(w 1)z (s 1)( tw + w + tz 1) s + t 1 s + t 1 S 1,1, ; n S 1,1 (t 1)w tz + 1 (s + t 1)(w 1) s 1, 1 s; n 1)(tz 1) S 1,1, (s ; n s 1 s + t 1 ( ) ( ) (s + t 1)(w 1)z 1)w tz + 1) (s + t 1)(w 1)z 1)((t 1)w tz + 1) S 1,1, w((t ; n + S 1,1, (sw ; n (t 1)w tz + 1 (w 1)z (t 1)w tz + 1 (s + t 1)(w 1)z S 1,1(1, (1 s)z; n) + S 1,1(1, z sz; n) + S 2((1 s)z; n) S 1,1(1, (1 t)w; n) + S 1,1(1, w tw; n) S 2(( s t + 1)w; n) ) S 2(( s t + 1)z; n) + 2S 2( s t + 1; n) S 2(1 s; n) + S 2((1 t)w; n) S 2(1 t; n)

arxiv: v1 [cs.sc] 9 Jul 2014

arxiv: v1 [cs.sc] 9 Jul 2014 arxiv:407.2537v [cs.sc] 9 Jul 204 DESY 4 22, DO-TH 4/3, SFB/CPP-4-039, LPN4-086 Recent Symbolic Summation Methods to Solve Coupled Systems of Differential and Difference Equations Research Institute for

More information

Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials

Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials DESY 33 DO TH 2 SFB/CPP--24 LPN /24 May 2 Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials arxiv:5.663v [math-ph] 3 May 2 Jakob Ablinger a, Johannes Blümlein b, and Carsten Schneider

More information

TF 2 -Contributions to 3-Loop Deep-Inelastic Wilson Coefficients and the Asymptotic Representation of Charged Current DIS

TF 2 -Contributions to 3-Loop Deep-Inelastic Wilson Coefficients and the Asymptotic Representation of Charged Current DIS 1/30 TF 2 -Contributions to 3-Loop Deep-Inelastic Wilson Coefficients and the Asymptotic Representation of Charged Current DIS Alexander Hasselhuhn RISC (LHCPhenonet) 26.9.2013 in collaboration with: J.

More information

Computer Algebra Algorithms for Special Functions in Particle Physics DISSERTATION. zur Erlangung des akademischen Grades. Doktor

Computer Algebra Algorithms for Special Functions in Particle Physics DISSERTATION. zur Erlangung des akademischen Grades. Doktor UNIVERSITÄT JOHANNES KEPLER LINZ JKU Technisch-Naturwissenschaftliche Fakultät arxiv:35.687v [math-ph] 3 May 3 Computer Algebra Algorithms for Special Functions in Particle Physics Eingereicht von: Jakob

More information

Symbolic summation for Feynman integrals

Symbolic summation for Feynman integrals Symbolic summation for Feynman integrals Flavia Stan Research Institute for Symbolic Computation (RISC) Johannes Kepler University Linz, Austria INRIA Rocquencourt, Project Algorithms Université Paris

More information

arxiv: v1 [cs.sc] 11 Nov 2010

arxiv: v1 [cs.sc] 11 Nov 2010 DESY 10 185 TTK 10 49 SFB-CPP/10 107 November 2010 A Symbolic Summation Approach to Feynman Integral Calculus arxiv:1011.2656v1 [cs.sc] 11 Nov 2010 Johannes Blümlein Deutsches Elektronen-Synchrotron, DESY,

More information

arxiv: v1 [hep-th] 22 Dec 2017

arxiv: v1 [hep-th] 22 Dec 2017 arxiv:1712.08541v1 [hep-th] 22 Dec 2017 DESY 17-225, DO-TH 17/37 Special functions, transcendentals and their numerics arxiv:yymmdd.xxxxx Jakob Ablinger a, Johannes Blümlein b, Mark Round a,b, and Carsten

More information

Latest results on the 3-loop heavy flavor Wilson coefficients in DIS

Latest results on the 3-loop heavy flavor Wilson coefficients in DIS 1/34 Latest results on the 3-loop heavy flavor Wilson coefficients in DIS A. De Freitas 1, J. Ablinger, A. Behring 1, J. Blümlein 1, A. Hasselhuhn 1,,4, A. von Manteuffel 3, C. Raab 1, C. Schneider, M.

More information

Feyman integrals and difference equations

Feyman integrals and difference equations Deutsches Elektronen Synchrotron, DESY Platanenallee 6, D 15738 Zeuthen, Germany E-mail: sven-olaf.moch@desy.de C. Schneider Research Institute for Symbolic Computation, Johannes Kepler University Linz,

More information

On Recurrences for Ising Integrals

On Recurrences for Ising Integrals On Recurrences for Ising Integrals Flavia Stan Research Institute for Symbolic Computation (RISC) Johannes Kepler University Linz, Austria January 009 Abstract We use WZ summation methods to compute recurrences

More information

arxiv: v2 [cs.sc] 30 May 2012

arxiv: v2 [cs.sc] 30 May 2012 A Symbolic Summation Approach to Feynman Integral Calculus Johannes Blümlein arxiv:1011.2656v2 [cs.sc] 30 May 2012 Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen, Germany Sebastian

More information

Combinatorics, Modular Functions, and Computer Algebra

Combinatorics, Modular Functions, and Computer Algebra Combinatorics, Modular Functions, and Computer Algebra / 1 Combinatorics and Computer Algebra (CoCoA 2015) Colorado State Univ., Fort Collins, July 19-25, 2015 Combinatorics, Modular Functions, and Computer

More information

MATRIX REPRESENTATIONS FOR MULTIPLICATIVE NESTED SUMS. 1. Introduction. The harmonic sums, defined by [BK99, eq. 4, p. 1] sign (i 1 ) n 1 (N) :=

MATRIX REPRESENTATIONS FOR MULTIPLICATIVE NESTED SUMS. 1. Introduction. The harmonic sums, defined by [BK99, eq. 4, p. 1] sign (i 1 ) n 1 (N) := MATRIX REPRESENTATIONS FOR MULTIPLICATIVE NESTED SUMS LIN JIU AND DIANE YAHUI SHI* Abstract We study the multiplicative nested sums which are generalizations of the harmonic sums and provide a calculation

More information

Advances in Applied Mathematics

Advances in Applied Mathematics Advances in Applied Mathematics 45 (010) 334 345 Contents lists available at ScienceDirect Advances in Applied Mathematics www.elsevier.com/locate/yaama On recurrences for Ising integrals Flavia Stan 1

More information

Master integrals without subdivergences

Master integrals without subdivergences Master integrals without subdivergences Joint work with Andreas von Manteuffel and Robert Schabinger Erik Panzer 1 (CNRS, ERC grant 257638) Institute des Hautes Études Scientifiques 35 Route de Chartres

More information

Feynman integrals and multiple polylogarithms. Stefan Weinzierl

Feynman integrals and multiple polylogarithms. Stefan Weinzierl Feynman integrals and multiple polylogarithms Stefan Weinzierl Universität Mainz I. Basic techniques II. Nested sums and iterated integrals III. Multiple Polylogarithms IV. Applications The need for precision

More information

Multiple polylogarithms and Feynman integrals

Multiple polylogarithms and Feynman integrals Multiple polylogarithms and Feynman integrals Erik Panzer Institute des Hautes E tudes Scientifiques Amplitudes 215 July 7th ETH/University of Zu rich Topics 1 hyperlogarithms & iterated integrals 2 multiple

More information

Multiple polylogarithms and Feynman integrals

Multiple polylogarithms and Feynman integrals Multiple polylogarithms and Feynman integrals Erik Panzer Institute des Hautes E tudes Scientifiques Amplitudes 215 July 7th ETH/University of Zu rich Topics 1 hyperlogarithms & iterated integrals 2 multiple

More information

Linear reducibility of Feynman integrals

Linear reducibility of Feynman integrals Linear reducibility of Feynman integrals Erik Panzer Institute des Hautes Études Scientifiques RADCOR/LoopFest 2015 June 19th, 2015 UCLA, Los Angeles Feynman integrals: special functions and numbers Some

More information

Multiple divisor functions, their algebraic structure and the relation to multiple zeta values

Multiple divisor functions, their algebraic structure and the relation to multiple zeta values Multiple divisor functions, their algebraic structure and the relation to multiple zeta values Kyushu University - 13th November 2013 joint work: H.B., Ulf Kühn, arxiv:1309.3920 [math.nt] Multiple

More information

Indefinite Summation with Unspecified Summands

Indefinite Summation with Unspecified Summands Indefinite Summation with Unspecified Summands Manuel Kauers 1 and Carsten Schneider 2 Research Institute for Symbolic Computation Johannes Kepler Universität A-4040 Linz, Austria Abstract We provide a

More information

Sequences and Summations

Sequences and Summations COMP 182 Algorithmic Thinking Sequences and Summations Luay Nakhleh Computer Science Rice University Chapter 2, Section 4 Reading Material Sequences A sequence is a function from a subset of the set of

More information

HyperInt - exact integration with hyperlogarithms

HyperInt - exact integration with hyperlogarithms HyperInt - exact integration with hyperlogarithms Erik Panzer erikpanzer@ihes.fr (CNRS, ERC grant 257638, F. Brown) Institute des Hautes Études Scientifiques 35 Route de Chartres 9144 Bures-sur-Yvette

More information

This ODE arises in many physical systems that we shall investigate. + ( + 1)u = 0. (λ + s)x λ + s + ( + 1) a λ. (s + 1)(s + 2) a 0

This ODE arises in many physical systems that we shall investigate. + ( + 1)u = 0. (λ + s)x λ + s + ( + 1) a λ. (s + 1)(s + 2) a 0 Legendre equation This ODE arises in many physical systems that we shall investigate We choose We then have Substitution gives ( x 2 ) d 2 u du 2x 2 dx dx + ( + )u u x s a λ x λ a du dx λ a λ (λ + s)x

More information

Banach Spaces, HW Problems & Solutions from Hunter

Banach Spaces, HW Problems & Solutions from Hunter Problem 1: Banach Spaces, HW Problems & Solutions from Hunter Ex 5.3: Let δ: C ([,1]) -> R be the linear functional that evaluates a function at the origin: δ(f ) = f (). If C ([,1]) is equipped with the

More information

Evaluating multiloop Feynman integrals by Mellin-Barnes representation

Evaluating multiloop Feynman integrals by Mellin-Barnes representation April 7, 004 Loops&Legs 04 Evaluating multiloop Feynman integrals by Mellin-Barnes representation V.A. Smirnov Nuclear Physics Institute of Moscow State University Mellin-Barnes representation as a tool

More information

Automatisches Beweisen von Identitäten

Automatisches Beweisen von Identitäten Automatisches Beweisen von Identitäten Stefan Gerhold 30. Oktober 2006 The General Scheme Parametric sums summand(n, k) = answer(n) Parametric integrals k integrand(x, y)dy = answer(x) Zeilberger s Summation

More information

arxiv:hep-ph/ v1 21 Jan 1998

arxiv:hep-ph/ v1 21 Jan 1998 TARCER - A Mathematica program for the reduction of two-loop propagator integrals R. Mertig arxiv:hep-ph/980383v Jan 998 Abstract Mertig Research & Consulting, Kruislaan 49, NL-098 VA Amsterdam, The Netherlands

More information

Mapping the Discrete Logarithm: Talk 2

Mapping the Discrete Logarithm: Talk 2 Mapping the Discrete Logarithm: Talk 2 Joshua Holden Joint work with Daniel Cloutier, Nathan Lindle (Senior Theses), Max Brugger, Christina Frederick, Andrew Hoffman, and Marcus Mace (RHIT REU) Rose-Hulman

More information

Legendre s Equation. PHYS Southern Illinois University. October 18, 2016

Legendre s Equation. PHYS Southern Illinois University. October 18, 2016 Legendre s Equation PHYS 500 - Southern Illinois University October 18, 2016 PHYS 500 - Southern Illinois University Legendre s Equation October 18, 2016 1 / 11 Legendre s Equation Recall We are trying

More information

On Recurrences for Ising Integrals

On Recurrences for Ising Integrals On Recurrences for Ising Integrals Flavia Stan Research Institute for Symbolic Computation (RISC-Linz) Johannes Kepler University Linz, Austria December 7, 007 Abstract We use WZ-summation methods to compute

More information

ALGEBRAIC GEOMETRY HOMEWORK 3

ALGEBRAIC GEOMETRY HOMEWORK 3 ALGEBRAIC GEOMETRY HOMEWORK 3 (1) Consider the curve Y 2 = X 2 (X + 1). (a) Sketch the curve. (b) Determine the singular point P on C. (c) For all lines through P, determine the intersection multiplicity

More information

Recent Results on Three Loop Corrections to Heavy Quark Contributions to DIS Structure Functions

Recent Results on Three Loop Corrections to Heavy Quark Contributions to DIS Structure Functions Recent Results on Three Loop Corrections to Heavy Quark Contributions to DIS Structure Functions Johannes Blümlein, DESY in collaboration : with J. Ablinger JKU, A. De Freitas DESY, A. Hasselhuhn DESY,

More information

LECTURE 5, FRIDAY

LECTURE 5, FRIDAY LECTURE 5, FRIDAY 20.02.04 FRANZ LEMMERMEYER Before we start with the arithmetic of elliptic curves, let us talk a little bit about multiplicities, tangents, and singular points. 1. Tangents How do we

More information

The Three-Loop Splitting Functions in QCD: The Non-Singlet Case

The Three-Loop Splitting Functions in QCD: The Non-Singlet Case The Three-Loop Splitting Functions in QCD: The Non-Singlet Case Sven-Olaf Moch DESY Zeuthen 1. The Calculation. The Result 3. The Summary in collaboration with J.A.M. Vermaseren and A. Vogt, hep-ph/040319

More information

Structural Aspects of Numerical Loop Calculus

Structural Aspects of Numerical Loop Calculus Structural Aspects of Numerical Loop Calculus Do we need it? What is it about? Can we handle it? Giampiero Passarino Dipartimento di Fisica Teorica, Università di Torino, Italy INFN, Sezione di Torino,

More information

Asymptotic statistics using the Functional Delta Method

Asymptotic statistics using the Functional Delta Method Quantiles, Order Statistics and L-Statsitics TU Kaiserslautern 15. Februar 2015 Motivation Functional The delta method introduced in chapter 3 is an useful technique to turn the weak convergence of random

More information

Some Fun with Divergent Series

Some Fun with Divergent Series Some Fun with Divergent Series 1. Preliminary Results We begin by examining the (divergent) infinite series S 1 = 1 + 2 + 3 + 4 + 5 + 6 + = k=1 k S 2 = 1 2 + 2 2 + 3 2 + 4 2 + 5 2 + 6 2 + = k=1 k 2 (i)

More information

Section 9.8. First let s get some practice with determining the interval of convergence of power series.

Section 9.8. First let s get some practice with determining the interval of convergence of power series. First let s get some practice with determining the interval of convergence of power series. First let s get some practice with determining the interval of convergence of power series. Example (1) Determine

More information

Renormalization and Euler-Maclaurin Formula on Cones

Renormalization and Euler-Maclaurin Formula on Cones Renormalization and Euler-Maclaurin Formula on Cones Li GUO (joint work with Sylvie Paycha and Bin Zhang) Rutgers University at Newark Outline Conical zeta values and multiple zeta values; Double shuffle

More information

Single mass scale diagrams: construction of a basis for the ε-expansion.

Single mass scale diagrams: construction of a basis for the ε-expansion. BI-TP 99/4 Single mass scale diagrams: construction of a basis for the ε-expansion. J. Fleischer a 1, M. Yu. Kalmykov a,b 2 a b Fakultät für Physik, Universität Bielefeld, D-615 Bielefeld, Germany BLTP,

More information

Symbolic integration of multiple polylogarithms

Symbolic integration of multiple polylogarithms Symbolic integration of multiple polylogarithms Erik Panzer Institute des Hautes E tudes Scientifiques Applications of Computer Algebra July 22nd, 215 Kalamata, Greece Problem: Multiple integrals of rational

More information

3-Loop Corrections to Heavy Flavor Wilson Coefficients in Deep-Inelastic Scattering

3-Loop Corrections to Heavy Flavor Wilson Coefficients in Deep-Inelastic Scattering 1/3 3-Loop Corrections to Heavy Flavor Wilson Coefficients in Deep-Inelastic Scattering J. Blümlein 1, J. Ablinger 2, A. Behring 1, A. De Freitas 1, A. Hasselhuhn 2, A. von Manteuffel 3, C. Raab 1, M.

More information

SYMBOLIC SUMMATION WITH SINGLE-NESTED SUM EXTENSIONS (EXTENDED VERSION)

SYMBOLIC SUMMATION WITH SINGLE-NESTED SUM EXTENSIONS (EXTENDED VERSION) SYMBOLIC SUMMATION WITH SINGLE-NESTED SUM EXTENSIONS (EXTENDED VERSION) CARSTEN SCHNEIDER Abstract. We present a streamlined and refined version of Karr s summation algorithm. Karr s original approach

More information

Trading Order for Degree in Creative Telescoping

Trading Order for Degree in Creative Telescoping Trading Order for Degree in Creative Telescoping Shaoshi Chen 1 Department of Mathematics North Carolina State University Raleigh, NC 27695-8205, USA Manuel Kauers 2 Research Institute for Symbolic Computation

More information

Three-loop evolution equation for (non-singlet) leading-twist operators

Three-loop evolution equation for (non-singlet) leading-twist operators Three-loop evolution equation for non-singlet) leading-twist operators Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany E-mail: matthias.strohmaier@ur.de We present

More information

Is Analysis Necessary?

Is Analysis Necessary? Is Analysis Necessary? Ira M. Gessel Brandeis University Waltham, MA gessel@brandeis.edu Special Session on Algebraic and Analytic Combinatorics AMS Fall Eastern Meeting University of Connecticut, Storrs

More information

Solving Differential Equations Using Power Series

Solving Differential Equations Using Power Series LECTURE 25 Solving Differential Equations Using Power Series We are now going to employ power series to find solutions to differential equations of the form (25.) y + p(x)y + q(x)y = 0 where the functions

More information

Solving Differential Equations Using Power Series

Solving Differential Equations Using Power Series LECTURE 8 Solving Differential Equations Using Power Series We are now going to employ power series to find solutions to differential equations of the form () y + p(x)y + q(x)y = 0 where the functions

More information

Automatic Proofs of Identities: Beyond A=B

Automatic Proofs of Identities: Beyond A=B Bruno.Salvy@inria.fr FPSAC, Linz, July 20, 2009 Joint work with F. Chyzak and M. Kauers 1 / 28 I Introduction 2 / 28 Examples of Identities: Definite Sums, q-sums, Integrals n k=0 + 0 1 2πi n=0 ( ) H n

More information

Evaluating ζ(2m) via Telescoping Sums.

Evaluating ζ(2m) via Telescoping Sums. /25 Evaluating ζ(2m) via Telescoping Sums. Brian Sittinger CSU Channel Islands February 205 2/25 Outline 2 3 4 5 3/25 Basel Problem Find the exact value of n= n 2 = 2 + 2 2 + 3 2 +. 3/25 Basel Problem

More information

Multiloop integrals in dimensional regularization made simple

Multiloop integrals in dimensional regularization made simple Multiloop integrals in dimensional regularization made simple Johannes M. Henn Institute for Advanced Study based on PRL 110 (2013) [arxiv:1304.1806], JHEP 1307 (2013) 128 [arxiv:1306.2799] with A. V.

More information

Functional equations for Feynman integrals

Functional equations for Feynman integrals Functional equations for Feynman integrals O.V. Tarasov JINR, Dubna, Russia October 9, 016, Hayama, Japan O.V. Tarasov (JINR) Functional equations for Feynman integrals 1 / 34 Contents 1 Functional equations

More information

OQ4867. Let ABC be a triangle and AA 1 BB 1 CC 1 = {M} where A 1 BC, B 1 CA, C 1 AB. Determine all points M for which ana 1...

OQ4867. Let ABC be a triangle and AA 1 BB 1 CC 1 = {M} where A 1 BC, B 1 CA, C 1 AB. Determine all points M for which ana 1... 764 Octogon Mathematical Magazine, Vol. 24, No.2, October 206 Open questions OQ4867. Let ABC be a triangle and AA BB CC = {M} where A BC, B CA, C AB. Determine all points M for which 4 s 2 3r 2 2Rr AA

More information

Notes on Continued Fractions for Math 4400

Notes on Continued Fractions for Math 4400 . Continued fractions. Notes on Continued Fractions for Math 4400 The continued fraction expansion converts a positive real number α into a sequence of natural numbers. Conversely, a sequence of natural

More information

Two-loop corrections to t t production in the gluon channel. Matteo Capozi Sapienza University of Rome

Two-loop corrections to t t production in the gluon channel. Matteo Capozi Sapienza University of Rome Two-loop corrections to t t production in the gluon channel Matteo Capozi Sapienza University of Rome November 7, 2016 Top quark With a mass of m t = 172.44 ± 0.13(stat) ± 0.47(syst)GeV, the top quark

More information

S56 (5.1) Polynomials.notebook August 25, 2016

S56 (5.1) Polynomials.notebook August 25, 2016 Q1. Simplify Daily Practice 28.6.2016 Q2. Evaluate Today we will be learning about Polynomials. Q3. Write in completed square form x 2 + 4x + 7 Q4. State the equation of the line joining (0, 3) and (4,

More information

Analysis Qualifying Exam

Analysis Qualifying Exam Analysis Qualifying Exam Spring 2017 Problem 1: Let f be differentiable on R. Suppose that there exists M > 0 such that f(k) M for each integer k, and f (x) M for all x R. Show that f is bounded, i.e.,

More information

arxiv: v2 [hep-ph] 20 Sep 2016

arxiv: v2 [hep-ph] 20 Sep 2016 DESY 16-149, DO-TH 16/16, MITP/16-096 New Results on Massive 3-Loop Wilson Coefficients in Deep-Inelastic scattering arxiv:1609.03397v2 [hep-ph] 20 Sep 2016 J. Ablinger Research Institute for Symbolic

More information

Symbolic-Algebraic Methods for Linear Partial Differential Operators (LPDOs) RISC Research Institute for Symbolic Computation

Symbolic-Algebraic Methods for Linear Partial Differential Operators (LPDOs) RISC Research Institute for Symbolic Computation Symbolic-Algebraic Methods for Linear Partial Differential Operators (LPDOs) Franz Winkler joint with Ekaterina Shemyakova RISC Research Institute for Symbolic Computation Johannes Kepler Universität.

More information

Functions associated to scattering amplitudes. Stefan Weinzierl

Functions associated to scattering amplitudes. Stefan Weinzierl Functions associated to scattering amplitudes Stefan Weinzierl Institut für Physik, Universität Mainz I: Periodic functions and periods II: III: Differential equations The two-loop sun-rise diagramm in

More information

A COMPUTER PROOF OF A SERIES EVALUATION IN TERMS OF HARMONIC NUMBERS

A COMPUTER PROOF OF A SERIES EVALUATION IN TERMS OF HARMONIC NUMBERS A COMPUTER PROOF OF A SERIES EVALUATION IN TERMS OF HARMONIC NUMBERS RUSSELL LYONS, PETER PAULE, AND AXEL RIESE Abstract. A fruitful interaction between a new randomized WZ procedure and other computer

More information

A class of trees and its Wiener index.

A class of trees and its Wiener index. A class of trees and its Wiener index. Stephan G. Wagner Department of Mathematics Graz University of Technology Steyrergasse 3, A-81 Graz, Austria wagner@finanz.math.tu-graz.ac.at Abstract In this paper,

More information

Your first day at work MATH 806 (Fall 2015)

Your first day at work MATH 806 (Fall 2015) Your first day at work MATH 806 (Fall 2015) 1. Let X be a set (with no particular algebraic structure). A function d : X X R is called a metric on X (and then X is called a metric space) when d satisfies

More information

Additional Practice Lessons 2.02 and 2.03

Additional Practice Lessons 2.02 and 2.03 Additional Practice Lessons 2.02 and 2.03 1. There are two numbers n that satisfy the following equations. Find both numbers. a. n(n 1) 306 b. n(n 1) 462 c. (n 1)(n) 182 2. The following function is defined

More information

Multivariable Calculus

Multivariable Calculus 2 Multivariable Calculus 2.1 Limits and Continuity Problem 2.1.1 (Fa94) Let the function f : R n R n satisfy the following two conditions: (i) f (K ) is compact whenever K is a compact subset of R n. (ii)

More information

Feynman s path integral approach to quantum physics and its relativistic generalization

Feynman s path integral approach to quantum physics and its relativistic generalization Feynman s path integral approach to quantum physics and its relativistic generalization Jürgen Struckmeier j.struckmeier@gsi.de, www.gsi.de/ struck Vortrag im Rahmen des Winterseminars Aktuelle Probleme

More information

SYMMETRY AND SPECIALIZABILITY IN THE CONTINUED FRACTION EXPANSIONS OF SOME INFINITE PRODUCTS

SYMMETRY AND SPECIALIZABILITY IN THE CONTINUED FRACTION EXPANSIONS OF SOME INFINITE PRODUCTS SYMMETRY AND SPECIALIZABILITY IN THE CONTINUED FRACTION EXPANSIONS OF SOME INFINITE PRODUCTS J MC LAUGHLIN Abstract Let fx Z[x] Set f 0x = x and for n 1 define f nx = ff n 1x We describe several infinite

More information

Series Solutions. 8.1 Taylor Polynomials

Series Solutions. 8.1 Taylor Polynomials 8 Series Solutions 8.1 Taylor Polynomials Polynomial functions, as we have seen, are well behaved. They are continuous everywhere, and have continuous derivatives of all orders everywhere. It also turns

More information

Convergence rates of derivatives of a family of barycentric rational interpolants

Convergence rates of derivatives of a family of barycentric rational interpolants Convergence rates of derivatives of a family of barycentric rational interpolants J.-P. Berrut, M. S. Floater and G. Klein University of Fribourg (Switzerland) CMA / IFI, University of Oslo jean-paul.berrut@unifr.ch

More information

Existence of (Generalized) Breathers in Periodic Media

Existence of (Generalized) Breathers in Periodic Media Existence of (Generalized) Breathers in Periodic Media Guido Schneider Lehrstuhl für Analysis und Modellierung www.iadm.uni-stuttgart.de/lstanamod/schneider/ Collaborators:. Martina Chirilus-Bruckner,

More information

Matthias Strohmaier. given at QCD Evolution , JLAB. University of Regensburg. Introduction Method Analysis Conclusion

Matthias Strohmaier. given at QCD Evolution , JLAB. University of Regensburg. Introduction Method Analysis Conclusion Three-loop evolution equation for non-singlet leading-twist operator based on: V. M. Braun, A. N. Manashov, S. Moch, M. S., not yet published, arxiv:1703.09532 Matthias Strohmaier University of Regensburg

More information

Computing with polynomials: Hensel constructions

Computing with polynomials: Hensel constructions Course Polynomials: Their Power and How to Use Them, JASS 07 Computing with polynomials: Hensel constructions Lukas Bulwahn March 28, 2007 Abstract To solve GCD calculations and factorization of polynomials

More information

Cookie Monster Meets the Fibonacci Numbers. Mmmmmm Theorems!

Cookie Monster Meets the Fibonacci Numbers. Mmmmmm Theorems! Cookie Monster Meets the Fibonacci Numbers. Mmmmmm Theorems! Steven J. Miller (MC 96) http://www.williams.edu/mathematics/sjmiller/public_html Yale University, April 14, 2014 Introduction Goals of the

More information

Parallel Scientific Computing

Parallel Scientific Computing IV-1 Parallel Scientific Computing Matrix-vector multiplication. Matrix-matrix multiplication. Direct method for solving a linear equation. Gaussian Elimination. Iterative method for solving a linear equation.

More information

Differential Equations for Feynman Integrals

Differential Equations for Feynman Integrals for Feynman Integrals Ulrich Schubert Max-Planck-Institut für Physik Föhringer Ring 6, München January 18, 2015 based on work with M. Argeri, S. Di Vita, P. Mastrolia, E. Mirabella, J. Schlenk, L. Tancredi,

More information

DICKSON POLYNOMIALS OVER FINITE FIELDS. n n i. i ( a) i x n 2i. y, a = yn+1 a n+1 /y n+1

DICKSON POLYNOMIALS OVER FINITE FIELDS. n n i. i ( a) i x n 2i. y, a = yn+1 a n+1 /y n+1 DICKSON POLYNOMIALS OVER FINITE FIELDS QIANG WANG AND JOSEPH L. YUCAS Abstract. In this paper we introduce the notion of Dickson polynomials of the k + 1)-th kind over finite fields F p m and study basic

More information

Computing of Charged Current DIS at three loops

Computing of Charged Current DIS at three loops Computing of Charged Current DIS at three loops Mikhail Rogal Mikhail.Rogal@desy.de DESY, Zeuthen, Germany ACAT 2007, Amsterdam, Netherlands, April 23-28, 2007 Computing of Charged CurrentDIS at three

More information

Evaluating double and triple (?) boxes

Evaluating double and triple (?) boxes Evaluating double and triple (?) boxes V.A. Smirnov a hep-ph/0209295 September 2002 a Nuclear Physics Institute of Moscow State University, Moscow 9992, Russia A brief review of recent results on analytical

More information

Real Analysis Problems

Real Analysis Problems Real Analysis Problems Cristian E. Gutiérrez September 14, 29 1 1 CONTINUITY 1 Continuity Problem 1.1 Let r n be the sequence of rational numbers and Prove that f(x) = 1. f is continuous on the irrationals.

More information

Two and Three Loop Heavy Flavor Corrections in DIS

Two and Three Loop Heavy Flavor Corrections in DIS Two and Three Loop Heavy Flavor Corrections in DIS 1 Johannes Blümlein, DESY in collaboration with I. Bierenbaum and S. Klein based on: Introduction Renormalization of the OME s to 3 Loops Oǫ terms at

More information

Math 2233 Homework Set 7

Math 2233 Homework Set 7 Math 33 Homework Set 7 1. Find the general solution to the following differential equations. If initial conditions are specified, also determine the solution satisfying those initial conditions. a y 4

More information

CALCULUS JIA-MING (FRANK) LIOU

CALCULUS JIA-MING (FRANK) LIOU CALCULUS JIA-MING (FRANK) LIOU Abstract. Contents. Power Series.. Polynomials and Formal Power Series.2. Radius of Convergence 2.3. Derivative and Antiderivative of Power Series 4.4. Power Series Expansion

More information

A new Sigma approach to multi-summation

A new Sigma approach to multi-summation Advances in Applied Mathematics 34 (2005) 740 767 www.elsevier.com/locate/yaama A new Sigma approach to multi-summation Carsten Schneider 1 Research Institute for Symbolic Computation, Johannes Kepler

More information

Calculating four-loop massless propagators with Forcer

Calculating four-loop massless propagators with Forcer Calculating four-loop massless propagators with Forcer Takahiro Ueda Nikhef, The Netherlands Collaboration with: Ben Ruijl and Jos Vermaseren 18 Jan. 2016 ACAT2016, UTFSM, Valparaíso 1 / 30 Contents Introduction

More information

The generalized Euler-Maclaurin formula for the numerical solution of Abel-type integral equations.

The generalized Euler-Maclaurin formula for the numerical solution of Abel-type integral equations. The generalized Euler-Maclaurin formula for the numerical solution of Abel-type integral equations. Johannes Tausch Abstract An extension of the Euler-Maclaurin formula to singular integrals was introduced

More information

Let us use the extended quantum action functional Z(J, ϕ) in order to define the scattering functional

Let us use the extended quantum action functional Z(J, ϕ) in order to define the scattering functional 2 Correction to E. Zeidler, Quantum Field Theory, Vol. I. Please, replace Section 7.24.7 on page 449 by the following new version. The author would like to thank Professor William Faris from the University

More information

CSCE 222 Discrete Structures for Computing. Dr. Hyunyoung Lee

CSCE 222 Discrete Structures for Computing. Dr. Hyunyoung Lee CSCE 222 Discrete Structures for Computing Sequences and Summations Dr. Hyunyoung Lee Based on slides by Andreas Klappenecker 1 Sequences 2 Sequences A sequence is a function from a subset of the set of

More information

Each aix i is called a term of the polynomial. The number ai is called the coefficient of x i, for i = 0, 1, 2,..., n.

Each aix i is called a term of the polynomial. The number ai is called the coefficient of x i, for i = 0, 1, 2,..., n. Polynomials of a single variable. A monomial in a single variable x is a function P(x) = anx n, where an is a non-zero real number and n {0, 1, 2, 3,...}. Examples are 3x 2, πx 8 and 2. A polynomial in

More information

Implicitization of Rational Parametric Surfaces

Implicitization of Rational Parametric Surfaces J. Symbolic Computation (1996) 21, 329 336 Implicitization of Rational Parametric Surfaces GEORGE FIX, CHIH-PING HSU AND TIE LUO Box 19408, Mathematics Department The University of Texas at Arlington Arlington,

More information

Alexander Ostrowski

Alexander Ostrowski Ostrowski p. 1/3 Alexander Ostrowski 1893 1986 Walter Gautschi wxg@cs.purdue.edu Purdue University Ostrowski p. 2/3 Collected Mathematical Papers Volume 1 Determinants Linear Algebra Algebraic Equations

More information

1. Find the solution of the following uncontrolled linear system. 2 α 1 1

1. Find the solution of the following uncontrolled linear system. 2 α 1 1 Appendix B Revision Problems 1. Find the solution of the following uncontrolled linear system 0 1 1 ẋ = x, x(0) =. 2 3 1 Class test, August 1998 2. Given the linear system described by 2 α 1 1 ẋ = x +

More information

Five-loop massive tadpoles

Five-loop massive tadpoles Five-loop massive tadpoles York Schröder (Univ del Bío-Bío, Chillán, Chile) recent work with Thomas Luthe and earlier work with: J. Möller, C. Studerus Radcor, UCLA, Jun 0 Motivation pressure of hot QCD

More information

) Heavy Quark Corrections to Charged Current Deep-Inelastic Scattering at large Virtualities

) Heavy Quark Corrections to Charged Current Deep-Inelastic Scattering at large Virtualities DESY 1 47 DO TH 1/4 SFB/CPP-14-00 LPN 14-006 Higgstools 14 TUM-HEP-91/1 December 01 arxiv:1401.4 hep-ph arxiv:1401.4v hep-ph 0 Feb 014 The Oα s Heavy Quark Corrections to Charged Current Deep-Inelastic

More information

Assignment 11 Assigned Mon Sept 27

Assignment 11 Assigned Mon Sept 27 Assignment Assigned Mon Sept 7 Section 7., Problem 4. x sin x dx = x cos x + x cos x dx ( = x cos x + x sin x ) sin x dx u = x dv = sin x dx du = x dx v = cos x u = x dv = cos x dx du = dx v = sin x =

More information

MATHEMATICAL FORMULAS AND INTEGRALS

MATHEMATICAL FORMULAS AND INTEGRALS MATHEMATICAL FORMULAS AND INTEGRALS ALAN JEFFREY Department of Engineering Mathematics University of Newcastle upon Tyne Newcastle upon Tyne United Kingdom Academic Press San Diego New York Boston London

More information

PH.D. PRELIMINARY EXAMINATION MATHEMATICS

PH.D. PRELIMINARY EXAMINATION MATHEMATICS UNIVERSITY OF CALIFORNIA, BERKELEY SPRING SEMESTER 207 Dept. of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials NAME PH.D. PRELIMINARY EXAMINATION MATHEMATICS Problem

More information

U + V = (U V ) (V U), UV = U V.

U + V = (U V ) (V U), UV = U V. Solution of Some Homework Problems (3.1) Prove that a commutative ring R has a unique 1. Proof: Let 1 R and 1 R be two multiplicative identities of R. Then since 1 R is an identity, 1 R = 1 R 1 R. Since

More information

CMS winter meeting 2008, Ottawa. The heat kernel on connected sums

CMS winter meeting 2008, Ottawa. The heat kernel on connected sums CMS winter meeting 2008, Ottawa The heat kernel on connected sums Laurent Saloff-Coste (Cornell University) December 8 2008 p(t, x, y) = The heat kernel ) 1 x y 2 exp ( (4πt) n/2 4t The heat kernel is:

More information

An Efficient Algorithm for Deriving Summation Identities from Mutual Recurrences

An Efficient Algorithm for Deriving Summation Identities from Mutual Recurrences Discrete Mathematics, Algorithms and Applications c World Scientific Publishing Company An Efficient Algorithm for Deriving Summation Identities from Mutual Recurrences BERKELEY R CHURCHILL Department

More information