Latest results on the 3-loop heavy flavor Wilson coefficients in DIS

Size: px
Start display at page:

Download "Latest results on the 3-loop heavy flavor Wilson coefficients in DIS"

Transcription

1 1/34 Latest results on the 3-loop heavy flavor Wilson coefficients in DIS A. De Freitas 1, J. Ablinger, A. Behring 1, J. Blümlein 1, A. Hasselhuhn 1,,4, A. von Manteuffel 3, C. Raab 1, C. Schneider, M. Round 1,, F. Wißbrock 1 1 DESY, Zeuthen Johannes Kepler University, Linz 3 J. Gutenberg University, Mainz 4 KIT, Karlsruhe

2 /34 Introduction Unpolarized Deep Inelastic Scattering DIS): k q k Q := q, x := Q P.q L µν Bjorken x P W µν dσ dq dx WµνLµν W µνq, P, s) = 1 4π 1 g µν qµqν x q d 4 ξ expiqξ) P, s J em µ ξ), J em ν 0) P, s = ) F L x, Q ) + x Q ) qµpν + qνpµ P µp ν + Q x 4x gµν F x, Q ). Structure Functions: F,L contain light and heavy quark contributions.

3 3/34 Deep Inelastic Scattering DIS): σ cc red Q =.5 GeV 5 GeV 7 GeV m c m c ) GeV) NNLO 1 GeV 18 GeV 3 GeV GeV 10 GeV 00 GeV 350 GeV x 650 GeV x HERA NNLO fitted NNLO A+B)/ NLO 000 GeV x NLO α s M Z ) NNLO: S. Alekhin, J. Blümlein, K. Daum, K. Lipka, Phys.Lett. B70 013) m c m c ) = 1.4 ± 0.03exp) scale) thy), α s MZ ) = ± Yet approximate NNLO treatment Kawamura et al

4 4/34 α smz ) from NNLO DIS+) analyses from ABM13 α smz ) BBG valence analysis, NNLO GRS 0.11 valence analysis, NNLO ABKM ± HQ: FFNS N f = 3 JR ± dynamical approach JR ± including NLO-jets MSTW ± MSTW ) ABM11 J ± Tevatron jets NLO) incl. ABM ± ABM ± without jets) CTEQ CTEQ without jets) NN ± ± Gehrmann et al e + e thrust Abbate et al ± e + e thrust BBG valence analysis, N 3 LO TH α s = α sn 3 LO) α snnlo) + HQ = ± HQ NNLO accuracy is needed to analyze the world data. = NNLO HQ corrections needed.

5 5/34 Goals Complete the NNLO heavy flavor Wilson coefficients for twist- in the dynamical safe region Q > 0GeV no higher twist) for F x, Q ) Measure m c and α s as precisely as possible Provide precise CC heavy flavor corrections Consequences for LHC: NNLO VFNS will be provided better constraint on sea quarks and the gluon precise mc and α s on input

6 6/34 Factorization of the Structure Functions At leading twist the structure functions factorize in terms of a Mellin convolution F,L) x, Q ) = ) C j,,l) x, Q µ, m µ f j x, µ ) }{{} j }{{} nonpert. perturbative into pert.) Wilson coefficients and nonpert.) parton distribution functions PDFs). denotes the Mellin convolution f x) gx) 1 0 dy 1 0 dz δx yz)f y)gz). The subsequent calculations are performed in Mellin space, where reduces to a multiplication, due to the Mellin transformation ˆf N) = 1 0 dx x N 1 f x).

7 7/34 Wilson coefficients: C j,,l) N, Q µ, m µ ) = C j,,l) N, Q µ ) ) + H j,,l) N, Q µ, m µ At Q m the heavy flavor part ) H j,,l) N, Q µ, m = ) C µ i,,l) N, Q m )A µ ij µ, N i Buza, Matiounine, Smith, van Neerven 1996 Nucl.Phys.B factorizes into the light flavor Wilson coefficients C and the massive operator matrix elements OMEs) of local operators O i between partonic states j ) m A ij µ, N = j O i j. additional Feynman rules with local operator insertions for partonic matrix elements. The unpolarized light flavor Wilson coefficients are known up to NNLO Moch, Vermaseren, Vogt, 005 Nucl.Phys.B. For F x, Q ) : at Q 10m the asymptotic representation holds at the 1% level..

8 8/34 The Wilson Coefficients at large Q L NS q,,l) NF + 1) = a s A ),NS qq,q NF + 1) δ + Ĉ),NS q,,l) NF ) + a 3 s A 3),NS qq,q NF + 1) δ + A),NS qq,q NF + 1)C,NS q,,l) NF + 1) + Ĉ3),NS q,,l) NF ) L PS q,,l) NF + 1) = a3 s A 3),PS qq,q NF + 1) δ + A) gq,q NF ) NF C g,,l) NF + 1) + NF ˆ C3),PS q,,l) NF ) L S g,,l) NF + 1) = a sa gg,q NF + 1)NF C g,,l) NF + 1) + a3 s A 3) qg,q NF + 1) δ H PS q,,l) NF + 1) = a s H S g,,l) NF + 1) = as +A ) gg,q NF + 1) NF C g,,l) NF + 1) + A) gg,q NF + 1) NF C g,,l) NF + 1) + A ),PS Qg NF + 1) NF C q,,l) NF + 1) + NF ˆ C3) g,,l) NF ), A ),PS Qq N F + 1) δ + C ),PS q,,l) NF + 1) + a 3 s + C 3),PS q,,l) NF + 1) + A) gq,q NF + 1) C g,,l) NF + 1) +A ),PS Qq N F + 1) C,NS q,,l) NF + 1), A Qg NF + 1) δ + C g,,l) NF + 1) + a s A 3),PS Qq N F + 1) δ A ) Qg NF + 1) δ + A Qg NF + 1) C,NS q,,l) NF + 1) + A gg,q NF + 1) C g,,l) NF + 1) ) + C g,,l) NF + 1) + a 3 s A 3) Qg NF + 1) δ + A) Qg NF + 1) C,NS q,,l) NF + 1) { + A ) gg,q NF + 1) C g,,l) NF + 1) + A Qg NF + 1) C ),NS q,,l) NF + 1) } ),PS + C q,,l) NF + 1) + A ) 3) gg,q NF + 1) C g,,l) NF + 1) + C g,,l) NF + 1) J. Ablinger, J. Blümlein, S. Klein, C. Schneider and F. Wißbrock, Nucl. Phys. B ) 6

9 The Wilson Coefficients at large Q L NS q,,l) NF + 1) = a s A ),NS qq,q NF + 1) δ + Ĉ),NS q,,l) NF ) + a 3 s A 3),NS qq,q NF + 1) δ + A),NS qq,q NF + 1)C,NS q,,l) NF + 1) + Ĉ3),NS q,,l) NF ) L PS q,,l) NF + 1) = a3 s A 3),PS qq,q NF + 1) δ + A) gq,q NF ) NF C g,,l) NF + 1) + NF ˆ C3),PS q,,l) NF ) L S g,,l) NF + 1) = a sa gg,q NF + 1)NF C g,,l) NF + 1) + a3 s A 3) qg,q NF + 1) δ H PS q,,l) NF + 1) = a s H S g,,l) NF + 1) = as +A ) gg,q NF + 1) NF C g,,l) NF + 1) + A) gg,q NF + 1) NF C g,,l) NF + 1) + A ),PS Qg NF + 1) NF C q,,l) NF + 1) + NF ˆ C3) g,,l) NF ), A ),PS Qq N F + 1) δ + C ),PS q,,l) NF + 1) + a 3 s 3),PS + C q,,l) NF + 1) + A) gq,q NF + 1) C g,,l) NF + 1) +A ),PS Qq N F + 1) C,NS q,,l) NF + 1), A Qg NF + 1) δ + C g,,l) NF + 1) + a s A 3),PS Qq N F + 1) δ A ) Qg NF + 1) δ + A Qg NF + 1) C,NS q,,l) NF + 1) + A gg,q NF + 1) C g,,l) NF + 1) ) + C g,,l) NF + 1) + a 3 s A 3) Qg NF + 1) δ + A) Qg NF + 1) C,NS q,,l) NF + 1) { + A ) gg,q NF + 1) C g,,l) NF + 1) + A Qg NF + 1) C ),NS q,,l) NF + 1) } ),PS + C q,,l) NF + 1) + A ) 3) gg,q NF + 1) C g,,l) NF + 1) + C g,,l) NF + 1) J. Ablinger, J. Blümlein, S. Klein, C. Schneider and F. Wißbrock, Nucl. Phys. B ) 6 9/34

10 The Wilson Coefficients at large Q L NS q,,l) NF + 1) = a s A ),NS qq,q NF + 1) δ + Ĉ),NS q,,l) NF ) + a 3 s A 3),NS qq,q NF + 1) δ + A),NS qq,q NF + 1)C,NS q,,l) NF + 1) + Ĉ3),NS q,,l) NF ) L PS q,,l) NF + 1) = a3 s A 3),PS qq,q NF + 1) δ + A) gq,q NF ) NF C g,,l) NF + 1) + NF ˆ C3),PS q,,l) NF ) L S g,,l) NF + 1) = a sa gg,q NF + 1)NF C g,,l) NF + 1) + a3 s A 3) qg,q NF + 1) δ H PS q,,l) NF + 1) = a s H S g,,l) NF + 1) = as +A ) gg,q NF + 1) NF C g,,l) NF + 1) + A) gg,q NF + 1) NF C g,,l) NF + 1) + A ),PS Qg NF + 1) NF C q,,l) NF + 1) + NF ˆ C3) g,,l) NF ), A ),PS Qq N F + 1) δ + C ),PS q,,l) NF + 1) + a 3 s 3),PS + C q,,l) NF + 1) + A) gq,q NF + 1) C g,,l) NF + 1) +A ),PS Qq N F + 1) C,NS q,,l) NF + 1), A Qg NF + 1) δ + C g,,l) NF + 1) + a s A 3),PS Qq N F + 1) δ A ) Qg NF + 1) δ + A Qg NF + 1) C,NS q,,l) NF + 1) + A gg,q NF + 1) C g,,l) NF + 1) ) + C g,,l) NF + 1) + a 3 s A 3) Qg NF + 1) δ + A) Qg NF + 1) C,NS q,,l) NF + 1) { + A ) gg,q NF + 1) C g,,l) NF + 1) + A Qg NF + 1) C ),NS q,,l) NF + 1) } ),PS + C q,,l) NF + 1) + A ) 3) gg,q NF + 1) C g,,l) NF + 1) + C g,,l) NF + 1) J. Ablinger, J. Blümlein, S. Klein, C. Schneider and F. Wißbrock, Nucl. Phys. B ) 6; J. Ablinger et al., /34

11 The Wilson Coefficients at large Q L NS q,,l) NF + 1) = a s A ),NS qq,q NF + 1) δ + Ĉ),NS q,,l) NF ) + a 3 s A 3),NS qq,q NF + 1) δ + A),NS qq,q NF + 1)C,NS q,,l) NF + 1) + Ĉ3),NS q,,l) NF ) L PS q,,l) NF + 1) = a3 s A 3),PS qq,q NF + 1) δ + A) gq,q NF ) NF C g,,l) NF + 1) + NF ˆ C3),PS q,,l) NF ) L S g,,l) NF + 1) = a sa gg,q NF + 1)NF C g,,l) NF + 1) + a3 s A 3) qg,q NF + 1) δ H PS q,,l) NF + 1) = a s H S g,,l) NF + 1) = as +A ) gg,q NF + 1) NF C g,,l) NF + 1) + A) gg,q NF + 1) NF C g,,l) NF + 1) + A ),PS Qg NF + 1) NF C q,,l) NF + 1) + NF ˆ C3) g,,l) NF ), A ),PS Qq N F + 1) δ + C ),PS q,,l) NF + 1) + a 3 s 3),PS + C q,,l) NF + 1) + A) gq,q NF + 1) C g,,l) NF + 1) +A ),PS Qq N F + 1) C,NS q,,l) NF + 1), A Qg NF + 1) δ + C g,,l) NF + 1) + a s A 3),PS Qq N F + 1) δ A ) Qg NF + 1) δ + A Qg NF + 1) C,NS q,,l) NF + 1) + A gg,q NF + 1) C g,,l) NF + 1) ) + C g,,l) NF + 1) + a 3 s A 3) Qg NF + 1) δ + A) Qg NF + 1) C,NS q,,l) NF + 1) { + A ) gg,q NF + 1) C g,,l) NF + 1) + A Qg NF + 1) C ),NS q,,l) NF + 1) } ),PS + C q,,l) NF + 1) + A ) 3) gg,q NF + 1) C g,,l) NF + 1) + C g,,l) NF + 1) J. Ablinger, J. Blümlein, S. Klein, C. Schneider and F. Wißbrock, Nucl. Phys. B ) 6; J. Ablinger et al., /34

12 Variable Flavor Number Scheme f k n f + 1, µ ) + f k n f + 1, µ ) = A NS qq,q n f, µ ) m + à PS qq,q n f, µ ) m f Q+ Qn f + 1, µ ) = à PS Qq n f, µ ) m Gn f + 1, µ ) = A S gq,q Σn f + 1, µ ) = = k=1 n f, µ m ) f k n f, µ ) + f k n f, µ ) Σn f, µ ) + Σn f, µ ) + à S Qg à S qg,q Σn f, µ ) + A S gg,q n f +1 f k n f + 1, µ ) + f k n f + 1, µ ) A NS qq,q Σn f, µ ) + n f à S qg,q n f, µ m ) n f, µ m ) + n f à PS qq,q n f, µ ) m n f, µ m ) Gn f, µ ) n f, µ m ) Gn f, µ ). n f, µ m ) Gn f, µ ). + ÃPS Qq n f, µ ) m + ÃS Qg n f, µ ) Gn m f, µ ) The choice of matching scales is not free and varies with the process in case of precision observables. Blümlein, van Neerven hep-ph/ = More complicated for masses J. Blümlein, Wißbrock, 013 1/34

13 13/34 Status of OME calculations Leading Order: Witten 1976, Babcock, Sivers 1978, Shifman, Vainshtein, Zakharov 1978, Leveille, Weiler 1979, Glück, Reya 1979, Glück, Hoffmann, Reya 198 Next-to-Leading Order: Laenen, van Neerven, Riemersma, Smith 1993 Q m : via IBP Buza, Matiounine, Smith, Migneron, van Neerven 1996 Compact results via p F q s Bierenbaum, Blümlein, Klein, 007 Oα s ε) for general N) Bierenbaum, Blümlein, Klein 008, 009 Next-to-Next-to-Leading Order: Q m Moments for F : N = ) Bierenbaum, Blümlein, Klein 009 Contributions to transversity: N = Blümlein, Klein, Tödtli 009 Terms n f to F general N): Ablinger, Blümlein, Klein, Schneider, Wißbrock 011 At 3-loop order known A PS qq,q, A qg,q, A PS TR qq,q, ANS, qq,q, A gq,q and A PS Qq complete A gg : also complete This talk) A Qg : all terms of On f T F C A/F ) Two masses m 1 m

14 14/34. Calculation of the 3-loop operator matrix elements The OMEs are calculated using the QCD Feynman rules together with the following operator insertion Feynman rules: p, ν, b p, µ, a 1+ 1) N δ ab p) N gµν p) µpν + νpµ) p + p µ ν, N p, i p1, i µ, a p, j p, j gt a ji µ / γ± δ ij / γ± p) N 1, N 1 N j=0 p1)j p) N j, N p1, µ, a p, ν, b p3, λ, c ig 1+ 1)N f abc νgλµ λgµν) p1 + µp1,ν λ p1,λ ν) p1) N + λ p1p,µ ν + pp1,ν µ p1 pgµν p1 p µ ν N 3 j=0 p1)j p) N 3 j { { p1 p p3 p1 + µ ν λ µ } + } ) p1 p3 p p1, N µ λ ν µ p1, i p, j p3, µ, a p4, ν, b p1, i p, j p3, µ, a p4, ν, b p5, ρ, c g µ ν N 3 N / γ± j=0 l=j+1 p)j p1) N l t a t b )ji p1 + p4) l j 1 + t b t a )ji p1 + p3) l j 1, N 3 g 3 N 4 N 3 N µ ν ρ/ γ± j=0 l=j+1 m=l+1.p)j.p1) N m t a t b t c )ji.p4 +.p5 +.p1) l j 1.p5 +.p1) m l 1 +t a t c t b )ji.p4 +.p5 +.p1) l j 1.p4 +.p1) m l 1 +t b t a t c )ji.p3 +.p5 +.p1) l j 1.p5 +.p1) m l 1 +t b t c t a )ji.p3 +.p5 +.p1) l j 1.p3 +.p1) m l 1 +t c t a t b )ji.p3 +.p4 +.p1) l j 1.p4 +.p1) m l 1 +t c t b t a )ji.p3 +.p4 +.p1) l j 1.p3 +.p1) m l 1, γ+ = 1, γ = γ5. N 4 p1, µ, a p, ν, b p4, σ, d g 1+ 1)N f abe f cde Oµνλσp1, p, p3, p4) p3, λ, c +f ace f bde Oµλνσp1, p3, p, p4) + f ade f bce Oµσνλp1, p4, p, p3), { Oµνλσp1, p, p3, p4) = ν λ gµσ p3 + p4) N +p4,µ σ p4gµσ N 3 i=0 p3 + p4)i p4) N 3 i p1,σ µ p1gµσ N 3 i=0 p1)i p3 + p4) N 3 i + p1 p4gµσ + p1 p4 µ σ p4p1,σ µ p1p4,µ σ } N 4 i i=0 j=0 p1)n 4 i p3 + p4) i j p4) j } { p1 p µ ν { } p3 p4 λ σ { } + p1 p, p3 p4, N µ ν, λ σ )

15 3) PS Sample of diagrams for A Qq ) 15/34

16 16/34 The diagrams are generated using QGRAF Nogueira 1993 J. Comput. Phys. A 3),NS qq,q A 3) gq,q A 3),PS Qq A 3) gg,q A 3) Qg No. diagrams A Form program was written in order to perform the γ-matrix algebra in the numerator of all diagrams, which are then expressed as a linear combination of scalar integrals. A 3),NS qq,q 746 scalar integrals. A 3) gq,q 159 scalar integrals. A 3),PS Qq 5470 scalar integrals. = Need to use integration by parts identities.

17 17/34 Integration by parts We use Reduze A. von Manteuffel, C. Studerus, 01 to express all scalar integrals required in the calculation in terms of a smaller) set of master integrals. Reduze is a C++ program based on Laporta s algorithm. It is somewhat difficult to adapt this algorithm to the case where we have operator insertions, due to the dependance on the arbitrary parameter N. For this reason we apply the following trick: k) N x N k) N 1 = 1 x k N=0 This can be then treated as an additional propagator, and Laporta s algorithm can be applied without further modification. If we denote the master integrals by M i, then the reduction algorithm will allow us to express any given integral I as I = i c i x)m i x)

18 18/34 In fact, any given diagram D will be written this way: D = i c ix)m i x) In general the coefficients c i x) will be rational functions of x, m,.p and the dimension D. We want to obtain each diagram DN) as a function of N. We proceed as follows: 1. Calculate the master integrals M i N) as functions of N.. Evaluate M i x) = N=0 x N M i N). 3. Insert the results in Dx) = i c ix)m i x). 4. Obtain DN) by extracting the Nth term in the Taylor expansion of Dx). Step 1 is done using a variety of techniques to be described shortly. Steps to 4 are done using the Mathematica packages HarmonicSums.m, SumProduction.m and EvaluateMultiSums.m by J. Ablinger and C. Schneider.

19 19/34 Number of master integrals: A 3),NS qq,q 35 master integrals. A 3) gq,q 41 master integrals. A 3),PS Qq 66 master integrals. A 3) gg,q 05 master integrals. A 3) Qg 334 master integrals. 4 integral families are required and implemented in Reduze.

20 0/34 Calculation of the master integrals For the calculation of the master integrals we use a wide variety of tools: Hypergeometric functions. Symbolic summation algorithms based on difference fields, implemented in the Mathematica program Sigma C. Schneider, 005. Mellin-Barnes representations. In the case of convergent massive 3-loop Feynman integrals, they can be performed in terms of Hyperlogarithms Generalization of a method by F. Brown, 008, to non-vanishing masses and local operators. Almkvist-Zeilberger algorithm. Differential difference) equations.

21 1/34 Differential difference) equations In general our N-dependent Feynman master integrals will have the following structure MN) = F N)m ) a+ 3 D p) N Differentiating the master integrals w.r.t. m or p doesn t give any new information, since we already know the functional dependence on these invariants. Differentiating w.r.t. N makes no sense. However, in the x representation of the integrals Mx) = x N F N)m ) a+ 3 D p) N, N=0 we can differentiate w.r.t. x, since as we saw before, this turns the operator insertions into artificial propagators.

22 /34 Differentiation will raise the powers of the artificial propagators and the resulting integrals can be re-expressed in terms of master integrals. d dx Mx) = i p i x) q i x) M ix) Integrals in a given sector will produce a system of coupled differential equations. Let s consider the following example, M 1 N) = M N) = d D k 1 d D k d D k 3 π) D π) D π) D d D k 1 π) D d D k π) D d D k 3 π) D N j=0 k 3) j k 3 k 1 ) N j, D 1 D D 3 D 4 D 5 N j=0 k 3) j k 3 k 1 ) N j D1 D, D 3 D 4 D 5 where D 1 = k 1 p), D = k p), D 3 = k 3 m, D 4 = k 3 k 1 ) m and D 5 = k 3 k ) m.

23 3/34 In the x representation, they become M 1 x) = M x) = d D k 1 d D k d D k 3 1 π) D π) D π) D, D 1 D D 3 D 4 D 5 D 6 D 7 d D k 1 d D k d D k 3 1 π) D π) D π) D D1 D, D 3 D 4 D 5 D 6 D 7 with D 6 = 1 x k 3 and D 7 = 1 x k 3 k 1 ). So, d dx M 1x) = 1 1 x d dx M x) = 1 1 x + ɛ 1 ) M 1 x) + x 1 ɛ + 3 ) x ɛ M x) + ɛ 4 + 3ɛ) 1 1 x 1 x 1 x x 1 x M x) + K 1 x) ) M 1 x) + K x) where K 1 x) and K x) are linear combinations of already solved) subsector master integrals.

24 4/34 K 1 x) and K x) can be turned into the N representation using the RISC Mathematica packages. Then using the fact that M 1 x) = M x) = x N F 1 N)m ) a+ 3 D p) N, N=0 x N F N)m ) a+ 3 D p) N, N=0 we get the following system of coupled difference equations: N + )F 1 N + 1) N + + ɛ)f 1 N) F N 1) = K 1 N), N + ɛ)f N + 1) N + 3 ) ɛ F 1 N) ɛ 4 + 3ɛ) F 1N + ) F 1 N + 1)) = K N), The system can be solved using the RISC Mathematica packages C. Schneider s talk).

25 5/34 The results are given in terms of standard harmonic sums: F 1 N) = 1 ɛ 3 8 S N) 4 4N S N) N + 1) + 8 1) N N + ) 3N + 1) + 1 ɛ 1) N 4N 1)S1 N) 3N + 1) 4 5N ) + 1N N + 1) 3N + 1) 3 + S N) 8 ) S 1 N) + 3N + 1)S N) 4 S 1 N)S N) + S 3 N) 3N + 1) 3 3N + 1) S,1 N) + 4 5N ) + 10N + 4 S,1 N) 3 3 3N + 1) N ) 10N 7 S N) ɛ 3N + 1) + 1) N N 1)S 1 N) 3N + 1) N5N + 9)S 1 N) 3N + 1) 3 + 7N + 5)S N) 19N N ) + 68N N + 1) + 3N + 1) 4 +ζ S N) 1 N S N) + N + 1) + 1) N N + ) N + 1) S N)S 1 3N + 1)S N) + N) 10 S 3 N) 3 3N + 1) S,1 N) + 4 ) S,1 N) S 1 N) 1 ) S N N) + S 3 N) S 1 N) + S N) 4 S 1 N) N N + 1)S 1 N) + 4 ) 9N + 7) S N) + 9N 1)S 3 N) + S 4 N) S 3,1 N) 43N + )S,1 N) 3N + 1) 3 3N + 1) 3N + 1) 3 3N + 1) 4 S, N) 3N + 1)S,1 N) + 10 S 3,1 N) + 4 S,1,1 N) 4 S,1,1 N) + 19N3 + 63N + 69N N + 1) N + 1) 4 S N)S 1 3 N) S,,1 N) 16 S 3,1,1 N) 14 S,1,1,1 N) + 4 S,1,1,1 N) + 8 S,,1 N) S,1, N) + 3N + 1)S,1,1 N) + 5 S 4,1 N) + 3 3N + 1) 3

26 6/34 More complicated integrals produce generalized sums, such as the cyclotomic harmonic sums: S {a1,b 1,c 1},...{a l,b l,c l }s 1,..., s l, N) = N s1 k a 1 k 1 + b 1 ) S c1 {a,b,c },...{a l,b l,c l }s,..., s l, N) k 1=1 and sums involving inverse binomials, for example, or N i=1 ) N N N k=0 ) i ) i i i j=1 k 4 k ) S 1 k) k k 1 j j j )S 1 1,, 1; j)

27 7/34 Emergence of new nested sums : ) N i i ) i 1 i j ) S 1 j 1,, 1; j) i=1 j=1 j 1 = dx x N 1 x H w17, 1,0x) H w 0 x x 18, 1,0x) 1 + ζ dx x)n 1 x 0 x x H 1x) H 13x) 1 +c 3 dx 8x)N 1 x 0 x x, w 1 =, w 13 = x8 x) x) x8 x), 1 1 w 17 =, w 18 = x8 + x) + x) x8 + x). 100 associated independent nested sums. The associated iterated integrals request root-valued alphabets with about 30 new letters. J. Ablinger, J. Bümlein, J. Raab, C. Schneider 014.

28 8/34 Results By now we have computed 6 out of 7 OMEs at Oα 3 s ), namely, A 3),PS qq, A 3) qg Ablinger, Blümlein, Klein, Schneider, Wissbrock, arxiv: ),NS, TR A qq Ablinger, Behring, Blümlein, ADF, von Manteuffel, Schneider, et. al., arxiv: A 3) gq A 3),PS Qq A 3) gg Ablinger, Blümlein, ADF, von Manteuffel, Schneider, et. al., arxiv: Ablinger, Behring, Blümlein, ADF, von Manteuffel, Schneider, arxiv: to be published soon and the corresponding Wilson coefficients: L PS q,, L S g,, L NS q,, and Hq, PS We have also partial results for A 3) Qg terms N F T F and Ladder diagrams). The logarithmic contributions to all OMEs and WCs were published recently Behring, Blümlein, ADF, Bierembaum, Klein, Wißbrock, arxiv:

29 9/34 3-Loop OME: A PS Qq { a 3),PS N) = C Qq F T 64 N + N + ) 1 ) 64 N + N + ) 1 ) F N 1)N N + 1) S,, N + ) N 1)N N + 1) S 3,1, N + ) + N 3P 3 S,1 1, 1, N ) 3P 3 S 1 1,1,1, 1, 1, N ) 3P 4 S 1,1 1, 1, N ) + + N 1) N 3 N + 1) N + ) N 1) N 3 N + 1) N + ) N 1) 3 N 4 N + 1) N + ) + N 64 N + N + ) S1,,1, 1, 1, N ) + 64 N + N + ) S1,,1, 1, 1, N ) } + + N 1)N N + 1) N + ) N 1)N N + 1) N + ) +C F T F N F { 16 N + N + ) S1 N) P 9 S 1 N) 7N 1)N N + 1) N + ) 7N 1)N 3 N + 1) 3 N + ) 08 N + N + ) 3P 3 + S S 1 9N 1)N N + 1) N + ) 81N 1)N 4 N + 1) 4 N + ) 3 3P 31 4 N ) + N + } + 43N 1)N 5 N + 1) 5 N + ) 4 + 9N 1)N N + 1) ζ 3 + N + ) { N ) + N + S1 N) 4 4 N + N + ) P 6 S 1 N) 3 +C F C A T F 9N 1)N N + 1) + N + ) 7N 1) N 3 N + 1) 3 N + ) + N 16P S 3, N) N 1)N 3 N + 1) 16P S 1,, 1, N) N 1)N 3 N + 1) + 16P S,1, 1, N) N 1)N 3 N + 1) 16P S 1,1,1, 1, 1, N) N 1)N 3 N + 1) 3 N + N + ) S1,1,, 1, 1, N ) N 1)N N + 1) + 3 N + N + ) S1,1,, 1, 1, N ) N + ) N 1)N N + 1) N + ) + 3 N + N + ) S1,,1, 1, 1, N ) N 1)N N + 1) N + ) 3 N + N + ) S1,1,1,1, 1, 1, 1, N ) N 1)N N + 1) N + ) 3 N + N + ) S1,,1, 1, 1, N ) N 1)N N + 1) N + ) 3 N + N + ) S1,1,1,1, 1, 1, 1, N ) N 1)N N + 1) N + ) + } +

30 30/ x a 3),PS Qq x) exact 6000 Ox 1 ln x) Ox 1 ) + Ox 1 ln x) Ox 1 ) + Ox 1 ln x) + i 8000 Olni x) x Figure: xa 3),PS Qq x) in the low x region solid red line) and leading terms approximating this quantity; dotted line: leading small x approximation Olnx)/x), dashed line: adding the O1/x)-term, dash-dotted line: adding all other logarithmic contributions.

31 31/ x a 3),PS Qq x) x Approx. A,B exact Ox 1 ln x) Ox 1 ) + Ox 1 ln x) Figure: Comparison of the exact result for xa 3,PS Qq x) solid red line) with an estimate in Kawamura et. al. shaded area). Also shown are the first two leading small x contributions.

32 Oa s) Oa 3 s) Q = 100 GeV Q = 00 GeV Q = 500 GeV Q = 1000 GeV 0.05 Q = 5000 GeV Q = GeV x Figure: The bottom contribution by the Wilson coefficient H PS Q, to the structure function F x, Q ) as a function of x and Q choosing Q = µ, m b = 4.78GeV on shell scheme). 3/34

33 33/34 3-Loop OME: A gg,q a 3) gg,q = ) i i i j=1 4 j S 1 j 1) ) j j j 7ζ 3 4 i i + 1 ) 1 + 1) N { C F 16 N ) + N + N T F N N + 1) i=1 ) 18 + γ gq 0) S 4 S 3 S 1 + S 3,1 + S, + 4 5N + 5N ) S 1 S 3NN + 1)N + ) 3NN + 1)N + ) ) i i i j=1 4 j S 1 j 1) ) j j j 7ζ 3 4 i i + 1 ) 4P 69 S 1 3N 1)N 4 N + 1) 4 N + ) + ) + 16P 4 N +C A C F T F 3N 1)N N + 1) + N + ) i=1 3P S, N 1)N N + 1) N + ) 64P 14 S,1,1 16P 3 S 4 4P 63 S N 1)N N + 1) N + ) 3N 1)N N + 1) N + ) 3N )N 1)N N + 1) N + ) ) i i S 1 j 1) ) i j +C A T 4P 46 N j=1 j j 7ζ 3 56P 5 S, F 3N 1)N N + 1) N + ) i=1 4 i i + 1 ) + 9N 1)N N + 1) N + ) + 3P 30 S,1,1 + 16P 35 S 3,1 + 16P 44 S 4 16P 5 S 8P 36 S 9N 1)N N + 1) + N + ) 7N 1)N N + 1) + N + ) 9N 1)N N + 1) + ) N 16P 48 4 N N 4 i S 1 i 1) ) i=1 i +C F TF i i 7ζ 3 3P 86 S 1 3N 1)NN + 1) N + )N 3)N 1) 81N 1)N 4 N + 1) 4 N + )N 3)N 1) 16P 45 S } P 45 S + + 7N 1)N 3 N + 1) 3 N + ) 9N 1)N 3 N + 1) 3 N + ) Also, with this calculation we were able to rederive the three loop anomalous dimension γ gg 3) agreement with the literature. for the terms T F, and obtained

34 34/34 Conclusions 009: Mellin Moments for all massive 3-loop OMEs, WC. 010: Wilson Coefficients L 3),PS q N), L 3),S g N). 013: Reduze has been adapted to the case where we have operator insertions, and used for reductions to master integrals. Complicated master integrals have been computed using a variety of methods. In particular, the differential equations method has allowed us to tackle integrals up until now untreatable with other methods. Emergence of generalized sums and new functions including a large number of root-letters in iterated integrals. 3),S A gq,q, A3),NS,TR qq,q and A 3),PS Qq have been completed. The corresponding 3-loop anomalous dimensions were computed, those for transversity for the first time ab initio. 014: The terms TF in A3) gg was computed. 015: Full A 3) gg is now available. Different new Computer-algebra and mathematical technologies have been and continue to be developed.

3-Loop Corrections to Heavy Flavor Wilson Coefficients in Deep-Inelastic Scattering

3-Loop Corrections to Heavy Flavor Wilson Coefficients in Deep-Inelastic Scattering 1/3 3-Loop Corrections to Heavy Flavor Wilson Coefficients in Deep-Inelastic Scattering J. Blümlein 1, J. Ablinger 2, A. Behring 1, A. De Freitas 1, A. Hasselhuhn 2, A. von Manteuffel 3, C. Raab 1, M.

More information

TF 2 -Contributions to 3-Loop Deep-Inelastic Wilson Coefficients and the Asymptotic Representation of Charged Current DIS

TF 2 -Contributions to 3-Loop Deep-Inelastic Wilson Coefficients and the Asymptotic Representation of Charged Current DIS 1/30 TF 2 -Contributions to 3-Loop Deep-Inelastic Wilson Coefficients and the Asymptotic Representation of Charged Current DIS Alexander Hasselhuhn RISC (LHCPhenonet) 26.9.2013 in collaboration with: J.

More information

Johannes Blümlein, DESY [in collaboration with I. Bierenbaum and S. Klein]

Johannes Blümlein, DESY [in collaboration with I. Bierenbaum and S. Klein] Oα 3 1 s Heavy Flavor Wilson Coefficients in DIS @ Q m Johannes Blümlein, DESY [in collaboration with I. Bierenbaum and S. Klein Introduction Theory Status The Method Asymptotic Loop Results all N Asymptotic

More information

Two and Three Loop Heavy Flavor Corrections in DIS

Two and Three Loop Heavy Flavor Corrections in DIS Two and Three Loop Heavy Flavor Corrections in DIS 1 Johannes Blümlein, DESY in collaboration with I. Bierenbaum and S. Klein based on: Introduction Renormalization of the OME s to 3 Loops Oǫ terms at

More information

Recent Results on Three Loop Corrections to Heavy Quark Contributions to DIS Structure Functions

Recent Results on Three Loop Corrections to Heavy Quark Contributions to DIS Structure Functions Recent Results on Three Loop Corrections to Heavy Quark Contributions to DIS Structure Functions Johannes Blümlein, DESY in collaboration : with J. Ablinger JKU, A. De Freitas DESY, A. Hasselhuhn DESY,

More information

Good Morning to Seattle! J. Blümlein Status of Unpolarized PDFs and αs(m 2 Z ) Seattle, WA, October 20th 2009 p.1

Good Morning to Seattle! J. Blümlein Status of Unpolarized PDFs and αs(m 2 Z ) Seattle, WA, October 20th 2009 p.1 Good Morning to Seattle! J. Blümlein Status of Unpolarized PDFs and αs(m 2 Z ) Seattle, WA, October 2th 29 p. Status of Unpolarized PDFs and α s (M 2 Z ) Johannes Blümlein DESY The Major Goals DIS Theory

More information

arxiv: v1 [hep-ph] 1 Feb 2016

arxiv: v1 [hep-ph] 1 Feb 2016 DESY 16/2, DO-TH 16/2, MITP/16-16 3-Loop Corrections to the Heavy Flavor Wilson Coefficients in Deep-Inelastic Scattering arxiv:162.583v1 [hep-ph] 1 Feb 216 J. Ablinger 1, A. Behring 2, 2, A. De Freitas

More information

QCD Precision Tests in Deeply Inelastic Scattering

QCD Precision Tests in Deeply Inelastic Scattering QCD Precision Tests in Deeply Inelastic Scattering Johannes Blümlein DESY Introduction and Method QCD Analysis of Unpolarized Structure Functions Λ QCD and α s (M 2 Z ) What would we like to know? J. Blümlein

More information

) Heavy Quark Corrections to Charged Current Deep-Inelastic Scattering at large Virtualities

) Heavy Quark Corrections to Charged Current Deep-Inelastic Scattering at large Virtualities DESY 1 47 DO TH 1/4 SFB/CPP-14-00 LPN 14-006 Higgstools 14 TUM-HEP-91/1 December 01 arxiv:1401.4 hep-ph arxiv:1401.4v hep-ph 0 Feb 014 The Oα s Heavy Quark Corrections to Charged Current Deep-Inelastic

More information

Johannes Blümlein Deutsches Elektronensynchrotron DESY, Platanenallee 6, D Zeuthen, Germany

Johannes Blümlein Deutsches Elektronensynchrotron DESY, Platanenallee 6, D Zeuthen, Germany II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany; Institute for High Energy Physics,142281 Protvino, Russia E-mail: sergey.alekhin@desy.de Johannes

More information

Status and news of the ABM PDFs

Status and news of the ABM PDFs Status and news of the ABM PDFs S.Alekhin (DESY-Zeuthen & IHEP Protvino) Basics heavy quarks in NNLO, mc, mb and αs Strange sea new DIS charm data sa, Blümlein, Caminadac, Lipka, Lohwasser, Moch, Petti,

More information

arxiv: v1 [cs.sc] 9 Jul 2014

arxiv: v1 [cs.sc] 9 Jul 2014 arxiv:407.2537v [cs.sc] 9 Jul 204 DESY 4 22, DO-TH 4/3, SFB/CPP-4-039, LPN4-086 Recent Symbolic Summation Methods to Solve Coupled Systems of Differential and Difference Equations Research Institute for

More information

arxiv: v2 [hep-ph] 20 Sep 2016

arxiv: v2 [hep-ph] 20 Sep 2016 DESY 16-149, DO-TH 16/16, MITP/16-096 New Results on Massive 3-Loop Wilson Coefficients in Deep-Inelastic scattering arxiv:1609.03397v2 [hep-ph] 20 Sep 2016 J. Ablinger Research Institute for Symbolic

More information

NNLO PDFs in 3 flavor scheme and collider data

NNLO PDFs in 3 flavor scheme and collider data NNLO PDFs in 3 flavor scheme and collider data S.Alekhin (DESY & IHEP, Protvino) In collaboration with J.Blümlein and S.Moch INT, Seattle, 19 Oct 2010 The ABKM fit ingredients DATA: QCD: DIS NC inclusive

More information

Computing of Charged Current DIS at three loops

Computing of Charged Current DIS at three loops Computing of Charged Current DIS at three loops Mikhail Rogal Mikhail.Rogal@desy.de DESY, Zeuthen, Germany ACAT 2007, Amsterdam, Netherlands, April 23-28, 2007 Computing of Charged CurrentDIS at three

More information

The Three-Loop Splitting Functions in QCD: The Non-Singlet Case

The Three-Loop Splitting Functions in QCD: The Non-Singlet Case The Three-Loop Splitting Functions in QCD: The Non-Singlet Case Sven-Olaf Moch DESY Zeuthen 1. The Calculation. The Result 3. The Summary in collaboration with J.A.M. Vermaseren and A. Vogt, hep-ph/040319

More information

Computer Algebra Algorithms for Special Functions in Particle Physics.

Computer Algebra Algorithms for Special Functions in Particle Physics. Computer Algebra Algorithms for Special Functions in Particle Physics. Jakob Ablinger RISC, J. Kepler Universität Linz, Austria joint work with J. Blümlein (DESY) and C. Schneider (RISC) 7. Mai 2012 Definition

More information

PoS(DIS 2010)139. On higher-order flavour-singlet splitting functions and coefficient functions at large x

PoS(DIS 2010)139. On higher-order flavour-singlet splitting functions and coefficient functions at large x On higher-order flavour-singlet splitting functions and coefficient functions at large x Department of Mathematical Sciences, University of Liverpool, UK E-mail: G.N.Soar@liv.ac.uk A. Vogt Department of

More information

Proposal: Inclusive and Semi-Inclusive Constraints on the Parton Distributions at the LHC and the Study of Hard Processes

Proposal: Inclusive and Semi-Inclusive Constraints on the Parton Distributions at the LHC and the Study of Hard Processes Proposal: Inclusive and Semi-Inclusive Constraints on the Parton Distributions at the LHC and the Study of Hard Processes J. Blümlein (DESY, TH, speaker) K. Rabbertz (KIT, CMS) K. Lipka (DESY, CMS) S.

More information

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden Physics at LHC lecture one Sven-Olaf Moch Sven-Olaf.Moch@desy.de DESY, Zeuthen in collaboration with Martin zur Nedden Humboldt-Universität, October 22, 2007, Berlin Sven-Olaf Moch Physics at LHC p.1 LHC

More information

Research in QCD factorization

Research in QCD factorization Research in QCD factorization Bowen Wang Southern Methodist University (Dallas TX) Jefferson Lab Newport News VA 1/1/015 My research at SMU in 011-015 Ph. D. advisor: Pavel Nadolsky Ph. D. thesis: The

More information

Large-n f Contributions to the Four-Loop Splitting Functions in QCD

Large-n f Contributions to the Four-Loop Splitting Functions in QCD Large-n Contributions to the Four-Loop Splitting Functions in QCD Nucl. Phys. B915 (2017) 335-362, arxiv:1610.07477 Joshua Davies Department o Mathematical Sciences University o Liverpool Collaborators:

More information

Heavy quark production and large-x nuclear gluons at EIC

Heavy quark production and large-x nuclear gluons at EIC Heavy quark production and large-x nuclear gluons at EIC C. Weiss (JLab), Santa Fe Jets and Heavy Flavor Workshop, -Jan-8 Nuclear partons e x e x B, Q c, b _ c, b _ Nuclear modifications NN interactions

More information

4/ Examples of PDF Uncertainty. May 2005 CTEQ Summer School 25

4/ Examples of PDF Uncertainty. May 2005 CTEQ Summer School 25 4/ Examples of PDF Uncertainty May 2005 CTEQ Summer School 25 Estimate the uncertainty on the predicted cross section for pp bar W+X at the Tevatron collider. global χ 2 local χ 2 s May 2005 CTEQ Summer

More information

A. Mitov 3-loop time-like splitting functions in Mellin space and NNLO fragmentation

A. Mitov 3-loop time-like splitting functions in Mellin space and NNLO fragmentation Three-loop time-like splitting functions in Mellin space and NNLO fragmentation Alexander Mitov DESY Work in progress with: M. Cacciari; Lance Dixon; S-O. Moch Also based on: hep-ph/0604160 (with Sven

More information

Status of parton distributions and impact on the Higgs

Status of parton distributions and impact on the Higgs Status of parton distributions and impact on the Higgs Daniel de Florian Dpto. de Física - FCEyN- UBA Higgs Hunting 0 Paris - July 8 Introduction to PDFs Summary of available fits Comparison of PDFs Impact

More information

Summary of the Heavy Flavours Working Group

Summary of the Heavy Flavours Working Group Summary of the Heavy Flavours Working Group J. Brodzicka (Krakow) M. Corradi (INFN Bologna) I. Schienbein (LPSC Grenoble) R. Schwienhorst (Michigan SU) HF WG: Theory Talks DIS structure functions: Blümlein,

More information

Two-loop massive fermionic operator matrix elements and intial state QED corrections to e + e γ /Z

Two-loop massive fermionic operator matrix elements and intial state QED corrections to e + e γ /Z Two-loop massive fermionic operator matrix elements and intial state QED corrections to e + e γ /Z J. Blümlein, a ab and W. van Neerven c a DESY, Zeuthen, Platanenalle 6, D-173 Zeuthen, Germany. b Departamento

More information

arxiv: v1 [hep-ph] 12 Sep 2016

arxiv: v1 [hep-ph] 12 Sep 2016 DESY 16-121, DO-TH 16/25 The new ABMP16 PDFs arxiv:1609.03327v1 [hep-ph] 12 Sep 2016 II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany; Institute

More information

QCD threshold corrections for gluino pair production at NNLL

QCD threshold corrections for gluino pair production at NNLL Introduction: Gluino pair production at fixed order QCD threshold corrections for gluino pair production at NNLL in collaboration with Ulrich Langenfeld and Sven-Olaf Moch, based on arxiv:1208.4281 Munich,

More information

Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York

Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York Many thanks to my colleagues, A. Deshpande, F. Gelis, B. Surrow

More information

Higgs boson production at the LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions to N 3 LO

Higgs boson production at the LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions to N 3 LO SFB/CPP-12-93 TTP12-45 LPN12-127 Higgs boson production at the LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions to N 3 LO Maik Höschele, Jens Hoff, Aleey Pak,

More information

Higher Order Corrections to the Drell-Yan Cross Section in the Mellin Space

Higher Order Corrections to the Drell-Yan Cross Section in the Mellin Space Higher Order Corrections to the Drell-Yan Cross Section in the Mellin Space Petra Kovačíková (DESY, Zeuthen) petra.kovacikova@desy.de Corfu Summer School 4 th September 21 Higher Order Corrections to the

More information

Status of Deeply Inelastic Parton Distributions

Status of Deeply Inelastic Parton Distributions Status of Deeply Inelastic Parton Distributions Johannes Blümlein DESY DIS Theory Status QCD Analysis of Unpolarized Structure Functions Polarized Structure Functions Moments of Parton Densities Λ QCD

More information

From Tensor Integral to IBP

From Tensor Integral to IBP From Tensor Integral to IBP Mohammad Assadsolimani, in collaboration with P. Kant, B. Tausk and P. Uwer 11. Sep. 2012 Mohammad Assadsolimani From Tensor Integral to IBP 1 Contents Motivation NNLO Tensor

More information

Hadron Mass Effects on Kaon Multiplicities: HERMES vs. COMPASS

Hadron Mass Effects on Kaon Multiplicities: HERMES vs. COMPASS Hadron Mass Effects on Kaon Multiplicities: HERMES vs. COMPASS Juan Guerrero Hampton University & Jefferson Lab QCD evolution 2017 May 26, 2017 Based on: J. G., J. Ethier, A. Accardi, S. Casper,W. Melnitchouk,

More information

Topics on QCD and Spin Physics

Topics on QCD and Spin Physics Topics on QCD and Spin Physics (sixth lecture) Rodolfo Sassot Universidad de Buenos Aires HUGS 21, JLAB June 21 Spin (revisited)? naive quark spin parton spin QCD parton spin polarized DIS:? EMC experiment:

More information

Parton Distribution Functions, Part 1. Daniel Stump. Department of Physics and Astronomy Michigan State University

Parton Distribution Functions, Part 1. Daniel Stump. Department of Physics and Astronomy Michigan State University Parton Distribution Functions, Part 1 Daniel Stump Department of Physics and Astronomy Michigan State University A. Introduction B. Properties of the PDFs C. Results of CT10-NNLO Global Analysis D. Uncertainties

More information

Five-loop massive tadpoles

Five-loop massive tadpoles Five-loop massive tadpoles York Schröder (Univ del Bío-Bío, Chillán, Chile) recent work with Thomas Luthe and earlier work with: J. Möller, C. Studerus Radcor, UCLA, Jun 0 Motivation pressure of hot QCD

More information

The Drell Levy Yan Relation: ep vs e + e Scattering to O(ff 2 s ) Johannes Blümlein DESY 1. The DLY Relation 2. Structure and Fragmentation Functions

The Drell Levy Yan Relation: ep vs e + e Scattering to O(ff 2 s ) Johannes Blümlein DESY 1. The DLY Relation 2. Structure and Fragmentation Functions The DrellLevyYan Relation: ep vs e e Scattering to O(ff s ) Johannes Blümlein DESY. The Relation. Structure and Fragmentation Functions. Scheme Invariant Combinations 4. DrellYanLevy Relations for Evolution

More information

DIS 98 STRUCTURE FUNCTIONS SUMMARY, PART II

DIS 98 STRUCTURE FUNCTIONS SUMMARY, PART II WUE-ITP-98-03 July 998 hep-ph/9807369 DIS 98 STRUCTURE FUNCTIONS SUMMARY, PART II ANDREAS VOGT Institut für Theoretische Physik, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany E-mail: avogt@physik.uni-wuerzburg.de

More information

arxiv:hep-ph/ v2 11 Jan 2007

arxiv:hep-ph/ v2 11 Jan 2007 IPM School and Conference on Hadrn and Lepton Physics, Tehran, 5-2 May 26 An approach to NNLO analysis of non-singlet structure function Ali N. Khorramian Physics Department, Semnan University, Semnan,

More information

HEAVY QUARKS FROM PHOTOPRODUCTION (AND DIS)

HEAVY QUARKS FROM PHOTOPRODUCTION (AND DIS) HEAVY QUARKS FROM PHOTOPRODUCTION (AND DIS) INT 20, Seattle EIC workshop Week 6, Oct. 22, 20 H. Spiesberger based on work in collaboration with A. Kadeer, B. Kniehl, G. Kramer, C. Pisano, I. Schienbein,

More information

Perturbative QCD. Chul Kim. Seoultech. Part I : Introduction to QCD Structure functions for DIS

Perturbative QCD. Chul Kim. Seoultech. Part I : Introduction to QCD Structure functions for DIS Perturbative QCD Part I : Introduction to QCD Structure functions for DIS Chul Kim Seoultech Open KIAS, Pyeong-Chang Summer Institute 2013 Pyeong-Chang, Alpensia Resort, July 8, 2013 QCD QCD Lagrangian

More information

Understanding Parton Showers

Understanding Parton Showers Understanding Parton Showers Zoltán Nagy DESY in collaboration with Dave Soper Introduction Pile-up events 7 vertices 2009 single vertex reconstructed! 2011 2010 4 vertices 25 vertices 2012 Introduction

More information

O(α 3 s T2 F N f) Contributions to the Heavy Flavor Wilson Coefficients of the Structure Function F 2 (x,q 2 ) at Q 2 m 2

O(α 3 s T2 F N f) Contributions to the Heavy Flavor Wilson Coefficients of the Structure Function F 2 (x,q 2 ) at Q 2 m 2 Oα 3 s T F N f Contributions to the Heavy Flavor Wilson Coefficients of the Structure Function F x,q at Q m arxiv:1010.451v1 hep-ph 0 Oct 010 Diplomarbeit zur Erlangung des wissenschaftlichen Grades Diplom-Physiker

More information

arxiv:hep-ph/ v1 25 Sep 2002

arxiv:hep-ph/ v1 25 Sep 2002 hep-ph/0209302 Direct Higgs production at hadron colliders arxiv:hep-ph/0209302v1 25 Sep 2002 Massimiliano Grazzini (a,b) (a) Dipartimento di Fisica, Università di Firenze, I-50019 Sesto Fiorentino, Florence,

More information

2. HEAVY QUARK PRODUCTION

2. HEAVY QUARK PRODUCTION 2. HEAVY QUARK PRODUCTION In this chapter a brief overview of the theoretical and experimental knowledge of heavy quark production is given. In particular the production of open beauty and J/ψ in hadronic

More information

Feyman integrals and difference equations

Feyman integrals and difference equations Deutsches Elektronen Synchrotron, DESY Platanenallee 6, D 15738 Zeuthen, Germany E-mail: sven-olaf.moch@desy.de C. Schneider Research Institute for Symbolic Computation, Johannes Kepler University Linz,

More information

Resummed small-x and first moment evolution of fragmentation functions in pqcd

Resummed small-x and first moment evolution of fragmentation functions in pqcd Resummed small- and first moment evolution of fragmentation functions in pqcd Steve Kom University of Liverpool Presented at HP2: High Precision for Hard Processes, Munich 7 Sept 2012 Collaborators Talk

More information

Introduction to the physics of hard probes in hadron collisions: lecture I. Michelangelo Mangano TH Division, CERN

Introduction to the physics of hard probes in hadron collisions: lecture I. Michelangelo Mangano TH Division, CERN Introduction to the physics of hard probes in hadron collisions: lecture I Michelangelo Mangano TH Division, CERN michelangelo.mangano@cern.ch Contents The structure of the proton the initial-state : parton

More information

Threshold Corrections To DY and Higgs at N 3 LO QCD

Threshold Corrections To DY and Higgs at N 3 LO QCD Threshold Corrections To DY and Higgs at N 3 LO QCD Taushif Ahmed Institute of Mathematical Sciences, India July 2, 2015 Threshold Corrections To DY and Higgs at N 3 LO QCD INFN Sezione Di Torino 1 Prologue

More information

Heavy Quarks in MRST/MSTW Global Fits

Heavy Quarks in MRST/MSTW Global Fits Heavy Quarks in MRST/MSTW Global Fits Robert Thorne October 6th, 8 University College London Ringberg8-Heavy Flavour Will discuss Charm 1.5GeV, bottom 4.3GeV, and at end strange.3gev as heavy flavours.

More information

Structure Functions and Parton Distribution Functions at the HERA ep Collider

Structure Functions and Parton Distribution Functions at the HERA ep Collider Structure Functions and Parton Distribution Functions at the HERA ep Collider by Chris Targett Adams (University College London) on behalf of the ZEUS and H1 collaborations. Moriond QCD, 16/03/2005 Contents

More information

Master integrals without subdivergences

Master integrals without subdivergences Master integrals without subdivergences Joint work with Andreas von Manteuffel and Robert Schabinger Erik Panzer 1 (CNRS, ERC grant 257638) Institute des Hautes Études Scientifiques 35 Route de Chartres

More information

QCD Factorization and PDFs from Lattice QCD Calculation

QCD Factorization and PDFs from Lattice QCD Calculation QCD Evolution 2014 Workshop at Santa Fe, NM (May 12 16, 2014) QCD Factorization and PDFs from Lattice QCD Calculation Yan-Qing Ma / Jianwei Qiu Brookhaven National Laboratory ² Observation + Motivation

More information

arxiv:hep-ph/ v1 29 Aug 2006

arxiv:hep-ph/ v1 29 Aug 2006 IPPP/6/59 August 26 arxiv:hep-ph/6837v1 29 Aug 26 Third-order QCD results on form factors and coefficient functions A. Vogt a, S. Moch b and J.A.M. Vermaseren c a IPPP, Physics Department, Durham University,

More information

CTEQ6.6 pdf s etc. J. Huston Michigan State University

CTEQ6.6 pdf s etc. J. Huston Michigan State University CTEQ6.6 pdf s etc J. Huston Michigan State University 1 Parton distribution functions and global fits Calculation of production cross sections at the LHC relies upon knowledge of pdf s in the relevant

More information

Heavy Quarks. ... lessons we've learned & future applications. Fred Olness SMU

Heavy Quarks. ... lessons we've learned & future applications. Fred Olness SMU Heavy Quarks... lessons we've learned & future applications Fred Olness SMU Conspirators: I Schienbein, S. Berge, P. Nadolsky, Ringberg Workshop J. Y. Yu, J. Owens, J. Morfin, W. Tung, C. Keppel,... 6

More information

Universal Parton Distri. Fn s (non-pert.; QCD evolved)

Universal Parton Distri. Fn s (non-pert.; QCD evolved) Charm Production at HERA and Theory of Heavy Quark Production Why is Heavy Quark Production a non-trivial problem in PQCD? it is a Multi-large-scale Problem Conventional approaches: one-scale problem approximate

More information

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases.

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases. Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases. Lorenzo Tancredi TTP, KIT - Karlsruhe Bologna, 18 Novembre 2014 Based on collaboration with Thomas Gehrmann,

More information

Parton Distribution Functions and Global Fitting

Parton Distribution Functions and Global Fitting Parton Distribution Functions and Global Fitting J.F. Owens Physics Department, Florida State University 2007 CTEQ Summer School May 30 - June 7, 2007 Madison, Wisconsin Preliminaries Issues related to

More information

Estimation of uncertainties from missing higher orders in perturbative calculations. Emanuele A. Bagnaschi (DESY Hamburg)

Estimation of uncertainties from missing higher orders in perturbative calculations. Emanuele A. Bagnaschi (DESY Hamburg) Estimation of uncertainties from missing higher orders in perturbative calculations Emanuele A. Bagnaschi (DESY Hamburg) Rencontres de Moriond QCD and High energy interactions 24 March 2015 La Thuile,

More information

Progress in CTEQ-TEA (Tung et al.) PDF Analysis

Progress in CTEQ-TEA (Tung et al.) PDF Analysis Progress in CTEQ-TEA (Tung et al.) PDF Analysis Sayipjamal Dulat Xinjiang University University In collaboration with CTEQ-TEA Group April 4, 2016 QCD Study Group CTEQ-TEA group CTEQ Tung et al. (TEA)

More information

The rare decay H Zγ in perturbative QCD

The rare decay H Zγ in perturbative QCD The rare decay H Zγ in perturbative QCD [arxiv: hep-ph/1505.00561] Thomas Gehrmann, Sam Guns & Dominik Kara June 15, 2015 RADCOR 2015 AND LOOPFEST XIV - UNIVERSITY OF CALIFORNIA, LOS ANGELES Z Z H g q

More information

Recent Progress on the Determination of Nuclear Parton Distribution Functions

Recent Progress on the Determination of Nuclear Parton Distribution Functions Recent Progress on the Determination of Nuclear Parton Distribution Functions Shunzo Kumano High Energy Accelerator Research Organization (KEK) Graduate University for Advanced Studies (GUAS) shunzo.kumano@kek.jp

More information

Achim Geiser, DESY Hamburg. Inclusive Deep Inelastic Scattering Jets and Heavy Flavours in DIS Exclusive dipion electroproduction

Achim Geiser, DESY Hamburg. Inclusive Deep Inelastic Scattering Jets and Heavy Flavours in DIS Exclusive dipion electroproduction Deep Inelastic Scattering and dipion electroproduction at HERA Achim Geiser, DESY Hamburg EDS Blois workshop Qui Nhon, Vietnam, 2011 Inclusive Deep Inelastic Scattering Jets and Heavy Flavours in DIS Exclusive

More information

Large-n f Contributions to the Four-Loop Splitting Functions in QCD

Large-n f Contributions to the Four-Loop Splitting Functions in QCD Large-n Contributio to the Four-Loop Splitting Functio in QCD Nucl. Phys. B915 (2017) 335-362 [arxiv:1711.05267] [arxiv:1610.07477], Joshua Davies Collaborators: A. Vogt (University o Liverpool), B. Ruijl

More information

Particles and Deep Inelastic Scattering

Particles and Deep Inelastic Scattering Particles and Deep Inelastic Scattering University HUGS - JLab - June 2010 June 2010 HUGS 1 Sum rules You can integrate the structure functions and recover quantities like the net number of quarks. Momentum

More information

Inclusive Deep-Inelastic Scattering at HERA

Inclusive Deep-Inelastic Scattering at HERA Inclusive Deep-Inelastic Scattering at HERA Vladimir Chekelian (MPI for Physics, Munich) on behalf of the H and ZEUS Collaborations Completion of the HERA inclusive DIS cross section measurements: HERA

More information

Investigation of Top quark spin correlations at hadron colliders

Investigation of Top quark spin correlations at hadron colliders CERN-PH-TH/2004-206 Investigation of Top quark spin correlations at hadron colliders arxiv:hep-ph/0410197v1 13 Oct 2004 W. Bernreuther A, A. Brandenburg B, Z. G. Si C and P. Uwer D A Institut f. Theoretische

More information

PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD. Taushif Ahmed Institute of Mathematical Sciences, India March 22, 2016

PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD. Taushif Ahmed Institute of Mathematical Sciences, India March 22, 2016 PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD Taushif Ahmed Institute of Mathematical Sciences, India March, 016 PROLOGUE: SM & MSSM SM Complex scalar doublet (4 DOF) 3 DOF transform into longitudinal modes

More information

QCD and Rescattering in Nuclear Targets Lecture 2

QCD and Rescattering in Nuclear Targets Lecture 2 QCD and Rescattering in Nuclear Targets Lecture Jianwei Qiu Iowa State University The 1 st Annual Hampton University Graduate Studies Program (HUGS 006) June 5-3, 006 Jefferson Lab, Newport News, Virginia

More information

arxiv: v1 [hep-ph] 3 Jul 2015

arxiv: v1 [hep-ph] 3 Jul 2015 LPSC-15-180 IFJ PAN-IV-2015- Evolution kernels for parton shower Monte Carlo A. Kusina a, O. Gituliar b, S. Jadach b, M. Skrzypek b arxiv:1507.00842v1 [hep-ph Jul 2015 a Laboratoire de Physique Subatomique

More information

Heavy Quark Production at High Energies

Heavy Quark Production at High Energies Heavy Quark Production at High Energies Andrea Ferroglia Johannes Gutenberg Universität Mainz OpenCharm@PANDA Mainz, 19 November 29 Outline 1 Heavy Quarks, High Energies, and Perturbative QCD 2 Heavy Quark

More information

A M Cooper-Sarkar on behalf of ZEUS and H1 collaborations

A M Cooper-Sarkar on behalf of ZEUS and H1 collaborations α s (M Z ) and charm quark mass determination from HERA data International Workshop Determining the Fundamental Parameters of QCD IAS Singapore March 2013 A M Cooper-Sarkar on behalf of ZEUS and H1 collaborations

More information

The structure of the proton and the LHC

The structure of the proton and the LHC 26th Rencontres de Blois, Particle Physics and Cosmology, Blois, France 20th May 2014 The structure of the proton and the LHC Maria Ubiali University of Cambridge PDFs: why bother? Beenakker et al (2011)

More information

QCD at hadron colliders Lecture 3: Parton Distribution Functions

QCD at hadron colliders Lecture 3: Parton Distribution Functions QCD at hadron colliders Lecture : Parton Distribution Functions Gavin Salam CERN, Princeton & LPTHE/CNRS (Paris) Maria Laach Herbtschule für Hochenenergiephysik September, Germany QCD lecture (p. ) PDF

More information

PoS(EPS-HEP 2013)455. HERAFitter - an open source QCD fit framework. Andrey Sapronov. on behalf of theherafitter team

PoS(EPS-HEP 2013)455. HERAFitter - an open source QCD fit framework. Andrey Sapronov. on behalf of theherafitter team on behalf of theherafitter team JINR (Joint Institute for Nuclear Research, Dubna) E-mail: sapronov@cern.ch The presented QCD analysis framework, HERAFitter, is an open source PDF fitting tool developed

More information

Introduction to Perturbative QCD

Introduction to Perturbative QCD Introduction to Perturbative QCD Lecture 3 Jianwei Qiu Iowa State University/Argonne National Laboratory PHENIX Spinfest at RIKEN 007 June 11 - July 7, 007 RIKEN Wako Campus, Wako, Japan June 6, 007 1

More information

Lecture 3 Cross Section Measurements. Ingredients to a Cross Section

Lecture 3 Cross Section Measurements. Ingredients to a Cross Section Lecture 3 Cross Section Measurements Ingredients to a Cross Section Prerequisites and Reminders... Natural Units Four-Vector Kinematics Lorentz Transformation Lorentz Boost Lorentz Invariance Rapidity

More information

Anomalous dimensions and splitting functions beyond the next-to-next-to-leading order

Anomalous dimensions and splitting functions beyond the next-to-next-to-leading order Anomalous dimensions and splitting functions beyond the next-to-next-to-leading order Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, UK E-mail: Andreas.Vogt@liverpool.ac.uk

More information

Results on the proton structure from HERA

Results on the proton structure from HERA Results on the proton structure from HERA Shima Shimizu (Univ. of Tokyo) Introduction HERA physics Proton structure The world only e-p collider: HERA electron proton A unique collider at DESY, Hamburg

More information

arxiv: v1 [hep-th] 22 Dec 2017

arxiv: v1 [hep-th] 22 Dec 2017 arxiv:1712.08541v1 [hep-th] 22 Dec 2017 DESY 17-225, DO-TH 17/37 Special functions, transcendentals and their numerics arxiv:yymmdd.xxxxx Jakob Ablinger a, Johannes Blümlein b, Mark Round a,b, and Carsten

More information

Threshold Corrections To DY and Higgs at N 3 LO QCD

Threshold Corrections To DY and Higgs at N 3 LO QCD Threshold Corrections To DY and Higgs at N 3 LO QCD Taushif Ahmed Institute of Mathematical Sciences, India April 12, 2016 Threshold Corrections To DY and Higgs at N 3 LO QCD Bergische Universitat Wuppertal

More information

Next-to-leading order corrections to the valon model

Next-to-leading order corrections to the valon model PRAMANA c Indian Academy of Sciences Vol. 86, No. 1 journal of January 216 physics pp. 77 86 Next-to-leading order corrections to the valon model G R BOROUN E ESFANDYARI Physics Department, Razi University,

More information

arxiv: v1 [hep-ph] 8 Dec 2010

arxiv: v1 [hep-ph] 8 Dec 2010 arxiv:02.806v [hep-ph] 8 Dec 200 Charged Higgs production via vector-boson fusion at NN in QCD Université Catholique de Louvain - CP3 E-mail: marco.zaro@uclouvain.be Paolo Bolzoni Institut für Theoretische

More information

arxiv: v1 [hep-ph] 20 Jan 2010

arxiv: v1 [hep-ph] 20 Jan 2010 LTH 862, DESY 10-007, arxiv:1001.3554 [hep-ph] January 2010 Higher-order predictions for splitting functions and coefficient functions from physical evolution kernels arxiv:1001.3554v1 [hep-ph] 20 Jan

More information

Proton Structure from HERA and the impact for the LHC

Proton Structure from HERA and the impact for the LHC Proton Structure from HERA and the impact for the LHC Katerina Lipka, DESY for the H1 and ZEUS Collaborations Lomonosov Conference on High Energy Physics 13 Proton structure: fundamental subject in matter

More information

Multiloop integrals in dimensional regularization made simple

Multiloop integrals in dimensional regularization made simple Multiloop integrals in dimensional regularization made simple Johannes M. Henn Institute for Advanced Study based on PRL 110 (2013) [arxiv:1304.1806], JHEP 1307 (2013) 128 [arxiv:1306.2799] with A. V.

More information

Physique des Particules Avancées 2

Physique des Particules Avancées 2 Physique des Particules Avancées Interactions Fortes et Interactions Faibles Leçon 6 Les collisions p p (http://dpnc.unige.ch/~bravar/ppa/l6) enseignant Alessandro Bravar Alessandro.Bravar@unige.ch tél.:

More information

QCD studies and Higgs searches at the LHC part two

QCD studies and Higgs searches at the LHC part two QCD studies and Higgs searches at the LHC part two Sven-Olaf Moch sven-olaf.moch@desy.de DESY, Zeuthen CALC-01, Dubna, July 8-9 01 Sven-Olaf Moch QCD studies and Higgs searches at the LHC p.1 Introduction

More information

arxiv:hep-ph/ v1 4 May 1995

arxiv:hep-ph/ v1 4 May 1995 CERN-TH/95-103 SMU HEP 95-02 arxiv:hep-ph/9505230v1 4 May 1995 CHARM PRODUCTION IN DEEP-INELASTIC eγ SCATTERING TO NEXT-TO-LEADING ORDER IN QCD 1 Eric Laenen CERN TH-Division 1211-CH, Geneve 23, Switzerland

More information

Parton Uncertainties and the Stability of NLO Global Analysis. Daniel Stump Department of Physics and Astronomy Michigan State University

Parton Uncertainties and the Stability of NLO Global Analysis. Daniel Stump Department of Physics and Astronomy Michigan State University Parton Uncertainties and the Stability of NLO Global Analysis Daniel Stump Department of Physics and Astronomy Michigan State University J. Huston, J. Pumplin, D. Stump and W.K. Tung, Stability of NLO

More information

AN INTRODUCTION TO QCD

AN INTRODUCTION TO QCD AN INTRODUCTION TO QCD Frank Petriello Northwestern U. & ANL TASI 2013: The Higgs Boson and Beyond June 3-7, 2013 1 Outline We ll begin with motivation for the continued study of QCD, especially in the

More information

Reduction to Master Integrals. V.A. Smirnov Atrani, September 30 October 05, 2013 p.1

Reduction to Master Integrals. V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction to Master Integrals V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction to Master Integrals IBP (integration by parts) V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction

More information

Deep inelastic scattering and the OPE in lattice QCD

Deep inelastic scattering and the OPE in lattice QCD Deep inelastic scattering and the OPE in lattice QCD William Detmold [WD & CJD Lin PRD 73, 014501 (2006)] DIS structure of hadrons Deep-inelastic scattering process critical to development of QCD k, E

More information

The transition from pqcd to npqcd

The transition from pqcd to npqcd The transition from pqcd to npqcd A. Fantoni (INFN - Frascati) First Workshop on Quark-Hadron Duality and the Transition to pqcd Laboratori Nazionali di Frascati, Italy June 6-8, 2005 Introduction Overview

More information

Precision Physics at the LHC

Precision Physics at the LHC Precision Physics at the LHC V. Ravindran The Institute of Mathematical Sciences, Chennai, India IMHEP-2019, IOP, Bhubaneswar, 17-22 Jan 2019 Precision Physics Plan Why Precision Calculation (PC) Impact

More information

Zhong-Bo Kang Los Alamos National Laboratory

Zhong-Bo Kang Los Alamos National Laboratory Introduction to pqcd and Jets: lecture 1 Zhong-Bo Kang Los Alamos National Laboratory Jet Collaboration Summer School University of California, Davis July 19 1, 014 Selected references on QCD! QCD and

More information