CTEQ6.6 pdf s etc. J. Huston Michigan State University

Size: px
Start display at page:

Download "CTEQ6.6 pdf s etc. J. Huston Michigan State University"

Transcription

1 CTEQ6.6 pdf s etc J. Huston Michigan State University 1

2 Parton distribution functions and global fits Calculation of production cross sections at the LHC relies upon knowledge of pdf s in the relevant kinematic region Pdf s are determined by global analyses of data from DIS, DY and jet production Two major groups that provide semi-regular updates to parton distributions when new data/theory becomes available MRS->MRST98->MRST99 ->MRST2001->MRST2002 ->MRST2003->MRST2004 ->MSTW2008 CTEQ->CTEQ5->CTEQ6 ->CTEQ6.1->CTEQ6.5 ->CTEQ6.6 CTEQ6: circa 2002; full error treatment CTEQ6.1: circa 2003; technical improvements CTEQ6.5: circa 2006; full heavy quark mass CTEQ6.6: circa 2008; above + additional freedom for strange quark 2

3 Global fitting: best fit Using our 2794 data points, we do our global fit by performing a χ 2 minimization where D i are the data points and T i are the theoretical predictions; we allow for a normalization shift f N for each experimental data set but we provide a quadratic penalty for any normalization shift where there are k systematic errors β for each data point in a particular data set and where we allow the data points to be shifted by the systematic errors with the shifts given by the s j parameters but we give a quadratic penalty for non-zero values of the shifts s j where σ i is the statistical error for data point i For each data set, we calculate χ 2 = i f N D i k β ij s j j =1 T i k 2 + s σ j i For a set of theory parameters it is possible to analytically solve for the shifts s j,and therefore, continually update them as the fit proceeds To make matters more complicated, we may give additional weights to some experiments due to the utility of the data in those experiments (i.e. NA-51), so we adjust the χ 2 to be 1 f χ 2 = w k χ 2 k + w N N,k k k σ N norm where w k is a weight given to the experimental data and w N,k is a weight given to the normalization 2 2 j =1 2 3

4 Minimization and errors Free parameters in the fit are parameters for quark and gluon distributions f (x) = x (a 1 1) (1 x) a 2 ea 3x [1 + e a 4 x]a 5 Too many parameters to allow all to remain free some are fixed at reasonable values or determined by sum rules 20 free parameters for CTEQ6.1, 22 for CTEQ6.6 2 additional parameters for strange quark distributions Result is a global χ 2 /dof on the order of 1 for a NLO fit worse for a LO fit, since the LO pdf s can not make up for the deficiencies in the LO matrix elements 4

5 PDF Errors: old way Make plots of lots of pdf s (no matter how old) and take spread as a measure of the error Can either underestimate or overestimate the error Review sources of uncertainty on pdf s data set choice kinematic cuts parametrization choices treatment of heavy quarks order of perturbation theory errors on the data There are now more sophisticated techniques to deal with at least the errors due to the experimental data uncertainties 5

6 PDF Errors: new way So we have optimal values (minimum χ 2 ) for the d=20 (22) free pdf parameters in the global fit {a µ },µ=1, d Varying any of the free parameters from its optimal value will increase the χ 2 It s much easier to work in an orthonormal eigenvector space determined by diagonalizing the Hessian matrix, determined in the fitting process H uv = 1 2 χ 2 a µ a ν To estimate the error on an observable X(a), due to the experimental uncertainties of the data used in the fit, we use the Master Formula ( ΔX ) 2 X = Δχ 2 µ,ν a µ ( H 1 ) µν X a ν 6

7 PDF Errors: new way Recap: 20 (22) eigenvectors with the eigenvalues having a range of >1E6 Largest eigenvalues (low number eigenvectors) correspond to best determined directions; smallest eigenvalues (high number eigenvectors) correspond to worst determined directions Easiest to use Master Formula in eigenvector basis To estimate the error on an observable X(a), from the experimental errors, we use the Master Formula ( ΔX ) 2 X = Δχ 2 µ,ν a µ ( H 1 ) µν X a ν where X i + and X i - are the values for the observable X when traversing a distance corresponding to the tolerance T(=sqrt(Δχ 2 )) along the i th direction 7

8 PDF Errors: new way What is the tolerance T? This is one of the most controversial questions in global pdf fitting? We have 2794 data points in the CTEQ6.6 data set (on order of 2000 for CTEQ6.1) Technically speaking, a 1-sigma error corresponds to a tolerance T(=sqrt(Δχ 2 ))=1 This results in far too small an uncertainty from the global fit with data from a variety of processes from a variety of experiments from a variety of accelerators For CTQE6.1, we chose a Δχ 2 of 100 to correspond to a 90% CL limit with an appropriate scaling for the larger data set for CTEQ6.6 MSTW has chosen a Δχ 2 of 50 for the same limit so CTEQ errors will be larger than MSTW errors 8

9 What do the eigenvectors mean? Each eigenvector corresponds to a linear combination of all 20 (22) pdf parameters, so in general each eigenvector doesn t mean anything? However, with 20 (22) dimensions, often eigenvectors will have a large component from a particular direction Take eigenvector 1 (for CTEQ6.1); error pdf s 1 and 2 It has a large component sensitive to the small x behavior of the u quark valence distribution Not surprising since this is the best determined direction 9

10 What do the eigenvectors mean? Take eigenvector 15 (for CTEQ6.1); error pdf s 29 and 30 Probes high x gluon distribution creates largest uncertainty for high p T jet cross sections at both the Tevatron and LHC I haven t done this exercise yet for CTEQ6.6 10

11 Aside: PDF re-weighting Any physical cross section at a hadron-hadron collider depends on the product of the two pdf s for the partons participating in the collision convoluted with the hard partonic cross section Nominally, if one wants to evaluate the pdf uncertainty for a cross section, this convolution should be carried out 41 times (for CTEQ6.1); once for the central pdf and 40 times for the error pdf s However, the partonic cross section is not changing, only the product of the pdf s So one can evaluate the full cross section for one pdf (the central pdf) and then evaluate the pdf uncertainty for a particular cross section by taking the ratio of the product of the pdf s (the pdf luminosity) for each of the error pdf s compared to the central pdf s f i is the error pdf and f 0 the central pdf f i a / A (x a,q 2 ) f i b / B (x b,q 2 ) f 0 a / A (x a,q 2 ) f 0 b / B (x b,q 2 ) This works exactly for fixed order calculations and works well enough for parton shower Monte Carlo calculations (if you stay at NLO; I don t know the size of the error for mixing LO and NLO pdf s). Most experiments now have code to easily do this and many programs will do it for you (MCFM) 11

12 Cross sections at the LHC Note that the data from HERA and fixed target cover only part of kinematic range accessible at the LHC We will access pdf s down to 1E -6 (crucial for the underlying event) and Q 2 up to 100 TeV 2 We can use the DGLAP equations to evolve to the relevant x and Q 2 range, but we re somewhat blind in extrapolating to lower x values than present in the HERA data, so uncertainty may be larger than currently estimated we re assuming that DGLAP is all there is; at low x BFKL type of logarithms may become important DGLAP BFKL? 12

13 Parton kinematics at the LHC To serve as a handy look-up table, it s useful to define a parton-parton luminosity (a la EHLQ) Equation 3 can be used to estimate the production rate for a hard scattering at the LHC as the product of a differential parton luminosity and a scaled hard scatter matrix element this is from the CHS review paper 13

14 Cross section estimates gg qq gq for p T =0.1* sqrt(s-hat) 14

15 PDF uncertainties at the LHC gg tt Note that for much of the SM/discovery range, the pdf luminosity uncertainty is small Need similar level of precision in theory calculations It will be a while, i.e. not in the first fb -1, before the LHC data starts to constrain pdf s qq W/Z NBIII: tt uncertainty is of the same order as W/Z production Rule-of-thumb (CHS): uncertainties in acceptances factor of 5-10 less than uncertainties in cross sections gq NB I: the errors are determined using the Hessian method for a Δχ 2 of 100 using only experimental uncertainties,i.e. no theory uncertainties NB II: the pdf uncertainties for W/Z cross sections are not the smallest 15

16 Precision benchmarks: W/Z cross sections at the LHC CTEQ6.1 and MRST NLO predictions in good agreement with each other NNLO corrections are small and negative NNLO mostly a K-factor; NLO predictions adequate for most predictions at the LHC 16

17 Heavy quark mass effects in global fits CTEQ6.1 (and previous generations of global fits) used zero-mass VFNS scheme With new sets of pdf s (CTEQ6.5/6.6), heavy quark mass effects consistently taken into account in global fitting cross sections and in pdf evolution In most cases, resulting pdf s are within CTEQ6.1 pdf error bands But not at low x (in range of W and Z production at LHC) Heavy quark mass effects only appreciable near threshold ex: prediction for F 2 at low x,q at HERA smaller if mass of c,b quarks taken into account thus, quark pdf s have to be bigger in this region to have an equivalent fit to the HERA data 17 implications for LHC phenomenology

18 CTEQ6.5(6) Inclusion of heavy quark mass effects affects DIS data in x range appropriate for W/Z production at the LHC Cross sections for W/Z increase by 7-8% now CTEQ and MRST2004 in disagreement and relative uncertainties of W/Z increase although individual uncertainties of W and Z decrease somewhat Two new free parameters in fit dealing with strangeness degrees of freedom so now have 44 error pdf s rather than 40 CTEQ6.5(6) Note importance of strange quark uncertainty for ratio 18

19 but Inclusion of heavy quark mass effects affects DIS data in x range appropriate for W/Z production at the LHC but MSTW2008 has also lead to increased W/Z cross sections at the LHC now CTEQ6.6 and MSTW2008 in better agreement CTEQ6.5(6) MSTW08 Beware of (precision) predictions that use earlier generations of pdf s. 19

20 Correlations Consider a cross section X(a), a function of the Hessian eigenvectors i th component of gradient of X is Now take 2 cross sections X and Y or one or both can be pdf s Consider the projection of gradients of X and Y onto a circle of radius 1 in the plane of the gradients in the parton parameter space The circle maps onto an ellipse in the XY plane The angle φ between the gradients of X and Y is given by If two cross sections are very correlated, then cosφ~1 uncorrelated, then cosφ~0 anti-correlated, then cosφ~-1 The ellipse itself is given by 20

21 Correlations with Z, tt Define a correlation cosine between two quantities Z tt If two cross sections are very correlated, then cosφ~1 uncorrelated, then cosφ~0 anti-correlated, then cosφ~-1 Note: correlations with acceptances will probably be smaller than correlations for cross sections (see Manuela s talk) 21

22 Correlations with Z, tt Define a correlation cosine between two quantities tt Z If two cross sections are very correlated, then cosφ~1 uncorrelated, then cosφ~0 anti-correlated, then cosφ~-1 Note that correlation curves to Z and to tt are mirror images of each other By knowing the pdf correlations, can reduce the uncertainty for a given cross section in ratio to a benchmark cross section iff cos φ > 0;e.g. Δ(σ W +/σ Z )~1% If cos φ < 0, pdf uncertainty for one cross section normalized to a benchmark cross section is larger So, for gg->h(500 GeV); pdf uncertainty is 4%; Δ(σ H /σ Z )~8% 22

23 CTEQ plans New data from Tevatron have been added to global fit at some point in near future, there will be a CTEQ6.7 NLO pdf or equivalent more HERA data? combined data sets? NNLO pdf s (for first time from CTEQ) Re-summed pdf fits so far we have been fitting only the longitudinal degrees of freedom of the pdf s we have set up the machinery to fit the transverse degrees of freedom as well may be important for precision measurements such as W mass Modified LO fits 23

24 CTEQ modified LO pdf s (LO*) Include in LO* fit (weighted) pseudo-data for characteristic LHC processes produced using CTEQ6.6 NLO pdf s with NLO matrix elements (using MCFM), along with full CTEQ6.6 dataset (2885 points) low mass bb fix low x gluon for UE tt over full mass range higher x gluon W +,W -,Z 0 rapidity distributions quark distributions gg->h (120 GeV) rapidity distribution Choices Use of 2-loop or 1-loop α s Herwig preference for 2-loop Pythia preference for 1-loop Fixed momentum sum rule, or not re-arrange momentum within proton and/or add extra momentum extra momentum appreciated by some of pseudo-data sets but not others and may lose some useful correlations Fix pseudo-data normalizations to K-factors expected from higher order corrections, or let float Scale variation within reasonable range for fine-tuning of agreement with pseudo-data for example, let vector boson scale vary from 0.5 m B to 2.0 m B Will provide pdf s with several of these options for user 24

25 Some observations Pseudo-data has conflicts with global data set that s the motivation of the modified pdf s Requiring better fit to pseudo-data increases chisquare of LO fit to global data set (although this is not the primary concern; the fit to the pseudo-data is) χ 2 improves with α s free in fit no real preference for 1-loop or 2-loop α s that I can see χ 2 improves with momentum sum rule free prefers more momentum (~1.05) normalization of pseudo-data (needed K-factor) gets closer to 1 (since the chisquare gets better if that happens) still some conflicts with DIS data that don t prefer more momentum 25

26 Some results (2-loop α s ) 26

27 Collate/create cross section predictions for LHC processes such as W/Z/ Higgs(both SM and BSM)/ diboson/tt/single top/photons/ jets at LO, NLO, NNLO (where available) CTEQ4LHC/FROOT new: W/Z production to NNLO QCD and NLO EW pdf uncertainty, scale uncertainty, correlations, correlation tools impacts of resummation (q T and threshold) As prelude towards comparison with actual data Using programs such as: MCFM ResBos Pythia/Herwig/Sherpa private codes with CTEQ First on webpage and later as a report Primary goal: have all theorists write out parton level output into ROOT ntuples Secondary goal: make libraries of prediction ntuples available FROOT: a simple interface for writing Monte-Carlo events into a ROOT ntuple file Written by Pavel Nadolsky (nadolsky@physics.smu.edu) CONTENTS ======== froot.c -- the C file with FROOT functions taste_froot.f -- a sample Fortran program writing 3 events into a ROOT ntuple taste_froot0.c -- an alternative toplevel C wrapper (see the compilation notes below) Makefile 27

28 PDF Uncertainties and FROOT Z production in ResBos new way, all pdf weights stored in ntuple, events generated once old way independent ntuple for each pdf 28

29 Ratio of Z p T distributions to that from CTEQ6.6 This type of sensitivity not possible with independent generation pdf s 1,2 pdf s 11,12 pdf s 3,4 29

30 MCFM 5.3 has FROOT built in mcfm.fnal.gov in principle can store scale uncertainties at same time 30

31 CHS Some references

32 Extras

Predictions and PDFs for the LHC

Predictions and PDFs for the LHC Predictions and PDFs for the LHC J. Huston Michigan State University (huston@msu.edu) Sparty we ll talk more about Sparty tomorrow Two advertisements Excitement about my visit Understanding cross sections

More information

Les Houches SM and NLO multi-leg group: experimental introduction and charge. J. Huston, T. Binoth, G. Dissertori, R. Pittau

Les Houches SM and NLO multi-leg group: experimental introduction and charge. J. Huston, T. Binoth, G. Dissertori, R. Pittau Les Houches SM and NLO multi-leg group: experimental introduction and charge J. Huston, T. Binoth, G. Dissertori, R. Pittau Understanding cross sections at the LHC LO, NLO and NNLO calculations K-factors

More information

Difficult calculations

Difficult calculations Difficult calculations The multi-loop and multi-leg calculations are very difficult but just compare them to the complexity of the sentences that Sarah Palin used in her run for the vice-presidency. loops

More information

Les Houches SM and NLO multi-leg group: experimental introduction and charge. J. Huston, T. Binoth, G. Dissertori, R. Pittau

Les Houches SM and NLO multi-leg group: experimental introduction and charge. J. Huston, T. Binoth, G. Dissertori, R. Pittau Les Houches SM and NLO multi-leg group: experimental introduction and charge J. Huston, T. Binoth, G. Dissertori, R. Pittau Understanding cross sections at the LHC LO, NLO and NNLO calculations K-factors

More information

PDFs, the LHC and the Higgs

PDFs, the LHC and the Higgs PDFs, the LHC and the Higgs J. Huston Michigan State University MCTP Spring Symposium on Higgs Physics April 17, 2012 Some references and companion website at http://mstwpdf.hepforge.org/pdf4lhc/ Some

More information

PDFs for Event Generators: Why? Stephen Mrenna CD/CMS Fermilab

PDFs for Event Generators: Why? Stephen Mrenna CD/CMS Fermilab PDFs for Event Generators: Why? Stephen Mrenna CD/CMS Fermilab 1 Understanding Cross Sections @ LHC: many pieces to the puzzle LO, NLO and NNLO calculations K-factors Benchmark cross sections and pdf correlations

More information

CTEQ-TEA update +some discussion topics

CTEQ-TEA update +some discussion topics CTEQ-TEA update +some discussion topics J. Huston for the CTEQ-TEA group Michigan State University PDF4LHC meeting March 7, 2011 CTEQ6.6 Recent history published in 2008: in general use at LHC; one of

More information

QCD for the LHC. PDFs for the LHC Jets and Photons for the LHC Matrix Elements for the LHC the week of Joey

QCD for the LHC. PDFs for the LHC Jets and Photons for the LHC Matrix Elements for the LHC the week of Joey QCD for the LHC PDFs for the LHC Jets and Photons for the LHC Matrix Elements for the LHC the week of Joey J. Huston Michigan State University (huston@msu.edu) Sparty Two advertisements Excitement about

More information

Progress in CTEQ-TEA (Tung et al.) PDF Analysis

Progress in CTEQ-TEA (Tung et al.) PDF Analysis Progress in CTEQ-TEA (Tung et al.) PDF Analysis Sayipjamal Dulat Xinjiang University University In collaboration with CTEQ-TEA Group April 4, 2016 QCD Study Group CTEQ-TEA group CTEQ Tung et al. (TEA)

More information

4/ Examples of PDF Uncertainty. May 2005 CTEQ Summer School 25

4/ Examples of PDF Uncertainty. May 2005 CTEQ Summer School 25 4/ Examples of PDF Uncertainty May 2005 CTEQ Summer School 25 Estimate the uncertainty on the predicted cross section for pp bar W+X at the Tevatron collider. global χ 2 local χ 2 s May 2005 CTEQ Summer

More information

Higgs Cross Sections for Early Data Taking Abstract

Higgs Cross Sections for Early Data Taking Abstract Draft version x.y ATLAS NOTE January 24, 20 1 Higgs Cross Sections for Early Data Taking 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 N. Andari a, K. Assamagan b, A.-C. Bourgaux a, M. Campanelli c, G. Carrillo

More information

Proton anti proton collisions at 1.96 TeV currently highest centre of mass energy

Proton anti proton collisions at 1.96 TeV currently highest centre of mass energy Tevatron & Experiments 2 Proton anti proton collisions at 1.96 TeV currently highest centre of mass energy Tevatron performing very well 6.5 fb 1 delivered (per experiment) 2 fb 1 recorded in 2008 alone

More information

NNPDF. Progress in the NNPDF global analysis. Juan Rojo! STFC Rutherford Fellow! Rudolf Peierls Center for Theoretical Physics! University of Oxford!

NNPDF. Progress in the NNPDF global analysis. Juan Rojo! STFC Rutherford Fellow! Rudolf Peierls Center for Theoretical Physics! University of Oxford! NNPDF Progress in the NNPDF global analysis Juan Rojo STFC Rutherford Fellow Rudolf Peierls Center for Theoretical Physics University of Oxford DIS2016 Workshop DESY, Hamburg, 12/04/2016 NNPDF From the

More information

NLM introduction and wishlist

NLM introduction and wishlist 1. NLM introduction and wishlist he LHC will be a very complex environment with most of the interesting physics signals, and their backgrounds, consisting of multi-parton (and lepton/photon) final states.

More information

CT10, CT14 and META parton distributions

CT10, CT14 and META parton distributions 4 th Hi-X workshop, Frascati, November 21, 2014 CT10, CT14 and META parton distributions Pavel Nadolsky Southern Methodist University On behalf of CTEQ-TEA group S. Dulat, J. Gao, M. Guzzi, T.-J. Hou,

More information

arxiv:hep-ph/ v1 3 Mar 2003

arxiv:hep-ph/ v1 3 Mar 2003 MSUHEP-030303 Inclusive Jet Production, Parton Distributions, and the Search for New Physics Daniel Stump, Joey Huston, Jon Pumplin, and Wu-Ki Tung Department of Physics and Astronomy Michigan State University

More information

PDF at LHC and 100 TeV Collider

PDF at LHC and 100 TeV Collider PDF at LHC and 100 TeV Collider C.-P. Yuan Michigan State University In collaboration with CTEQ-TEA July 24, 2106 International Workshop on MC4BSM@ UCAS-YuQuan, Beijing, China CTEQ-TEA group CTEQ Tung

More information

Lecture 3 Cross Section Measurements. Ingredients to a Cross Section

Lecture 3 Cross Section Measurements. Ingredients to a Cross Section Lecture 3 Cross Section Measurements Ingredients to a Cross Section Prerequisites and Reminders... Natural Units Four-Vector Kinematics Lorentz Transformation Lorentz Boost Lorentz Invariance Rapidity

More information

Back to theory: W production to NLO

Back to theory: W production to NLO Lecture 2 Back to theory: W production to NLO In 4-dimensions, the contribution of the real diagrams can be written (ignoring diagrams with incoming gluons for simplicity) M(ud W + g 2 u ˆ ~ g 2 C F t

More information

CT14 Intrinsic Charm Parton Distribution Functions from CTEQ-TEA Global Analysis

CT14 Intrinsic Charm Parton Distribution Functions from CTEQ-TEA Global Analysis CT14 Intrinsic Charm Parton Distribution Functions from CTEQ-TEA Global Analysis Sayipjamal Dulat On behalf of the CTEQ-TEA collaboration 7th Workshop of the APS Topical Group on Hadronic Physics Washington

More information

Structure Functions and Parton Distribution Functions at the HERA ep Collider

Structure Functions and Parton Distribution Functions at the HERA ep Collider Structure Functions and Parton Distribution Functions at the HERA ep Collider by Chris Targett Adams (University College London) on behalf of the ZEUS and H1 collaborations. Moriond QCD, 16/03/2005 Contents

More information

Precision QCD at the Tevatron. Markus Wobisch, Fermilab for the CDF and DØ Collaborations

Precision QCD at the Tevatron. Markus Wobisch, Fermilab for the CDF and DØ Collaborations Precision QCD at the Tevatron Markus Wobisch, Fermilab for the CDF and DØ Collaborations Fermilab Tevatron - Run II Chicago Ecm: 1.8 1.96 TeV more Bunches 6 36 Bunch Crossing 3500 396ns CDF Booster Tevatron

More information

Parton Distribution Functions, Part 1. Daniel Stump. Department of Physics and Astronomy Michigan State University

Parton Distribution Functions, Part 1. Daniel Stump. Department of Physics and Astronomy Michigan State University Parton Distribution Functions, Part 1 Daniel Stump Department of Physics and Astronomy Michigan State University A. Introduction B. Properties of the PDFs C. Results of CT10-NNLO Global Analysis D. Uncertainties

More information

PDF4LHC update +SCET re-weighting update

PDF4LHC update +SCET re-weighting update PDF4LHC update +SCET re-weighting update J. Huston Michigan State University Tevatron Higgs meeting April 18, 2011 PDF4LHC benchmarks/recommendations We ve called these interim. How/when do we want to

More information

Recent QCD results from ATLAS

Recent QCD results from ATLAS Recent QCD results from ATLAS PASCOS 2013 Vojtech Pleskot Charles University in Prague 21.11.2013 Introduction / Outline Soft QCD: Underlying event in jet events @7TeV (2010 data) Hard double parton interactions

More information

Parton Uncertainties and the Stability of NLO Global Analysis. Daniel Stump Department of Physics and Astronomy Michigan State University

Parton Uncertainties and the Stability of NLO Global Analysis. Daniel Stump Department of Physics and Astronomy Michigan State University Parton Uncertainties and the Stability of NLO Global Analysis Daniel Stump Department of Physics and Astronomy Michigan State University J. Huston, J. Pumplin, D. Stump and W.K. Tung, Stability of NLO

More information

Lecture 5. QCD at the LHC Joey Huston Michigan State University

Lecture 5. QCD at the LHC Joey Huston Michigan State University Lecture 5 QCD at the LHC Joey Huston Michigan State University Tevatron data Wealth of data from the Tevatron, both Run 1 and Run 2, that allows us to test/add to our pqcd formalism with analysis procedures/

More information

Introduction. The LHC environment. What do we expect to do first? W/Z production (L 1-10 pb -1 ). W/Z + jets, multi-boson production. Top production.

Introduction. The LHC environment. What do we expect to do first? W/Z production (L 1-10 pb -1 ). W/Z + jets, multi-boson production. Top production. Introduction. The LHC environment. What do we expect to do first? W/Z production (L 1-10 pb -1 ). W/Z + jets, multi-boson production. Top production. Early discoveries? Conclusions. 2 First collisions

More information

arxiv: v1 [hep-ex] 18 Nov 2010

arxiv: v1 [hep-ex] 18 Nov 2010 PDF sensitivity studies using electroweak processes at LHCb arxiv:1011.4260v1 [hep-ex] 18 Nov 2010 University College Dublin E-mail: francesco.de.lorenzi@cern.ch We describe parton density function sensitivity

More information

QCD at the LHC Joey Huston Michigan State University

QCD at the LHC Joey Huston Michigan State University QCD at the LHC Joey Huston Michigan State University Some references CHS over 1500 downloads so far arxiv:07122447 Dec 14, 2007 goal is to provide a reasonably global picture of LHC calculations (with

More information

Global QCD Analysis of Nucleon Structure: Progress and Prospects

Global QCD Analysis of Nucleon Structure: Progress and Prospects Global QCD Analysis of Nucleon Structure: Progress and Prospects Recent Past (say, up to DIS2002): Experiment: More precision DIS measurements (mainly HERA) and Tevatron inclusive jet production (CDF,

More information

F λ A (x, m Q, M Q ) = a

F λ A (x, m Q, M Q ) = a Parton Distributions and their Uncertainties Jon Pumplin DPF22 Williamfburg 5/25/2 CTEQ6 PDF analysis (J. Pumplin, D. Stump, W.K. Tung, J. Huston, H. Lai, P. Nadolsky [hep-ph/21195]) include new data sets

More information

QCD and jets physics at the LHC with CMS during the first year of data taking. Pavel Demin UCL/FYNU Louvain-la-Neuve

QCD and jets physics at the LHC with CMS during the first year of data taking. Pavel Demin UCL/FYNU Louvain-la-Neuve QCD and jets physics at the LHC with CMS during the first year of data taking Pavel Demin UCL/FYNU Louvain-la-Neuve February 8, 2006 Bon appétit! February 8, 2006 Pavel Demin UCL/FYNU 1 Why this seminar?

More information

3.2 DIS in the quark parton model (QPM)

3.2 DIS in the quark parton model (QPM) Experimental studies of QCD 1. Elements of QCD 2. Tests of QCD in annihilation 3. Studies of QCD in DIS 4. QCD in collisions 3.2 DIS in the quark parton model (QPM) M W Elastic scattering: W = M only one

More information

Direct measurement of the W boson production charge asymmetry at CDF

Direct measurement of the W boson production charge asymmetry at CDF Direct measurement of the boson production charge asymmetry at CDF Eva Halkiadakis Rutgers University For the CDF collaboration Joint Experimental-Theoretical Physics Seminar Fermilab May 22 2009 Outline

More information

QCD Studies at the Tevatron

QCD Studies at the Tevatron QCD Studies at the Tevatron Results from the CDF and DØ Collaborations Markus Wobisch, Louisiana Tech University DESY Seminar, June 24, 2008 Fermilab Tevatron - Run II CDF Chicago pp at 1.96 TeV DØ 36x36

More information

The inclusive jet cross section, jet algorithms, underlying event and fragmentation corrections. J. Huston Michigan State University

The inclusive jet cross section, jet algorithms, underlying event and fragmentation corrections. J. Huston Michigan State University The inclusive jet cross section, jet algorithms, underlying event and fragmentation corrections J. Huston Michigan State University Tevatron in Run II 36 bunches (396 ns crossing time) 2 CDF in Run II

More information

Tests of QCD Using Jets at CMS. Salim CERCI Adiyaman University On behalf of the CMS Collaboration IPM /10/2017

Tests of QCD Using Jets at CMS. Salim CERCI Adiyaman University On behalf of the CMS Collaboration IPM /10/2017 Tests of QCD Using Jets at CMS Salim CERCI Adiyaman University On behalf of the CMS Collaboration IPM-2017 24/10/2017 2/25 Outline Introduction QCD at LHC QCD measurements on the LHC data Jets The strong

More information

Measurement of photon production cross sections also in association with jets with the ATLAS detector

Measurement of photon production cross sections also in association with jets with the ATLAS detector Nuclear and Particle Physics Proceedings 00 (07) 6 Nuclear and Particle Physics Proceedings Measurement of photon production cross sections also in association with jets with the detector Sebastien Prince

More information

QCD at CDF. Régis Lefèvre IFAE Barcelona On behalf of the CDF Collaboration

QCD at CDF. Régis Lefèvre IFAE Barcelona On behalf of the CDF Collaboration QCD at CDF Régis Lefèvre IFAE Barcelona On behalf of the CDF Collaboration Jet Inclusive Cross-Section Underlying event studies Jet Shapes Specific processes _ W+Jets, γ + γ, γ + b/c, b-jet / bb jet Diffraction

More information

Top production measurements using the ATLAS detector at the LHC

Top production measurements using the ATLAS detector at the LHC Top production measurements using the ATLAS detector at the LHC INFN, Sezione di Bologna and University of Bologna E-mail: romano@bo.infn.it This paper is an overview of recent results on top-quark production

More information

Work Order: Theoretical Calculations Needed for the LHC

Work Order: Theoretical Calculations Needed for the LHC Work Order: Theoretical Calculations Needed for the LHC Requestor: J. Huston Delivery location: Michigan State University Requested delivery date: before LHC data Total (CHF):free Also online at ROP http://stacks.iop.org/0034-4885/70/89

More information

QCD at hadron colliders

QCD at hadron colliders QCD at hadron colliders This will be a brief experimentalist s view, with a concentration on the two hadron-hadron colliders mentioned in the previous talk If you want a good reference book for graduate

More information

Testing QCD at the LHC and the Implications of HERA DIS 2004

Testing QCD at the LHC and the Implications of HERA DIS 2004 Testing QCD at the LHC and the Implications of HERA DIS 2004 Jon Butterworth Impact of the LHC on QCD Impact of QCD (and HERA data) at the LHC Impact of the LHC on QCD The LHC will have something to say

More information

Overview of PDF-sensitive measurements from Run I in ATLAS

Overview of PDF-sensitive measurements from Run I in ATLAS Overview of PDF-sensitive measurements from Run I in ATLAS on behalf of ATLAS Parton Distributions for the LHC 05 February 5- ATLAS SM Measurements Traditional processes for PDF fits include jets, Drell-Yan

More information

Top and Electroweak Physics at. the Tevatron

Top and Electroweak Physics at. the Tevatron Top and Electroweak Physics at 1 the Tevatron Graham W. Wilson University of Kansas for the CDF and DØ Collaborations April APS 2008, St. Louis, MO. April 12 th 2008 Introduction Top Physics Overview Cross-section

More information

Results on the proton structure from HERA

Results on the proton structure from HERA Results on the proton structure from HERA Shima Shimizu (Univ. of Tokyo) Introduction HERA physics Proton structure The world only e-p collider: HERA electron proton A unique collider at DESY, Hamburg

More information

Results on the proton structure from HERA

Results on the proton structure from HERA Results on the proton structure from HERA Shima Shimizu (CERN) 7/Jan/ @ KEK The world only e-p collider: HERA electron proton A unique collider at DESY, Hamburg H ZEUS Circumference: 6.3 km Operated since

More information

W/Z + jets and W/Z + heavy flavor production at the LHC

W/Z + jets and W/Z + heavy flavor production at the LHC W/Z + jets and W/Z + heavy flavor production at the LHC A. Paramonov (ANL) on behalf of the ATLAS and CMS collaborations Moriond QCD 2012 Motivation for studies of jets produced with a W or Z boson Standard

More information

Measurement of W-boson Mass in ATLAS

Measurement of W-boson Mass in ATLAS Measurement of W-boson Mass in ATLAS Tai-Hua Lin on behalf of the ATLAS collaboration Blois 2017, France Outline Motivation for W mass measurement Measurement Strategy Method: Monte Carlo Templates Fits

More information

Progress On Studying Uncertainties Of Parton Distributions And Their Physical Predictions

Progress On Studying Uncertainties Of Parton Distributions And Their Physical Predictions Progress On Studying Uncertainties Of Parton Distributions And Their Physical Predictions Brief summary of traditional global QCD analysis What s uncertain about parton distribution functions? Studying

More information

Physics at Hadron Colliders Part II

Physics at Hadron Colliders Part II Physics at Hadron Colliders Part II Marina Cobal Università di Udine 1 The structure of an event One incoming parton from each of the protons enters the hard process, where then a number of outgoing particles

More information

PDF constraints from! recent LHCb data

PDF constraints from! recent LHCb data PDF constraints from recent LHCb data Juan Rojo VU Amsterdam & Theory group, Nikhef LHCb Electroweak, Top & Jets Joint Meeting 3/0/07 Juan Rojo LHCb EW meeting, 3/0/07 ) [ref] ) / g ( x, Q g ( x, Q.5..05

More information

2. HEAVY QUARK PRODUCTION

2. HEAVY QUARK PRODUCTION 2. HEAVY QUARK PRODUCTION In this chapter a brief overview of the theoretical and experimental knowledge of heavy quark production is given. In particular the production of open beauty and J/ψ in hadronic

More information

Status of parton distributions and impact on the Higgs

Status of parton distributions and impact on the Higgs Status of parton distributions and impact on the Higgs Daniel de Florian Dpto. de Física - FCEyN- UBA Higgs Hunting 0 Paris - July 8 Introduction to PDFs Summary of available fits Comparison of PDFs Impact

More information

Intrinsic Heavy Quarks

Intrinsic Heavy Quarks Intrinsic Heavy Quarks Ingo Schienbein UGA/LPSC Laboratoire de Physique Subatomique et de Cosmologie Many thanks to my long term collaborators on heavy quark related topics: Fred Olness, Aleksander Kusina,

More information

Jet reconstruction in W + jets events at the LHC

Jet reconstruction in W + jets events at the LHC Jet reconstruction in W + jets events at the LHC Ulrike Schnoor Michigan State University High Energy Physics Institutsseminar IKTP TU Dresden, Nov 4, 010 Jet reconstruction in W + jets events at the LHC

More information

W/Z inclusive measurements in ATLAS

W/Z inclusive measurements in ATLAS /Z inclusive measurements in J-B. Blanchard On behalf of the Atlas collaboration Standard Model @ LHC 1-1/4/1 Introduction /Z physics at the LHC LHC: a /Z factory... heoretically well understood bosons,

More information

Physique des Particules Avancées 2

Physique des Particules Avancées 2 Physique des Particules Avancées Interactions Fortes et Interactions Faibles Leçon 6 Les collisions p p (http://dpnc.unige.ch/~bravar/ppa/l6) enseignant Alessandro Bravar Alessandro.Bravar@unige.ch tél.:

More information

Novel Measurements of Proton Structure at HERA

Novel Measurements of Proton Structure at HERA Introduction Combined Cross Sections & QCD Fits NC & CC Cross Section Measurements F L Summary Novel Measurements of Proton Structure at HERA Katie Oliver University of Oxford On behalf of the H1 and ZEUS

More information

HERAFitter - an open source QCD Fit platform

HERAFitter - an open source QCD Fit platform DESY (Deutsches Elektronen-Synchrotron) E-mail: hayk.pirumov@desy.de The first stable release of the HERAFitter package is presented. HERAFitter is an open source project which provides a framework for

More information

Theoretical Predictions For Top Quark Pair Production At NLO QCD

Theoretical Predictions For Top Quark Pair Production At NLO QCD Theoretical Predictions For Top Quark Pair Production At NLO QCD Malgorzata Worek Wuppertal Uni. HP2: High Precision for Hard Processes, 4-7 September 2012, MPI, Munich 1 Motivations Successful running

More information

Electroweak results. Luca Lista. INFN - Napoli. LHC Physics

Electroweak results. Luca Lista. INFN - Napoli. LHC Physics Electroweak results Luca Lista INFN - Napoli EWK processes at LHC p p W and Z production in pp collisions proceeds mainly form the scattering of a valence quark with a sea anti-quark The involved parton

More information

PANIC August 28, Katharina Müller on behalf of the LHCb collaboration

PANIC August 28, Katharina Müller on behalf of the LHCb collaboration Measurements with electroweak bosons at LHCb PANIC August 28, 2014 on behalf of the LHCb collaboration Outline LHCb detector Measurements with electroweak bosons Motivation Z production Z plus jets, Z

More information

The gluon PDF: from LHC heavy quark production to neutrino astrophysics

The gluon PDF: from LHC heavy quark production to neutrino astrophysics ! The gluon PDF: from LHC heavy quark production to neutrino astrophysics Juan Rojo! VU Amsterdam & Theory group, Nikhef!! Nikhef Jamboree 2016! Groningen, 13/12/2016 Juan Rojo 1 Nikhef Jamboree, 13/12/2016

More information

Measurements of the Vector boson production with the ATLAS Detector

Measurements of the Vector boson production with the ATLAS Detector Measurements of the Vector boson production with the ATLAS Detector Pavel Staroba for ATLAS Collaboration 1 W/Z measurements at ATLAS More than 50 publications in total. Wide range of topics is covered.

More information

Resummation in PDF fits. Luca Rottoli Rudolf Peierls Centre for Theoretical Physics, University of Oxford

Resummation in PDF fits. Luca Rottoli Rudolf Peierls Centre for Theoretical Physics, University of Oxford Resummation in PDF fits Luca Rottoli Rudolf Peierls Centre for Theoretical Physics, University of Oxford LHC, New Physics, and the pursuit of Precision LHC as a discovery machine Higgs Boson 10 1 BSM particles

More information

PoS(EPS-HEP 2013)455. HERAFitter - an open source QCD fit framework. Andrey Sapronov. on behalf of theherafitter team

PoS(EPS-HEP 2013)455. HERAFitter - an open source QCD fit framework. Andrey Sapronov. on behalf of theherafitter team on behalf of theherafitter team JINR (Joint Institute for Nuclear Research, Dubna) E-mail: sapronov@cern.ch The presented QCD analysis framework, HERAFitter, is an open source PDF fitting tool developed

More information

Properties of Proton-proton Collision and. Comparing Event Generators by Multi-jet Events

Properties of Proton-proton Collision and. Comparing Event Generators by Multi-jet Events Properties of Proton-proton Collision and Comparing Event Generators by Multi-jet Events Author: W. H. TANG 1 (Department of Physics, The Chinese University of Hong Kong) Supervisors: Z. L. MARSHALL 2,

More information

Confronting Theory with Experiment at the LHC

Confronting Theory with Experiment at the LHC Confronting Theory with Experiment at the LHC Mojtaba Mohammadi Najafabadi School of Particles and Accelerators 21 st IPM Physics Spring Conference May 21-22, 2014 1 Standard Model: a theory of interactions

More information

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden Physics at LHC lecture one Sven-Olaf Moch Sven-Olaf.Moch@desy.de DESY, Zeuthen in collaboration with Martin zur Nedden Humboldt-Universität, October 22, 2007, Berlin Sven-Olaf Moch Physics at LHC p.1 LHC

More information

FERMI NATIONAL ACCELERATOR LABORATORY

FERMI NATIONAL ACCELERATOR LABORATORY FERMI NATIONAL ACCELERATOR LABORATORY arxiv:0908.1374v1 [hep-ex] 10 Aug 2009 TEVEWWG/WZ 2009/01 FERMILAB-TM-2439-E CDF Note 9859 D0 Note 5965 10 th August 2009 Updated Combination of CDF and D0 Results

More information

The Strong Interaction and LHC phenomenology

The Strong Interaction and LHC phenomenology The Strong Interaction and LHC phenomenology Juan Rojo STFC Rutherford Fellow University of Oxford Theoretical Physics Graduate School course Lecture 9: Parton Distributions and LHC phenomenology QCD partons

More information

PDF Studies at LHCb! Simone Bifani. On behalf of the LHCb collaboration. University of Birmingham (UK)

PDF Studies at LHCb! Simone Bifani. On behalf of the LHCb collaboration. University of Birmingham (UK) PDF Studies at LHCb! Simone Bifani University of Birmingham (UK) On behalf of the LHCb collaboration MENU 213 Rome 3th September - 4th October 213 Outline Introduction Analyses» Z/γ* ll, l =, e, τ#» W

More information

Standard Model Handles and Candles WG (session 1)

Standard Model Handles and Candles WG (session 1) Standard Model Handles and Candles WG (session 1) Conveners: Experiment: Craig Buttar, Jorgen d Hondt, Markus Wobisch Theory: Michael Kramer, Gavin Salam This talk: the jets sub-group 1. Background + motivation

More information

Measurement of t-channel single top quark production in pp collisions

Measurement of t-channel single top quark production in pp collisions Measurement of t-channel single top quark production in pp collisions (on behalf of the CMS collaboration) INFN-Napoli & Università della Basilicata E-mail: Francesco.Fabozzi@cern.ch Measurements of t-channel

More information

Determination of the strong coupling constant from multi-jet production with the ATLAS detector

Determination of the strong coupling constant from multi-jet production with the ATLAS detector Determination of the strong coupling constant from multi-jet production with the ATLAS detector WNPPC 22 Marc-André Dufour McGill University February 22 Marc-André Dufour February 22 Determination of strong

More information

from D0 collaboration, hep-ex/

from D0 collaboration, hep-ex/ At present at the Tevatron is extracted from the transverse-mass distribution Events / GeV/c 2 2000 1500 1000 500 Fit region 0 50 60 70 80 90 100 110 120 from D0 collaboration, hep-ex/0007044 Transverse

More information

arxiv: v1 [hep-ex] 15 Jan 2019

arxiv: v1 [hep-ex] 15 Jan 2019 CMS-CR-8/37 January 7, 9 Top Quark Modelling and Tuning at CMS arxiv:9.559v [hep-ex] 5 Jan 9 Emyr Clement on behalf of the CMS Collaboration University of Bristol Recent measurements dedicated to improving

More information

Proton Structure Functions: Experiments, Models and Uncertainties.

Proton Structure Functions: Experiments, Models and Uncertainties. Proton Structure Functions: Experiments, Models and Uncertainties. S. Glazov, DESY IKTP seminar, July 8. Disclaimer Nothing in this talk should be interpreted as the final knowledge on proton structure.

More information

Parton Distribution Functions and the LHC

Parton Distribution Functions and the LHC Parton Distribution Functions and the LHC James Stirling Cambridge University introduction: parton distribution functions the MSTW* project implications for LHC physics *with Alan Martin, Robert Thorne,

More information

QCD at/for the LHC Joey Huston Michigan State University. 21 June seminar at Orsay

QCD at/for the LHC Joey Huston Michigan State University. 21 June seminar at Orsay QCD at/for the LHC Joey Huston Michigan State University 21 June seminar at Orsay Some references CHS over 1500 downloads so far arxiv:07122447 Dec 14, 2007 goal is to provide a reasonably global picture

More information

K-factors and jet algorithms. J. Huston

K-factors and jet algorithms. J. Huston K-factors and jet algorithms J. Huston 4. Identifying important missing processes The Les Houches wishlist from 2005/2007 is filling up slowly but progressively. Progress should be reported and a discussion

More information

Measurement of the jet production properties at the LHC with the ATLAS Detector

Measurement of the jet production properties at the LHC with the ATLAS Detector Measurement of the jet production properties at the LHC with the ALAS Detector Stanislav okar Comenius University, Bratislava On behalf of the ALAS collaboration Different features of the jet production

More information

Results from D0: dijet angular distributions, dijet mass cross section and dijet azimuthal decorrelations

Results from D0: dijet angular distributions, dijet mass cross section and dijet azimuthal decorrelations Results from D: dijet angular distributions, dijet mass cross section and dijet azimuthal decorrelations Zdenek Hubacek Czech Technical University in Prague E-mail: zdenek.hubacek@cern.ch on behalf of

More information

Review of LHCb results on MPI, soft QCD and diffraction

Review of LHCb results on MPI, soft QCD and diffraction Review of LHCb results on MPI, soft QCD and diffraction Marcin Kucharczyk on behalf of LHCb collaboration HNI Krakow EDS Blois 2015, Borgo (Corse), 30.06.2015 Outline LHCb - general purpose forward experiment

More information

Matrix Elements for the LHC. J. Huston Michigan State University, IPPP Durham

Matrix Elements for the LHC. J. Huston Michigan State University, IPPP Durham Matrix Elements for the LHC J. Huston Michigan State University, IPPP Durham Some references CHS over 1500 downloads so far goal is to provide a reasonably global picture of LHC calculations (with rules

More information

Measurement of Properties of Electroweak Bosons with the DØ Detector

Measurement of Properties of Electroweak Bosons with the DØ Detector Measurement of Properties of Electroweak Bosons with the DØ Detector Laboratoire de Physique Subatomique et de Cosmologie, 53, rue des Martyrs, 38026, Grenoble Cedex, France. E-mail: Hengne.Li@in2p3.fr

More information

Stability of NLO Global Analysis and Implications for Hadron Collider Physics

Stability of NLO Global Analysis and Implications for Hadron Collider Physics January 26, 2005 MSU-HEP-5 CTEQ-5 Stability of NLO Global Analysis and Implications for Hadron Collider Physics J. Huston, J. Pumplin, D. Stump, W.K. Tung Michigan State University, E. Lansing, MI 48824

More information

Distinguishing quark and gluon jets at the LHC

Distinguishing quark and gluon jets at the LHC Distinguishing quark and jets at the LHC Giorgia Rauco (on behalf of the ALAS and CMS Collaborations) Universität Zürich, Zürich, Switzerland Abstract: Studies focused on discriminating between jets originating

More information

Precision Jet Physics At the LHC

Precision Jet Physics At the LHC Precision Jet Physics At the LHC Matthew Schwartz Harvard University JETS AT THE LHC An (almost) universal feature of SUSY is and Source: Atlas TDR SIGNAL VS. BACKGROUND Source: Atlas TDR Can we trust

More information

QCD Measurements at HERA

QCD Measurements at HERA QCD Measurements at HERA Armen Bunyatyan, Max-Planck-Institut für Kernphysik, Heidelberg, Germany Yerevan Physics Institute, Armenia November, 7 Abstract A review is presented of recent results in QCD

More information

F c 2 measurements at HERA. Katerina Lipka

F c 2 measurements at HERA. Katerina Lipka F c measurements at HERA Katerina Lipka New trends in HERA Physics, Ringberg 8 Charm production at HERA: why now? HERA I : PDF central measurement of HERA HERA I F c / F Q = GeV PDF obtained from the fits

More information

Parton Distribution Functions and Global Fitting

Parton Distribution Functions and Global Fitting Parton Distribution Functions and Global Fitting J.F. Owens Physics Department, Florida State University 007 CTEQ Summer School May 30 - June 7, 007 Madison, Wisconsin 1. Treatment of Errors Goodness of

More information

Paul Newman Birmingham University. Can we add ep and ea collisions to the existing LHC pp, AA and pa programme?

Paul Newman Birmingham University. Can we add ep and ea collisions to the existing LHC pp, AA and pa programme? Paul Newman Birmingham University for the LHeC Study Group Strangeness in Quark Matter Birmingham, Tues 23 July 2013 Can we add ep and ea collisions to the existing LHC pp, AA and pa programme? towards

More information

arxiv: v1 [hep-ex] 21 Aug 2011

arxiv: v1 [hep-ex] 21 Aug 2011 arxiv:18.155v1 [hep-ex] 1 Aug 011 Early Searches with Jets with the ATLAS Detector at the LHC University of Chicago, Enrico Fermi Institute E-mail: georgios.choudalakis@cern.ch We summarize the analysis

More information

HERAPDF fits of the proton parton distribution functions (PDFs)

HERAPDF fits of the proton parton distribution functions (PDFs) HERAPDF fits of the proton parton distribution functions (PDFs) AM Cooper-Sarkar, Oxford Benasque Feb 2015 THE final inclusive combination The HERAPDF2.0 today The HERAPDF2.0 tomorrow Beyond HERAPDF 1

More information

CTEQ-TEA Parton distribution functions and α s

CTEQ-TEA Parton distribution functions and α s CTEQ-TEA Parton distribution functions and α s C.-P. Yuan Michigan State University in collaboration with H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. Nadolsky, J. Pumplin, and D. Stump Alphas Workshop, MPI

More information

Moriond QCD. Latest Jets Results from the LHC. Klaus Rabbertz, KIT. Proton Structure (PDF) Proton Structure (PDF) Klaus Rabbertz

Moriond QCD. Latest Jets Results from the LHC. Klaus Rabbertz, KIT. Proton Structure (PDF) Proton Structure (PDF) Klaus Rabbertz Latest Jets Results from the LHC Proton Structure (PDF) Proton Structure (PDF), KIT 1 Flash Menu Motivation Accelerators and Detectors Jet Algorithms and Calibration Inclusive Jets Dijets and 3-Jets The

More information

Toward an Understanding of Hadron-Hadron. Collisions From Feynman-Field to the LHC

Toward an Understanding of Hadron-Hadron. Collisions From Feynman-Field to the LHC Toward an Understanding of Hadron-Hadron Collisions From Feynman-Field to the LHC Rick Field University of Florida Outline of Talk The old days of Feynman-Field Phenomenology. XXIèmes Rencontres de Blois

More information