The Drell Levy Yan Relation: ep vs e + e Scattering to O(ff 2 s ) Johannes Blümlein DESY 1. The DLY Relation 2. Structure and Fragmentation Functions

Size: px
Start display at page:

Download "The Drell Levy Yan Relation: ep vs e + e Scattering to O(ff 2 s ) Johannes Blümlein DESY 1. The DLY Relation 2. Structure and Fragmentation Functions"

Transcription

1 The DrellLevyYan Relation: ep vs e e Scattering to O(ff s ) Johannes Blümlein DESY. The Relation. Structure and Fragmentation Functions. Scheme Invariant Combinations 4. DrellYanLevy Relations for Evolution Kernels 5. Conclusions Based on : J. Blümlein, V. Ravindran, and W.L. van Neerven, hep-ph/48, Nucl. Phys. B in print J. Blümlein RDCOR, Carmel, C

2 . The Relation Hard Processes : Structure Functions: e p! e X Fragmentation Functions: e e! px d ff dxdq ο L μνw μν Drell, Levy and Yan (969) anticipated the crossing relation W (S) μν (q; p) = W μν (T ) (q; p) for the two reactions. ffl simple scalar-fermion ladder model with ffi( ) source J. Blümlein RDCOR, Carmel, C

3 What can we learn about the relation of these processes in QCD? ffl Factoriation of the Structure Functions ep and the Fragmentation Functions e e into: ffl nonperturbative input at Q ffl perturbative evolution kernel Q! Q The Crossing Relations can be studied in perturbative QCD only for the Evolution Kernels. Crossing for non-perturbative inputs?! LGT Scaling Variables: x B = Q p:q ;» x B» DIS x E = p:q Q ;» x E» e e annihilation Both domains are connected at x =, which is usually a singular point. What are the Conditions for Continuation from one Domain to the other for the Evolution Kernels? J. Blümlein RDCOR, Carmel, C

4 How is the Evolution of Structure Functions and Fragmentation Functions Related? To which Order does this Relation exist? History ffl Early Investigations Drell, Levy and Yan 969,97 Pestieau and Roy, 969 Gribov and Lipatov 97, 97 Fishbane and Sullivan 97 Suri 97; Gatto and Preparata 97, Dahmen and Steiner 97 Gatto, Menotti, Vendramin 97,97 Landshoff, Polkinghorne, Short ltarelli and Maiani 97/7 Bukhvostov, Lipatov and Popov 975 For a review see: P. Menotti, in: Proceedings of the Informal Meeting on Electromagnetic Interactions, Frascati, May, 97, Pisa Preprint SNS /7. ffl Later Developments Curci, Furmanski and Petronio 98 Floratos, Lacae and Kounnas 98 Stratmann and Vogelsang 997 Blümlein, Ravindran and van Neerven 998/ J. Blümlein RDCOR, Carmel, C 4

5 . Structure and Fragmentation Functions F i (x; Q ) = X k=q;g r Q F ik ff s (μ ); μ ; μ μ ;ffl Ω k ^f (x) ; r ^f is the bare parton density and Ω denotes the Mellinconvolution, with (f Ω g)() = Z Z d d f ( )g( )ffi( ) : ^F ik (; ff s (μ Q r ); X l=q;g μ ; μ μ ;ffl) = r ψc i;l ff s (μ Q r ); μ ; μ f f μ r l=q;g! Ω lk ff s (μ r ); μ f μ ; μ f μ ;ffl () : r lk denotes the transition functions and C i;l the coefficient functions. X! F i (x; Q ) = ψc i;l ff s (μ Q r ); μ ; μ f Ω f μ f l ff s (μ r ); μ f r μ ; μ f μ (x) ; r The structure functions contain the renormalied parton densities f l. f l ;ff s (μ r ); μ f μ ; μ f X! μ = ψlk ff s (μ r ); μ f r μ ; μ f μ ;ffl Ω ^f k () : r k=q;g The Transition Functions obey the RGE f fi(a s (μ s (μ f ) ff ffi lm P lm(a s (μ f );ffl) Ω mk a s (μ f ); μ f μ ; ;ffl () = where a s (μ f ) ff s(μ f ) 4ß ; = ffi( ) ; J. Blümlein RDCOR, Carmel, C 5

6 The strong coupling constant evolves as μ r d a s (μ r ) d μ r = fi a s (μ r ) fi a s (μ r ) ; The Coefficient Functions obey the RGE f fi(a s (μ s (μ f ) ff ffi lm P lm(a s (μ f );ffl) Ω C i;m a s (μ Q f ); μ ; () = : f Factoriation Scheme Transformations lk! X m=q;g Z lm Ω μ mk ; C i;l! X The splitting functions transform as: P lk = X fm;ng=q;g m=q;g Z lm Ω μ P mn Ω (Z ) nk fi(a s ) likewise the coefficient functions obey: ψ C i;q = ffi( ) a s C μ() i;q Z()! a s ψ μc i;m Ω Z ml X m=q;g Z lm Ω μc () i;q Z() (Z () )! Z () Ω Z gq () C μ() i;q Ω Z() C μ() i;g Ω Z() gq ; ψ C i;g = a μ s C () i;g Z()! a s! C μ() i;q Ω Z() C μ() i;g Ω Z() gg : ψ μc () i;g Z() Z () Ω Z gg () Z () d da s (Z ) mk J. Blümlein RDCOR, Carmel, C 6

7 The Mellin Integrals above can be turned into a simple algebraic structure by the transform with (f Ω g) N = Z f (N) = d N f () Z d N (f Ω g)() = f N g N : The combination of the above RGE's leads thus to the RGE for the structure and fragmentation functions: 4 f fi(a s f )) 5 N s (μ i f ) (x; Q ) = ; which are scheme invariant. Linearly Independent Pairs of Structure Functions can be expressed as combinations of the singlet quark and gluon densities f q;g and the respective coefficient functions. F N I (Q ) = f N q f N g ψ ψ a s (μ f ); μ f Q a s (μ f ); μ f Q!! C N I;q C N I;g ψ ψ a s (μ Q f ); μ f a s (μ Q f ); μ f This decomposition is scheme and scale (μ f ) F N F N B CN q CBq N C N g C N f N q f N g!! : ; I = ; B: J. Blümlein RDCOR, Carmel, C 7

8 . Scheme Invariant Combinations Evolution Equations of Structure or Fragmentation Functions do normally exhibit Factoriation and Renormaliation Scheme dependences. Instead of process-independent scheme-dependent Evolution equations for Partons one may think of Process-Dependent Scheme-Independent evolution equations for Observables. Evolution @ F N F N B = KN KB N KN B KN F N F N B ; evolution variable ) t = as (Q ) ln fi a s (Q ; physical evolution kernels K N IJ = 4 N I;m C N m;j (t) fi a s (Q ) fi(a s (Q )) CN I;m (t)fln mn (t) C N n;j (t) 5 with X KIJ N = a n s (Q ) K N (n) IJ n= Possible choices for F and F B are F =@t or F and F L. For these sets of physical observables we will examine the crossing-behaviour from S to T-Channel. The dependence on the renormaliation scheme is only removed if the perturbation series is summed to all orders. J. Blümlein RDCOR, Carmel, C 8

9 System : F (x; Q );@F =@t(x; Q ) Leading Order : K N() = K N() d K N() d = 4 = N() fl flgg N() fl N() fl N() gq K N() dd = fl N() fl N() gg Next-to-Leading Order : [Furmanski, Petronio 98] K N() = K N() d = K N() d = 4 4 N() fl gg fl N() fi fl N() flgg N() fl N() fl N() gg CN() N() ;q fl fi fi C N() ;g fl fl N() 4 (fl N() fl N() gq fl N() flgq N() fl N() flgg N() fi ) fl N() flgg N() fln() fl N() fl N() fl N() fl N() flgq N() fl N() gq 5 fi fl N() 5 () J. Blümlein RDCOR, Carmel, C 9

10 K N() dd = fl N() fi fl N() flgg N() N() fl fi 4 C N() ;g fl N() gg fl N() flgg N() fi 4fi C N() ;q fi fl N() 5 ( e F N L F N L =(a s(q )C N() )) System : F (x; Q );F L (x; Q ) Leading Order : [Catani 997] K N() = fl N() K N() L = fl N() K N() L = fl N() gq K N() LL = fl N() gg Next-to-Leading Order : CN() C N() fl CN() C N() fl N() C N() C N() fl N() K N() = fl N() fi fl N() fi C N() C N() C N() ;g fl N() CN() C N() C N() C N() fl N() flgg N() fl N() fi fl N() fi CN() C N() C N() ;g flgg N() [BRvN ] J. Blümlein RDCOR, Carmel, C

11 4 CN() C N() C N() ;g fl CN() C N() gq fi C C N() ;g CN() C N() ;q CN() C N() C N() ;g C N() C N() 5 fl N() K N() L = fl N() fi fl N() C N() ;q C N() ;g (fl N() C N() C N() C N() K N() L = fl N() gq fi fi fl N() CN() C N() CN() C N() 4 CN() C N() CN() C CN() C N() ;g CN() C N() C N() C N() fl N() fi fl N() fi flgg N() fi flgg N() fi flgg N() )fi C N() ;g fl N() fl N() fi fl N() fi CN() C N() C N() ;q C N() ;g C N() ;q 5 fl CN() C N() C N() ;g C N() CN() C N() C N() C N() C N() C N() C N() ;g C N() N() fl C N() CN() C N() 5 fl N() C N() C N() J. Blümlein RDCOR, Carmel, C

12 4 CN() C N() CN() C CN() C N() CN() C N() K N() LL = fl N() gg fi fi fl N() gg CN() C CN() C N() C N() ;g fl N() C N() ;g fl N() gq C N() ;g C N() C N() C N() ;g CN() C N() C N() C N() C N() ;q fl N() fi fl N() fi 4 CN() C N() 5 fl N() C N() C N() C N() ;g flgg N() CN() C N() C N() C N() C N() fi C N() 5 fl N() gg J. Blümlein RDCOR, Carmel, C

13 4. Relations for Evolution Kernels Original Crossing Relation: Wμν T (q; p) = W μν S (q; p) [Drell et al 969] Modified for particles with different spin s i in a simple ladder model F (S) i (x B ) = () (s s ) x E F (T ) i x E ; i = ; ;L: [Bukhvostov et al. 975] Similar relations are expected to hold for the QCD evolution kernels in LO. In the evolution kernels singular contributions like ln i ( ) ffi( ); = ffi( ) lni " ln i ( ) ( " ) (i ) ( ) arise, which have to be continued analytically. ; Continuation Rules: [ BRvN ] ln P ()! P(=) P ii! P ii P ;P gq! cross color pre factor Q =μf Q =μf spacelike! ln timelike iß : ffi( )! ffi( ) ln( )! ln( ) ln() iß ln(")! ln(") iß J. Blümlein RDCOR, Carmel, C

14 LO unpolaried and polaried Splitting Functions: P () () = P () () = 4C F» ( ) ffi( ) P () qg () = 8T RN f ( ) Λ P () qg () = 8T RN f ( ) Λ P () Gq () = 4C F P () Gq () = 4C F P () GG () = 8C P () GG () = 8C ( ) ( )»» ( ) ( ) ( ) fi ffi( ) fi ffi( ) Crossing Relations: μp () = P () μp gq () = N f T f P gq () C F Note the Color Factors! lready here μp () = C F P () N f T f μp gg () = P gg () ; ffi( )! ffi( ) : is required. J. Blümlein RDCOR, Carmel, C 4

15 NLO unpolaried and polaried Splitting Functions: μp ()S μp ()S μp ()S gq μp ()S gg P ()T = fi Z T () Z T () Ω μ P () gq Z T () gq Ω μ P () ; P ()T gq = fi Z T () Z T () Ω ( μ P () gg μ P () ) μ P () Ω (Z T () Z T () gg ) ; P ()T = fi Z T () gq Z T () gq Ω ( μ P () μ P () gg ) μ P () gq Ω (Z T () gg Z T () ) ; P ()T gg = fi Z T () gg Z T () gq Ω μ P () Z T () Ω μ P () gq ; where for unpolaried scattering Z T () ij = P () ji ln() a ji : a = a gg = ; a = ; a gq = ; and for polaried scattering a ij = : (c.f. also [Stratmann, Vogelsang 997]) J. Blümlein RDCOR, Carmel, C 5

16 NLO unpolaried and polaried Coefficient Functions:» ρ (T )() C ;q () C (S)() ;q ρ (T )() C ;g () C F C (S)() ;g N f T f ff ff (T )() = Z (T )() = Z : NLO unpolaried Longitudinal Coefficient Functions:» C (T )() ρ (T )() C () C F N f T f () C(S)() C (S)() ff = ; = : NNLO unpolaried Longitudinal Coefficient Functions: Coefficient fcts. see [Zijlstra, vn 99,994], [Rijken, vn 996,997]. C (T )()» ρ () C(S)() (T )() Z Ω C()S Lq ρ (T )() C () C F N f T f (T )() Z Ω C(S)() ff = ρ (T )() Z gq Ω C F N f T f C(S)() C (S)() ff = ρ (T )() Z gg Ω C F N f T f C()S ff ff ; : J. Blümlein RDCOR, Carmel, C 6

17 To derive these relations extensive use has to be made of convolution relations like ln( ) ln() Ω = 4 S; ( ) ln( ) ln( ) ln() ln() ln ( )ln() ln()ln( ) ln () ln( )ln () Li ( ) ln( ) Li ( ) ln()li ( ) Li ( ) 8 < ( Ω ) ln( ) = 4: S ; ( ) ln( ) 4 ln( ) 5 ln( ) ln() 4 ln() ln( )ln() 4 ln( )ln() ln( )ln () 4 ln() # " ln( ) Li ( ) 4 Li ( ) and relations between Nielsen integrals of various arguments (cf. [JB, Kurth 999]) Li S ; Li S ; = ln () Li ( ) ; = 6 ln () S ; ( ) ; = 6 ln () S ; ( ) Li ( ) ln()li ( ) ; = S ; () Li () ln()li () 6 ln () () : 9 = ; Transformations for other NNLO coefficient functions, see [BRvN ]. J. Blümlein RDCOR, Carmel, C 7

18 Transformation of the Physical Evolution Kernels Define ffik IJ := K T IJ KS IJ: The transforms for the F -F L system read: ffik N() = ffifl N() 4 fficn() μc N() μc N() μc N() ffiflgq N() μfl gq N() ffic N() ;g ffic N() ;q μn() μc N() μc N() μc N() μc N() μc N() μc N() μc N() ffic N() ;g μfl N() ffic N() ;g μfl gg N() ffic N() ;g ffic N() ;g μc N() μc N() ffic N() μc N() 5 μfl N() = ffifl N() (T )N() fi Z μfl N() gq (T )N() Z μfl N() (T )N() Z gq μc N() μc N() (ffiflgq N() (T )N() fi Z Z (T )N() μfl N() Z (T )N() μfl N() Z (T )N() gg μfl N() (T )N() Z μfl N() gg ) : J. Blümlein RDCOR, Carmel, C 8

19 ffik N() L = ffiflgq N() μfl N() (T )N() fi Z (T )N() (Z ffik N() LL = ffiflgg N() fi μfl gg N() Z μc N() μc N() ffik N() L = ffifl N() Z hffifl N() gq (T )N() μfl gg N() μc N() μc N() ffiflgg N() (T )N() μfl gq N() μc N() μc N() Z μn() μc N() (T )N() Z (T )N() Z gg ) ; (T )N() Z (T )N() fi Z Z (T )N() μc N() μc N() ffifl N() μfl N() gq μfl N() μn() μc N() (T )N() fi Z gq Z (T )N() hfi Z (T )N() μfl N() (μfl N() Z (T )N() Z Z (T )N() gg μfl gq N() Z (T )N() hfi Z (T )N() Z μfl N() gg ) (T )N() gq μfl N() (T )N() Z gg ffiflgq N() μfl N() (T )N() gq μfl N() (T )N() Z gq (T )N() μfl gq N() Z (T )N() μfl N() i μfl gg N() i μfl N() μfl N() gg (T )N() Z gq Z ; i μfl N() (T )N() gg μfl N() μc N() μc N() (T )N() hfi Z gg Z (T )N() μfl gq N() (T )N() Z gq i μfl N() The above operations are difficult to perform in x-space due to multiple direct & multiple inverse Mellin convolutions. J. Blümlein RDCOR, Carmel, C 9

20 The above substitutions yield: ffik N() = ffik N() L = ffik N() L = ffik N() LL = ) -Relation to O(ff s). The transforms for the F -@F =@t system read: ffik d = fi 4 ffic N() q fi μfl N() gq 4 (μfl N() Z 4 ffic N() g (T )N() Z ) μfl N() μfl gg N() 5 " μfl N() (T )N() 5 μfl N() μfl gq N() μfl N() gg fi # fi μfl N() 5 ffik dd = fi μfl N() gq 4fi "ffic N() q 4 ffic N() g Z Z (T )N() (T )N() # 5 " μfl N() μfl N() gg fi # J. Blümlein RDCOR, Carmel, C

21 The above substitutions yield: ffik d = ffik dd = ) -Relation to O(ff s). ) The Evolution of Observables using physical evolution kernels is related by an analytic continuation from the space-like to the time-like domain up to O(ff s). Gribov-Lipatov Relation (97) K(x E ;Q ) = K(x B ;Q ) This relation holds for the LO non-singlet contributions and some pieces in the NLO non-singlet contributions, but is generally violated beyond LO. J. Blümlein RDCOR, Carmel, C

22 5. Conclusions ffl The scale evolution of structure and fragmentation functions can be represented in terms of physical evolution kernels and observable non-perturbative input distributions. ffl The physical evolution kernels of either choice of observables are related for the evolution of structure and fragmentation functions by an analytic continuation ( relation) from» x < to < x < up to O(ff s). The GribovLipatov relation is violated beyond LO. ffl n extension of the present investigation to O(ff s) requires the knowledge of the hitherto unknown loop singlet anomalous dimensions. The relation for the evolution kernels is not necessarily expected to hold to arbitray high orders due to the emergence of new production thresholds for the s-channel process. ffl n interesting test of QCD can be carried out in comparing the scaling violations of structure and fragmentation functions using factoriation schemeindependent evolution equations. J. Blümlein RDCOR, Carmel, C

PoS(DIS 2010)139. On higher-order flavour-singlet splitting functions and coefficient functions at large x

PoS(DIS 2010)139. On higher-order flavour-singlet splitting functions and coefficient functions at large x On higher-order flavour-singlet splitting functions and coefficient functions at large x Department of Mathematical Sciences, University of Liverpool, UK E-mail: G.N.Soar@liv.ac.uk A. Vogt Department of

More information

arxiv: v1 [hep-ph] 20 Jan 2010

arxiv: v1 [hep-ph] 20 Jan 2010 LTH 862, DESY 10-007, arxiv:1001.3554 [hep-ph] January 2010 Higher-order predictions for splitting functions and coefficient functions from physical evolution kernels arxiv:1001.3554v1 [hep-ph] 20 Jan

More information

A. Mitov 3-loop time-like splitting functions in Mellin space and NNLO fragmentation

A. Mitov 3-loop time-like splitting functions in Mellin space and NNLO fragmentation Three-loop time-like splitting functions in Mellin space and NNLO fragmentation Alexander Mitov DESY Work in progress with: M. Cacciari; Lance Dixon; S-O. Moch Also based on: hep-ph/0604160 (with Sven

More information

The Three-Loop Splitting Functions in QCD: The Non-Singlet Case

The Three-Loop Splitting Functions in QCD: The Non-Singlet Case The Three-Loop Splitting Functions in QCD: The Non-Singlet Case Sven-Olaf Moch DESY Zeuthen 1. The Calculation. The Result 3. The Summary in collaboration with J.A.M. Vermaseren and A. Vogt, hep-ph/040319

More information

Threshold Corrections To DY and Higgs at N 3 LO QCD

Threshold Corrections To DY and Higgs at N 3 LO QCD Threshold Corrections To DY and Higgs at N 3 LO QCD Taushif Ahmed Institute of Mathematical Sciences, India July 2, 2015 Threshold Corrections To DY and Higgs at N 3 LO QCD INFN Sezione Di Torino 1 Prologue

More information

arxiv:hep-ph/ v2 11 Jan 2007

arxiv:hep-ph/ v2 11 Jan 2007 IPM School and Conference on Hadrn and Lepton Physics, Tehran, 5-2 May 26 An approach to NNLO analysis of non-singlet structure function Ali N. Khorramian Physics Department, Semnan University, Semnan,

More information

Resummed small-x and first moment evolution of fragmentation functions in pqcd

Resummed small-x and first moment evolution of fragmentation functions in pqcd Resummed small- and first moment evolution of fragmentation functions in pqcd Steve Kom University of Liverpool Presented at HP2: High Precision for Hard Processes, Munich 7 Sept 2012 Collaborators Talk

More information

Johannes Blümlein, DESY [in collaboration with I. Bierenbaum and S. Klein]

Johannes Blümlein, DESY [in collaboration with I. Bierenbaum and S. Klein] Oα 3 1 s Heavy Flavor Wilson Coefficients in DIS @ Q m Johannes Blümlein, DESY [in collaboration with I. Bierenbaum and S. Klein Introduction Theory Status The Method Asymptotic Loop Results all N Asymptotic

More information

Toward the QCD Theory for SSA

Toward the QCD Theory for SSA Toward the QCD Theory for SSA Feng Yuan Lawrence Berkeley National Laboratory RBRC, Brookhaven National Laboratory 5/6/2009 1 Outline Introduction Great progress has been made recently Transverse momentum

More information

Particles and Deep Inelastic Scattering

Particles and Deep Inelastic Scattering Particles and Deep Inelastic Scattering University HUGS - JLab - June 2010 June 2010 HUGS 1 Sum rules You can integrate the structure functions and recover quantities like the net number of quarks. Momentum

More information

Threshold cross sections for Drell-Yan & Higgs productions in N 3 LO QCD

Threshold cross sections for Drell-Yan & Higgs productions in N 3 LO QCD Narayan Rana 20/10/2016 1/46 Threshold cross sections for Drell-Yan & Higgs productions in N 3 LO QCD Narayan Rana 20/10/2016 in collaboration with T. Ahmed, M. C. Kumar, M. Mahakhud, M. K. Mandal, P.

More information

QCD Precision Tests in Deeply Inelastic Scattering

QCD Precision Tests in Deeply Inelastic Scattering QCD Precision Tests in Deeply Inelastic Scattering Johannes Blümlein DESY Introduction and Method QCD Analysis of Unpolarized Structure Functions Λ QCD and α s (M 2 Z ) What would we like to know? J. Blümlein

More information

arxiv:hep-ph/ v2 25 May 1999

arxiv:hep-ph/ v2 25 May 1999 Bari TH/98 308 hep ph/9807572 arxiv:hep-ph/9807572v2 25 May 1999 A SEMIANALYTICAL METHOD TO EVOLVE PARTON DISTRIBUTIONS Pietro SANTORELLI a and Egidio SCRIMIERI b a Dipartimento di Scienze Fisiche, Università

More information

QCD threshold corrections for gluino pair production at NNLL

QCD threshold corrections for gluino pair production at NNLL Introduction: Gluino pair production at fixed order QCD threshold corrections for gluino pair production at NNLL in collaboration with Ulrich Langenfeld and Sven-Olaf Moch, based on arxiv:1208.4281 Munich,

More information

Parton Distribution Functions, Part 1. Daniel Stump. Department of Physics and Astronomy Michigan State University

Parton Distribution Functions, Part 1. Daniel Stump. Department of Physics and Astronomy Michigan State University Parton Distribution Functions, Part 1 Daniel Stump Department of Physics and Astronomy Michigan State University A. Introduction B. Properties of the PDFs C. Results of CT10-NNLO Global Analysis D. Uncertainties

More information

light-cone (LC) variables

light-cone (LC) variables light-cone (LC) variables 4-vector a µ scalar product metric LC basis : transverse metric 24-Apr-13 1 hadron target at rest inclusive DIS target absorbes momentum from γ * ; for example, if q z P z =0

More information

Two and Three Loop Heavy Flavor Corrections in DIS

Two and Three Loop Heavy Flavor Corrections in DIS Two and Three Loop Heavy Flavor Corrections in DIS 1 Johannes Blümlein, DESY in collaboration with I. Bierenbaum and S. Klein based on: Introduction Renormalization of the OME s to 3 Loops Oǫ terms at

More information

Generalizing the DGLAP Evolution of Fragmentation Functions to the Smallest x Values

Generalizing the DGLAP Evolution of Fragmentation Functions to the Smallest x Values Generalizing the DGLAP Evolution of Fragmentation Functions to the Smallest x Values Bernd Kniehl 1 2nd Institute for Theoretical Physics, University of Hamburg Describe inclusive hadron production,...

More information

Resummation at small x

Resummation at small x Resummation at small Anna Stasto Penn State University & RIKEN BNL & INP Cracow 09/13/0, INT Workshop, Seattle Outline Limitations of the collinear framework and the fied order (DGLAP) calculations. Signals

More information

Higgs boson production at the LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions to N 3 LO

Higgs boson production at the LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions to N 3 LO SFB/CPP-12-93 TTP12-45 LPN12-127 Higgs boson production at the LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions to N 3 LO Maik Höschele, Jens Hoff, Aleey Pak,

More information

arxiv:hep-ph/ v1 25 Sep 2002

arxiv:hep-ph/ v1 25 Sep 2002 hep-ph/0209302 Direct Higgs production at hadron colliders arxiv:hep-ph/0209302v1 25 Sep 2002 Massimiliano Grazzini (a,b) (a) Dipartimento di Fisica, Università di Firenze, I-50019 Sesto Fiorentino, Florence,

More information

QCD resummation for jet and hadron production

QCD resummation for jet and hadron production QCD resummation for jet and hadron production Werner Vogelsang Univ. Tübingen UCL, 14 Feb 2014 Outline: Introduction: QCD threshold resummation Drell-Yan process Resummation in QCD hard-scattering Hadron

More information

QCD, Colliders & Jets - HW II Solutions. x, x

QCD, Colliders & Jets - HW II Solutions. x, x QCD, Colliders & Jets - HW II Solutions. As discussed in the Lecture the parton distributions do not scale as in the naïve parton model but rather are epected to ehibit the scaling violation predicted

More information

QCD Factorization and PDFs from Lattice QCD Calculation

QCD Factorization and PDFs from Lattice QCD Calculation QCD Evolution 2014 Workshop at Santa Fe, NM (May 12 16, 2014) QCD Factorization and PDFs from Lattice QCD Calculation Yan-Qing Ma / Jianwei Qiu Brookhaven National Laboratory ² Observation + Motivation

More information

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden Physics at LHC lecture one Sven-Olaf Moch Sven-Olaf.Moch@desy.de DESY, Zeuthen in collaboration with Martin zur Nedden Humboldt-Universität, October 22, 2007, Berlin Sven-Olaf Moch Physics at LHC p.1 LHC

More information

The Uses of Conformal Symmetry in QCD

The Uses of Conformal Symmetry in QCD The Uses of Conformal Symmetry in QCD V. M. Braun University of Regensburg DESY, 23 September 2006 based on a review V.M. Braun, G.P. Korchemsky, D. Müller, Prog. Part. Nucl. Phys. 51 (2003) 311 Outline

More information

Next-to-leading order corrections to the valon model

Next-to-leading order corrections to the valon model PRAMANA c Indian Academy of Sciences Vol. 86, No. 1 journal of January 216 physics pp. 77 86 Next-to-leading order corrections to the valon model G R BOROUN E ESFANDYARI Physics Department, Razi University,

More information

Photon-Photon Diffractive Interaction at High Energies

Photon-Photon Diffractive Interaction at High Energies Photon-Photon Diffractive Interaction at High Energies Cong-Feng Qiao Graduate University Chinese Academy of Sciences December 17,2007 1 Contents Brief About Diffractive Interaction Leading Order Photon

More information

The Three-Loop Splitting Functions in QCD: The Helicity-Dependent Case

The Three-Loop Splitting Functions in QCD: The Helicity-Dependent Case DESY 14 157, NIKHEF 14-033 LTH 1023 arxiv:1409.5131 The Three-Loop Splitting Functions in QCD: The Helicity-Dependent Case S. Moch a, J.A.M. Vermaseren b and A. Vogt c b II. Institute for Theoretical Physics,

More information

Threshold Corrections To DY and Higgs at N 3 LO QCD

Threshold Corrections To DY and Higgs at N 3 LO QCD Threshold Corrections To DY and Higgs at N 3 LO QCD Taushif Ahmed Institute of Mathematical Sciences, India April 12, 2016 Threshold Corrections To DY and Higgs at N 3 LO QCD Bergische Universitat Wuppertal

More information

arxiv: v1 [hep-ph] 3 Jul 2015

arxiv: v1 [hep-ph] 3 Jul 2015 LPSC-15-180 IFJ PAN-IV-2015- Evolution kernels for parton shower Monte Carlo A. Kusina a, O. Gituliar b, S. Jadach b, M. Skrzypek b arxiv:1507.00842v1 [hep-ph Jul 2015 a Laboratoire de Physique Subatomique

More information

Understanding Parton Showers

Understanding Parton Showers Understanding Parton Showers Zoltán Nagy DESY in collaboration with Dave Soper Introduction Pile-up events 7 vertices 2009 single vertex reconstructed! 2011 2010 4 vertices 25 vertices 2012 Introduction

More information

arxiv:hep-ph/ v1 17 Jun 1999

arxiv:hep-ph/ v1 17 Jun 1999 Exclusive evolution kernels in two-loop order: parity even sector. A.V. Belitsky 1, D. Müller arxiv:hep-ph/9906409v1 17 Jun 1999 Institut für Theoretische Physik, Universität Regensburg D-9040 Regensburg,

More information

SCET for Colliders. Matthias Neubert. Cornell University. Based on work with Thomas Becher (FNAL) and Ben Pecjak (Siegen)

SCET for Colliders. Matthias Neubert. Cornell University. Based on work with Thomas Becher (FNAL) and Ben Pecjak (Siegen) SCET for Colliders Matthias Neubert Cornell University LoopFest V, SLAC June 21, 2006 Based on work with Thomas Becher (FNAL) and Ben Pecjak (Siegen) 1 2 SCET for Colliders Introduction Overview of SCET

More information

Antenna Subtraction at NNLO

Antenna Subtraction at NNLO Antenna Subtraction at NNLO Aude Gehrmann-De Ridder ETH Zürich in collaboration with T. Gehrmann, E.W.N. Glover Loopfest IV Snowmass 2005 Antenna Subtraction at NNLO p.1 Outline Jet observables Jets in

More information

arxiv:hep-ph/ v1 4 Feb 1997

arxiv:hep-ph/ v1 4 Feb 1997 DOUBLE SPIN TRANSVERSE ASYMMETRIES IN DRELL YAN PROCESSES V. Barone a,b, T. Calarco c and A. Drago c a Dipartimento di Fisica Teorica, Università di Torino and INFN, Sezione di Torino, 10125 Torino, Italy

More information

is represented by a convolution of a gluon density in the collinear limit and a universal

is represented by a convolution of a gluon density in the collinear limit and a universal . On the k? dependent gluon density in hadrons and in the photon J. Blumlein DESY{Zeuthen, Platanenallee 6, D{15735 Zeuthen, Germany Abstract The k? dependent gluon distribution for protons, pions and

More information

Two-loop massive fermionic operator matrix elements and intial state QED corrections to e + e γ /Z

Two-loop massive fermionic operator matrix elements and intial state QED corrections to e + e γ /Z Two-loop massive fermionic operator matrix elements and intial state QED corrections to e + e γ /Z J. Blümlein, a ab and W. van Neerven c a DESY, Zeuthen, Platanenalle 6, D-173 Zeuthen, Germany. b Departamento

More information

QCD Collinear Factorization for Single Transverse Spin Asymmetries

QCD Collinear Factorization for Single Transverse Spin Asymmetries INT workshop on 3D parton structure of nucleon encoded in GPD s and TMD s September 14 18, 2009 QCD Collinear Factorization for Single Transverse Spin Asymmetries Iowa State University Based on work with

More information

dσ/dx 1/σ tot TASSO 22 TPC/2γ 29 MKII 29 TASSO 35 CELLO 35 TASSO 43.7 AMY 55.2 DELPHI 91.2 ALEPH 91.

dσ/dx 1/σ tot TASSO 22 TPC/2γ 29 MKII 29 TASSO 35 CELLO 35 TASSO 43.7 AMY 55.2 DELPHI 91.2 ALEPH 91. Department of Physics & Astronomy Experimental Particle Physics Group Kelvin Building, University of Glasgow, Glasgow, G12 8QQ, Scotland Telephone: +44 (0)141 339 8855 Fax: +44 (0)141 334 9029 GLAS{PPE/95{02

More information

Resummation in PDF fits. Luca Rottoli Rudolf Peierls Centre for Theoretical Physics, University of Oxford

Resummation in PDF fits. Luca Rottoli Rudolf Peierls Centre for Theoretical Physics, University of Oxford Resummation in PDF fits Luca Rottoli Rudolf Peierls Centre for Theoretical Physics, University of Oxford LHC, New Physics, and the pursuit of Precision LHC as a discovery machine Higgs Boson 10 1 BSM particles

More information

NLO weighted Sivers asymmetry in SIDIS and Drell-Yan: three-gluon correlator

NLO weighted Sivers asymmetry in SIDIS and Drell-Yan: three-gluon correlator NLO weighted Sivers asymmetry in SIDIS and Drell-Yan: three-gluon correlator Lingyun Dai Indiana University Based on the work done with Kang, Prokudin, Vitev arxiv:1409.5851, and in preparation 1 2 Outlines

More information

TF 2 -Contributions to 3-Loop Deep-Inelastic Wilson Coefficients and the Asymptotic Representation of Charged Current DIS

TF 2 -Contributions to 3-Loop Deep-Inelastic Wilson Coefficients and the Asymptotic Representation of Charged Current DIS 1/30 TF 2 -Contributions to 3-Loop Deep-Inelastic Wilson Coefficients and the Asymptotic Representation of Charged Current DIS Alexander Hasselhuhn RISC (LHCPhenonet) 26.9.2013 in collaboration with: J.

More information

Research in QCD factorization

Research in QCD factorization Research in QCD factorization Bowen Wang Southern Methodist University (Dallas TX) Jefferson Lab Newport News VA 1/1/015 My research at SMU in 011-015 Ph. D. advisor: Pavel Nadolsky Ph. D. thesis: The

More information

hep-ex/ Jun 1995

hep-ex/ Jun 1995 Department of Physics & Astronomy Experimental Particle Physics Group Kelvin Building, University of Glasgow, Glasgow, G 8QQ, Scotland Telephone: +44 ()4 9 8855 Fax: +44 ()4 4 99 GLAS{PPE/95{ 9 th June

More information

Factorization, Evolution and Soft factors

Factorization, Evolution and Soft factors Factorization, Evolution and Soft factors Jianwei Qiu Brookhaven National Laboratory INT Workshop: Perturbative and nonperturbative aspects of QCD at collider energies University of Washington, Seattle,

More information

QCD EVOLUTION OF TRANSVERSITY IN LEADING AND NEXT-TO-LEADING ORDER

QCD EVOLUTION OF TRANSVERSITY IN LEADING AND NEXT-TO-LEADING ORDER QCD EVOLUTION OF TRANSVERSITY IN LEADING AND NEXT-TO-LEADING ORDER Dip.to di Scienze CC.FF.MM. Univ. degli Studi dell Insubria sede di Como ) via Valleggio 11, 22100 Como, Italy Received 20 October 2002;

More information

PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD. Taushif Ahmed Institute of Mathematical Sciences, India March 22, 2016

PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD. Taushif Ahmed Institute of Mathematical Sciences, India March 22, 2016 PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD Taushif Ahmed Institute of Mathematical Sciences, India March, 016 PROLOGUE: SM & MSSM SM Complex scalar doublet (4 DOF) 3 DOF transform into longitudinal modes

More information

Physique des Particules Avancées 2

Physique des Particules Avancées 2 Physique des Particules Avancées Interactions Fortes et Interactions Faibles Leçon 6 Les collisions p p (http://dpnc.unige.ch/~bravar/ppa/l6) enseignant Alessandro Bravar Alessandro.Bravar@unige.ch tél.:

More information

Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York

Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York Many thanks to my colleagues, A. Deshpande, F. Gelis, B. Surrow

More information

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1 High Energy Physics Lecture 9 Deep Inelastic Scattering Scaling Violation HEP Lecture 9 1 Deep Inelastic Scattering: The reaction equation of DIS is written e+ p e+ X where X is a system of outgoing hadrons

More information

A. Vogt (University of Liverpool)

A. Vogt (University of Liverpool) Frontiers in pqft, Bielefeld, 9-11-12 Resummation of large-x and small-x double logarithms in DIS and semi-inclusive e + e annihilation A. Vogt (University of Liverpool) with G. Soar, A. Lo Presti, C.H.

More information

Initial-state splitting

Initial-state splitting QCD lecture (p. 14) 1st order analysis For initial state splitting, hard process occurs after splitting, and momentum entering hard process is modified: p zp. σ g+h (p) σ h (zp) α sc F π dz dkt 1 z kt

More information

Introduction to the physics of hard probes in hadron collisions: lecture II. Michelangelo Mangano TH Division, CERN

Introduction to the physics of hard probes in hadron collisions: lecture II. Michelangelo Mangano TH Division, CERN Introduction to the physics of hard probes in hadron collisions: lecture II Michelangelo Mangano TH Division, CERN michelangelo.mangano@cern.ch Jet production gg gg 2 3 2 4 3 2 1 4 1 3 1 4 gg qq _ qg qg

More information

Progress on QCD evolution equations

Progress on QCD evolution equations Rome, 8 September 08 Progress on QCD evolution equations Guido Altarelli Roma Tre/CERN In honour of Giorgio Parisi for his 60th birthday In the years 1976-78 I have done a few papers on QCD with Giorgio

More information

Single Color-Octet Scalar Production at the LHC

Single Color-Octet Scalar Production at the LHC ingle Color-Octet calar Production at the LHC : Factorization and Resummation A. Idilbi, C. Kim and T. Mehen, ArXiv:0903.3668 [hep-ph] Chul Kim Duke University Motivation calar ector in tandard Model (M)

More information

Precision Calculations for Collider Physics

Precision Calculations for Collider Physics SFB Arbeitstreffen März 2005 Precision Calculations for Collider Physics Michael Krämer (RWTH Aachen) Radiative corrections to Higgs and gauge boson production Combining NLO calculations with parton showers

More information

QCD Analysis and Calculation of Fragmentation Functions from Hadron Multiplicities. Patricia Francisconi

QCD Analysis and Calculation of Fragmentation Functions from Hadron Multiplicities. Patricia Francisconi QCD Analysis and Calculation of Fragmentation Functions from Hadron Multiplicities Patricia Francisconi Hadronization σ Hard Scattering FFs Hadron Production PDFs 2 Introduction and Motivation Parton Distribution

More information

Studies of TMD resummation and evolution

Studies of TMD resummation and evolution Studies of TMD resummation and evolution Werner Vogelsang Univ. Tübingen INT, 0/7/014 Outline: Resummation for color-singlet processes Contact with TMD evolution Phenomenology Conclusions Earlier work

More information

S.I.Alekhin IMPACT OF THE THREE-LOOP CORRECTIONS ON THE QCD ANALYSIS OF THE DEEP-INELASTIC-SCATTERING DATA

S.I.Alekhin IMPACT OF THE THREE-LOOP CORRECTIONS ON THE QCD ANALYSIS OF THE DEEP-INELASTIC-SCATTERING DATA ; STATE RESEARCH CENTER OF RUSSIA INSTITUTE FOR HIGH ENERGY PHYSICS IHEP 2001-30 S.I.Alekhin IMPACT OF THE THREE-LOOP CORRECTIONS ON THE QCD ANALYSIS OF THE DEEP-INELASTIC-SCATTERING DATA Protvino 2001

More information

Higher-Order Corrections in Threshold Resummation

Higher-Order Corrections in Threshold Resummation DESY 5-5, SFB/CPP-5-5 DCPT/5/6, IPPP/5/3 NIKHEF 5- June 5 hep-ph/5688 Higher-Order Corrections in Threshold Resummation S. Moch a, J.A.M. Vermaseren b and A. Vogt c a Deutsches Elektronensynchrotron DESY

More information

arxiv:hep-ph/ v1 26 May 1994

arxiv:hep-ph/ v1 26 May 1994 ETH-TH/94-4 KLTE-DTP/94-3 May 5, 994 arxiv:hep-ph/9405386v 6 May 994 One-loop radiative corrections to the helicity amplitudes of QCD processes involving four quarks and one gluon Zoltan Kunszt a, Adrian

More information

Global QCD Analysis of Fragmentation Functions and Possible Medium Modifications

Global QCD Analysis of Fragmentation Functions and Possible Medium Modifications October 23rd, 2009 04-Aug-2009 INT, Seattle Global QCD Analysis of Fragmentation Functions and Possible Medium Modifications Marco Stratmann U Regensburg/U Wurzburg plan of the talk I. quick introduction

More information

Large spin systematics in CFT

Large spin systematics in CFT University of Oxford Holography, Strings and Higher Spins at Swansea with A. Bissi and T. Lukowski Introduction The problem In this talk we will consider operators with higher spin: T rϕ µ1 µl ϕ, T rϕϕ

More information

Introduction to Perturbative QCD

Introduction to Perturbative QCD Introduction to Perturbative QCD Lecture 3 Jianwei Qiu Iowa State University/Argonne National Laboratory PHENIX Spinfest at RIKEN 007 June 11 - July 7, 007 RIKEN Wako Campus, Wako, Japan June 6, 007 1

More information

Collinear Distributions from Monte Carlo Global QCD Analyses

Collinear Distributions from Monte Carlo Global QCD Analyses Collinear Distributions from Monte Carlo Global QCD Analyses Jacob Ethier On behalf of the JAM Collaboration Light Cone Conference May th, 8 Motivation Want to obtain reliable information of nonperturbative

More information

Topics on QCD and Spin Physics

Topics on QCD and Spin Physics Topics on QCD and Spin Physics (sixth lecture) Rodolfo Sassot Universidad de Buenos Aires HUGS 21, JLAB June 21 Spin (revisited)? naive quark spin parton spin QCD parton spin polarized DIS:? EMC experiment:

More information

Good Morning to Seattle! J. Blümlein Status of Unpolarized PDFs and αs(m 2 Z ) Seattle, WA, October 20th 2009 p.1

Good Morning to Seattle! J. Blümlein Status of Unpolarized PDFs and αs(m 2 Z ) Seattle, WA, October 20th 2009 p.1 Good Morning to Seattle! J. Blümlein Status of Unpolarized PDFs and αs(m 2 Z ) Seattle, WA, October 2th 29 p. Status of Unpolarized PDFs and α s (M 2 Z ) Johannes Blümlein DESY The Major Goals DIS Theory

More information

QCD al tempo di LHC. Vittorio Del Duca INFN LNF

QCD al tempo di LHC. Vittorio Del Duca INFN LNF QCD al tempo di LHC Vittorio Del Duca INFN LNF Roma3 maggio 2009 Strong interactions High-energy collisions Fixed-target experiments (pn, πn, γn) DIS (HERA) Hadron colliders (Tevatron, LHC) Hadron properties

More information

arxiv:hep-ph/ v2 2 Sep 1996

arxiv:hep-ph/ v2 2 Sep 1996 arxiv:hep-ph/960927v2 2 Sep 996 DESY 96 72 INLO-PUB-7/96 WUE-ITP-96-07 August 996 Theoretical Uncertainties in the QCD Evolution of Structure Functions and their Impact on α s (M 2 Z ) J. Blümlein, S.

More information

Proton Structure Function Measurements from HERA

Proton Structure Function Measurements from HERA Proton Structure Function Measurements from HERA Jörg Gayler DESY, Notkestrasse 85, 2263 Hamburg, Germany E-mail: gayler@mail.desy.de Abstract. Measurements of proton structure functions made in neutral

More information

Probing nucleon structure by using a polarized proton beam

Probing nucleon structure by using a polarized proton beam Workshop on Hadron Physics in China and Opportunities with 12 GeV Jlab July 31 August 1, 2009 Physics Department, Lanzhou University, Lanzhou, China Probing nucleon structure by using a polarized proton

More information

arxiv:hep-ph/ v1 29 Aug 2006

arxiv:hep-ph/ v1 29 Aug 2006 IPPP/6/59 August 26 arxiv:hep-ph/6837v1 29 Aug 26 Third-order QCD results on form factors and coefficient functions A. Vogt a, S. Moch b and J.A.M. Vermaseren c a IPPP, Physics Department, Durham University,

More information

Scale dependence of Twist-3 correlation functions

Scale dependence of Twist-3 correlation functions Scale dependence of Twist-3 correlation functions Jianwei Qiu Brookhaven National Laboratory Based on work with Z. Kang QCD Evolution Workshop: from collinear to non collinear case Thomas Jefferson National

More information

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS Germán F. R. Sborlini Departamento de Física, FCEyN, UBA (Argentina) 10/12/2012 - IFIC CONTENT Introduction Collinear limits Splitting functions Computing splitting

More information

Soft Collinear Effective Theory: An Overview

Soft Collinear Effective Theory: An Overview Soft Collinear Effective Theory: An Overview Sean Fleming, University of Arizona EFT09, February 1-6, 2009, Valencia Spain Background Before SCET there was QCD Factorization Factorization: separation of

More information

arxiv:hep-ph/ v1 28 Apr 1999

arxiv:hep-ph/ v1 28 Apr 1999 Reconstruction of non-forward evolution kernels. A.V. Belitsky 1, D. Müller Institut für Theoretische Physik, Universität Regensburg D-934 Regensburg, Germany arxiv:hep-ph/994477v1 8 Apr 1999 A. Freund

More information

陽子スピンの分解 八田佳孝 ( 京大基研 )

陽子スピンの分解 八田佳孝 ( 京大基研 ) 陽子スピンの分解 八田佳孝 ( 京大基研 ) Outline QCD spin physics Proton spin decomposition: Problems and resolution Orbital angular momentum Twist analysis Transverse polarization Method to compute G on a lattice 1101.5989

More information

Anomalous dimensions and splitting functions beyond the next-to-next-to-leading order

Anomalous dimensions and splitting functions beyond the next-to-next-to-leading order Anomalous dimensions and splitting functions beyond the next-to-next-to-leading order Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, UK E-mail: Andreas.Vogt@liverpool.ac.uk

More information

FOLLOWING PINO - THROUGH THE CUSPS AND BEYOND THE PLANAR LANDS. Lorenzo Magnea. University of Torino - INFN Torino. Pino Day, Cortona, 29/05/12

FOLLOWING PINO - THROUGH THE CUSPS AND BEYOND THE PLANAR LANDS. Lorenzo Magnea. University of Torino - INFN Torino. Pino Day, Cortona, 29/05/12 FOLLOWING PINO - THROUGH THE CUSPS AND BEYOND THE PLANAR LANDS Lorenzo Magnea University of Torino - INFN Torino Pino Day, Cortona, 29/05/12 Outline Crossing paths with Pino Cusps, Wilson lines and Factorization

More information

TMD Fragmentation Function at NNLO

TMD Fragmentation Function at NNLO TMD Fragmentation Function at NNLO Institut für Theoretische Physik, Universität Regensburg, D-9040 Regensburg, Germany E-mail: vladimirov.aleksey@gmail.com The calculation of the unpolarized non-singlet

More information

PDF from Hadronic Tensor on the Lattice and Connected Sea Evolution

PDF from Hadronic Tensor on the Lattice and Connected Sea Evolution PDF from Hadronic Tensor on the Lattice and Connected Sea Evolution Path-integral Formulation of Hadronic Tensor in DIS Parton Degrees of Freedom Numerical Challenges Evolution of Connected Sea Partons

More information

Large-n f Contributions to the Four-Loop Splitting Functions in QCD

Large-n f Contributions to the Four-Loop Splitting Functions in QCD Large-n Contributions to the Four-Loop Splitting Functions in QCD Nucl. Phys. B915 (2017) 335-362, arxiv:1610.07477 Joshua Davies Department o Mathematical Sciences University o Liverpool Collaborators:

More information

The Role of Heavy Quarks in Light Hadron Fragmentation. HUGS Manuel Epele Instituto de Física La Plata

The Role of Heavy Quarks in Light Hadron Fragmentation. HUGS Manuel Epele Instituto de Física La Plata The Role of Heavy Quarks in Light Hadron Fragmentation. In collaboration with C. A. Garcia Canal and R. Sassot HUGS 2016 Jefferson Lab, Newport News, Virginia June, 2016 Outline Fragmentation Functions

More information

Introduction to the physics of hard probes in hadron collisions: lecture I. Michelangelo Mangano TH Division, CERN

Introduction to the physics of hard probes in hadron collisions: lecture I. Michelangelo Mangano TH Division, CERN Introduction to the physics of hard probes in hadron collisions: lecture I Michelangelo Mangano TH Division, CERN michelangelo.mangano@cern.ch Contents The structure of the proton the initial-state : parton

More information

Proton structure functions at small x

Proton structure functions at small x Journal of Physics: Conference Series PAPER OPEN ACCESS Proton structure functions at small To cite this article: Martin Hentschinski 5 J. Phys.: Conf. Ser. 65 Related content - ON VARIABLE 39 IN IC 63

More information

Evolution of 3D-PDFs at Large-x B and Generalized Loop Space

Evolution of 3D-PDFs at Large-x B and Generalized Loop Space Evolution of 3D-PDFs at Large-x B and Generalized Loop Space Igor O. Cherednikov Universiteit Antwerpen QCD Evolution Workshop Santa Fe (NM), 12-16 May 2014 What we can learn from the study of Wilson loops?

More information

Violation of a simple factorized form of QCD amplitudes and Regge cuts

Violation of a simple factorized form of QCD amplitudes and Regge cuts Violation of a simple factorized form of QCD amplitudes and Regge cuts Author affiliation Budker Institute of Nuclear Physics of SD RAS, 630090 Novosibirsk Russia Novosibirsk State University, 630090 Novosibirsk,

More information

Collinear and TMD densities from Parton Branching Methods

Collinear and TMD densities from Parton Branching Methods Ola Lelek 1 Francesco Hautmann 2 Hannes Jung 1 Voica Radescu 3 Radek Žlebčík 1 1 Deutsches Elektronen-Synchrotron DESY) 2 University of Oford 3 CERN 29.03.2017 Rencontres de Moriond, QCD and High Energy

More information

High Energy Transverse Single-Spin Asymmetry Past, Present and Future

High Energy Transverse Single-Spin Asymmetry Past, Present and Future High Energy Transverse Single-Spin Asymmetry Past, Present and Future Jianwei Qiu Brookhaven National Laboratory Stony Brook University Transverse single-spin asymmetry (TSSA) q Consistently observed for

More information

arxiv:hep-ph/ v1 8 Jul 1996

arxiv:hep-ph/ v1 8 Jul 1996 Resummation at Large Q and at Small x CCUTH-96-04 arxiv:hep-ph/960756v1 8 Jul 1996 Hsiang-nan Li Department of Physics, National Chung-Cheng University, Chia-Yi, Taiwan, Republic of China PACS numbers:

More information

THE PROPERTY OF MAXIMAL TRANSCENDENTALITY IN THE N =4SYM A. V. Kotikov

THE PROPERTY OF MAXIMAL TRANSCENDENTALITY IN THE N =4SYM A. V. Kotikov ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 200.. 4.. 6 THE PROPERTY OF MAXIMAL TRANSCENDENTALITY IN THE N =4SYM A. V. Kotikov Joint Institute for Nuclear Research, Dubna We show results for the versal anomalous dimension γ j of

More information

A complete NLO calculation of the J/ψ production at Tevatron and LHC In collaboration with Wang Kai and Chao Kuang-Ta

A complete NLO calculation of the J/ψ production at Tevatron and LHC In collaboration with Wang Kai and Chao Kuang-Ta A complete NLO calculation of the J/ψ production at Tevatron and LHC Ma Yan-Qing ( 马滟青 ) Department of physics, Peking University yqma.cn@gmail.com In collaboration with Wang Kai and Chao Kuang-Ta p.1

More information

Top pair production near threshold at LHC (NLO/NLL analysis in NRQCD)

Top pair production near threshold at LHC (NLO/NLL analysis in NRQCD) Top@LHC LHC TTbar-Threshold Threshold@ILC/LHC Green Functions Top pair production near threshold at LHC (NLO/NLL analysis in NRQCD) Yuichiro Kiyo TTP, Universität Karlsruhe Collaboration with: J. H. Kühn(KA),

More information

SOFT RADIATION BEYOND LEADING POWER

SOFT RADIATION BEYOND LEADING POWER SOFT RADIATION BEYOND LEADING POWER Lorenzo Magnea University of Torino - INFN Torino WHEPP XIV - IIT Kanpur - 07/12/2015 Outline Introduction Threshold resummations at leading power Gathering evidence

More information

Event Generator Physics 2

Event Generator Physics 2 Event Generator Physics University of Cambridge 1st MCnet School, IPPP Durham 18 th 20 th April 2007 Structure of LHC Events 1. Hard process 2. Parton shower 3. Hadronization 4. Underlying event Lecture

More information

Higher Order Corrections to the Drell-Yan Cross Section in the Mellin Space

Higher Order Corrections to the Drell-Yan Cross Section in the Mellin Space Higher Order Corrections to the Drell-Yan Cross Section in the Mellin Space Petra Kovačíková (DESY, Zeuthen) petra.kovacikova@desy.de Corfu Summer School 4 th September 21 Higher Order Corrections to the

More information

2. HEAVY QUARK PRODUCTION

2. HEAVY QUARK PRODUCTION 2. HEAVY QUARK PRODUCTION In this chapter a brief overview of the theoretical and experimental knowledge of heavy quark production is given. In particular the production of open beauty and J/ψ in hadronic

More information

Universal Parton Distri. Fn s (non-pert.; QCD evolved)

Universal Parton Distri. Fn s (non-pert.; QCD evolved) Charm Production at HERA and Theory of Heavy Quark Production Why is Heavy Quark Production a non-trivial problem in PQCD? it is a Multi-large-scale Problem Conventional approaches: one-scale problem approximate

More information

arxiv:hep-ph/ v1 5 Jan 1996

arxiv:hep-ph/ v1 5 Jan 1996 SLAC PUB 95 763 December 1995 Renormalization Scale Setting for Evolution Equation of Non-Singlet Structure Functions and Their Moments Wing Kai Wong arxiv:hep-ph/961215v1 5 Jan 1996 Stanford Linear Accelerator

More information