Two and Three Loop Heavy Flavor Corrections in DIS

Size: px
Start display at page:

Download "Two and Three Loop Heavy Flavor Corrections in DIS"

Transcription

1 Two and Three Loop Heavy Flavor Corrections in DIS 1 Johannes Blümlein, DESY in collaboration with I. Bierenbaum and S. Klein based on: Introduction Renormalization of the OME s to 3 Loops Oǫ terms at Loops Towards Fixed Moments of A 3 Qg Conclusions - I. Bierenbaum, J. Blümlein, S. K., and C. Schneider arxiv: [math-ph]; arxiv: [hep-ph]. - I. Bierenbaum, J. Blümlein, and S. K., Phys. Lett. B ; Nucl. Phys. B ; arxiv: [hep-ph]; Acta Phys. Polon. B ; - J. Blümlein, A. De Freitas, W.L. van Neerven, and S. K., Nucl. Phys. B Johannes Blümlein Loopfest-08 U. Buffalo, NY, May 008

2 Deep Inelastic Scattering DIS: 1. Introduction k q k L µν Q := q, x := Q pq dσ dq dx W µνl µν Bjorken x P W µν LO: Q Q Hadronic tensor for heavy quark production via single photon exchange: W Q Q 1 µν q, P, s = d 4 ξ expiqξ P, s [Jµ em ξ, Jem ν 0] P, s 4π Q Q { unpol. { pol. = 1 x g µν q µq ν q M Pq ε µναβq α F Q Q L x, Q + x Q [ s β g Q Q 1 x, Q + P µ P ν + q µp ν + q ν P µ x s β sq Pq pβ g Q Q x, Q ] Q 4x g µν F Q Q x, Q.

3 3 Light quarks: In Bjorken limit, {Q, ν}, x fixed, at twist τ = level: F i x, Q = C j i x, Q }{{} µ f j x, µ, }{{} j }{{} structure functions parton densities, Wilson coefficients, non-perturbative perturbative Different flavor contributions to F x, Q : light flavor heavy flavor LO: x[f q + f q ] q=u,d,s a s [ C 1,H g NLO: a s [ C 1 q x[f q + f q ] + C 1 g ] xg a s ] xg [ C,H q,ns x[f q + f q ] + C,H q,ps xσ + C,H g ] xg N LO:.. 3-loop analysis: Oa 3 s heavy flavor Wilson coefficients needed.

4 4 Need for the calculation: Heavy flavor charm contributions to DIS structure functions are rather large [0 40 % at lower values of x]. Increase in accuracy of the perturbative description of DIS structure functions. QCD analysis and determination of Λ QCD, resp. α s MZ, from DIS data: δα s /α s < 1 %. Precise determination of the gluon and sea quark distributions. Derivation of variable flavor number scheme for heavy quark production to Oa 3 s. Goal: Calculation of the heavy flavor Wilson coefficients to higher orders for Q 5 GeV [sufficient in many applications].

5 5 F i x = , i = 1 x = , i = 0 x = , i = 19 x = , i = 18 x = , i = 17 x = , i = 16 x = , i = 15 x = , i = 14 x = 0.000, i = 13 x = 0.003, i = 1 H1 e + p ZEUS e + p BCDMS NMC F cc _ 4 i x= , i= x= , i=1 x= , i=0 x= , i=19 x= , i=18 x= , i=17 x=0.0000, i=16 x= , i=15 MRST004 MRST NNLO MRST004FF3 CTEQ6.5 CTEQ5F x = , i = 11 x = , i = 10 x = 0.013, i = 9 x = 0.00, i = 8 x = 0.03, i = 7 x = 0.050, i = x=0.0005, i=14 x=0.0006, i=13 x=0.0008, i=1 x=0.0010, i=11 x=0.0015, i=10 10 x = 0.080, i = 5 x = 0.13, i = x=0.00, i=9 x=0.003, i=8 1 x = 0.18, i = 3 x = 0.5, i = 10 3 x= , i=7 x=0.005, i= H1 PDF 000 extrapolation x = 0.40, i = 1 x = 0.65, i = High statistics in both cases Q / GeV H1 Collaboration ZEUS D H1 D H1 Displaced Track x=0.006, i= x=0.01, i=4 x=0.013, i=3 x=0.030, i= x=0.03, i=1 Q /GeV [Thompson, 007] F c c x, Q 0 40 % F x, Q for small values of x, but different scaling violations

6 6 Previous calculations: Unpolarized DIS : LO : [Witten, 1976; Babcock, Sivers, 1978; Shifman, Vainshtein, Zakharov 1978; Leveille, Weiler, 1979] NLO : [Laenen, Riemersma, Smith, van Neerven, 1993, 1995] asymptotic: [Buza, Matiounine, Smith, Migneron, van Neerven, 1996; Bierenbaum, Blümlein, Klein, 007] Observation: F c c x, Q is very well described by F c c x, Q Q m for Q > 10 m c. Polarized DIS : LO : [Watson, 198; Glück, Reya, Vogelsang, 1991; Vogelsang, 1991] NLO : asymptotic: [Buza, Matiounine, Smith, van Neerven, 1997; Bierenbaum, Blümlein, Klein, 008, to appear] Mellin space expressions: [Alekhin, Blümlein, 003]. Variable flavor number scheme at Oa s: [Buza, Matiounine, Smith, van Neerven, 1998] In the following, we report on results for unpolarized and polarized Heavy Flavor Wilson coefficients beyond NLO.

7 . The Method 7 massless RGE and light cone expansion in Bjorken limit {Q, ν}, x fixed: [ ] lim Jξ, J0 c N i,τξ, µ ξ µ1...ξ µn O µ 1...µ m ξ i,τ 0, µ. 0 i,n,τ Operators: flavor non-singlet 3, pure singlet and gluon; consider leading twist. RGE for collinear singularities = mass factorization of the structure functions into Wilson coefficients and parton densities: F i x, Q = C j i x, Q µ f j x, µ }{{} j }{{} non-perturbative perturbative Light-flavor Wilson coefficients: process dependent Q C,L;i fl = δ i,q + a l sc fl,l,l,i, µ l=1 i = q, g = Known up to Oa 3 s [Moch, Vermaseren, Vogt, 005.]

8 8 Heavy quark contributions given by heavy quark Wilson coefficient, H S,NS Q,L,i µ, m Q In the limit Q m Q [Q 10 m Q for F ]: massive RGE, derivative m / m acts on Wilson coefficients only: all terms but power corrections calculable through partonic operator matrix elements, i A l j, which are process independent objects! H S,NS Q,L,i µ, m µ = A S,NS m k,i µ }{{ } µ massive OMEs l=1 C S,NS Q,L,k µ. }{{} light parton Wilson coefficients holds for polarized and unpolarized case. OMEs obey expansion A S,NS m k,i = i O S,NS m k i = δ k,i + a l s AS,NS,l k,i, i = q, g [Buza, Matiounine, Migneron, Smith, van Neerven, 1996; Buza, Matiounine, Smith, van Neerven, 1997.] µ.

9 3. Renormalization 9 Unrenormalized massive operator matrix elements: need for: Â ij = δ ij + k=0 â k s Âk ij Mass renormalization Charge renormalization Renormalization of ultraviolet singularities Factorization of collinear singularities use MS scheme and decoupling formalism [Ovrut, Schnitzer 1981; Bernreuther, Wetzel 198]. Since the light-cone expansion is used, external legs obtain self-energy insertions due to heavy quarks.

10 10 Mass renormalization: on mass shell scheme for quarks [Tarrach 1981; Nachtmann, Wetzel 1981; Gray, Broadhurst, Graefe, Schilcher 1990] m ε/ [ 6 δm 1 = C F S ε m µ ε 4 + [ δm = C F Sε m ε m 1 µ ˆm = m + â s δm 1 + â s δm + Oâ 3 s ζ ε 18C F + C A 8T F N l + N h + 1 ε ε ] 45 C F + 91 C A 14T F N l + N h ] ] 199 +C F 8 51 ζ + 48 lnζ 1ζ 3 + C A ζ 4 lnζ + 6ζ 3 + T F [N l + 10ζ + N h 14ζ Charge renormalization: MS-scheme â s ε = Zgε, µ a s µ = a s µ [ 1 + δa s,1 a s µ + δa s, a sµ ] + Oa 4 s [ β 0 4β δa s,1 = S ε, δa s, = Sε 0 ε ε + β ] 1 ε

11 11 Operator renormalization: ultraviolet divergences, renormalized by Z factors. Generic formula in terms of anomalous dimensions γ ij,k. Has to be adapted e.g. for the various cases three-loop non-singlet, pure-singlet, etc. i, j, m, n {q, g}: { [ ] γ ij,0 1 1 Z ij N,a s,ε = δ i,j + a s S ε + a ε ssε ε γ im,0γ mj,0 + β 0 γ ij,0 + 1 } ε γ ij,1 { [ 1 1 +a 3 s S3 ε ε 3 6 γ in,0γ nm,0 γ mj,0 + β 0 γ im,0 γ mj,0 + 4 ] 3 β 0 γ ij,0 + 1 [ 1 ε 6 γ im,1γ mj,0 + γ im,0 γ mj,1 + ] 3 β 0γ ij,1 + β 1 γ ij,0 + γ ij, 3ε } Z PS qq = Z qq Z NS. The anomalous dimensions γ ij,k N are related to the splitting functions by γ ij,k N = 1 0 dzz N 1 P k ij z.

12 1 Mass factorization: Collinear singularities are factored into Γ NS, Γ ij,s and Γ qq,ps. For massless quarks: Γ NS = Z 1 NS, Γ ij,s = Z 1 ij,s, Γ qq,ps = Z 1 qq,ps Γ NS N, a s, ε = Γ ij,s N, a s, ε = Γ qq,ps N, a s, ε = 1 a s S ε γ NS,0 ε γ ij,0 δ ij a s S ε ε a s S ε + a s S ε + a ss ε [ 1 ε [ 1 ε [ 1 ε γ qg,0γ gq,0 + 1 ε γ qq,ps,1 1 γ NS,0 β 0γ NS,0 1 ] ε γ NS,1 1 γ ik,0γ kj,0 β 0 γ ij,0 1 ] ε γ ij,1 ]. Here: in each diagram at least one quark line is massive Γ matrices apply to parts of the diagrams with massless lines only at most loop sub-graphs mass factorization is different in various sub classes of contributing Feynman diagrams singularities contained in Γ NS, Γ ij,s, and Γ qq,ps are absorbed into the bare parton densities, which become scale dependent

13 13 The renormalized operator matrix elements are obtained removing the ultraviolet singularities and collinear singularities of the operator matrix elements, For example: A ij = Z 1 1 ik ÂklΓlj = δ ij + a s A 1 ij + a s A ij + a 3 s A3 ij. A Qg = Zqq 1 ÂPS Qq Γ 1 qg + Zqq 1 = A Qg =  ÂQgΓ 1 Qg + Z 1,1 qq  1 Qg + Z 1,1 qg gg + Zqg 1 Âgq,QΓ 1 mixing with ÂPS Qq and Âgg,Q at Oa 3 s. Âgq,Q starts contributing from Oa s at Oa 4 s to ÂQg qg + Zqg 1 Âgg,QΓ 1 gg.  1 Â1 gg,q + Z 1, qg + Qg + Z 1,1 qg Γ 1,1 gg.

14 14 For example: Renormalized gluonic massive operator matrix elements up to Oa s : Unrenormalized  1 m ε/ { Qg = S ε 1 } 0 ˆP  Qg to Oa s : µ qg + a 1 Qg ε + ε ā1 Qg + ε ā 1 Qg m Renormalized A Qg to Oa s:  Qg = S ε A 1 Qg = 1 A Qg = 1 8 a 1 Qg : Oε of the OME A1 Qg + 1 ε ε S ε µ { 1 P 0 qg ln ε [ 1 ε t H=Q { 1 0 ˆP qg P qq 0 P gg β 0 ˆP qg } 1 ˆP qg β 0 a 1 Qg a1 Qg m µ β 0,H m H µ { [ ]} m P qg 0 P qq 0 P gg 0 + β 0 ln +a 1 Qg P 0 qq P 0 gg ε/ ε ζ + ε3 4 ζ 3 P 1 qg ln µ 1 [ ] P qq 0 P gg 0 + β 0 + a Qg ; a 1 Qg 0 in the MS scheme. Enters A Qg For the renormalization of A 3 Qg : a Qg, a gg,q, a,ps Qq are needed. } ] + a Qg + ε ā Qg m µ through renormalization.

15 4. Calculation Techniques 15 Calculation in Mellin-space for space like q, Q = q : 0 x 1 use of generalized hypergeometric functions for general analytic results use of Mellin-Barnes integrals for numerical checks MB, [Czakon, 006] and some analytic results Summation of lots of new infinite one-parameter sums into harmonic sums. E.g.: S 1 is 1 i + j + N N = 4S,1,1 S 3,1 + S 1 3S,1 + 4S 3 S 4 ii + jj + N 3 i,j=1 S + S 1S + S S 1ζ 3 + ζ S 1 + S use of integral techniques and the Mathematica package SIGMA [C. Schneider, 007], [I. Bierenbaum, J. Blümlein, S. K., C. Schneider, arxiv: [math-ph]; arxiv: [hep-ph]] Partial checks for fixed values of N using SUMMER, [Vermaseren, Int. J. Mod. Phys. A ]. Algebraic and structural simplification of the harmonic sums [J. Blümlein, 003, 007]..

16 5. Results 16 Unpolarized case, Singlet, Oε a Qg = T F C F 3 + N + N + NN + 1N + N + N + 3N + 3N + P 1 N N + 1 ζ 3 + N + N 3 N N + S + N4 5N 3 3N 18N 4 N N + 1 S 1 N + 16S,1,1 8S 3,1 8S,1 S 1 + 3S 4 4 S 3 S 1 1 S S S 1 1 S ζ S ζ S 1 8 ζ 3 S N 3N 8 N S,1 + 3N + N + 1N + 3 N S N N N N 8 3N + N + 3 N N + 1 S 3 + N + N N + S S S 1 N ζ + N5 + N 4 8N 3 5N 3N N 3 N ζ N 5 N 4 11N 3 19N 44N 1 P N N S 1 + N + N 5 N N + N + N + + T F C A 16S,1,1 4S,1,1 8S 3,1 8S, 4S 3,1 β + 9S 4 16S,1 S 1 NN + 1N S 1 S 3 + 4β S 1 8β S + 1 S 8β S 1 + 5S 1 S + 1 S N N 4 4S N + 1 N +,1 + β 4β S N3 1N 7N NN + 1 N + S S N 5 10N 4 11N N + 4N + 16 N 1N N + 1 N + ζ 3 S 1 ζ 3 S ζ S 1 ζ 4β ζ 17 ζ 5 N 3 + 8N + 11N + NN + 1 N + S N 4 + N 3 + 7N + N + 0 N N + 3 β N N 4 + 9N 3 + 3N + 7N + 6 N + N 1 N 1N N + 1 N + S 3 8 N + 1 N + ζ S 1 P 5 NN N + 3 S 1 + P 6 NN N + 4 S 1 P 7 N 1N 5 N N + 5 P 3 N 1N 3 N N + 3 S P 4 N 1N 3 N N + ζ.

17 17 Unpolarized case, Pure Singlet and Non singlet, Oε a PS, Qq = C F T F 5N3 + 7N + 4N + 4N + 5N + S N 1N 3 N N + + ζ 4 3 N + N + 3S N 1N N ζ 3 N + P 9 + N 1N 5 N N + 4. qq,q = C 4 FT F 3 S S ζ 8 9 S 1ζ S S 1ζ + 3N + 3N + 9NN + 1 a NS, S + 3N4 + 6N N + 0N 1 18N N + 1 ζ S 1 + ζ 3 P 8 648N 4 N

18 18 Polarized case, Singlet Oε a N 1 Qg = T F C F 16S,1,1 8S 3,1 8S,1 S 1 + 3S 4 4 S 3 S 1 1 S 1 S1 4 8 S 1 ζ 3 S S 1 + S ζ S 1 ζ NN S,1 N N + 3N N N + 1N + N 13N + 3N + N N + 1 ζ 3 + N4 4N 3 3N + 0N + 1 N N + 1 S 1 + N + + T F C A N NN + 1 S 3 S S + 5S S S S 1 + S N4 + 48N N + 98N N N N P 1 N 3 N S + N3 6N N 36 N + N N + 1N + P 3 N 5 N N + N 1 S N S 1 ζ N + 1 S 1 + P N 3 N ζ 16S,1,1 4S,1,1 8S 3,1 8S, 4S 3,1 + 3 β 16S,1 S 1 4β S 1 + 8β S + 8β S 1 + 9S 4 S ζ β ζ S ζ S1 10 S 1 ζ ζ + N 1 16S NN + 1,1 4β + 16β S N 3 + 7N + 8N 6 3N 13 N N + 1 S 3 + N + NN + 1 S S 1 N + 3 N + 4N + 5 NN + 1 N + S ζ S 1 N + 1 N 19N N N + 1 ζ 3 N NN β P 4 N 3 N S N4 + N 3 5N 1N + N + NN N + P 6 P 7 + NN S 1 N + N 5 N N + S 1 P 5 N 3 N ζ [I. Bierenbaum, J. Blümlein and S. K., 008, to appear]

19 19 Polarized case, Pure Singlet and Non singlet, Oε a PS, 4N 1N + Qq = 3S 3N N ζ 3 + N + N3 + N + 1 S N 3 N ζ a NS, qq,q = a NS, qq,q. + + NN5 7N 4 + 6N 3 + 7N + 4N + 1 N N 5, Use of t Hooft Veltman scheme for γ 5. A finite renormalization has to be applied to maintain the Ward identities. The first moment of a Qg vanishes. = sum rule of H gx.

20 0 Â gg,q { = 1 T F C A ε 3 3 S 64N + N N 1NN + 1N + + +ε 8 3 ζ S ζ 3S N + N + 1ζ 3N 1NN + 1N + 9 ζ S 1 + Â gg,q unpolarized + 1 ε 4 56N N + 1 S S N + N + 1 9N 1NN + 1N + ζ 3 + N + 1 3N + 1 S 16P 1 9N 1N N + 1 N + P 3 7N 1N 3 N N + S 1 3N P 1 ζ + 56N 3 47N 175N N 1N N + 1 N + 38N P 5 81N 1NN + 1 S N 1N 4 N N + { 1 16N + N + +T F C F ε N 1N N P N + ε N 1N 3 N N + + +ε 4N + N + ζ N 1N N + 1 N + P 4 N 1N 4 N N + 4N + N + ζ 3 3N 1N N + 1 N + + P ζ N 1N 3 N N + + P 6 4N 1N 5 N N + Result obtained in terms of Γ and Ψ functions to all orders in ε to Oε 0 agreement with van Neerven et al. Oε new: term needed too to derive variable flavor number scheme to Oα 3 s. } }

21 1 A remark on the mathematical structure of the O1 and Oε terms: van Neerven et al. to O1: unpolarized: 48 basic functions; polarized: 4 basic functions. O1: {S 1, S, S 3, S, S 3 }, S,1 = basic objects. Oε: {S 1, S, S 3, S 4, S, S 3, S 4 }, S,1, S,1, S 3,1, S,1,1, S,1,1 = 6 basic objects These objects are in common to all single scale higher order processes. Str. Functions, DIS HQ, Fragm. Functions, DY, Hadr. Higgs-Prod., s+v contr. to Bhabha scatt.,... harmonic sums with index { 1} cancel holds even for each diagram [J. Blümlein, 004; J. Blümlein, V. Ravindran, 005,006; J. Blümlein, S. Klein, arxiv: [hep-ph]; J. Blümlein and S. Moch in preparation.] Expectation for 3 loops: weight 5 6 harmonic sums

22 6. Fixed moments of A 3 ij,q Contributing OMEs: Singlet A Qg A gg,q A gq,q Pure Singlet A PS Qq } mixing Non Singlet A NS,+ qq,q A NS, qq,q A NS,v qq,q All loop Oε terms in the unpolarized case are known: a Qg, a,ps Qq, a gg,q, a gq,q, a,ns qq,q. Unpolarized anomalous dimensions are known up to Oa 3 s [Moch, Vermaseren, Vogt, 004.] = All terms needed for the renormalization of unpolarized 3 Loop heavy OMEs are present. = Calculation will provide first independent checks on γ qg 3, γ qq 3,PS color projections of γ 3,NS±,v qq, γ 3 gg and γ 3 gq. Calculation proceeds in the same way in the polarized case. Known so far : a Qg, a,ps Qq, a,ns qq,q = a,ns qq,q. and on respective

23 3 3 loop OMEs are generated with QGRAF [Nogueira 1993] New operator insertions emerge: We consider first the terms with quark loops at least one heavy: # of diagrams for A 3 Qg 489 diagrams with two quark loops 1478 diagrams with one quark loop = number of diagrams can be reduced by using symmetry arguments.

24 4 First step: Calculation of fixed moments of A 3 Qg N, N =, 4, 6,... three loop self-energy type diagrams with an operator insertion Extension: additional scale compared to massive propagators: Mellin variable N Genuine tensor integrals due to µ 1... µ n p O µ1...µ n p = µ 1... µ n p S Ψγ µ1 D µ...d µn Ψ p = AN p N D µ = µ igt a A a µ, = 0. Construction of a projector to obtain the desired moment in N [undo -contraction] Color factors are calculated with [Ritbergen, Schellekens, Vermaseren 1998] Translation to suitable input for MATAD [Steinhauser, 001] Tests performed: Various loop calculations for N =, 4, 6,... were repeated agreement with our previous calculation; checked against result of A gg,q Status: automated chain to evaluate the OMEs Terms OT F d abcd abc vanish currently investigated: terms T F C F, T F C A terms

25 First Results 5 Non-singlet terms : OT F C F Â 3,NS m 3ε/ qq,qq = 8β 0,Q γ0,ns qq,q µ 3ε 3 A 3,NS± qq,q N : heavy quark loops 4β 1,NS 0,Qγqq,Q 3ε + γ,ns qq,qq 1β 0,Qa,NS qq,q 3ε + a 3,NS qq,qq. A 3,NS qq,qq = 1 6 ln3 m µ β0,q γ0,ns qq,q + 1 ln m µ β 0,Q γ 1,NS qq,q + 1 m ln µ γ,ns qq,qq +a 3,NS qq,qq + 4β 0,Qa,NS qq,q. [ ] γ 0,NS qq,q = 4C F S 1 3N + 3N + NN + 1 { γ 1,NS 8 qq,q = 4C F T F 3 S 40 9 S 1 + 3N4 + 6N N } + 0N 1 9N N + 1 γ,ns 18 qq,qq = C FTF 9 S S 18 7 S N N N N N + 16N 4 7N 3 N

26 6 Â 3,NS qq,qq = 1 ε ε ε ζ ζ ζ, Â 3,NS qq,qq 4 = 1 ε ε ε ζ ζ, Â 3,NS qq,qq 6 = 1 ε ε ε ζ ζ, Â 3,NS qq,qq 8 = 1 ε ε ε ζ ζ ζ ζ ζ

27 7 A 3,NS qq,qq = [ 18 T F C F 81 ln3 m µ ln m µ ] 81 ζ 3, ln m µ A 3,NS qq,qq 4 = T FC F [ ln3 m µ ln m µ ln m µ A 3,NS qq,qq 6 = ] 405 ζ 3, T F C F [ ln3 m µ ln m µ ζ 3 ], m ln µ A 3,NS qq,qq 8 = T FC F [ ln3 m µ ln m µ ln m µ ζ 3 ]. All ζ terms vanish after renormalization.

28 8 1 heavy - 1 massless quark A 3,NS qq,qq = n ft FC F [ ln3 m µ ln m µ A 3,NS qq,qq 4 = n ft F C F 81 ζ 3 [ ln3 m µ m ln µ ζ 3 [ A 3,NS qq,qq 6 = n ftfc F ln3 m µ m ln µ A 3,NS qq,qq 8 = n ft F C F [ ln3 m µ ln m µ ζ 3 ], ], ], 835 ζ 3 ],

29 9 7. Conclusions The heavy flavor contributions to F are rather large in the region of lower values of x. QCD precision analyses therefore require the description of the heavy quark contributions to 3 loop order. We calculate the heavy flavor DIS Wilson Coefficients in the asymptotic regime [Q 10m ] using massive operator matrix elements. We newly presented first contributions to these corrections: ā Qg, āps, Qq, ā gg,q, āns, qq ā Qg, āps, Qg = ā NS, qq,q in the unpolarized and polarized case for general values of the Mellin variable. These terms contribute to H 3 ij, H3 ij respectively, through renormalization.

30 30 The calculation is performed in Mellin space, which allows to obtain compact results. The analytic results were obtained using representations in terms of generalized hypergeometric functions. Numerical checks were performed applying Mellin Barnes integrals. Integral techniques and the summation package SIGMA have been used for summation. The results are given in the form of nested harmonic sums. We developed a programme chain to calculate the massive operator matrix elements A 3 ij for fixed Mellin moments based on QGRAF and MATAD First non-logarithmic 3 loop contributions were calculated for a series of Mellin Moments. There are more to come soon for other color structures and higher values of Mellin N. The 3 loop anomalous dimensions are obtained as a by-product from the single pole terms.

Johannes Blümlein, DESY [in collaboration with I. Bierenbaum and S. Klein]

Johannes Blümlein, DESY [in collaboration with I. Bierenbaum and S. Klein] Oα 3 1 s Heavy Flavor Wilson Coefficients in DIS @ Q m Johannes Blümlein, DESY [in collaboration with I. Bierenbaum and S. Klein Introduction Theory Status The Method Asymptotic Loop Results all N Asymptotic

More information

TF 2 -Contributions to 3-Loop Deep-Inelastic Wilson Coefficients and the Asymptotic Representation of Charged Current DIS

TF 2 -Contributions to 3-Loop Deep-Inelastic Wilson Coefficients and the Asymptotic Representation of Charged Current DIS 1/30 TF 2 -Contributions to 3-Loop Deep-Inelastic Wilson Coefficients and the Asymptotic Representation of Charged Current DIS Alexander Hasselhuhn RISC (LHCPhenonet) 26.9.2013 in collaboration with: J.

More information

Latest results on the 3-loop heavy flavor Wilson coefficients in DIS

Latest results on the 3-loop heavy flavor Wilson coefficients in DIS 1/34 Latest results on the 3-loop heavy flavor Wilson coefficients in DIS A. De Freitas 1, J. Ablinger, A. Behring 1, J. Blümlein 1, A. Hasselhuhn 1,,4, A. von Manteuffel 3, C. Raab 1, C. Schneider, M.

More information

Recent Results on Three Loop Corrections to Heavy Quark Contributions to DIS Structure Functions

Recent Results on Three Loop Corrections to Heavy Quark Contributions to DIS Structure Functions Recent Results on Three Loop Corrections to Heavy Quark Contributions to DIS Structure Functions Johannes Blümlein, DESY in collaboration : with J. Ablinger JKU, A. De Freitas DESY, A. Hasselhuhn DESY,

More information

QCD Precision Tests in Deeply Inelastic Scattering

QCD Precision Tests in Deeply Inelastic Scattering QCD Precision Tests in Deeply Inelastic Scattering Johannes Blümlein DESY Introduction and Method QCD Analysis of Unpolarized Structure Functions Λ QCD and α s (M 2 Z ) What would we like to know? J. Blümlein

More information

Good Morning to Seattle! J. Blümlein Status of Unpolarized PDFs and αs(m 2 Z ) Seattle, WA, October 20th 2009 p.1

Good Morning to Seattle! J. Blümlein Status of Unpolarized PDFs and αs(m 2 Z ) Seattle, WA, October 20th 2009 p.1 Good Morning to Seattle! J. Blümlein Status of Unpolarized PDFs and αs(m 2 Z ) Seattle, WA, October 2th 29 p. Status of Unpolarized PDFs and α s (M 2 Z ) Johannes Blümlein DESY The Major Goals DIS Theory

More information

3-Loop Corrections to Heavy Flavor Wilson Coefficients in Deep-Inelastic Scattering

3-Loop Corrections to Heavy Flavor Wilson Coefficients in Deep-Inelastic Scattering 1/3 3-Loop Corrections to Heavy Flavor Wilson Coefficients in Deep-Inelastic Scattering J. Blümlein 1, J. Ablinger 2, A. Behring 1, A. De Freitas 1, A. Hasselhuhn 2, A. von Manteuffel 3, C. Raab 1, M.

More information

PoS(DIS 2010)139. On higher-order flavour-singlet splitting functions and coefficient functions at large x

PoS(DIS 2010)139. On higher-order flavour-singlet splitting functions and coefficient functions at large x On higher-order flavour-singlet splitting functions and coefficient functions at large x Department of Mathematical Sciences, University of Liverpool, UK E-mail: G.N.Soar@liv.ac.uk A. Vogt Department of

More information

Computing of Charged Current DIS at three loops

Computing of Charged Current DIS at three loops Computing of Charged Current DIS at three loops Mikhail Rogal Mikhail.Rogal@desy.de DESY, Zeuthen, Germany ACAT 2007, Amsterdam, Netherlands, April 23-28, 2007 Computing of Charged CurrentDIS at three

More information

The Three-Loop Splitting Functions in QCD: The Non-Singlet Case

The Three-Loop Splitting Functions in QCD: The Non-Singlet Case The Three-Loop Splitting Functions in QCD: The Non-Singlet Case Sven-Olaf Moch DESY Zeuthen 1. The Calculation. The Result 3. The Summary in collaboration with J.A.M. Vermaseren and A. Vogt, hep-ph/040319

More information

Two-loop massive fermionic operator matrix elements and intial state QED corrections to e + e γ /Z

Two-loop massive fermionic operator matrix elements and intial state QED corrections to e + e γ /Z Two-loop massive fermionic operator matrix elements and intial state QED corrections to e + e γ /Z J. Blümlein, a ab and W. van Neerven c a DESY, Zeuthen, Platanenalle 6, D-173 Zeuthen, Germany. b Departamento

More information

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden Physics at LHC lecture one Sven-Olaf Moch Sven-Olaf.Moch@desy.de DESY, Zeuthen in collaboration with Martin zur Nedden Humboldt-Universität, October 22, 2007, Berlin Sven-Olaf Moch Physics at LHC p.1 LHC

More information

Status of Deeply Inelastic Parton Distributions

Status of Deeply Inelastic Parton Distributions Status of Deeply Inelastic Parton Distributions Johannes Blümlein DESY DIS Theory Status QCD Analysis of Unpolarized Structure Functions Polarized Structure Functions Moments of Parton Densities Λ QCD

More information

) Heavy Quark Corrections to Charged Current Deep-Inelastic Scattering at large Virtualities

) Heavy Quark Corrections to Charged Current Deep-Inelastic Scattering at large Virtualities DESY 1 47 DO TH 1/4 SFB/CPP-14-00 LPN 14-006 Higgstools 14 TUM-HEP-91/1 December 01 arxiv:1401.4 hep-ph arxiv:1401.4v hep-ph 0 Feb 014 The Oα s Heavy Quark Corrections to Charged Current Deep-Inelastic

More information

Zhong-Bo Kang Los Alamos National Laboratory

Zhong-Bo Kang Los Alamos National Laboratory Introduction to pqcd and Jets: lecture 1 Zhong-Bo Kang Los Alamos National Laboratory Jet Collaboration Summer School University of California, Davis July 19 1, 014 Selected references on QCD! QCD and

More information

Research in QCD factorization

Research in QCD factorization Research in QCD factorization Bowen Wang Southern Methodist University (Dallas TX) Jefferson Lab Newport News VA 1/1/015 My research at SMU in 011-015 Ph. D. advisor: Pavel Nadolsky Ph. D. thesis: The

More information

The Drell Levy Yan Relation: ep vs e + e Scattering to O(ff 2 s ) Johannes Blümlein DESY 1. The DLY Relation 2. Structure and Fragmentation Functions

The Drell Levy Yan Relation: ep vs e + e Scattering to O(ff 2 s ) Johannes Blümlein DESY 1. The DLY Relation 2. Structure and Fragmentation Functions The DrellLevyYan Relation: ep vs e e Scattering to O(ff s ) Johannes Blümlein DESY. The Relation. Structure and Fragmentation Functions. Scheme Invariant Combinations 4. DrellYanLevy Relations for Evolution

More information

PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD. Taushif Ahmed Institute of Mathematical Sciences, India March 22, 2016

PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD. Taushif Ahmed Institute of Mathematical Sciences, India March 22, 2016 PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD Taushif Ahmed Institute of Mathematical Sciences, India March, 016 PROLOGUE: SM & MSSM SM Complex scalar doublet (4 DOF) 3 DOF transform into longitudinal modes

More information

Higgs boson production at the LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions to N 3 LO

Higgs boson production at the LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions to N 3 LO SFB/CPP-12-93 TTP12-45 LPN12-127 Higgs boson production at the LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions to N 3 LO Maik Höschele, Jens Hoff, Aleey Pak,

More information

arxiv:hep-ph/ v1 29 Aug 2006

arxiv:hep-ph/ v1 29 Aug 2006 IPPP/6/59 August 26 arxiv:hep-ph/6837v1 29 Aug 26 Third-order QCD results on form factors and coefficient functions A. Vogt a, S. Moch b and J.A.M. Vermaseren c a IPPP, Physics Department, Durham University,

More information

Threshold cross sections for Drell-Yan & Higgs productions in N 3 LO QCD

Threshold cross sections for Drell-Yan & Higgs productions in N 3 LO QCD Narayan Rana 20/10/2016 1/46 Threshold cross sections for Drell-Yan & Higgs productions in N 3 LO QCD Narayan Rana 20/10/2016 in collaboration with T. Ahmed, M. C. Kumar, M. Mahakhud, M. K. Mandal, P.

More information

Large-n f Contributions to the Four-Loop Splitting Functions in QCD

Large-n f Contributions to the Four-Loop Splitting Functions in QCD Large-n Contributions to the Four-Loop Splitting Functions in QCD Nucl. Phys. B915 (2017) 335-362, arxiv:1610.07477 Joshua Davies Department o Mathematical Sciences University o Liverpool Collaborators:

More information

O(α 3 s T2 F N f) Contributions to the Heavy Flavor Wilson Coefficients of the Structure Function F 2 (x,q 2 ) at Q 2 m 2

O(α 3 s T2 F N f) Contributions to the Heavy Flavor Wilson Coefficients of the Structure Function F 2 (x,q 2 ) at Q 2 m 2 Oα 3 s T F N f Contributions to the Heavy Flavor Wilson Coefficients of the Structure Function F x,q at Q m arxiv:1010.451v1 hep-ph 0 Oct 010 Diplomarbeit zur Erlangung des wissenschaftlichen Grades Diplom-Physiker

More information

Parton Distribution Functions and Global Fitting

Parton Distribution Functions and Global Fitting Parton Distribution Functions and Global Fitting J.F. Owens Physics Department, Florida State University 2007 CTEQ Summer School May 30 - June 7, 2007 Madison, Wisconsin Preliminaries Issues related to

More information

DIS 98 STRUCTURE FUNCTIONS SUMMARY, PART II

DIS 98 STRUCTURE FUNCTIONS SUMMARY, PART II WUE-ITP-98-03 July 998 hep-ph/9807369 DIS 98 STRUCTURE FUNCTIONS SUMMARY, PART II ANDREAS VOGT Institut für Theoretische Physik, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany E-mail: avogt@physik.uni-wuerzburg.de

More information

arxiv:hep-ph/ v2 11 Jan 2007

arxiv:hep-ph/ v2 11 Jan 2007 IPM School and Conference on Hadrn and Lepton Physics, Tehran, 5-2 May 26 An approach to NNLO analysis of non-singlet structure function Ali N. Khorramian Physics Department, Semnan University, Semnan,

More information

Triangle diagrams in the Standard Model

Triangle diagrams in the Standard Model Triangle diagrams in the Standard Model A. I. Davydychev and M. N. Dubinin Institute for Nuclear Physics, Moscow State University, 119899 Moscow, USSR Abstract Method of massive loop Feynman diagrams evaluation

More information

Deep inelastic scattering and the OPE in lattice QCD

Deep inelastic scattering and the OPE in lattice QCD Deep inelastic scattering and the OPE in lattice QCD William Detmold [WD & CJD Lin PRD 73, 014501 (2006)] DIS structure of hadrons Deep-inelastic scattering process critical to development of QCD k, E

More information

NNLO PDFs in 3 flavor scheme and collider data

NNLO PDFs in 3 flavor scheme and collider data NNLO PDFs in 3 flavor scheme and collider data S.Alekhin (DESY & IHEP, Protvino) In collaboration with J.Blümlein and S.Moch INT, Seattle, 19 Oct 2010 The ABKM fit ingredients DATA: QCD: DIS NC inclusive

More information

Proton Structure Function Measurements from HERA

Proton Structure Function Measurements from HERA Proton Structure Function Measurements from HERA Jörg Gayler DESY, Notkestrasse 85, 2263 Hamburg, Germany E-mail: gayler@mail.desy.de Abstract. Measurements of proton structure functions made in neutral

More information

HEAVY QUARKS FROM PHOTOPRODUCTION (AND DIS)

HEAVY QUARKS FROM PHOTOPRODUCTION (AND DIS) HEAVY QUARKS FROM PHOTOPRODUCTION (AND DIS) INT 20, Seattle EIC workshop Week 6, Oct. 22, 20 H. Spiesberger based on work in collaboration with A. Kadeer, B. Kniehl, G. Kramer, C. Pisano, I. Schienbein,

More information

The Three-Loop Splitting Functions in QCD: The Helicity-Dependent Case

The Three-Loop Splitting Functions in QCD: The Helicity-Dependent Case DESY 14 157, NIKHEF 14-033 LTH 1023 arxiv:1409.5131 The Three-Loop Splitting Functions in QCD: The Helicity-Dependent Case S. Moch a, J.A.M. Vermaseren b and A. Vogt c b II. Institute for Theoretical Physics,

More information

Factorization, Evolution and Soft factors

Factorization, Evolution and Soft factors Factorization, Evolution and Soft factors Jianwei Qiu Brookhaven National Laboratory INT Workshop: Perturbative and nonperturbative aspects of QCD at collider energies University of Washington, Seattle,

More information

Particles and Deep Inelastic Scattering

Particles and Deep Inelastic Scattering Particles and Deep Inelastic Scattering University HUGS - JLab - June 2010 June 2010 HUGS 1 Sum rules You can integrate the structure functions and recover quantities like the net number of quarks. Momentum

More information

The 4-loop quark mass anomalous dimension and the invariant quark mass.

The 4-loop quark mass anomalous dimension and the invariant quark mass. arxiv:hep-ph/9703284v1 10 Mar 1997 UM-TH-97-03 NIKHEF-97-012 The 4-loop quark mass anomalous dimension and the invariant quark mass. J.A.M. Vermaseren a, S.A. Larin b, T. van Ritbergen c a NIKHEF, P.O.

More information

Perturbative QCD. Chul Kim. Seoultech. Part I : Introduction to QCD Structure functions for DIS

Perturbative QCD. Chul Kim. Seoultech. Part I : Introduction to QCD Structure functions for DIS Perturbative QCD Part I : Introduction to QCD Structure functions for DIS Chul Kim Seoultech Open KIAS, Pyeong-Chang Summer Institute 2013 Pyeong-Chang, Alpensia Resort, July 8, 2013 QCD QCD Lagrangian

More information

Introduction to Perturbative QCD

Introduction to Perturbative QCD Introduction to Perturbative QCD Lecture 3 Jianwei Qiu Iowa State University/Argonne National Laboratory PHENIX Spinfest at RIKEN 007 June 11 - July 7, 007 RIKEN Wako Campus, Wako, Japan June 6, 007 1

More information

Status and news of the ABM PDFs

Status and news of the ABM PDFs Status and news of the ABM PDFs S.Alekhin (DESY-Zeuthen & IHEP Protvino) Basics heavy quarks in NNLO, mc, mb and αs Strange sea new DIS charm data sa, Blümlein, Caminadac, Lipka, Lohwasser, Moch, Petti,

More information

Johannes Blümlein Deutsches Elektronensynchrotron DESY, Platanenallee 6, D Zeuthen, Germany

Johannes Blümlein Deutsches Elektronensynchrotron DESY, Platanenallee 6, D Zeuthen, Germany II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany; Institute for High Energy Physics,142281 Protvino, Russia E-mail: sergey.alekhin@desy.de Johannes

More information

Anomalous dimensions and splitting functions beyond the next-to-next-to-leading order

Anomalous dimensions and splitting functions beyond the next-to-next-to-leading order Anomalous dimensions and splitting functions beyond the next-to-next-to-leading order Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, UK E-mail: Andreas.Vogt@liverpool.ac.uk

More information

Higher-Order Corrections in Threshold Resummation

Higher-Order Corrections in Threshold Resummation DESY 5-5, SFB/CPP-5-5 DCPT/5/6, IPPP/5/3 NIKHEF 5- June 5 hep-ph/5688 Higher-Order Corrections in Threshold Resummation S. Moch a, J.A.M. Vermaseren b and A. Vogt c a Deutsches Elektronensynchrotron DESY

More information

QCD threshold corrections for gluino pair production at NNLL

QCD threshold corrections for gluino pair production at NNLL Introduction: Gluino pair production at fixed order QCD threshold corrections for gluino pair production at NNLL in collaboration with Ulrich Langenfeld and Sven-Olaf Moch, based on arxiv:1208.4281 Munich,

More information

Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York

Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York Many thanks to my colleagues, A. Deshpande, F. Gelis, B. Surrow

More information

arxiv: v1 [hep-ph] 20 Jan 2010

arxiv: v1 [hep-ph] 20 Jan 2010 LTH 862, DESY 10-007, arxiv:1001.3554 [hep-ph] January 2010 Higher-order predictions for splitting functions and coefficient functions from physical evolution kernels arxiv:1001.3554v1 [hep-ph] 20 Jan

More information

QCD and Rescattering in Nuclear Targets Lecture 2

QCD and Rescattering in Nuclear Targets Lecture 2 QCD and Rescattering in Nuclear Targets Lecture Jianwei Qiu Iowa State University The 1 st Annual Hampton University Graduate Studies Program (HUGS 006) June 5-3, 006 Jefferson Lab, Newport News, Virginia

More information

2. HEAVY QUARK PRODUCTION

2. HEAVY QUARK PRODUCTION 2. HEAVY QUARK PRODUCTION In this chapter a brief overview of the theoretical and experimental knowledge of heavy quark production is given. In particular the production of open beauty and J/ψ in hadronic

More information

arxiv: v1 [hep-ph] 23 Apr 2009

arxiv: v1 [hep-ph] 23 Apr 2009 DESY 09 057 SFB/CPP 09 033 IFIC/09 16 April 009 arxiv:0904.3563 arxiv:0904.3563v1 hep-ph 3 Apr 009 Mellin Moment of the Oα 3 Heavy Flavor Contribution to Unpolarized Deep-Inelatic Scattering at Q m and

More information

arxiv:hep-ph/ v1 4 May 1995

arxiv:hep-ph/ v1 4 May 1995 CERN-TH/95-103 SMU HEP 95-02 arxiv:hep-ph/9505230v1 4 May 1995 CHARM PRODUCTION IN DEEP-INELASTIC eγ SCATTERING TO NEXT-TO-LEADING ORDER IN QCD 1 Eric Laenen CERN TH-Division 1211-CH, Geneve 23, Switzerland

More information

A. Mitov 3-loop time-like splitting functions in Mellin space and NNLO fragmentation

A. Mitov 3-loop time-like splitting functions in Mellin space and NNLO fragmentation Three-loop time-like splitting functions in Mellin space and NNLO fragmentation Alexander Mitov DESY Work in progress with: M. Cacciari; Lance Dixon; S-O. Moch Also based on: hep-ph/0604160 (with Sven

More information

Scale dependence of Twist-3 correlation functions

Scale dependence of Twist-3 correlation functions Scale dependence of Twist-3 correlation functions Jianwei Qiu Brookhaven National Laboratory Based on work with Z. Kang QCD Evolution Workshop: from collinear to non collinear case Thomas Jefferson National

More information

Heavy quark production and large-x nuclear gluons at EIC

Heavy quark production and large-x nuclear gluons at EIC Heavy quark production and large-x nuclear gluons at EIC C. Weiss (JLab), Santa Fe Jets and Heavy Flavor Workshop, -Jan-8 Nuclear partons e x e x B, Q c, b _ c, b _ Nuclear modifications NN interactions

More information

Parton Distribution Functions, Part 1. Daniel Stump. Department of Physics and Astronomy Michigan State University

Parton Distribution Functions, Part 1. Daniel Stump. Department of Physics and Astronomy Michigan State University Parton Distribution Functions, Part 1 Daniel Stump Department of Physics and Astronomy Michigan State University A. Introduction B. Properties of the PDFs C. Results of CT10-NNLO Global Analysis D. Uncertainties

More information

Gluonic Spin Orbit Correlations

Gluonic Spin Orbit Correlations Gluonic Spin Orbit Correlations Marc Schlegel University of Tuebingen in collaboration with W. Vogelsang, J.-W. Qiu; D. Boer, C. Pisano, W. den Dunnen Orbital Angular Momentum in QCD INT, Seattle, Feb.

More information

Two-loop evaluation of large Wilson loops with overlap fermions: the b-quark mass shift, and the quark-antiquark potential

Two-loop evaluation of large Wilson loops with overlap fermions: the b-quark mass shift, and the quark-antiquark potential Two-loop evaluation of large Wilson loops with overlap fermions: the b-quark mass shift, and the quark-antiquark potential Department of Physics, University of Cyprus, Nicosia CY-678, Cyprus E-mail: ph00aa@ucy.ac.cy

More information

arxiv:hep-ph/ v1 4 Nov 1998

arxiv:hep-ph/ v1 4 Nov 1998 Gluon- vs. Sea quark-shadowing N. Hammon, H. Stöcker, W. Greiner 1 arxiv:hep-ph/9811242v1 4 Nov 1998 Institut Für Theoretische Physik Robert-Mayer Str. 10 Johann Wolfgang Goethe-Universität 60054 Frankfurt

More information

Initial-state splitting

Initial-state splitting QCD lecture (p. 14) 1st order analysis For initial state splitting, hard process occurs after splitting, and momentum entering hard process is modified: p zp. σ g+h (p) σ h (zp) α sc F π dz dkt 1 z kt

More information

Threshold Corrections To DY and Higgs at N 3 LO QCD

Threshold Corrections To DY and Higgs at N 3 LO QCD Threshold Corrections To DY and Higgs at N 3 LO QCD Taushif Ahmed Institute of Mathematical Sciences, India July 2, 2015 Threshold Corrections To DY and Higgs at N 3 LO QCD INFN Sezione Di Torino 1 Prologue

More information

Matching collinear and small x factorization calculations for inclusive hadron production in pa collisions

Matching collinear and small x factorization calculations for inclusive hadron production in pa collisions Matching collinear and small x factorization calculations for inclusive hadron production in pa collisions The Pennsylvania State University, Physics Department, University Park, PA 16802 H. Niewodniczański

More information

arxiv: v1 [hep-ph] 1 Feb 2016

arxiv: v1 [hep-ph] 1 Feb 2016 DESY 16/2, DO-TH 16/2, MITP/16-16 3-Loop Corrections to the Heavy Flavor Wilson Coefficients in Deep-Inelastic Scattering arxiv:162.583v1 [hep-ph] 1 Feb 216 J. Ablinger 1, A. Behring 2, 2, A. De Freitas

More information

AN INTRODUCTION TO QCD

AN INTRODUCTION TO QCD AN INTRODUCTION TO QCD Frank Petriello Northwestern U. & ANL TASI 2013: The Higgs Boson and Beyond June 3-7, 2013 1 Outline We ll begin with motivation for the continued study of QCD, especially in the

More information

Introduction to Hard Probes in Heavy Ion Collisions. Sangyong Jeon

Introduction to Hard Probes in Heavy Ion Collisions. Sangyong Jeon Introduction to Hard Probes in Heavy Ion Collisions Sangyong Jeon Department of Physics McGill University Montréal, QC, CANADA NNSPP Stonybrook University, July 2013 Jeon (McGill) Hard Probes Stony Brook

More information

arxiv:hep-ph/ v1 25 Sep 2002

arxiv:hep-ph/ v1 25 Sep 2002 hep-ph/0209302 Direct Higgs production at hadron colliders arxiv:hep-ph/0209302v1 25 Sep 2002 Massimiliano Grazzini (a,b) (a) Dipartimento di Fisica, Università di Firenze, I-50019 Sesto Fiorentino, Florence,

More information

arxiv:hep-ph/ v1 12 Sep 1995

arxiv:hep-ph/ v1 12 Sep 1995 1 LTH-346 Large N f methods for computing the perturbative structure of deep inelastic scattering arxiv:hep-ph/9509276v1 12 Sep 1995 J.A. Gracey, Department of Mathematical Sciences, University of Durham,

More information

Higher Order Corrections to the Drell-Yan Cross Section in the Mellin Space

Higher Order Corrections to the Drell-Yan Cross Section in the Mellin Space Higher Order Corrections to the Drell-Yan Cross Section in the Mellin Space Petra Kovačíková (DESY, Zeuthen) petra.kovacikova@desy.de Corfu Summer School 4 th September 21 Higher Order Corrections to the

More information

Antenna Subtraction at NNLO

Antenna Subtraction at NNLO Antenna Subtraction at NNLO Aude Gehrmann-De Ridder ETH Zürich in collaboration with T. Gehrmann, E.W.N. Glover Loopfest IV Snowmass 2005 Antenna Subtraction at NNLO p.1 Outline Jet observables Jets in

More information

Investigation of Top quark spin correlations at hadron colliders

Investigation of Top quark spin correlations at hadron colliders CERN-PH-TH/2004-206 Investigation of Top quark spin correlations at hadron colliders arxiv:hep-ph/0410197v1 13 Oct 2004 W. Bernreuther A, A. Brandenburg B, Z. G. Si C and P. Uwer D A Institut f. Theoretische

More information

arxiv:hep-ph/ v2 2 Sep 1996

arxiv:hep-ph/ v2 2 Sep 1996 arxiv:hep-ph/960927v2 2 Sep 996 DESY 96 72 INLO-PUB-7/96 WUE-ITP-96-07 August 996 Theoretical Uncertainties in the QCD Evolution of Structure Functions and their Impact on α s (M 2 Z ) J. Blümlein, S.

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu Theory Center, Jefferson Lab May 29 June 15, 2018 Lecture One The plan for my four lectures q The Goal: To understand the strong interaction dynamics

More information

Zhongbo Kang. QCD evolution and resummation for transverse momentum distribution. Theoretical Division, Group T-2 Los Alamos National Laboratory

Zhongbo Kang. QCD evolution and resummation for transverse momentum distribution. Theoretical Division, Group T-2 Los Alamos National Laboratory QCD evolution and resummation for transverse momentum distribution Zhongbo Kang Theoretical Division, Group T-2 Los Alamos National Laboratory QCD Evolution Worshop Jefferson Lab, Newport News, VA Outline:

More information

High energy scattering in QCD

High energy scattering in QCD High energy scattering in QCD I Parton model, Bjorken scaling, François Gelis and CEA/Saclay General introduction IR & Coll. divergences Multiple scatterings Heavy Ion Collisions General introduction François

More information

QCD Factorization and PDFs from Lattice QCD Calculation

QCD Factorization and PDFs from Lattice QCD Calculation QCD Evolution 2014 Workshop at Santa Fe, NM (May 12 16, 2014) QCD Factorization and PDFs from Lattice QCD Calculation Yan-Qing Ma / Jianwei Qiu Brookhaven National Laboratory ² Observation + Motivation

More information

light-cone (LC) variables

light-cone (LC) variables light-cone (LC) variables 4-vector a µ scalar product metric LC basis : transverse metric 24-Apr-13 1 hadron target at rest inclusive DIS target absorbes momentum from γ * ; for example, if q z P z =0

More information

arxiv: v2 [hep-ph] 20 Sep 2016

arxiv: v2 [hep-ph] 20 Sep 2016 DESY 16-149, DO-TH 16/16, MITP/16-096 New Results on Massive 3-Loop Wilson Coefficients in Deep-Inelastic scattering arxiv:1609.03397v2 [hep-ph] 20 Sep 2016 J. Ablinger Research Institute for Symbolic

More information

Recent Progress on the Determination of Nuclear Parton Distribution Functions

Recent Progress on the Determination of Nuclear Parton Distribution Functions Recent Progress on the Determination of Nuclear Parton Distribution Functions Shunzo Kumano High Energy Accelerator Research Organization (KEK) Graduate University for Advanced Studies (GUAS) shunzo.kumano@kek.jp

More information

QCD at hadron colliders Lecture 3: Parton Distribution Functions

QCD at hadron colliders Lecture 3: Parton Distribution Functions QCD at hadron colliders Lecture : Parton Distribution Functions Gavin Salam CERN, Princeton & LPTHE/CNRS (Paris) Maria Laach Herbtschule für Hochenenergiephysik September, Germany QCD lecture (p. ) PDF

More information

PoS(DIS2017)295. Hadronic Higgs boson decay at order α 4 s and α 5 s

PoS(DIS2017)295. Hadronic Higgs boson decay at order α 4 s and α 5 s Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT) 7618 Karlsruhe, Germany E-mail: joshua.davies@kit.edu Matthias Steinhauser Institut für Theoretische Teilchenphysik, Karlsruhe

More information

QCD resummation for jet and hadron production

QCD resummation for jet and hadron production QCD resummation for jet and hadron production Werner Vogelsang Univ. Tübingen UCL, 14 Feb 2014 Outline: Introduction: QCD threshold resummation Drell-Yan process Resummation in QCD hard-scattering Hadron

More information

Next-to-leading order corrections to the valon model

Next-to-leading order corrections to the valon model PRAMANA c Indian Academy of Sciences Vol. 86, No. 1 journal of January 216 physics pp. 77 86 Next-to-leading order corrections to the valon model G R BOROUN E ESFANDYARI Physics Department, Razi University,

More information

Hadron Mass Effects on Kaon Multiplicities: HERMES vs. COMPASS

Hadron Mass Effects on Kaon Multiplicities: HERMES vs. COMPASS Hadron Mass Effects on Kaon Multiplicities: HERMES vs. COMPASS Juan Guerrero Hampton University & Jefferson Lab QCD evolution 2017 May 26, 2017 Based on: J. G., J. Ethier, A. Accardi, S. Casper,W. Melnitchouk,

More information

! s. and QCD tests at hadron colliders. world summary of! s newest results (selection)! s from hadron colliders remarks

! s. and QCD tests at hadron colliders. world summary of! s newest results (selection)! s from hadron colliders remarks ! s and QCD tests at hadron colliders world summary of! s newest results (selection)! s from hadron colliders remarks S. Bethke MPI für Physik, Munich S. Bethke: a s and QCD tests at hadron colliders Collider

More information

Probing small-x gluons in hadrons and nuclei. Kazuhiro Watanabe. Old Dominion University. Jan 4, 2017 Jefferson Lab

Probing small-x gluons in hadrons and nuclei. Kazuhiro Watanabe. Old Dominion University. Jan 4, 2017 Jefferson Lab Probing small-x gluons in hadrons and nuclei Kazuhiro Watanabe Old Dominion University Jan 4, 2017 Jefferson Lab Kazuhiro Watanabe (ODU) Probing gluon saturation dynamics at small-x Jan 4, 2017 1 / 16

More information

Structure Functions and Parton Distribution Functions at the HERA ep Collider

Structure Functions and Parton Distribution Functions at the HERA ep Collider Structure Functions and Parton Distribution Functions at the HERA ep Collider by Chris Targett Adams (University College London) on behalf of the ZEUS and H1 collaborations. Moriond QCD, 16/03/2005 Contents

More information

What do g 1 (x) and g 2 (x) tell us about the spin and angular momentum content in the nucleon?

What do g 1 (x) and g 2 (x) tell us about the spin and angular momentum content in the nucleon? What do g 1 (x) and g (x) tell us about the spin and angular momentum content in the nucleon? Franz Gross -- JLab cake seminar, Dec. 7 011 Introduction DIS hadronic tensor Spin puzzle in DIS Part I - covariant

More information

Status of parton distributions and impact on the Higgs

Status of parton distributions and impact on the Higgs Status of parton distributions and impact on the Higgs Daniel de Florian Dpto. de Física - FCEyN- UBA Higgs Hunting 0 Paris - July 8 Introduction to PDFs Summary of available fits Comparison of PDFs Impact

More information

arxiv: v1 [hep-ph] 3 Jul 2015

arxiv: v1 [hep-ph] 3 Jul 2015 LPSC-15-180 IFJ PAN-IV-2015- Evolution kernels for parton shower Monte Carlo A. Kusina a, O. Gituliar b, S. Jadach b, M. Skrzypek b arxiv:1507.00842v1 [hep-ph Jul 2015 a Laboratoire de Physique Subatomique

More information

Introduction to the physics of hard probes in hadron collisions: lecture I. Michelangelo Mangano TH Division, CERN

Introduction to the physics of hard probes in hadron collisions: lecture I. Michelangelo Mangano TH Division, CERN Introduction to the physics of hard probes in hadron collisions: lecture I Michelangelo Mangano TH Division, CERN michelangelo.mangano@cern.ch Contents The structure of the proton the initial-state : parton

More information

THE PROPERTY OF MAXIMAL TRANSCENDENTALITY IN THE N =4SYM A. V. Kotikov

THE PROPERTY OF MAXIMAL TRANSCENDENTALITY IN THE N =4SYM A. V. Kotikov ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 200.. 4.. 6 THE PROPERTY OF MAXIMAL TRANSCENDENTALITY IN THE N =4SYM A. V. Kotikov Joint Institute for Nuclear Research, Dubna We show results for the versal anomalous dimension γ j of

More information

SCET for Colliders. Matthias Neubert. Cornell University. Based on work with Thomas Becher (FNAL) and Ben Pecjak (Siegen)

SCET for Colliders. Matthias Neubert. Cornell University. Based on work with Thomas Becher (FNAL) and Ben Pecjak (Siegen) SCET for Colliders Matthias Neubert Cornell University LoopFest V, SLAC June 21, 2006 Based on work with Thomas Becher (FNAL) and Ben Pecjak (Siegen) 1 2 SCET for Colliders Introduction Overview of SCET

More information

Tercera Sesión. XI Escuela de Física Fundamental. Universidad Veracruzana, Xalapa. 28 de Septiembre de 2016

Tercera Sesión. XI Escuela de Física Fundamental. Universidad Veracruzana, Xalapa. 28 de Septiembre de 2016 Tercera Sesión XI Escuela de Física Fundamental Universidad Veracruzana, Xalapa. 28 de Septiembre de 2016 1 / M.E. Tejeda-Yeomans elena.tejeda@fisica.uson.mx Iniciación a la QCD 1/35 35 3 lectures: three

More information

IFUSP/P August Heavy Quarks in Polarized Structure Functions. F.M. Steffens 1

IFUSP/P August Heavy Quarks in Polarized Structure Functions. F.M. Steffens 1 IFUSP/P - 176 August 1997 Heavy Quarks in Polarized Structure Functions F.M. Steffens 1 Instituto de Física Universidade de São Paulo C.P. 66318 05389-970, São Paulo, Brazil Abstract Quark mass effects

More information

Threshold Corrections To DY and Higgs at N 3 LO QCD

Threshold Corrections To DY and Higgs at N 3 LO QCD Threshold Corrections To DY and Higgs at N 3 LO QCD Taushif Ahmed Institute of Mathematical Sciences, India April 12, 2016 Threshold Corrections To DY and Higgs at N 3 LO QCD Bergische Universitat Wuppertal

More information

Topics on QCD and Spin Physics

Topics on QCD and Spin Physics Topics on QCD and Spin Physics (sixth lecture) Rodolfo Sassot Universidad de Buenos Aires HUGS 21, JLAB June 21 Spin (revisited)? naive quark spin parton spin QCD parton spin polarized DIS:? EMC experiment:

More information

hep-ex/ Jun 1995

hep-ex/ Jun 1995 Department of Physics & Astronomy Experimental Particle Physics Group Kelvin Building, University of Glasgow, Glasgow, G 8QQ, Scotland Telephone: +44 ()4 9 8855 Fax: +44 ()4 4 99 GLAS{PPE/95{ 9 th June

More information

Physics at HERA. Contents HERA and ZEUS Electroweak results Structure of the proton. Katsuo Tokushuku (KEK, ZEUS)

Physics at HERA. Contents HERA and ZEUS Electroweak results Structure of the proton. Katsuo Tokushuku (KEK, ZEUS) Physics at HERA e p Contents HERA and ZEUS Electroweak results Structure of the proton Katsuo Tokushuku (KEK, ZEUS) 3/March/5 K.Tokushuku(KEK) @ KEKPH5 / HERA: 7.5GeV 9GeV the world largest electron microscope

More information

The transition from pqcd to npqcd

The transition from pqcd to npqcd The transition from pqcd to npqcd A. Fantoni (INFN - Frascati) First Workshop on Quark-Hadron Duality and the Transition to pqcd Laboratori Nazionali di Frascati, Italy June 6-8, 2005 Introduction Overview

More information

Generalizing the DGLAP Evolution of Fragmentation Functions to the Smallest x Values

Generalizing the DGLAP Evolution of Fragmentation Functions to the Smallest x Values Generalizing the DGLAP Evolution of Fragmentation Functions to the Smallest x Values Bernd Kniehl 1 2nd Institute for Theoretical Physics, University of Hamburg Describe inclusive hadron production,...

More information

Factorization and Factorization Breaking with TMD PDFs

Factorization and Factorization Breaking with TMD PDFs Factorization and Factorization Breaking with TMD PDFs Ted C. Rogers Vrije Universiteit Amsterdam trogers@few.vu.nl Standard PDFs, Gauge Links and TMD PDFs in DIS. TMD factorization breaking in pp hadrons.

More information

Universal Parton Distri. Fn s (non-pert.; QCD evolved)

Universal Parton Distri. Fn s (non-pert.; QCD evolved) Charm Production at HERA and Theory of Heavy Quark Production Why is Heavy Quark Production a non-trivial problem in PQCD? it is a Multi-large-scale Problem Conventional approaches: one-scale problem approximate

More information

Top pair production near threshold at LHC (NLO/NLL analysis in NRQCD)

Top pair production near threshold at LHC (NLO/NLL analysis in NRQCD) Top@LHC LHC TTbar-Threshold Threshold@ILC/LHC Green Functions Top pair production near threshold at LHC (NLO/NLL analysis in NRQCD) Yuichiro Kiyo TTP, Universität Karlsruhe Collaboration with: J. H. Kühn(KA),

More information

Outline Motivations for ILC: e + e γ/z q qg LHC: pp l + l + jet (q q l + l g + qg l + l q + qg l + l q) Existing literature The complete EW one-loop c

Outline Motivations for ILC: e + e γ/z q qg LHC: pp l + l + jet (q q l + l g + qg l + l q + qg l + l q) Existing literature The complete EW one-loop c Complete electroweak corrections to e + e 3 jets C.M. Carloni Calame INFN & University of Southampton Workshop LC08: e + e Physics at TeV scale September 22-25, 2008 in collaboration with S. Moretti, F.

More information