TF 2 -Contributions to 3-Loop Deep-Inelastic Wilson Coefficients and the Asymptotic Representation of Charged Current DIS

Size: px
Start display at page:

Download "TF 2 -Contributions to 3-Loop Deep-Inelastic Wilson Coefficients and the Asymptotic Representation of Charged Current DIS"

Transcription

1 1/30 TF 2 -Contributions to 3-Loop Deep-Inelastic Wilson Coefficients and the Asymptotic Representation of Charged Current DIS Alexander Hasselhuhn RISC (LHCPhenonet) in collaboration with: J. Ablinger, J. Blümlein, M. Round, C. Schneider, F. Wißbrock

2 2/30 Inhalt Introduction New massive quark contributions and methods 1. Computing Graphs with two massive quark lines of equal masses 2. Moments from graphs with two massive lines of unequal mass 3. Convergent massive 3-loop graphs 4. Massive quarks in charged current DIS at 2 loops Conclusions

3 3/30 Deep-Inelastic Scattering (DIS) DIS [inclusive, unpolarized, electromagnetic] gives a clean probe of the proton substructure. Lepton l Proton P q l } } PF } L µν W µν known (QED) QCD dynamics kinematic variables: Q 2 = q 2, x = Q2 2P.q, y = P.q P.l parametrization of the hadronic tensor with structure functions W µν (q, P, s) = 1 4π = 1 2x d 4 ξ exp(iqξ) P, s [J em µ (ξ), J em ν (0)] P, s ( g µν q ) µq ν q 2 F L (x, Q 2 ) + 2x ( Q 2 P µ P ν + q ) µp ν + q ν P µ Q2 2x 4x 2 g µν F 2 (x, Q 2 ) contributions of massive and massless quarks

4 4/30 Light cone expansion of the current commutator: [Wilson 1969 PR, Zimmermann 1970, Brandt, Preparata 1971 NPB, Frishman 1971 AP] [ ] lim J(ξ), J(0) ( ) Λ c N ξ 2 i,τ (ξ 2, µ 2 ) ξ µ1...ξ µn O µ1...µm i,τ (0, µ 2 2 ) +O 0 }{{}}{{} Q 2. i,n,τ Wilson coefficients local operators At leading twist τ the structure functions factorize F (2,L) (x, Q 2 ) = ( ) C j,(2,l) x, Q2 µ 2, m2 µ 2 j f j (x, µ 2 ) into perturbative Wilson coefficients and nonperturbative parton densities (PDFs). denotes the Mellin convolution f(x) g(x) 1 0 dydz δ(x yz)f(y)g(z), which simplifies to a product upon Mellin transformation ˆf(N) := 1 0 dx x N 1 f(x). following computations in Mellin space

5 5/30 Divide the Wilson coefficients into massless and massive parts: ( ) ) ) C j,(2,l) N, Q2 µ 2, m2 µ 2 = C j,(2,l) (N, Q2 µ 2 + H j,(2,l) (N, Q2 µ 2, m2 µ 2 For Q 2 m 2 (Q 2 10m 2 für F 2 ) the massive Wilson coefficients factorize ( ) H j,(2,l) N, Q2 µ 2, m2 µ 2 = ( ( ) C i,(2,l) N, Q2 m 2 )A µ 2 ij µ 2, N, i [Buza, Matiounine, Smith, van Neerven 1996 NPB] into massless Wilson coefficients C i,(2,l) and massive operator matrix elements (OMEs); OMEs are local operators O i sandwiched between partonic states j = q, g ( ) m 2 A ij µ 2, N = j O i j. The C i,(2,l) are known at 3 loops [Moch, Vermaseren, Vogt, 2005]. ( ) m compute A 2 ij µ, N at 3 loops! 2

6 6/30 Importance of massive quark contributions at 3 loops Massive quark contributions: amount to 20 30% for small x contribute scaling violations which differ in shape from those of massless quarks are sensitive to the gluon and sea quark PDFs for small x allow for the determination of the strange PDF via charged current DIS necessary for the precision determination of α s at 3 loops note: asymptotic representation holds at the 1%-level for F 2

7 7/30 Status of massive quark contributions Leading Order: [Witten 1976, Babcock, Sivers 1978, Shifman, Vainshtein, Zakharov 1978, Leveille, Weiler 1979, Glück, Reya 1979, Glück, Hoffmann, Reya 1982] NLO: [Laenen, van Neerven, Riemersma, Smith 1993] Q 2 m 2 : via IBP [Buza, Matiounine, Smith, Migneron, van Neerven 1996] via p F q s, more compact [Bierenbaum, Blümlein, Klein, 2007] O(α 2 sε)-contributions (für allg. N) [Bierenbaum, Blümlein, Klein, Schneider 2008] [Bierenbaum, Blümlein, Klein 2009] NNLO: Q 2 m 2 moments of F 2 : N = (14) [Bierenbaum, Blümlein, Klein 2009] contributions to transversity: N = [Blümlein, Klein, Tödtli 2009] n f -contributions to F 2 (all-n): [Ablinger, Blümlein, Klein, Schneider, Wißbrock 2011] Known at 3 Loop: A PS qq,q, A qg,q: complete A NS,(TR) qq,q, A gq,q: complete ( A. De Freitas talk) A Qg, A PS Qq, A gg,q: all O(n f TF 2 C A/F )-contributions known A gg,q : O(TF 2 C A/F )-contributions (m 1 = m 2 ) this talk A gg,q : Moments for (m 1 m 2 )-contributions this talk

8 Computing Graphs with two massive quark lines (T 2 F -graphs, m 1 = m 2 ) 8/30

9 9/30 Hypergeometric series for T 2 F -graphs Graphs with two massive lines of equal masses (m 2 1 = m 2 2): Feynman parameterization contains (z 1 x + z 2 y(1 x)) a+bε Mellin-Barnes-Representation B(c + N σ, d + σ) unbalanced factor Γ(c + N σ) sum of residues diverges cannot be cured by subtracting finitely many residues Solution: observe: 1 ( 1 x B(c + N σ, d + σ) = dx x c+n 1 (1 x) d 1 0 x direction for closing the contour depends on x split x-integral into two parts x < 1 2 and x 1 2 no beta function, integrate later close contour differently convergent sum of residues ε-expansion and summation: SumProduction, EvaluateMultiSums, Sigma [C. Schneider] ) σ

10 10/30 Solving the last Feynman parameter integral Idea: solve the last integral in the space of cyclotomic HPLs The occurring cyclotomic HPLs are iterated integrals built from the alphabet: e.g.: H 1,(4,1),0,0 (x) = f 0 (x) = 1 x, f 1(x) = 1 1 x, f 1(x) = x, f (4,0) (x) = x 2, f (4,1)(x) = x 1 + x 2, x 0 dx 1 f 1 (x 1 ) x1 0 dx 2 f (4,1) (x 2 ) 1 2 ln2 (x 2 ). Furthermore, generalized letters occur: f [i,κ] (x) = f i (κx) many properties of cycl. HPLs and cycl. S-Sums are known [Ablinger, Blümlein, Schneider 2011 JMP] and implemented in the package HarmonicSums [J. Ablinger]

11 11/30 Solving the last Feynman parameter integral summation yields cyclotomic S-Sums ˆ= cycl. HPLs S 1 ( x, ) = H 1 (x) S (1,0,1),(2,1,1) ( x, 1; ) = 4H ( ) (4,0) x + H ( ) (4,1) x x 2x ( ) 15 2H (4,0),(4,0) x + 4 use generating function: [f(x)] N integrate 1 1 κf(x), 3 2 H ( ) (4,1) x yield representation a c ah a (κ) such that each term has a Taylor expansion for κ 0 determine N-th Taylor coefficient ( HarmonicSums [J. Ablinger]: Cauchy products, difference equations EvaluateMultiSums, Sigma [C. Schneider])

12 12/30 Results: A scalar graph { Res = ( 1)N ε 2 (N + 1) 1 ε [ S 1 (N) 90(N + 1) + 47N N 2 67N (N 1)N(N + 1) 2 105N 3 175N 2 ( ) + 56N N N + 4 j S 1 (j) ( 13440(N + 1) 2 (2N 3)(2N 1)4 N N 2j ) N j=1 j j 2 j=1 ( 5264N N N ) S 1 (N) (N + 1) 2 (2N 3)(2N 1) + S 3(N) S 2,1 (N) + 7ζ 3 420(N + 1) + ( 2j j 4 j ] ) 7ζ 3 j 3 + S 1(N) 2 + S 2 (N) + 3ζ 2 360(N + 1) P (N 1) 2 N 2 (N + 1) 3 (2N 3)(2N 1) } new nested sums occur

13 13/30 Results: A QCD graph ( ) [ N ( ) ] 2P 4 1 2N 4 j S 1 j N 4 j I 560 = ( 3N(N + 1) 2 (N + 2)(2N 5)(2N 3)(2N 1) 4 N N 2j ) ( j=1 j j 2 2j ) j=1 j j 3 7ζ3 N 2 + N + 2 [ ] + 144S 2,1(N) 36ζ 2S 1(N) 4S 1(N) S 2(N)S 1(N) + 88S 3(N) + 312ζ 27(N 1)N 2 3 (N + 1) 4P (N 2) 2 (N 1) 4 N 5 (N + 1) 4 (N + 2)(2N 5)(2N 3)(2N 1) 64 ( N 2 + N + 2 ) 9ε 3 (N 1)N 2 (N + 1) + 1 { 32P 6 ε 2 27(N 1) 2 N 3 (N + 1) 2 (N + 2) 32 ( N 2 + N + 2 ) } 9(N 1)N 2 (N + 1) S1(N) + 1 { 8P 7 ε 405(N 2)(N 1) 3 N 4 (N + 1) 3 (N + 2) 16P 6 27(N 1) 2 N 3 (N + 1) 2 (N + 2) S1(N) 8( N 2 + N + 2 )( ) S 1(N) 2 3S 2(N) + 3ζ 2 8 ( 55N N 2 52N + 20 ) } 9(N 1)N 2 (N + 1) 15(N 2)(N 1)N(N + 1) 2 (N + 2) ( ) 4P 5S 1(N) 81(N 1) 3 N 4 (N + 1) 3 (N + 2)(2N 5)(2N 3)(2N 1) 4P6 S1(N) 2 3S 2(N) + 3ζ 2 27(N 1) 2 N 3 (N + 1) 2 (N + 2) 4P 1 225(N 2) 2 (N 1) 2 N 2 (N + 1) 3 (N + 2)

14 14/30 T 2 F -contributions to A ggq for m 1 = m 2 inverse binomial sums occur: N 4 j S 1 (j) ) N j 2 j=1 ( 2j j j=1 4 j ( 2j j ) j 3 = 1 removable poles at N = 1/2, N = 3/2, N = 5/2 0 1 dx xn 1 1 dy 1 x x y 1 y [ ] ln(1 y) ln(y) + 2 ln(2) used for the calculation of all scalar graphs consistent with A (3) gg,q ( proof of principle) applied to QCD graphs in the T 2 F -contribution to A(3) gg,q [Ablinger, Blümlein, Hasselhuhn, Round, Schneider 2013] checks with MATAD [M. Steinhauser 2000] graphs are similar to the case m 1 m 2 same ideas are applicable with generalization

15 Moments from graphs with two massive lines of unequal mass (charm and bottom) 15/30

16 16/30 Moments for graphs with two massive lines (m 1 m 2 ) There are 8 different OMES: A Qg, A NS(TR) qq,q, APS Qq, A gg,q, A gq,q }{{} Contain contributions with b- and c-quarks OME # diagrams A (3) Qg 272 A (3),PS Qq 16 A (3),NS qq,q 4 A (3),NS,TR qq,q 4 A (3) gq,q 4 A (3) gg 76 Σ 376 A qg,q, A PS qq,q }{{} Completely known renormalization of the 2-mass case has been performed m 2 c/m 2 b 1/10 expansion parameter But: Charm cannot be treated massless at the scale µ m b.

17 17/30 Moments for graphs with two massive lines (m 1 m 2 ) { a (3) Qg (N = 6) = T F C A ζ3 + ζ x x x )[ + ln µ ζ x x ] x3 + ln 2 2 )[ µ x x ] x3 + ln 3 2 ) µ 2 2 ) ( + ln 2 m 2 )[ ln µ 2 µ x x ] x3 2 )[ + ln µ ) ln2 µ 2 2 ) ( + ln 2 m ln 2 2 ) µ 2 µ ζ x x ] x3 2 ) ln µ ln 2 2 )[ µ x x ] x3 + ln 3 2 ) µ { + TF 2 C F ζ3 + ζ x x x3 2 )[ + ln µ ζ x x ] x3 + ln 2 2 )[ µ x x ] x3 ln 3 2 ) ) µ ln2 µ 2 2 ) ( + ln 2 m 2 )[ ln µ 2 µ x x ] 2 ) x3 + ln 2 µ 2 2 )[ + ln µ ζ x x ] x3 + ln 2 2 )[ µ x x ] x3 ln 3 2 ) µ q2e/exp [Harlander, Seidensticker, Steinhauser 1999] } ln 2 2 ) µ } + O ( x 4 ln 3 (x) ) 2 ) ln µ

18 Convergent massive 3-loop graphs 18/30

19 19/30 The α-representation and graph polynomials Î 4(N) = dα 1 dα 2 dα 3 dα 4 dα 5 dα 6 dα 7 dα 8 N j=0 T N j 4α T j 4b U 2 V 2 T 4α = α 5α 7α 4 + α 2α 3α 5 + α 2α 5α 4 + α 3α 5α 7 + α 2α 5α 8 + α 8α 5α 4 + α 5α 7α 8 + α 2α 3α 8 + α 7α 2α 8 + α 6α 2α 8 + α 3α 7α 2 + α 2α 3α 6 + α 4α 2α 8 + α 2α 6α 4 + α 4α 7α 2 T 4b = + α 2α 5α 4 + α 4α 2α 8 + α 4α 7α 2 + α 2α 5α 8 + α 2α 3α 5 + α 7α 2α 8 + α 3α 7α 2 + α 8α 5α 4 + α 5α 7α 4 + α 4α 1α 8 + α 1α 7α 4 + α 3α 5α 7 + α 5α 7α 8 + α 8α 1α 7 + α 1α 3α 7 U = α 2α 5α 4 + α 2α 3α 5 + α 1α 3α 5 + α 5α 7α 4 + α 1α 6α 4 + α 1α 3α 6 + α 2α 3α 6 + α 2α 6α 4 + α 5α 6α 4 + α 1α 5α 4 + α 3α 5α 7 + α 1α 3α 7 + α 1α 7α 4 + α 3α 7α 2 + α 4α 7α 2 + α 3α 5α 6 + α 2α 3α 8 + α 2α 5α 8 + α 5α 7α 8 + α 8α 5α 4 + α 8α 5α 6 + α 5α 3α 8 + α 1α 8α 5 + α 1α 8α 6 + α 6α 2α 8 + α 1α 8α 3 + α 4α 1α 8 + α 4α 2α 8 + α 7α 2α 8 + α 8α 1α 7 V = α 1 + α 2 + α 3 + α 4 + α 6 + α 7 The integral above is a projective integral, one α-parameter may be set 1 use generating function ( N-th Taylor coefficient from HarmonicSums [J. Ablinger]) For the above example : after applying symmetry transformations α 1 x 1 α 2, α 3 x 2 α 4, α 5 x 5 α 6 α 2, α 4, α 6 are only contained in the operator polynomials and may be integrated out at this stage. Generalize Brown s algorithm for the massive case and local operator insertions.

20 20/30 Six Massive Lines and Vertex Insertion Î 4 = Q 1(N) 2(1 + N) 5 (2 + N) 5 (3 + N) + Q 2(N) 5 (1 + N) 2 (2 + N) 2 (3 + N) 2 ζ3 + ( 1)N ( N + 56N N 3 + N 4 ) S 2(1 + N) 2 (2 + N) 2 (3 + N) ( 24 5N + 2N 2 ) (2 + N) 2 (3 + N) 2 S3 1 2(1 + N)(2 + N)(3 + N) S2 2 + (2 + N)(3 + N) S2 1S 2 Q 4(N) + 4(1 + N) 3 (2 + N) 2 (3 + N) 2 S S5 Q 5(N) 6(1 + N) 2 (2 + N) 2 S3 2S 2, 3 2ζ3S 2 S 2,1S 2 (3 + N) 2 + ( 1)N ( N + 56N N 3 + N 4 ) ( N + 6N 2 ) S (1 + N) 2 (2 + N) 2 (3 + N) 2 2,1 + 2(1 + N)(2 + N)(3 + N) S4 + (5 + N) ζ3s1 (2) (1 + N)(3 + N) Q 6(N) 4(1 + N) 3 (2 + N) 2 (3 + N) 2 S2 ζ3s2 3 2 S3S2 2S2,1S2 + ( N + 190N N 3 + 7N 4 ) S 2(1 + N) 2 (2 + N) 2 2,1 (3 + N) Q 3(N) + (1 + N) 4 (2 + N) 4 (3 + N) 4 S1 (11 + 5N) (1 + N)(2 + N)(3 + N) ζ3s1 Q 7(N) 4(1 + N) 2 (2 + N) 2 S2S1 S2,3 (3 + N) 2 ( N) + 2(1 + N)(2 + N)(3 + N) S3S1 3(3 + 2N) (1 + N)(2 + N)(3 + N) S1S2,1 + ( 79 40N + N 2 ) S3,1 3S4,1 2(1 + N)(2 + N)(3 + N) ( ) + S 2,1, 2 + 2N+1 ( 28 25N 4N 2 + N 3 ) 1 S (1 + N) 2 (2 + N)(3 + N) 2 1,2 2, 1 ( 7 + 2N 2 ) (1 + N)(2 + N)(3 + N) S2,1,1 ( ) +5S 2,2,1 + 6S 3,1,1 + 2N ( 28 25N 4N 2 + N 3 ) 1 S (1 + N) 2 (2 + N)(3 + N) 2 1,1,1 2, 1, 1 (5 + N) (2, 12 ) (1 + N)(3 + N) S1,1,2 (5 + N) (2, 12 ) 2(1 + N)(3 + N) S1,1,1,1

21 Limit N The 2 N factors cancel in the large N limit (asymptotic expansion with HarmonicSums): [ ] Î4 ζ N 10 4N 9 20N N N N N N N 2 [( ) +ζ N 10 2N 9 2N N N N N N 5 ln(n) 3 2 N 2 ] N N N N N N N N N 2 [( ) ζ N 10 N 9 N N N 65 6 N N 5 4 N + 1 ln 2 (N) 3 N 2 ( ) N N N N N N N N 1 ln(n) 3 N 2 ] N N 9 840N N N N N N N 2 ( ) N 10 12N N 8 12N N N N N + 1 ln 3 (N) 3 6 N 2 ( N N N N N N N N + 1 ) ln 2 (N) 3 2 N 2 ( N N N N N N N N N N N N N N N N N N + O(N 11 ) 2 ) ln(n) 21/30

22 Massive quarks in charged current DIS at 2 loops 22/30

23 23/30 Structure functions of charged current DIS The cross section is parameterized introducing 3 structure functions. For symmetry reasons consider the combinations dσ ν dσ ν dxdy ± dxdy = G2 F s 4π { (1 + (1 y) 2 )F W + ±W 2 y 2 F W + ±W +(1 (1 y) 2 )xf W + ±W 3 The structure functions factorize in PDFs and Wilson coefficients { F W + +W ( Vdu 2 = 2 2 (d + d) + V su 2 (s + s) + V u (u + ū) ) (C W + +W,NS 2,q + L W + +W,NS + ( V dc 2 (d + d) + V sc 2 (s + s) ) [ ] H W + +W,NS 2,q + 2V c H W,PS 2,q Σ + H2,gG W [ ]} + 2V u (C W,PS 2,q + L W,PS 2,q )Σ + (C2,g W + LW 2,g )G, F W + +W 3 = 2 L }. 2,q ) { ( Vdu 2 (d + d) + V su 2 (s + s) V u (u + ū) ) (C W + +W,NS 3,q + L W + +W,NS 3,q ) + ( V dc 2 (d + d) + V sc 2 (s + s) ) [ H W + +W,NS 3,q + 2V c H W,PS 3,q Σ + H3,gG W where V i := V id 2 + V is 2, i = u, c, and Σ = q (q + q). ]}. factors ( 1) due to charge antisymmetry of corresponding contributions.

24 24/30 2-Loop corrections in the region Q 2 m 2 At 2-Loop order we derived the asymptotic representation using the transition to the variable flavor number scheme: L W + ±W,NS,(2) 2,q = A NS,(2) H W + ±W,NS,(2) qq,q 2,q = A NS,(2) qq,q + CW + ±W,NS,(2) 2,q (n f + 1) C W + ±W,NS,(2) 2,q (n f ), + CW + ±W,NS,(2) 2,q (n f + 1), L W,PS,(2) 2,q = C W,PS,(2) 2,q (n f + 1) C W,PS,(2) 2,q (n f ) = 0, H W,PS,(2) 2,q = 1 2 APS,(2) Qq + C W,PS,(2) 2,q (n f + 1), L W,(2) 2,g = A (1) gg,q CW,(1) 2,g (n f + 1) + C W,(2) 2,g (n f + 1) C W,(2) 2,g (n f ), H W,(2) 2,g = A (1) gg,q CW,(1) 2,g (n f + 1) + C W,(2) 2,g (n f + 1) + 1 ( ) A (2) Qg A(1) Qg CW +W,NS,(1) 2,q (n f + 1), 3,q = A NS,(2) + + CW ±W,NS,(2) 3,q (n f + 1) C W + ±W,NS,(2) 3,q (n f ), L W + ±W,NS,(2) H W + ±W,NS,(2) qq,q 3,q = A NS,(2) qq,q H W,PS,(2) 3,q = 1 2 APS,(2) H W,(2) 3,g = CW + ±W,NS,(2) 3,q (n f + 1), Qq, ( A (2) Qg A(1) Qg CW + +W,NS,(1) 3,q (n f + 1) ).

25 25/30 2-Loop corrections in the region Q 2 m 2 A previous drivation [Buza, van Neerven 1997 NPB] was corrected and completed. Using OMEs and massless Wilson coefficients from the literature, the massive Wilson coefficients in Mellin space and x-space have been constructed. The Mellin transformation implemented in HarmonicSums [J. Ablinger] was used. A FORTRAN implementation for the application to experimental data will be published soon. [Blümlein, Hasselhuhn, Pfoh 2013] The asymptotic representation is accurate since experimentally Q GeV 2.

26 26/30 Results W F 2, c ABM11_3n_NNLO Q GeV 2 Q GeV 2 Q 2 10 GeV 2 LO NLO NNLO x

27 27/30 Results W x F 3, c ABM11_3n_NNLO Q GeV 2 Q GeV 2 Q 2 10 GeV 2 LO NLO NNLO x

28 28/30 Results x F 3 W x F3 W ABM11_3n_NNLO Q GeV 2 Q 2 10 GeV 2 LO NLO NNLO x

29 29/30 Conclusions Heavy flavor contributions are needed at 3-loop order for the precise determination of α s from DIS data. 5 out of 8 massive operator matrix elements have been completed recently. A method for the calculation of graphs with two massive lines of equal masses and operator insertions was presented, and applied to the corresponding contributions to A (3) gg,q. The calculations will be finished soon. [Ablinger, Blümlein, Hasselhuhn, Round 2013] The method can be generalized to the case of unequal masses. The moments for N = 2, 4, 6 for all graphs with two quark lines of unequal masses are now known, as well as the renormalization of these contributions. Convergent massive three loop graphs can be calcualted in terms of iterated integrals, allowing for a study of the functions governing the more complicated topologies like ladder graphs, benz graphs and V-graphs.

30 30/30 Conclusions On the phenomenological side, the complete 2-loop heavy flavor contributions to charged current DIS were derived from light flavor Wilson coefficients and massive OMEs. They are implemented into a Mellin space program in FORTRAN and will be published soon [Blümlein, Hasselhuhn, Pfoh 2013]. The calculations of new 3-loop corrections can take advantage of rigorous computer algebra packages of our friends at RISC; at the same time techniques known to physicists or newly developed on practical problems lead to improvements in general purpose programs.

Johannes Blümlein, DESY [in collaboration with I. Bierenbaum and S. Klein]

Johannes Blümlein, DESY [in collaboration with I. Bierenbaum and S. Klein] Oα 3 1 s Heavy Flavor Wilson Coefficients in DIS @ Q m Johannes Blümlein, DESY [in collaboration with I. Bierenbaum and S. Klein Introduction Theory Status The Method Asymptotic Loop Results all N Asymptotic

More information

Latest results on the 3-loop heavy flavor Wilson coefficients in DIS

Latest results on the 3-loop heavy flavor Wilson coefficients in DIS 1/34 Latest results on the 3-loop heavy flavor Wilson coefficients in DIS A. De Freitas 1, J. Ablinger, A. Behring 1, J. Blümlein 1, A. Hasselhuhn 1,,4, A. von Manteuffel 3, C. Raab 1, C. Schneider, M.

More information

Two and Three Loop Heavy Flavor Corrections in DIS

Two and Three Loop Heavy Flavor Corrections in DIS Two and Three Loop Heavy Flavor Corrections in DIS 1 Johannes Blümlein, DESY in collaboration with I. Bierenbaum and S. Klein based on: Introduction Renormalization of the OME s to 3 Loops Oǫ terms at

More information

Recent Results on Three Loop Corrections to Heavy Quark Contributions to DIS Structure Functions

Recent Results on Three Loop Corrections to Heavy Quark Contributions to DIS Structure Functions Recent Results on Three Loop Corrections to Heavy Quark Contributions to DIS Structure Functions Johannes Blümlein, DESY in collaboration : with J. Ablinger JKU, A. De Freitas DESY, A. Hasselhuhn DESY,

More information

3-Loop Corrections to Heavy Flavor Wilson Coefficients in Deep-Inelastic Scattering

3-Loop Corrections to Heavy Flavor Wilson Coefficients in Deep-Inelastic Scattering 1/3 3-Loop Corrections to Heavy Flavor Wilson Coefficients in Deep-Inelastic Scattering J. Blümlein 1, J. Ablinger 2, A. Behring 1, A. De Freitas 1, A. Hasselhuhn 2, A. von Manteuffel 3, C. Raab 1, M.

More information

) Heavy Quark Corrections to Charged Current Deep-Inelastic Scattering at large Virtualities

) Heavy Quark Corrections to Charged Current Deep-Inelastic Scattering at large Virtualities DESY 1 47 DO TH 1/4 SFB/CPP-14-00 LPN 14-006 Higgstools 14 TUM-HEP-91/1 December 01 arxiv:1401.4 hep-ph arxiv:1401.4v hep-ph 0 Feb 014 The Oα s Heavy Quark Corrections to Charged Current Deep-Inelastic

More information

Status and news of the ABM PDFs

Status and news of the ABM PDFs Status and news of the ABM PDFs S.Alekhin (DESY-Zeuthen & IHEP Protvino) Basics heavy quarks in NNLO, mc, mb and αs Strange sea new DIS charm data sa, Blümlein, Caminadac, Lipka, Lohwasser, Moch, Petti,

More information

Good Morning to Seattle! J. Blümlein Status of Unpolarized PDFs and αs(m 2 Z ) Seattle, WA, October 20th 2009 p.1

Good Morning to Seattle! J. Blümlein Status of Unpolarized PDFs and αs(m 2 Z ) Seattle, WA, October 20th 2009 p.1 Good Morning to Seattle! J. Blümlein Status of Unpolarized PDFs and αs(m 2 Z ) Seattle, WA, October 2th 29 p. Status of Unpolarized PDFs and α s (M 2 Z ) Johannes Blümlein DESY The Major Goals DIS Theory

More information

QCD Precision Tests in Deeply Inelastic Scattering

QCD Precision Tests in Deeply Inelastic Scattering QCD Precision Tests in Deeply Inelastic Scattering Johannes Blümlein DESY Introduction and Method QCD Analysis of Unpolarized Structure Functions Λ QCD and α s (M 2 Z ) What would we like to know? J. Blümlein

More information

arxiv: v1 [hep-ph] 1 Feb 2016

arxiv: v1 [hep-ph] 1 Feb 2016 DESY 16/2, DO-TH 16/2, MITP/16-16 3-Loop Corrections to the Heavy Flavor Wilson Coefficients in Deep-Inelastic Scattering arxiv:162.583v1 [hep-ph] 1 Feb 216 J. Ablinger 1, A. Behring 2, 2, A. De Freitas

More information

Research in QCD factorization

Research in QCD factorization Research in QCD factorization Bowen Wang Southern Methodist University (Dallas TX) Jefferson Lab Newport News VA 1/1/015 My research at SMU in 011-015 Ph. D. advisor: Pavel Nadolsky Ph. D. thesis: The

More information

Computing of Charged Current DIS at three loops

Computing of Charged Current DIS at three loops Computing of Charged Current DIS at three loops Mikhail Rogal Mikhail.Rogal@desy.de DESY, Zeuthen, Germany ACAT 2007, Amsterdam, Netherlands, April 23-28, 2007 Computing of Charged CurrentDIS at three

More information

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden Physics at LHC lecture one Sven-Olaf Moch Sven-Olaf.Moch@desy.de DESY, Zeuthen in collaboration with Martin zur Nedden Humboldt-Universität, October 22, 2007, Berlin Sven-Olaf Moch Physics at LHC p.1 LHC

More information

HEAVY QUARKS FROM PHOTOPRODUCTION (AND DIS)

HEAVY QUARKS FROM PHOTOPRODUCTION (AND DIS) HEAVY QUARKS FROM PHOTOPRODUCTION (AND DIS) INT 20, Seattle EIC workshop Week 6, Oct. 22, 20 H. Spiesberger based on work in collaboration with A. Kadeer, B. Kniehl, G. Kramer, C. Pisano, I. Schienbein,

More information

PoS(DIS 2010)139. On higher-order flavour-singlet splitting functions and coefficient functions at large x

PoS(DIS 2010)139. On higher-order flavour-singlet splitting functions and coefficient functions at large x On higher-order flavour-singlet splitting functions and coefficient functions at large x Department of Mathematical Sciences, University of Liverpool, UK E-mail: G.N.Soar@liv.ac.uk A. Vogt Department of

More information

NNLO PDFs in 3 flavor scheme and collider data

NNLO PDFs in 3 flavor scheme and collider data NNLO PDFs in 3 flavor scheme and collider data S.Alekhin (DESY & IHEP, Protvino) In collaboration with J.Blümlein and S.Moch INT, Seattle, 19 Oct 2010 The ABKM fit ingredients DATA: QCD: DIS NC inclusive

More information

Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York

Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York Many thanks to my colleagues, A. Deshpande, F. Gelis, B. Surrow

More information

The Three-Loop Splitting Functions in QCD: The Non-Singlet Case

The Three-Loop Splitting Functions in QCD: The Non-Singlet Case The Three-Loop Splitting Functions in QCD: The Non-Singlet Case Sven-Olaf Moch DESY Zeuthen 1. The Calculation. The Result 3. The Summary in collaboration with J.A.M. Vermaseren and A. Vogt, hep-ph/040319

More information

Heavy quark production and large-x nuclear gluons at EIC

Heavy quark production and large-x nuclear gluons at EIC Heavy quark production and large-x nuclear gluons at EIC C. Weiss (JLab), Santa Fe Jets and Heavy Flavor Workshop, -Jan-8 Nuclear partons e x e x B, Q c, b _ c, b _ Nuclear modifications NN interactions

More information

Parton Distribution Functions and Global Fitting

Parton Distribution Functions and Global Fitting Parton Distribution Functions and Global Fitting J.F. Owens Physics Department, Florida State University 2007 CTEQ Summer School May 30 - June 7, 2007 Madison, Wisconsin Preliminaries Issues related to

More information

arxiv: v2 [hep-ph] 20 Sep 2016

arxiv: v2 [hep-ph] 20 Sep 2016 DESY 16-149, DO-TH 16/16, MITP/16-096 New Results on Massive 3-Loop Wilson Coefficients in Deep-Inelastic scattering arxiv:1609.03397v2 [hep-ph] 20 Sep 2016 J. Ablinger Research Institute for Symbolic

More information

Heavy Quarks in MRST/MSTW Global Fits

Heavy Quarks in MRST/MSTW Global Fits Heavy Quarks in MRST/MSTW Global Fits Robert Thorne October 6th, 8 University College London Ringberg8-Heavy Flavour Will discuss Charm 1.5GeV, bottom 4.3GeV, and at end strange.3gev as heavy flavours.

More information

Higgs boson production at the LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions to N 3 LO

Higgs boson production at the LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions to N 3 LO SFB/CPP-12-93 TTP12-45 LPN12-127 Higgs boson production at the LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions to N 3 LO Maik Höschele, Jens Hoff, Aleey Pak,

More information

Higher Order Corrections to the Drell-Yan Cross Section in the Mellin Space

Higher Order Corrections to the Drell-Yan Cross Section in the Mellin Space Higher Order Corrections to the Drell-Yan Cross Section in the Mellin Space Petra Kovačíková (DESY, Zeuthen) petra.kovacikova@desy.de Corfu Summer School 4 th September 21 Higher Order Corrections to the

More information

Computer Algebra Algorithms for Special Functions in Particle Physics.

Computer Algebra Algorithms for Special Functions in Particle Physics. Computer Algebra Algorithms for Special Functions in Particle Physics. Jakob Ablinger RISC, J. Kepler Universität Linz, Austria joint work with J. Blümlein (DESY) and C. Schneider (RISC) 7. Mai 2012 Definition

More information

Deep inelastic scattering and the OPE in lattice QCD

Deep inelastic scattering and the OPE in lattice QCD Deep inelastic scattering and the OPE in lattice QCD William Detmold [WD & CJD Lin PRD 73, 014501 (2006)] DIS structure of hadrons Deep-inelastic scattering process critical to development of QCD k, E

More information

Two-loop massive fermionic operator matrix elements and intial state QED corrections to e + e γ /Z

Two-loop massive fermionic operator matrix elements and intial state QED corrections to e + e γ /Z Two-loop massive fermionic operator matrix elements and intial state QED corrections to e + e γ /Z J. Blümlein, a ab and W. van Neerven c a DESY, Zeuthen, Platanenalle 6, D-173 Zeuthen, Germany. b Departamento

More information

Johannes Blümlein Deutsches Elektronensynchrotron DESY, Platanenallee 6, D Zeuthen, Germany

Johannes Blümlein Deutsches Elektronensynchrotron DESY, Platanenallee 6, D Zeuthen, Germany II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany; Institute for High Energy Physics,142281 Protvino, Russia E-mail: sergey.alekhin@desy.de Johannes

More information

Particles and Deep Inelastic Scattering

Particles and Deep Inelastic Scattering Particles and Deep Inelastic Scattering University HUGS - JLab - June 2010 June 2010 HUGS 1 Sum rules You can integrate the structure functions and recover quantities like the net number of quarks. Momentum

More information

Large-n f Contributions to the Four-Loop Splitting Functions in QCD

Large-n f Contributions to the Four-Loop Splitting Functions in QCD Large-n Contributions to the Four-Loop Splitting Functions in QCD Nucl. Phys. B915 (2017) 335-362, arxiv:1610.07477 Joshua Davies Department o Mathematical Sciences University o Liverpool Collaborators:

More information

Factorization, Evolution and Soft factors

Factorization, Evolution and Soft factors Factorization, Evolution and Soft factors Jianwei Qiu Brookhaven National Laboratory INT Workshop: Perturbative and nonperturbative aspects of QCD at collider energies University of Washington, Seattle,

More information

Introduction to the physics of hard probes in hadron collisions: lecture I. Michelangelo Mangano TH Division, CERN

Introduction to the physics of hard probes in hadron collisions: lecture I. Michelangelo Mangano TH Division, CERN Introduction to the physics of hard probes in hadron collisions: lecture I Michelangelo Mangano TH Division, CERN michelangelo.mangano@cern.ch Contents The structure of the proton the initial-state : parton

More information

Theory of Elementary Particles homework XI (July??)

Theory of Elementary Particles homework XI (July??) Theory of Elementary Particles homework XI (July??) At the head of your report, please write your name, student ID number and a list of problems that you worked on in a report (like II-1, II-3, IV- ).

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu Theory Center, Jefferson Lab May 29 June 15, 2018 Lecture One The plan for my four lectures q The Goal: To understand the strong interaction dynamics

More information

QCD and Rescattering in Nuclear Targets Lecture 2

QCD and Rescattering in Nuclear Targets Lecture 2 QCD and Rescattering in Nuclear Targets Lecture Jianwei Qiu Iowa State University The 1 st Annual Hampton University Graduate Studies Program (HUGS 006) June 5-3, 006 Jefferson Lab, Newport News, Virginia

More information

arxiv:hep-ph/ v2 11 Jan 2007

arxiv:hep-ph/ v2 11 Jan 2007 IPM School and Conference on Hadrn and Lepton Physics, Tehran, 5-2 May 26 An approach to NNLO analysis of non-singlet structure function Ali N. Khorramian Physics Department, Semnan University, Semnan,

More information

Zhong-Bo Kang Los Alamos National Laboratory

Zhong-Bo Kang Los Alamos National Laboratory Introduction to pqcd and Jets: lecture 1 Zhong-Bo Kang Los Alamos National Laboratory Jet Collaboration Summer School University of California, Davis July 19 1, 014 Selected references on QCD! QCD and

More information

AN INTRODUCTION TO QCD

AN INTRODUCTION TO QCD AN INTRODUCTION TO QCD Frank Petriello Northwestern U. & ANL TASI 2013: The Higgs Boson and Beyond June 3-7, 2013 1 Outline We ll begin with motivation for the continued study of QCD, especially in the

More information

O(α 3 s T2 F N f) Contributions to the Heavy Flavor Wilson Coefficients of the Structure Function F 2 (x,q 2 ) at Q 2 m 2

O(α 3 s T2 F N f) Contributions to the Heavy Flavor Wilson Coefficients of the Structure Function F 2 (x,q 2 ) at Q 2 m 2 Oα 3 s T F N f Contributions to the Heavy Flavor Wilson Coefficients of the Structure Function F x,q at Q m arxiv:1010.451v1 hep-ph 0 Oct 010 Diplomarbeit zur Erlangung des wissenschaftlichen Grades Diplom-Physiker

More information

arxiv:hep-ph/ v1 29 Aug 2006

arxiv:hep-ph/ v1 29 Aug 2006 IPPP/6/59 August 26 arxiv:hep-ph/6837v1 29 Aug 26 Third-order QCD results on form factors and coefficient functions A. Vogt a, S. Moch b and J.A.M. Vermaseren c a IPPP, Physics Department, Durham University,

More information

A. Mitov 3-loop time-like splitting functions in Mellin space and NNLO fragmentation

A. Mitov 3-loop time-like splitting functions in Mellin space and NNLO fragmentation Three-loop time-like splitting functions in Mellin space and NNLO fragmentation Alexander Mitov DESY Work in progress with: M. Cacciari; Lance Dixon; S-O. Moch Also based on: hep-ph/0604160 (with Sven

More information

A complete NLO calculation of the J/ψ production at Tevatron and LHC In collaboration with Wang Kai and Chao Kuang-Ta

A complete NLO calculation of the J/ψ production at Tevatron and LHC In collaboration with Wang Kai and Chao Kuang-Ta A complete NLO calculation of the J/ψ production at Tevatron and LHC Ma Yan-Qing ( 马滟青 ) Department of physics, Peking University yqma.cn@gmail.com In collaboration with Wang Kai and Chao Kuang-Ta p.1

More information

Scale dependence of Twist-3 correlation functions

Scale dependence of Twist-3 correlation functions Scale dependence of Twist-3 correlation functions Jianwei Qiu Brookhaven National Laboratory Based on work with Z. Kang QCD Evolution Workshop: from collinear to non collinear case Thomas Jefferson National

More information

Parton Distribution Functions, Part 1. Daniel Stump. Department of Physics and Astronomy Michigan State University

Parton Distribution Functions, Part 1. Daniel Stump. Department of Physics and Astronomy Michigan State University Parton Distribution Functions, Part 1 Daniel Stump Department of Physics and Astronomy Michigan State University A. Introduction B. Properties of the PDFs C. Results of CT10-NNLO Global Analysis D. Uncertainties

More information

arxiv: v1 [cs.sc] 9 Jul 2014

arxiv: v1 [cs.sc] 9 Jul 2014 arxiv:407.2537v [cs.sc] 9 Jul 204 DESY 4 22, DO-TH 4/3, SFB/CPP-4-039, LPN4-086 Recent Symbolic Summation Methods to Solve Coupled Systems of Differential and Difference Equations Research Institute for

More information

Hadron Mass Effects on Kaon Multiplicities: HERMES vs. COMPASS

Hadron Mass Effects on Kaon Multiplicities: HERMES vs. COMPASS Hadron Mass Effects on Kaon Multiplicities: HERMES vs. COMPASS Juan Guerrero Hampton University & Jefferson Lab QCD evolution 2017 May 26, 2017 Based on: J. G., J. Ethier, A. Accardi, S. Casper,W. Melnitchouk,

More information

QCD Factorization and PDFs from Lattice QCD Calculation

QCD Factorization and PDFs from Lattice QCD Calculation QCD Evolution 2014 Workshop at Santa Fe, NM (May 12 16, 2014) QCD Factorization and PDFs from Lattice QCD Calculation Yan-Qing Ma / Jianwei Qiu Brookhaven National Laboratory ² Observation + Motivation

More information

2. HEAVY QUARK PRODUCTION

2. HEAVY QUARK PRODUCTION 2. HEAVY QUARK PRODUCTION In this chapter a brief overview of the theoretical and experimental knowledge of heavy quark production is given. In particular the production of open beauty and J/ψ in hadronic

More information

Polarized parton distributions: present status and prospects

Polarized parton distributions: present status and prospects QCD@Work 23 - International Workshop on QCD, Conversano, Italy, 14 18 June 23 Polarized parton distributions: present status and prospects Giovanni Ridolfi a a INFN Sezione di Genova, Via Dodecaneso 33,

More information

arxiv:hep-ph/ v1 4 May 1995

arxiv:hep-ph/ v1 4 May 1995 CERN-TH/95-103 SMU HEP 95-02 arxiv:hep-ph/9505230v1 4 May 1995 CHARM PRODUCTION IN DEEP-INELASTIC eγ SCATTERING TO NEXT-TO-LEADING ORDER IN QCD 1 Eric Laenen CERN TH-Division 1211-CH, Geneve 23, Switzerland

More information

Next-to-leading order corrections to the valon model

Next-to-leading order corrections to the valon model PRAMANA c Indian Academy of Sciences Vol. 86, No. 1 journal of January 216 physics pp. 77 86 Next-to-leading order corrections to the valon model G R BOROUN E ESFANDYARI Physics Department, Razi University,

More information

QCD Analysis and Calculation of Fragmentation Functions from Hadron Multiplicities. Patricia Francisconi

QCD Analysis and Calculation of Fragmentation Functions from Hadron Multiplicities. Patricia Francisconi QCD Analysis and Calculation of Fragmentation Functions from Hadron Multiplicities Patricia Francisconi Hadronization σ Hard Scattering FFs Hadron Production PDFs 2 Introduction and Motivation Parton Distribution

More information

Physique des Particules Avancées 2

Physique des Particules Avancées 2 Physique des Particules Avancées Interactions Fortes et Interactions Faibles Leçon 6 Les collisions p p (http://dpnc.unige.ch/~bravar/ppa/l6) enseignant Alessandro Bravar Alessandro.Bravar@unige.ch tél.:

More information

INCLUSIVE D- AND B-MESON PRODUCTION

INCLUSIVE D- AND B-MESON PRODUCTION INCLUSIVE D- AND B-MESON PRODUCTION AT THE LHC Seminar Universitaet Muenster, May 7, 22 G. Kramer based on work in collaboration with B. Kniehl, I. Schienbein, H. Spiesberger G. Kramer (Universitaet Hamburg)

More information

5 Infrared Divergences

5 Infrared Divergences 5 Infrared Divergences We have already seen that some QED graphs have a divergence associated with the masslessness of the photon. The divergence occurs at small values of the photon momentum k. In a general

More information

Direct measurement of the W boson production charge asymmetry at CDF

Direct measurement of the W boson production charge asymmetry at CDF Direct measurement of the boson production charge asymmetry at CDF Eva Halkiadakis Rutgers University For the CDF collaboration Joint Experimental-Theoretical Physics Seminar Fermilab May 22 2009 Outline

More information

Structure of Generalized Parton Distributions

Structure of Generalized Parton Distributions =Hybrids Generalized Parton Distributions A.V. Radyushkin June 2, 201 Hadrons in Terms of Quarks and Gluons =Hybrids Situation in hadronic physics: All relevant particles established QCD Lagrangian is

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu August 16 19, 018 Four Lectures The 3 rd WHEPS, August 16-4, 018, Weihai, Shandong q The Goal: The plan for my four lectures To understand the strong

More information

Calculating four-loop massless propagators with Forcer

Calculating four-loop massless propagators with Forcer Calculating four-loop massless propagators with Forcer Takahiro Ueda Nikhef, The Netherlands Collaboration with: Ben Ruijl and Jos Vermaseren 18 Jan. 2016 ACAT2016, UTFSM, Valparaíso 1 / 30 Contents Introduction

More information

Universal Parton Distri. Fn s (non-pert.; QCD evolved)

Universal Parton Distri. Fn s (non-pert.; QCD evolved) Charm Production at HERA and Theory of Heavy Quark Production Why is Heavy Quark Production a non-trivial problem in PQCD? it is a Multi-large-scale Problem Conventional approaches: one-scale problem approximate

More information

Matching collinear and small x factorization calculations for inclusive hadron production in pa collisions

Matching collinear and small x factorization calculations for inclusive hadron production in pa collisions Matching collinear and small x factorization calculations for inclusive hadron production in pa collisions The Pennsylvania State University, Physics Department, University Park, PA 16802 H. Niewodniczański

More information

Perturbative QCD. Chul Kim. Seoultech. Part I : Introduction to QCD Structure functions for DIS

Perturbative QCD. Chul Kim. Seoultech. Part I : Introduction to QCD Structure functions for DIS Perturbative QCD Part I : Introduction to QCD Structure functions for DIS Chul Kim Seoultech Open KIAS, Pyeong-Chang Summer Institute 2013 Pyeong-Chang, Alpensia Resort, July 8, 2013 QCD QCD Lagrangian

More information

Generalized Parton Distributions in PT

Generalized Parton Distributions in PT Generalized Parton Distributions in PT Nikolai Kivel in collaboration with M. Polyakov & A. Vladimirov Deeply Virtual Compton Scattering e e * A DVCS Q 2 large >> 1/R N Q 2 /s =x Bj fixed Δ 2 ~ 1/R N

More information

QCD at hadron colliders Lecture 3: Parton Distribution Functions

QCD at hadron colliders Lecture 3: Parton Distribution Functions QCD at hadron colliders Lecture : Parton Distribution Functions Gavin Salam CERN, Princeton & LPTHE/CNRS (Paris) Maria Laach Herbtschule für Hochenenergiephysik September, Germany QCD lecture (p. ) PDF

More information

Nucleon Valence Quark Structure

Nucleon Valence Quark Structure Nucleon Valence Quark Structure Z.-E. Meziani, S. Kuhn, O. Rondon, W. Melnitchouk Physics Motivation Nucleon spin and flavor structure High-x quark distributions Spin-flavor separation Moments of structure

More information

QCD at hadron colliders

QCD at hadron colliders QCD at hadron colliders This will be a brief experimentalist s view, with a concentration on the two hadron-hadron colliders mentioned in the previous talk If you want a good reference book for graduate

More information

3.2 DIS in the quark parton model (QPM)

3.2 DIS in the quark parton model (QPM) Experimental studies of QCD 1. Elements of QCD 2. Tests of QCD in annihilation 3. Studies of QCD in DIS 4. QCD in collisions 3.2 DIS in the quark parton model (QPM) M W Elastic scattering: W = M only one

More information

Intrinsic Heavy Quarks

Intrinsic Heavy Quarks Intrinsic Heavy Quarks Ingo Schienbein UGA/LPSC Laboratoire de Physique Subatomique et de Cosmologie Many thanks to my long term collaborators on heavy quark related topics: Fred Olness, Aleksander Kusina,

More information

light-cone (LC) variables

light-cone (LC) variables light-cone (LC) variables 4-vector a µ scalar product metric LC basis : transverse metric 24-Apr-13 1 hadron target at rest inclusive DIS target absorbes momentum from γ * ; for example, if q z P z =0

More information

Feynman integrals and multiple polylogarithms. Stefan Weinzierl

Feynman integrals and multiple polylogarithms. Stefan Weinzierl Feynman integrals and multiple polylogarithms Stefan Weinzierl Universität Mainz I. Basic techniques II. Nested sums and iterated integrals III. Multiple Polylogarithms IV. Applications The need for precision

More information

arxiv: v1 [hep-ph] 3 Jul 2015

arxiv: v1 [hep-ph] 3 Jul 2015 LPSC-15-180 IFJ PAN-IV-2015- Evolution kernels for parton shower Monte Carlo A. Kusina a, O. Gituliar b, S. Jadach b, M. Skrzypek b arxiv:1507.00842v1 [hep-ph Jul 2015 a Laboratoire de Physique Subatomique

More information

QCD threshold corrections for gluino pair production at NNLL

QCD threshold corrections for gluino pair production at NNLL Introduction: Gluino pair production at fixed order QCD threshold corrections for gluino pair production at NNLL in collaboration with Ulrich Langenfeld and Sven-Olaf Moch, based on arxiv:1208.4281 Munich,

More information

Fully exclusive NNLO QCD computations

Fully exclusive NNLO QCD computations Fully exclusive NNLO QCD computations Kirill Melnikov University of Hawaii Loopfest V, SLAC, June 2006 Fully exclusive NNLO QCD computations p. 1/20 Outline Introduction Technology Higgs boson production

More information

Understanding Parton Showers

Understanding Parton Showers Understanding Parton Showers Zoltán Nagy DESY in collaboration with Dave Soper Introduction Pile-up events 7 vertices 2009 single vertex reconstructed! 2011 2010 4 vertices 25 vertices 2012 Introduction

More information

Structure Functions and Parton Distribution Functions at the HERA ep Collider

Structure Functions and Parton Distribution Functions at the HERA ep Collider Structure Functions and Parton Distribution Functions at the HERA ep Collider by Chris Targett Adams (University College London) on behalf of the ZEUS and H1 collaborations. Moriond QCD, 16/03/2005 Contents

More information

From Tensor Integral to IBP

From Tensor Integral to IBP From Tensor Integral to IBP Mohammad Assadsolimani, in collaboration with P. Kant, B. Tausk and P. Uwer 11. Sep. 2012 Mohammad Assadsolimani From Tensor Integral to IBP 1 Contents Motivation NNLO Tensor

More information

QCD in gauge-boson production at the LHC "

QCD in gauge-boson production at the LHC QCD in gauge-boson production at the LHC " " Matthias Schott " on behalf of the ATLAS and CMS Collaborations" Prof. Dr. Matthias Schott What can we learn " from those tests?" Inclusive and differential

More information

arxiv:hep-ph/ v1 25 Sep 2002

arxiv:hep-ph/ v1 25 Sep 2002 hep-ph/0209302 Direct Higgs production at hadron colliders arxiv:hep-ph/0209302v1 25 Sep 2002 Massimiliano Grazzini (a,b) (a) Dipartimento di Fisica, Università di Firenze, I-50019 Sesto Fiorentino, Florence,

More information

Master integrals without subdivergences

Master integrals without subdivergences Master integrals without subdivergences Joint work with Andreas von Manteuffel and Robert Schabinger Erik Panzer 1 (CNRS, ERC grant 257638) Institute des Hautes Études Scientifiques 35 Route de Chartres

More information

2 2 ω 0 = m B m D. B D + ρ B D 0 π, B D 0 π,

2 2 ω 0 = m B m D. B D + ρ B D 0 π, B D 0 π, .3 Massive Gauge Boson Form Factor & Rapidity Divergences MORE SCET I APPLICATIONS then we may move all usoft wilson lines into the usoft part of the operator yielding,5 (c),5 (d) Q [h Γ Y T a Y h (b)

More information

Introduction to Operator Product Expansion

Introduction to Operator Product Expansion Introduction to Operator Product Expansion (Effective Hamiltonians, Wilson coefficients and all that... ) Thorsten Feldmann Neckarzimmern, March 2008 Th. Feldmann (Uni Siegen) Introduction to OPE March

More information

Analysis of the Isgur-Wise function of the Λ b Λ c transition with light-cone QCD sum rules

Analysis of the Isgur-Wise function of the Λ b Λ c transition with light-cone QCD sum rules Analysis of the Isgur-Wise function of the Λ b Λ c transition with light-cone QCD sum rules Zhi-Gang Wang 1 Department of Physics, North China Electric Power University, Baoding 713, P. R. China arxiv:96.426v1

More information

Recent Progress on the Determination of Nuclear Parton Distribution Functions

Recent Progress on the Determination of Nuclear Parton Distribution Functions Recent Progress on the Determination of Nuclear Parton Distribution Functions Shunzo Kumano High Energy Accelerator Research Organization (KEK) Graduate University for Advanced Studies (GUAS) shunzo.kumano@kek.jp

More information

Status of Deeply Inelastic Parton Distributions

Status of Deeply Inelastic Parton Distributions Status of Deeply Inelastic Parton Distributions Johannes Blümlein DESY DIS Theory Status QCD Analysis of Unpolarized Structure Functions Polarized Structure Functions Moments of Parton Densities Λ QCD

More information

Physics at Hadron Colliders Partons and PDFs

Physics at Hadron Colliders Partons and PDFs Physics at Hadron Colliders Partons and PDFs Marina Cobal Thanks to D. Bettoni Università di Udine 1 2 How to probe the nucleon / quarks? Scatter high-energy lepton off a proton: Deep-Inelastic Scattering

More information

Zhongbo Kang. QCD evolution and resummation for transverse momentum distribution. Theoretical Division, Group T-2 Los Alamos National Laboratory

Zhongbo Kang. QCD evolution and resummation for transverse momentum distribution. Theoretical Division, Group T-2 Los Alamos National Laboratory QCD evolution and resummation for transverse momentum distribution Zhongbo Kang Theoretical Division, Group T-2 Los Alamos National Laboratory QCD Evolution Worshop Jefferson Lab, Newport News, VA Outline:

More information

Triangle diagrams in the Standard Model

Triangle diagrams in the Standard Model Triangle diagrams in the Standard Model A. I. Davydychev and M. N. Dubinin Institute for Nuclear Physics, Moscow State University, 119899 Moscow, USSR Abstract Method of massive loop Feynman diagrams evaluation

More information

arxiv:hep-ph/ v2 2 Sep 1996

arxiv:hep-ph/ v2 2 Sep 1996 arxiv:hep-ph/960927v2 2 Sep 996 DESY 96 72 INLO-PUB-7/96 WUE-ITP-96-07 August 996 Theoretical Uncertainties in the QCD Evolution of Structure Functions and their Impact on α s (M 2 Z ) J. Blümlein, S.

More information

High energy scattering in QCD

High energy scattering in QCD High energy scattering in QCD I Parton model, Bjorken scaling, François Gelis and CEA/Saclay General introduction IR & Coll. divergences Multiple scatterings Heavy Ion Collisions General introduction François

More information

Hadronic decay of top quarks as a new channel to search for the top properties at the SM & physics beyond the SM

Hadronic decay of top quarks as a new channel to search for the top properties at the SM & physics beyond the SM Hadronic decay of top quarks as a new channel to search for the top properties at the SM & physics beyond the SM S. M. Moosavi Nejad Yazd University February 15, 2017 1 Top Quark (History and Motivations)

More information

Introduction to particle physics Lecture 7

Introduction to particle physics Lecture 7 Introduction to particle physics Lecture 7 Frank Krauss IPPP Durham U Durham, Epiphany term 2009 Outline 1 Deep-inelastic scattering and the structure of protons 2 Elastic scattering Scattering on extended

More information

The Strong Interaction and LHC phenomenology

The Strong Interaction and LHC phenomenology The Strong Interaction and LHC phenomenology Juan Rojo STFC Rutherford Fellow University of Oxford Theoretical Physics Graduate School course Introduction and motivation: QCD and modern high-energy physics

More information

Non-local 1/m b corrections to B X s γ

Non-local 1/m b corrections to B X s γ Non-local 1/m b corrections to B X s γ Michael Benzke TU München September 16, 2010 In collaboration with S. J. Lee, M. Neubert, G. Paz Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München

More information

Deep Inelastic Scattering in Lepton-Hadron Collisions Probing the Parton Structure of the Nucleon with Leptons Basic Formalism (indep.

Deep Inelastic Scattering in Lepton-Hadron Collisions Probing the Parton Structure of the Nucleon with Leptons Basic Formalism (indep. Deep Inelastic Scattering in Lepton-Hadron Collisions Probing the Parton Structure of the Nucleon with Leptons Basic Formalism (indep. of strong dynamics and parton picture) Experimental Development Fixed

More information

Outline: Introduction Quantum ChromoDynamics (QCD) Jet algorithms Tests of QCD QCD analyses at HERA extraction of the proton PDFs

Outline: Introduction Quantum ChromoDynamics (QCD) Jet algorithms Tests of QCD QCD analyses at HERA extraction of the proton PDFs Outline: Introduction Quantum ChromoDynamics (QCD) Jet algorithms Tests of QCD QCD analyses at HERA etraction of the proton PDFs Etraction of the proton PDFs Etraction Etractionof of the proton protonpdfs

More information

Quark-Hadron Duality in Structure Functions

Quark-Hadron Duality in Structure Functions Approaches to QCD, Oberwoelz, Austria September 10, 2008 Quark-Hadron Duality in Structure Functions Wally Melnitchouk Outline Bloom-Gilman duality Duality in QCD OPE & higher twists Resonances & local

More information

Gluons at high x in Nuclei at EIC

Gluons at high x in Nuclei at EIC Gluons at high x in Nuclei at EIC in collaboration with: E. Chudakov, D. Higinbotham, C. Hyde, C. Weiss Jefferson Lab DNP 2015 Fall meeting, Santa Fe, NM Outline Motivation HERA and ZEUS experience EIC

More information

PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD. Taushif Ahmed Institute of Mathematical Sciences, India March 22, 2016

PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD. Taushif Ahmed Institute of Mathematical Sciences, India March 22, 2016 PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD Taushif Ahmed Institute of Mathematical Sciences, India March, 016 PROLOGUE: SM & MSSM SM Complex scalar doublet (4 DOF) 3 DOF transform into longitudinal modes

More information

Quantum Chromodynamics at LHC

Quantum Chromodynamics at LHC Quantum Chromodynamics at LHC Zouina Belghobsi LPTh, Université de Jijel EPAM-2011, TAZA 26 Mars 03 Avril Today s high energy colliders past, present and future proton/antiproton colliders Tevatron (1987

More information

HyperInt - exact integration with hyperlogarithms

HyperInt - exact integration with hyperlogarithms HyperInt - exact integration with hyperlogarithms Erik Panzer erikpanzer@ihes.fr (CNRS, ERC grant 257638, F. Brown) Institute des Hautes Études Scientifiques 35 Route de Chartres 9144 Bures-sur-Yvette

More information