Master integrals without subdivergences

Size: px
Start display at page:

Download "Master integrals without subdivergences"

Transcription

1

2 Master integrals without subdivergences Joint work with Andreas von Manteuffel and Robert Schabinger Erik Panzer 1 (CNRS, ERC grant ) Institute des Hautes Études Scientifiques 35 Route de Chartres Bures-sur-Yvette France HOCTOOLS NNLO meeting NCSR Demokritos, Athens January 18th, erikpanzer@ihes.fr

3 Sector decomposition Subdivergences (IR and UV) of Feynman integrals result in (higher order) poles in ɛ (dimensional regularization) and obstruct both analytical and numerical evaluation. Standard solution: Sector decomposition [4, 5]. 1 Split original integral into several sectors: f (x) dx 1 dx N = f (x) dx 1 dx N i S i 2 Change of variables in each sector (monomialise): ( N ) 1 f (x) dx 1 dx N = x β k 1 k dx k S i 0 k=1 such that f (x) is bounded on [0, 1]N i 3 Regulate all (now normal crossing) divergences at zero: 1 0 f i (x) x β 1 k dx k f i (x) = 1 β f (x) x k =1 1 1 x β k β dx k xk f i (x) 0 1 / 20

4 Undesirable features of sector decomposition Many different terms (sectors and subtraction terms) to consider Spurious structures (cancellation between sectors): An individual sector is more complicated than the total sum ln(1 + x) x(1 + x) dx = 1 2 ζ(2) 1 2 ln2 (2) ln(1 + x) x(1 + x) dx = 1 2 ζ(2) ln2 (2) Changes of variables are different in each sector and can destroy linear reducibility, a property allowing for analytical evaluation Idea Avoid sector decomposition and write the integral as a linear combination of subdivergence-free ( primitive or quasi-finite ) Feynman integrals. 2 / 20

5 Example: Two-loop non-planar form factor (4 2ɛ) = 4(1 ɛ)(3 4ɛ)(1 4ɛ) ɛs 2 (6 2ɛ) (6 2ɛ) 10 65ɛ + 131ɛ2 74ɛ 3 ɛ 3 s 2 (4 2ɛ) ɛ + 355ɛ2 420ɛ ɛ 4 (1 2ɛ)ɛ 3 s 3 3 / 20

6 improving convergence via partial integration

7 Feynman integrals in Schwinger parameters Scalar propagators (pe 2 + me) 2 ae, sdd = e a e D/2 loops(g): Φ(G) = Γ(sdd) e Γ(a ψ sdd D/2 ϕ sdd αe ae 1 dα e δ(1 α N ) e) 0 e E 5 / 20

8 Feynman integrals in Schwinger parameters Scalar propagators (pe 2 + me) 2 ae, sdd = e a e D/2 loops(g): Φ(G) = Γ(sdd) e Γ(a ψ sdd D/2 ϕ sdd αe ae 1 dα e δ(1 α N ) e) 0 Graph polynomials: ψ = U = T e / T α e Example (arbitrary ε) e E ϕ = F = q 2 (T 1 ) α e + ψ e / F e F =T 1 T 2 m 2 eα e Γ(1 + ε) δ(1 α N ) dα 1 dα 2 dα 3 Φ(G) = (α α 2 + α 3 ) 1 2ε [ m 2 (α 1 + α 2 + α 3 ) + p1 2α 2 + p2 2α ] 1+ε 1 α 1+ε 3 3 p 1 p 2 D = 4 2ε a e = 1 sdd = 1 + ε G = 2 1 p 3 5 / 20

9 Feynman integrals in Schwinger parameters Scalar propagators (pe 2 + me) 2 ae, sdd = e a e D/2 loops(g): Φ(G) = Γ(sdd) e Γ(a ψ sdd D/2 ϕ sdd αe ae 1 dα e δ(1 α N ) e) 0 Graph polynomials: ψ = U = T e / T α e Example (expanded in ε 0) e E ϕ = F = q 2 (T 1 ) α e + ψ e / F e F =T 1 T 2 m 2 eα e Γ(1 + ε) δ(1 α N ) dα 1 dα 2 dα 3 Φ(G) = (α α 2 + α 3 ) 1 2ε [ m 2 (α 1 + α 2 + α 3 ) + p1 2α 2 + p2 2α ] 1+ε 1 α 1+ε 3 ε n δ(1 α N ) dα 1 dα 2 dα 3 = Γ(1 + ε) log n ψ2 n! ψϕ ϕ n=0 0 5 / 20

10 Divergences in Schwinger parameters 3 p 1 p 2 ψ = α 1 + α 2 + α 3 G = 2 1 p 3 ( ϕ = α 3 m 2 ψ + p1 2α 2 + p2 2α ) 1 In D = 4 2ε, sdd = 1 + ε such that 0 dα 3 diverges at the lower boundary when ε 0: Ω (α 1 + α 2 + α 3 ) 1 2ε [ m 2 (α 1 + α 2 + α 3 ) + p1 2α 2 + p2 2α ] 1+ε 1 α 1+ε 3 6 / 20

11 Divergences in Schwinger parameters 3 p 1 p 2 ψ = α 1 + α 2 + α 3 G = 2 1 p 3 ( ϕ = α 3 m 2 ψ + p1 2α 2 + p2 2α ) 1 In D = 4 2ε, sdd = 1 + ε such that 0 dα 3 diverges at the lower boundary when ε 0: Ω (α 1 + α 2 + α 3 ) 1 2ε [ m 2 (α 1 + α 2 + α 3 ) + p1 2α 2 + p2 2α ] 1+ε 1 α 1+ε Example (Regularization) Let φ := ϕ/α 3 = m 2 ψ + p2 2α 1 + p1 2α 2 and integrate by parts: Ω α ε 3 ψ 1 2ε ϕ 1+ε α3 ε = εψ 1 2ε ϕ 1+ε + 1 Ω α 3 =0 ε α3 ε ψ 1+2ε ϕ 1 ε α 3 = 1 [ ε Ωα 3 2ε 1 ψ 1 2ε ϕ 1+ε (1 + ε)α 3m 2 ] when ε < 0. ψ ϕ 3 6 / 20

12 Divergences in Schwinger parameters In D = 4 2ε dimensions, Φ = Γ(2 + 3ε) Ω ϕ 2+3ε ψ 4ε where ϕ = α 4 ( ) + α 5 ( ) + α 4 α 5 ( ) vanishes at α 4 = α 5 = 0. Rescale α 4 λα 4 and α 5 λα 5, so ϕ λ ϕ and ψ ψ: Ωψ 4ε Ωψ 4ε ϕ 2+3ε = ϕ 2+3ε δ(α 4 + α 5 λ) dλ 0 7 / 20

13 Divergences in Schwinger parameters In D = 4 2ε dimensions, Φ = Γ(2 + 3ε) Ω ϕ 2+3ε ψ 4ε where ϕ = α 4 ( ) + α 5 ( ) + α 4 α 5 ( ) vanishes at α 4 = α 5 = 0. Rescale α 4 λα 4 and α 5 λα 5, so ϕ λ ϕ and ψ ψ: Ωψ 4ε ϕ 2+3ε = dλ ψ 4ε Ω δ(α 4 + α 5 1) λ 1+3ε ϕ 2+3ε 0 7 / 20

14 Divergences in Schwinger parameters In D = 4 2ε dimensions, Φ = Γ(2 + 3ε) Ω ϕ 2+3ε ψ 4ε where ϕ = α 4 ( ) + α 5 ( ) + α 4 α 5 ( ) vanishes at α 4 = α 5 = 0. Rescale α 4 λα 4 and α 5 λα 5, so ϕ λ ϕ and ψ ψ: Ωψ 4ε ( 1 ( ) ϕ 2+3ε = dλ ψ Ω δ(α 4 + α 5 1) 3ε) 4ε λ 3ε λ ϕ 2+3ε 0 7 / 20

15 Divergences in Schwinger parameters In D = 4 2ε dimensions, Φ = Γ(2 + 3ε) Ω ϕ 2+3ε ψ 4ε where ϕ = α 4 ( ) + α 5 ( ) + α 4 α 5 ( ) vanishes at α 4 = α 5 = 0. Rescale α 4 λα 4 and α 5 λα 5, so ϕ λ ϕ and ψ ψ: Ωψ 4ε { Ωψ 4ε 4 ϕ 2+3ε = 1 ψ ϕ 2+3ε 3 ψ λ 2 + 3ε } 1 ϕ 3ε ϕ λ λ=1 7 / 20

16 Divergences in Schwinger parameters In D = 4 2ε dimensions, Φ = Γ(2 + 3ε) Ω ϕ 2+3ε ψ 4ε where ϕ = α 4 ( ) + α 5 ( ) + α 4 α 5 ( ) vanishes at α 4 = α 5 = 0. Rescale α 4 λα 4 and α 5 λα 5, so ϕ λ ϕ and ψ ψ: Ωψ 4ε { Ωψ 4ε 4 ϕ 2+3ε = 1 ψ ϕ 2+3ε 3 ψ λ 2 + 3ε } 1 ϕ 3ε ϕ λ λ=1 Numerator monomials correspond to squared propagators: ( Φ D ( ) = 1 3ε Φ D Φ D+2 ( ) ) 7 / 20

17 Regularization of subdivergences Subdivergences (IR and UV) manifest as integrand λ ωγ 1 with ω γ ε=0 0, when some edges α e λ (e γ) get small jointly Well-known power counting: ω γ = { sdd(g/γ) if γ connects external legs (IR), sdd(γ) otherwise (UV). 8 / 20

18 Regularization of subdivergences Subdivergences (IR and UV) manifest as integrand λ ωγ 1 with ω γ ε=0 0, when some edges α e λ (e γ) get small jointly Well-known power counting: ω γ = { sdd(g/γ) if γ connects external legs (IR), sdd(γ) otherwise (UV). Suitable partial integration increments ω γ After finitely many steps, all ω γ ɛ=0 > 0 (no subdivergences) ε-expansion of integrand gives convergent integrals 8 / 20

19 Regularization of subdivergences Subdivergences (IR and UV) manifest as integrand λ ωγ 1 with ω γ ε=0 0, when some edges α e λ (e γ) get small jointly Well-known power counting: ω γ = { sdd(g/γ) if γ connects external legs (IR), sdd(γ) otherwise (UV). Suitable partial integration increments ω γ After finitely many steps, all ω γ ɛ=0 > 0 (no subdivergences) ε-expansion of integrand gives convergent integrals Representation in terms of primitive Feynman integrals, with shifted D and a e 8 / 20

20 Regularization of subdivergences Subdivergences (IR and UV) manifest as integrand λ ωγ 1 with ω γ ε=0 0, when some edges α e λ (e γ) get small jointly Well-known power counting: ω γ = { sdd(g/γ) if γ connects external legs (IR), sdd(γ) otherwise (UV). Suitable partial integration increments ω γ After finitely many steps, all ω γ ɛ=0 > 0 (no subdivergences) ε-expansion of integrand gives convergent integrals Representation in terms of primitive Feynman integrals, with shifted D and a e In practice, this creates too many terms. Thus use IBP! 8 / 20

21 Choose master integrals without subdivergences

22 Primitive (quasi-finite) master integrals Corollary (IBP, Euclidean kinematics) For any topology, one can choose the master integrals to be scalar and quasi-finite (free of subdivergences), given that one allows for shifted dimensions D + 2, D + 4,... and dots. 10 / 20

23 Primitive (quasi-finite) master integrals Corollary (IBP, Euclidean kinematics) For any topology, one can choose the master integrals to be scalar and quasi-finite (free of subdivergences), given that one allows for shifted dimensions D + 2, D + 4,... and dots. 1 available IBP tools have dimension-shifts [16] implemented [10] or are easily extended 2 general algorithm to find quasi-finite basis [17] 3 it suffices to guess enough quasi-finite integrals 10 / 20

24 Primitive (quasi-finite) master integrals Corollary (IBP, Euclidean kinematics) For any topology, one can choose the master integrals to be scalar and quasi-finite (free of subdivergences), given that one allows for shifted dimensions D + 2, D + 4,... and dots. 1 available IBP tools have dimension-shifts [16] implemented [10] or are easily extended 2 general algorithm to find quasi-finite basis [17] 3 it suffices to guess enough quasi-finite integrals Advantages: 1 ε-expansion of the integrand 2 directly suitable for numeric quadrature 3 No splitting into non-feynman integrals like sector decomposition 4 Empirically: Higher pole terms from subtopologies 10 / 20

25 Double box: Primitive master integrals (6 2ɛ) (6 2ɛ) (6 2ɛ) (6 2ɛ) (6 2ɛ) (6 2ɛ) (4 2ɛ) (4 2ɛ) 11 / 20

26 Double box: IBP reduction (4 2ɛ) (6 2ɛ) (6 2ɛ) = A 1 + A 2 + A 4 ɛ 2 (6 2ɛ) + A 5 ɛ 2 (6 2ɛ) + A 7 ɛ 3 (4 2ɛ) + A 3 ɛ 3 (6 2ɛ) + A 8 ɛ 4 (6 2ɛ) + A 6 ɛ 3 (4 2ɛ) 12 / 20

27 Linearly reducible Feynman graphs

28 Integration with hyperlogarithms following Brown [8] Applications by Chavez & Duhr [9], Wißbrock [1], Anastasiou et. al. [3, 2] To compute 0 f dα e where f is a rational linear combination of polylogarithms that depend rationally on α e : 1 Rewrite f using hyperlogarithms: f = w,σ,n G(w; α e ) (α e σ) n λ w,σ,n with constants λ w,σ,n w.r.t. α e. Implemented in the Maple code HyperInt [14], completely algebraic. Assumption: Finite integrals! 14 / 20

29 Integration with hyperlogarithms following Brown [8] Applications by Chavez & Duhr [9], Wißbrock [1], Anastasiou et. al. [3, 2] To compute 0 f dα e where f is a rational linear combination of polylogarithms that depend rationally on α e : 1 Rewrite f using hyperlogarithms: f = w,σ,n G(w; α e ) (α e σ) n λ w,σ,n with constants λ w,σ,n w.r.t. α e. 2 Construct an antiderivative αe F = f. Implemented in the Maple code HyperInt [14], completely algebraic. Assumption: Finite integrals! 14 / 20

30 Integration with hyperlogarithms following Brown [8] Applications by Chavez & Duhr [9], Wißbrock [1], Anastasiou et. al. [3, 2] To compute 0 f dα e where f is a rational linear combination of polylogarithms that depend rationally on α e : 1 Rewrite f using hyperlogarithms: f = w,σ,n G(w; α e ) (α e σ) n λ w,σ,n with constants λ w,σ,n w.r.t. α e. 2 Construct an antiderivative αe F = f. 3 Evaluate the limits 0 f dα e = lim F (α α e e) lim F (α e). α e 0 Implemented in the Maple code HyperInt [14], completely algebraic. Assumption: Finite integrals! 14 / 20

31 Linear reducibility Precondition: For all n < N, f n := [ n 1 e=1 0 dα e ] ψ sdd D/2 ϕ sdd e E α ae 1 e can be written as hyperlogarithms of α e over denominators that factor linearly in α e. Definition If this holds for some ordering e 1,..., e N of its edges, the Feynman graph G is called linearly reducible. 15 / 20

32 Linear reducibility Precondition: For all n < N, f n := [ n 1 e=1 0 dα e ] ψ sdd D/2 ϕ sdd e E α ae 1 e can be written as hyperlogarithms of α e over denominators that factor linearly in α e. Definition If this holds for some ordering e 1,..., e N of its edges, the Feynman graph G is called linearly reducible. Combinatorial condition on the polynomials ψ and ϕ only; independent of ε-order and expansion point (D, a) ε=0 2N Z N Polynomial reduction algorithms [8, 7] available (e.g. HyperInt) to check sufficient criteria for linear reducibility 15 / 20

33 Linearly reducible massless propagators all up to four loops [11]: MZV and maybe alternating sums all φ 4 -periods up to seven loops, except for K 3,4 = P 7,11 = Integrable with graphical functions, O. Schnetz [15]. Extremely efficient (graphs up to ten loops). Linearly reducible after change of variables. Does not give a multiple zeta value! 16 / 20

34 Linearly reducible 3-point graphs Off-shell massless three-point integrals (m e = 0 and p 2 1, p2 2, p2 3 0): All up to three loops [13] 17 / 20

35 Linearly reducible 3-point graphs Off-shell massless three-point integrals (m e = 0 and p 2 1, p2 2, p2 3 0): All up to three loops [13] All with vertex-width three [12] 17 / 20

36 Linearly reducible 4-point graphs Massless on-shell four-point graphs (m e = p 2 1 = = p2 4 = 0): All up to two loops [6] 18 / 20

37 Linearly reducible 4-point graphs Massless on-shell four-point graphs (m e = p 2 1 = = p2 4 = 0): All up to two loops [6] Minors of ladder-boxes (and some generalizations [12]) Also with up to two legs off-shell. 18 / 20

38 Linearly reducible graphs with masses Examples: 19 / 20

39 Summary Master integrals can be chosen to be primitive existing tools for IBP-reduction can be used or extended potential for direct numeric integration Extends exact parametric integration to divergent integrals many examples of linearly reducible graphs with non-trivial kinematics Maple TM implementation: HyperInt [14] arbitrary ε-order, D ε=0 2N, tensors, a e = n e + εν e So far clear for Euclidean kinematics only; possible extension to more general kinematics and phase-space integrals to be investigated 20 / 20

40 Thank you.

41 4-point recursions Start with the box and repeat, in any order: Appending a vertex: v 1 v 4 v 1 v 4 G = G = e v 2 v 3 v 2 v 3 v 3 or v 1 v 4 v 2 v 3 e v 4 2 / 15

42 4-point recursions Start with the box and repeat, in any order: Appending a vertex: v 1 v 4 v 1 v 4 G = G = e v 2 v 3 v 2 v 3 v 3 or v 1 v 4 v 2 v 3 e v 4 Adding an edge: v 1 v 4 G = v 1 v 4 G = v 2 v 3 v 2 v 3 e 2 / 15

43 4-point recursions Start with the box and repeat, in any order: Appending a vertex: v 1 v 4 v 1 v 4 G = G = e v 2 v 3 v 2 v 3 v 3 or v 1 v 4 v 2 v 3 e v 4 Adding an edge: v 1 v 4 G = v 1 v 4 G = v 2 v 3 v 2 v 3 e Example v v 4 v 1 v 4 v 1 v 4 v 1 v 4 v 2 v 3 v 2 v 3 v 2 v 3 v 2 v 3 2 / 15

44 HyperInt > E := [[1,2],[2,3],[3,4],[4,1],[5,1],[5,2],[5,3],[5,4]]: > psi := graphpolynomial(e): > phi := secondpolynomial(e, [[1,1], [3,1]]): > sdd := nops(e)-(1/2)*4*(4-2*epsilon): > f := series(psiˆ(-2+epsilon+sdd)*phiˆ(-sdd), epsilon=0): > f := add(coeff(f,epsilon,n)*epsilonˆn,n=0..2): > z := [x[1],x[2],x[6],x[5],x[3],x[4],x[7],x[8]]: > hyperint(eval(f,z[-1]=1), z[1..-2]): > collect(fibrationbasis(%), epsilon); 3 / 15

45 HyperInt > E := [[1,2],[2,3],[3,4],[4,1],[5,1],[5,2],[5,3],[5,4]]: > psi := graphpolynomial(e): > phi := secondpolynomial(e, [[1,1], [3,1]]): > sdd := nops(e)-(1/2)*4*(4-2*epsilon): > f := series(psiˆ(-2+epsilon+sdd)*phiˆ(-sdd), epsilon=0): > f := add(coeff(f,epsilon,n)*epsilonˆn,n=0..2): > z := [x[1],x[2],x[6],x[5],x[3],x[4],x[7],x[8]]: > hyperint(eval(f,z[-1]=1), z[1..-2]): > collect(fibrationbasis(%), epsilon); ( 254ζ ζ 5 200ζ 2 ζ 5 196ζ ζ ) ε 2 ( + 28ζ ζ ) 7 ζ3 2 ε + 20ζ 5. 5 ζ2 2ζ 3 3 / 15

46 Recursion of forest functions Example (D = 6 and a e = 1) v 4 ; z F v 1 v 2 v 3 = z3 0 F v v 4 v 2 v 3 ; z 12, z 14, z 3, z 4 dz 3 4 / 15

47 Recursion of forest functions Example (D = 6 and a e = 1) v 1 v 4 z3 z F ; z 12 dz 3 = [z 12 (z 14 + z 3 + z 4 ) + z 3 z 4 ] 2 = z 3 (z 14 + z 4 ) Q v 2 v / 15

48 Recursion of forest functions Example (D = 6 and a e = 1) v 1 v 4 z3 z F ; z 12 dz 3 = [z 12 (z 14 + z 3 + z 4 ) + z 3 z 4 ] 2 = z 3 (z 14 + z 4 ) Q v 2 v 3 v 4 ; z F v 1 v 2 v / 15

49 Recursion of forest functions Example (D = 6 and a e = 1) v 1 v 4 z3 z F ; z 12 dz 3 = [z 12 (z 14 + z 3 + z 4 ) + z 3 z 4 ] 2 = z 3 (z 14 + z 4 ) Q v 2 v 3 v 4 ; z F v 1 v 2 v 3 = 0 z4 0 F v 1 v 4 ; z 12, z 14, z 3, z 4 dz 4 v 2 v 3 4 / 15

50 Recursion of forest functions Example (D = 6 and a e = 1) v 1 v 4 z3 z F ; z 12 dz 3 = [z 12 (z 14 + z 3 + z 4 ) + z 3 z 4 ] 2 = z 3 (z 14 + z 4 ) Q v 2 v 3 v 4 ; z F v 1 v 2 v 3 = 0 1 ln z 12(z 3 + z 14 )(z 4 + z 14 ) z 12 z 14 z 14 Q 4 / 15

51 Recursion of forest functions Example (D = 6 and a e = 1) v 1 v 4 z3 z F ; z 12 dz 3 = [z 12 (z 14 + z 3 + z 4 ) + z 3 z 4 ] 2 = z 3 (z 14 + z 4 ) Q v 2 v 3 v 4 ; z F v 1 = v 2 v 3 v 4 ; z F v 1 v 2 v ln z 12(z 3 + z 14 )(z 4 + z 14 ) z 12 z 14 z 14 Q = 1 z12 Q 2 F 0 v 1 v 4 v 2 v 3 ; z 12 x, z 14, z 3, z 4 xdx 4 / 15

52 Recursion of forest functions Example (kinematics: s = (p 1 + p 2 ) 2 and x = (p 1 + p 4 ) 2 /s) sφ ( ) = = = dz 12 z 12 + x dz 12 z 12 + x 0 0 z 12 dz 3 dz 4 [z 12 (1 + z 3 + z 4 ) + z 4 z 3 ] 2 0 dz 3 (1 + z 3 )(z 12 + z 3 ) dz 12 ln z 12 (z 12 + x)(z 12 1) = π2 + ln 2 x 2(1 + x) 5 / 15

53 Massless φ 4 theory: primitive sixth roots of unity P 7,11 = P 7,11 is not linearly reducible: After integrating ten variables, denominator d 10 = α 2 α 2 4α 1 + α 2 α 2 4α 3 α 1 α 2 α 3 α 4 + α 2 2α 4 α 1 + α 2 2α 4 α 3 2α 2 α 2 3α 4 α 2 2α 2 3 2α 2 2α 3 α 1 2α 2 α 2 3α 1 α 2 3α 2 4 2α 2 3α 4 α 1 α 2 2α 1 1 2α 2 α 3 α 2 1 α 2 3α 2 1. Changing variables α 3 = α 3 α 1 α 1 +α 2 +α 4, α 4 = α 4 (α 2 + α 3 ) and α 1 = α 1 α 4, d 10 = (α 2 + α 3)(α 2 + α 2 α 4 α 1)(α 1α 4 + α 2 + α 2 α 4 + α 3α 4) factors linearly and α 1, α 3, α 4 can be integrated (α 2 = 1). The final integrand is HPL(α 1 )/(1 α 1 + α1 2 ) and gives not a multiple zeta value, but a polylogarithm at sixth roots of unity. 6 / 15

54 3 P(P7,11 ) ( ) = Im ζ 9 Li ζ 7 Li ζ3( Li 2,3 7ζ 3 Li 2 ) 9675 π3 ζ 3, (36 Im Li 2,2,2,5 +27 Li 2,2,3,4 +9 Li 2,2,4,3 +9 Li 2,3,2,4 +3 Li 2,3,3,3 ) 43ζ 3 (Li 2,3,3 +3 Li 2,2,4 ) π Im ( Li 8 ζ Li 2, π2 Im Li 6 ζ Li 3,8 ) Li 4, Li 5,6 ( Li 2, Li 6 ζ Li 4, Li 3,6 ) ( + π ζ ζ ,7 215 Re(3 Li 4,6 +10 Li 3,7 ) ) Abbreviation: Li n1,...,n r := Li n1,...,n r (e iπ/3 ) 7 / 15

55 References

56 Bibliography I [1] J. Ablinger, J. Blümlein, A. Hasselhuhn, S. Klein, C. Schneider, and F. Wißbrock. Massive 3-loop ladder diagrams for quarkonic local operator matrix elements. Nucl. Phys. B, 864(1):52 84, November URL: S , arxiv: , doi: /j.nuclphysb [2] C. Anastasiou, C. Duhr, F. Dulat, F. Herzog, and B. Mistlberger. Real-virtual contributions to the inclusive Higgs cross-section at N 3 LO. JHEP, 2013(12):88, December arxiv: , doi: /jhep12(2013) / 15

57 Bibliography II [3] C. Anastasiou, C. Duhr, F. Dulat, and B. Mistlberger. Soft triple-real radiation for Higgs production at N 3 LO. JHEP, 2013(7):1 78, jul arxiv: , doi: /jhep07(2013)003. [4] T. Binoth and G. Heinrich. An automatized algorithm to compute infrared divergent multiloop integrals. Nucl. Phys. B, 585(3): , October arxiv:hep-ph/ , doi: /s (00) [5] T. Binoth and G. Heinrich. Numerical evaluation of multiloop integrals by sector decomposition. Nucl. Phys. B, 680(1 3): , March arxiv:hep-ph/ , doi: /j.nuclphysb / 15

58 Bibliography III [6] C. Bogner and M. Lüders. Multiple polylogarithms and linearly reducible Feynman graphs. ArXiv e-prints, February arxiv: [7] F. C. S. Brown. On the periods of some Feynman integrals. ArXiv e-prints, October arxiv: [8] F. C. S. Brown. The Massless Higher-Loop Two-Point Function. Commun. Math. Phys., 287(3): , May arxiv: , doi: /s / 15

59 Bibliography IV [9] F. Chavez and C. Duhr. Three-mass triangle integrals and single-valued polylogarithms. JHEP, 11:114, November arxiv: , doi: /jhep11(2012)114. [10] R. N. Lee. Presenting LiteRed: a tool for the Loop InTEgrals REDuction. December arxiv: [11] E. Panzer. On the analytic computation of massless propagators in dimensional regularization. Nucl. Phys. B, 874(2): , September URL: S , arxiv: , doi: /j.nuclphysb / 15

60 Bibliography V [12] E. Panzer. Feynman integrals and hyperlogarithms. PhD thesis, Humboldt-Universität zu Berlin, to appear. URL: panzer/paper/phd.pdf. [13] E. Panzer. On hyperlogarithms and Feynman integrals with divergences and many scales. JHEP, 2014(3):71, March arxiv: , doi: /jhep03(2014) / 15

61 Bibliography VI [14] E. Panzer. Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals. Computer Physics Communications, 188: , March arxiv: , doi: /j.cpc [15] O. Schnetz. Graphical functions and single-valued multiple polylogarithms. ArXiv e-prints, February arxiv: [16] O. V. Tarasov. Connection between Feynman integrals having different values of the space-time dimension. Phys. Rev. D, 54(10): , November arxiv:hep-th/ , doi: /physrevd / 15

62 Bibliography VII [17] E. von Manteuffel, A. Panzer and R. M. Schabinger. A quasi-finite basis for multi-loop Feynman integrals. December arxiv: / 15

HyperInt - exact integration with hyperlogarithms

HyperInt - exact integration with hyperlogarithms HyperInt - exact integration with hyperlogarithms Erik Panzer erikpanzer@ihes.fr (CNRS, ERC grant 257638, F. Brown) Institute des Hautes Études Scientifiques 35 Route de Chartres 9144 Bures-sur-Yvette

More information

Linear reducibility of Feynman integrals

Linear reducibility of Feynman integrals Linear reducibility of Feynman integrals Erik Panzer Institute des Hautes Études Scientifiques RADCOR/LoopFest 2015 June 19th, 2015 UCLA, Los Angeles Feynman integrals: special functions and numbers Some

More information

Multiple polylogarithms and Feynman integrals

Multiple polylogarithms and Feynman integrals Multiple polylogarithms and Feynman integrals Erik Panzer Institute des Hautes E tudes Scientifiques Amplitudes 215 July 7th ETH/University of Zu rich Topics 1 hyperlogarithms & iterated integrals 2 multiple

More information

Multiple polylogarithms and Feynman integrals

Multiple polylogarithms and Feynman integrals Multiple polylogarithms and Feynman integrals Erik Panzer Institute des Hautes E tudes Scientifiques Amplitudes 215 July 7th ETH/University of Zu rich Topics 1 hyperlogarithms & iterated integrals 2 multiple

More information

Symbolic integration of multiple polylogarithms

Symbolic integration of multiple polylogarithms Symbolic integration of multiple polylogarithms Erik Panzer Institute des Hautes E tudes Scientifiques Applications of Computer Algebra July 22nd, 215 Kalamata, Greece Problem: Multiple integrals of rational

More information

arxiv: v3 [hep-ph] 20 Apr 2017

arxiv: v3 [hep-ph] 20 Apr 2017 MITP/14-76 A quasi-finite basis for multi-loop Feynman integrals arxiv:1411.7392v3 [hep-ph] 2 Apr 217 Andreas von Manteuffel, a Erik Panzer, b, c and Robert M. Schabinger a a PRISMA Cluster of Excellence

More information

Evaluating multiloop Feynman integrals by Mellin-Barnes representation

Evaluating multiloop Feynman integrals by Mellin-Barnes representation April 7, 004 Loops&Legs 04 Evaluating multiloop Feynman integrals by Mellin-Barnes representation V.A. Smirnov Nuclear Physics Institute of Moscow State University Mellin-Barnes representation as a tool

More information

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases.

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases. Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases. Lorenzo Tancredi TTP, KIT - Karlsruhe Bologna, 18 Novembre 2014 Based on collaboration with Thomas Gehrmann,

More information

Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method

Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method Matteo Becchetti Supervisor Roberto Bonciani University of Rome La Sapienza 24/01/2017 1 The subject of

More information

Amplitudes in φ4. Francis Brown, CNRS (Institut de Mathe matiques de Jussieu)

Amplitudes in φ4. Francis Brown, CNRS (Institut de Mathe matiques de Jussieu) Amplitudes in φ4 Francis Brown, CNRS (Institut de Mathe matiques de Jussieu) DESY Hamburg, 6 March 2012 Overview: 1. Parametric Feynman integrals 2. Graph polynomials 3. Symbol calculus 4. Point-counting

More information

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with G. Heinrich Based on arxiv:124.4152 [hep-ph] HP 8 :Workshop on High Precision for Hard Processes,

More information

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with: J. Carter and G. Heinrich Based on arxiv:124.4152 [hep-ph] http://secdec.hepforge.org DESY-HU

More information

NNLO antenna subtraction with two hadronic initial states

NNLO antenna subtraction with two hadronic initial states NNLO antenna subtraction with two hadronic initial states Institut für Theoretische Physik, Universität Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland E-mail: radja@physik.uzh.ch Aude Gehrmann-De

More information

One-Mass Two-Loop Master Integrals for Mixed

One-Mass Two-Loop Master Integrals for Mixed One-Mass Two-Loop Master Integrals for Mixed α s -Electroweak Drell-Yan Production work ongoing with Andreas von Manteuffel The PRISMA Cluster of Excellence and Institute of Physics Johannes Gutenberg

More information

Multiloop integrals in dimensional regularization made simple

Multiloop integrals in dimensional regularization made simple Multiloop integrals in dimensional regularization made simple Johannes M. Henn Institute for Advanced Study based on PRL 110 (2013) [arxiv:1304.1806], JHEP 1307 (2013) 128 [arxiv:1306.2799] with A. V.

More information

Calculating four-loop massless propagators with Forcer

Calculating four-loop massless propagators with Forcer Calculating four-loop massless propagators with Forcer Takahiro Ueda Nikhef, The Netherlands Collaboration with: Ben Ruijl and Jos Vermaseren 18 Jan. 2016 ACAT2016, UTFSM, Valparaíso 1 / 30 Contents Introduction

More information

TENSOR STRUCTURE FROM SCALAR FEYNMAN MATROIDS

TENSOR STRUCTURE FROM SCALAR FEYNMAN MATROIDS TENSOR STRUCTURE FROM SCALAR FEYNMAN MATROIDS Dirk KREIMER and Karen YEATS Institut des Hautes Études Scientifiques 35, route de Chartres 91440 Bures-sur-Yvette (France) Novembre 2010 IHES/P/10/40 TENSOR

More information

arxiv: v2 [hep-th] 7 Jul 2016

arxiv: v2 [hep-th] 7 Jul 2016 Integration-by-parts reductions from unitarity cuts and algebraic geometry arxiv:1606.09447v [hep-th] 7 Jul 016 Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland E-mail: Kasper.Larsen@phys.ethz.ch

More information

MPL - a program for computations with iterated integrals on moduli spaces of curves of genus zero

MPL - a program for computations with iterated integrals on moduli spaces of curves of genus zero arxiv:1510.04562v1 [physics.comp-ph] 14 Oct 2015 MPL - a program for computations with iterated integrals on moduli spaces of curves of genus zero Christian Bogner Institut für Physik, Humboldt-Universität

More information

Combinatorial and physical content of Kirchhoff polynomials

Combinatorial and physical content of Kirchhoff polynomials Combinatorial and physical content of Kirchhoff polynomials Karen Yeats May 19, 2009 Spanning trees Let G be a connected graph, potentially with multiple edges and loops in the sense of a graph theorist.

More information

arxiv: v1 [hep-ph] 30 Dec 2015

arxiv: v1 [hep-ph] 30 Dec 2015 June 3, 8 Derivation of functional equations for Feynman integrals from algebraic relations arxiv:5.94v [hep-ph] 3 Dec 5 O.V. Tarasov II. Institut für Theoretische Physik, Universität Hamburg, Luruper

More information

The Pentabox Master Integrals with the Simplified Differential Equations approach

The Pentabox Master Integrals with the Simplified Differential Equations approach The Pentabox Master Integrals with the Simplified Differential Equations approach Costas G. Papadopoulos INPP, NCSR Demokritos Zurich, August 25, 2016 C.G.Papadopoulos (INPP) 5box QCD@LHC 2016 1 / 36 Introduction

More information

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS Germán F. R. Sborlini Departamento de Física, FCEyN, UBA (Argentina) 10/12/2012 - IFIC CONTENT Introduction Collinear limits Splitting functions Computing splitting

More information

Simplified differential equations approach for the calculation of multi-loop integrals

Simplified differential equations approach for the calculation of multi-loop integrals Simplified differential equations approach for the calculation of multi-loop integrals Chris Wever (N.C.S.R. Demokritos) 1 C. Papadopoulos [arxiv: 1401.6057 [hep-ph]] C. Papadopoulos, D. Tommasini, C.

More information

Forcer: a FORM program for 4-loop massless propagators

Forcer: a FORM program for 4-loop massless propagators Forcer: a FORM program for 4-loop massless propagators, a B. Ruijl ab and J.A.M. Vermaseren a a Nikhef Theory Group, Science Park 105, 1098 XG Amsterdam, The Netherlands b Leiden Centre of Data Science,

More information

Numerical Evaluation of Loop Integrals

Numerical Evaluation of Loop Integrals Numerical Evaluation of Loop Integrals Institut für Theoretische Physik Universität Zürich Tsukuba, April 22 nd 2006 In collaboration with Babis Anastasiou Rationale (Why do we need complicated loop amplitudes?)

More information

Numerical multi-loop calculations: tools and applications

Numerical multi-loop calculations: tools and applications Journal of Physics: Conference Series PAPER OPEN ACCESS Numerical multi-loop calculations: tools and applications To cite this article: S. Borowka et al 2016 J. Phys.: Conf. Ser. 762 012073 Related content

More information

Evaluating double and triple (?) boxes

Evaluating double and triple (?) boxes Evaluating double and triple (?) boxes V.A. Smirnov a hep-ph/0209295 September 2002 a Nuclear Physics Institute of Moscow State University, Moscow 9992, Russia A brief review of recent results on analytical

More information

Linear polynomial reduction for Feynman integrals

Linear polynomial reduction for Feynman integrals Linear polynomial reduction for Feynman integrals MASTERTHESIS for attainment of the academic degree of Master of Science (M. Sc.) submitted at Mathematisch-Naturwissenschaftliche Fakultät I Institut für

More information

Reduction to Master Integrals. V.A. Smirnov Atrani, September 30 October 05, 2013 p.1

Reduction to Master Integrals. V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction to Master Integrals V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction to Master Integrals IBP (integration by parts) V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction

More information

Renormalizability in (noncommutative) field theories

Renormalizability in (noncommutative) field theories Renormalizability in (noncommutative) field theories LIPN in collaboration with: A. de Goursac, R. Gurău, T. Krajewski, D. Kreimer, J. Magnen, V. Rivasseau, F. Vignes-Tourneret, P. Vitale, J.-C. Wallet,

More information

From Tensor Integral to IBP

From Tensor Integral to IBP From Tensor Integral to IBP Mohammad Assadsolimani, in collaboration with P. Kant, B. Tausk and P. Uwer 11. Sep. 2012 Mohammad Assadsolimani From Tensor Integral to IBP 1 Contents Motivation NNLO Tensor

More information

Simplified differential equations approach for NNLO calculations

Simplified differential equations approach for NNLO calculations Simplified differential equations approach for NNLO calculations Costas. G. Papadopoulos INPP, NCSR Demokritos, Athens UCLA, June 19, 2015 Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, 2015 1 / 39

More information

Functional equations for Feynman integrals

Functional equations for Feynman integrals Functional equations for Feynman integrals O.V. Tarasov JINR, Dubna, Russia October 9, 016, Hayama, Japan O.V. Tarasov (JINR) Functional equations for Feynman integrals 1 / 34 Contents 1 Functional equations

More information

Sector Decomposition

Sector Decomposition Sector Decomposition J. Carter Institute for Particle Physics Phenomenology University of Durham Student Seminar, 06/05/2009 Outline 1 What is Sector Decomposition? Why is Sector Decomposition Important?

More information

LOOP-TREE DUALITY AND QUANTUM FIELD THEORY IN 4D

LOOP-TREE DUALITY AND QUANTUM FIELD THEORY IN 4D LOOP-TREE DUALITY AND QUANTUM FIELD THEORY IN 4D Germán F. R. Sborlini in collaboration with R. Hernández-Pinto and G. Rodrigo Institut de Física Corpuscular, UV- CSIC (Spain) and Departamento de Física,

More information

Numerical evaluation of multi-loop integrals

Numerical evaluation of multi-loop integrals Max-Planck-Institut für Physik, München, Germany E-mail: sjahn@mpp.mpg.de We present updates on the development of pyse CDE C, a toolbox to numerically evaluate parameter integrals in the context of dimensional

More information

Maximal Unitarity at Two Loops

Maximal Unitarity at Two Loops Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon Caron- Huot & Kasper Larsen 1108.1180, 1205.0801,

More information

Computer Algebra Algorithms for Special Functions in Particle Physics.

Computer Algebra Algorithms for Special Functions in Particle Physics. Computer Algebra Algorithms for Special Functions in Particle Physics. Jakob Ablinger RISC, J. Kepler Universität Linz, Austria joint work with J. Blümlein (DESY) and C. Schneider (RISC) 7. Mai 2012 Definition

More information

arxiv:hep-ph/ v1 18 Nov 1996

arxiv:hep-ph/ v1 18 Nov 1996 TTP96-55 1 MPI/PhT/96-122 hep-ph/9611354 November 1996 arxiv:hep-ph/9611354v1 18 Nov 1996 AUTOMATIC COMPUTATION OF THREE-LOOP TWO-POINT FUNCTIONS IN LARGE MOMENTUM EXPANSION K.G. Chetyrkin a,b, R. Harlander

More information

Structural Aspects of Numerical Loop Calculus

Structural Aspects of Numerical Loop Calculus Structural Aspects of Numerical Loop Calculus Do we need it? What is it about? Can we handle it? Giampiero Passarino Dipartimento di Fisica Teorica, Università di Torino, Italy INFN, Sezione di Torino,

More information

Combinatorial Hopf algebras in particle physics I

Combinatorial Hopf algebras in particle physics I Combinatorial Hopf algebras in particle physics I Erik Panzer Scribed by Iain Crump May 25 1 Combinatorial Hopf Algebras Quantum field theory (QFT) describes the interactions of elementary particles. There

More information

PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD. Taushif Ahmed Institute of Mathematical Sciences, India March 22, 2016

PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD. Taushif Ahmed Institute of Mathematical Sciences, India March 22, 2016 PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD Taushif Ahmed Institute of Mathematical Sciences, India March, 016 PROLOGUE: SM & MSSM SM Complex scalar doublet (4 DOF) 3 DOF transform into longitudinal modes

More information

Reduction of Feynman integrals to master integrals

Reduction of Feynman integrals to master integrals Reduction of Feynman integrals to master integrals A.V. Smirnov Scientific Research Computing Center of Moscow State University A.V. Smirnov ACAT 2007 p.1 Reduction problem for Feynman integrals A review

More information

Reducing full one-loop amplitudes at the integrand level

Reducing full one-loop amplitudes at the integrand level Reducing full one-loop amplitudes at the integrand level Costas Papadopoulos, Les Houches 2007 In collaboration with G. Ossola and R. Pittau 27/06/2007 HEP-NCSR DEMOKRITOS 1 The History Passarino-Veltman

More information

Triangle diagrams in the Standard Model

Triangle diagrams in the Standard Model Triangle diagrams in the Standard Model A. I. Davydychev and M. N. Dubinin Institute for Nuclear Physics, Moscow State University, 119899 Moscow, USSR Abstract Method of massive loop Feynman diagrams evaluation

More information

Two-loop Remainder Functions in N = 4 SYM

Two-loop Remainder Functions in N = 4 SYM Two-loop Remainder Functions in N = 4 SYM Claude Duhr Institut für theoretische Physik, ETH Zürich, Wolfgang-Paulistr. 27, CH-8093, Switzerland E-mail: duhrc@itp.phys.ethz.ch 1 Introduction Over the last

More information

MaPhy-AvH/ FEYNMAN INTEGRALS AND ITERATED INTEGRALS ON MODULI SPACES OF CURVES OF GENUS ZERO. 1. Introduction. ta i

MaPhy-AvH/ FEYNMAN INTEGRALS AND ITERATED INTEGRALS ON MODULI SPACES OF CURVES OF GENUS ZERO. 1. Introduction. ta i MaPhy-AvH/2014-10 FEYNMAN INTEGRALS AND ITERATED INTEGRALS ON MODULI SPACES OF CURVES OF GENUS ZERO CHRISTIAN BOGNER AND FRANCIS BROWN Abstract. This paper describes algorithms for the exact symbolic computation

More information

Numerical multi-loop calculations with SecDec

Numerical multi-loop calculations with SecDec Journal of Physics: Conference Series OPEN ACCESS Numerical multi-loop calculations with SecDec To cite this article: Sophia Borowka and Gudrun Heinrich 214 J. Phys.: Conf. Ser. 523 1248 View the article

More information

gg! hh in the high energy limit

gg! hh in the high energy limit gg! hh in the high energy limit Go Mishima Karlsruhe Institute of Technology (KIT), TTP in collaboration with Matthias Steinhauser, Joshua Davies, David Wellmann work in progress gg! hh : previous works

More information

Hopf algebras and factorial divergent power series: Algebraic tools for graphical enumeration

Hopf algebras and factorial divergent power series: Algebraic tools for graphical enumeration Hopf algebras and factorial divergent power series: Algebraic tools for graphical enumeration Michael Borinsky 1 Humboldt-University Berlin Departments of Physics and Mathematics Workshop on Enumerative

More information

arxiv:hep-lat/ v1 30 Sep 2005

arxiv:hep-lat/ v1 30 Sep 2005 September 2005 Applying Gröbner Bases to Solve Reduction Problems for Feynman Integrals arxiv:hep-lat/0509187v1 30 Sep 2005 A.V. Smirnov 1 Mechanical and Mathematical Department and Scientific Research

More information

Hopf algebras and factorial divergent power series: Algebraic tools for graphical enumeration

Hopf algebras and factorial divergent power series: Algebraic tools for graphical enumeration Hopf algebras and factorial divergent power series: Algebraic tools for graphical enumeration Michael Borinsky 1 Humboldt-University Berlin Departments of Physics and Mathematics Workshop on Enumerative

More information

Feynman integrals and multiple polylogarithms. Stefan Weinzierl

Feynman integrals and multiple polylogarithms. Stefan Weinzierl Feynman integrals and multiple polylogarithms Stefan Weinzierl Universität Mainz I. Basic techniques II. Nested sums and iterated integrals III. Multiple Polylogarithms IV. Applications The need for precision

More information

arxiv: v1 [hep-th] 20 May 2014

arxiv: v1 [hep-th] 20 May 2014 arxiv:405.4964v [hep-th] 20 May 204 Quantum fields, periods and algebraic geometry Dirk Kreimer Abstract. We discuss how basic notions of graph theory and associated graph polynomials define questions

More information

Generalizations of polylogarithms for Feynman integrals

Generalizations of polylogarithms for Feynman integrals Journal of Physics: Conference Series PAPER OPEN ACCESS Generalizations of polylogarithms for Feynman integrals To cite this article: Christian Bogner 6 J. Phys.: Conf. Ser. 76 67 View the article online

More information

arxiv:hep-th/ v1 2 Jul 1998

arxiv:hep-th/ v1 2 Jul 1998 α-representation for QCD Richard Hong Tuan arxiv:hep-th/9807021v1 2 Jul 1998 Laboratoire de Physique Théorique et Hautes Energies 1 Université de Paris XI, Bâtiment 210, F-91405 Orsay Cedex, France Abstract

More information

Towards One-Loop MHV Techniques

Towards One-Loop MHV Techniques Towards One-Loop MHV Techniques Carola F. Berger Snowmass - August 22, 2005 Carola F. Berger, SLAC Snowmass - August 22, 2005 Towards One-Loop MHV Techniques Carola F. Berger Snowmass - August 22, 2005

More information

Poles at Infinity in Gravity

Poles at Infinity in Gravity Poles at Infinity in Gravity Enrico Herrmann QCD Meets Gravity Workshop @ UCLA Based on: arxiv:1412.8584, 1512.08591, 1604.03479. in collaboration with:. Zvi Bern, Sean Litsey, James Stankowicz, Jaroslav

More information

arxiv: v1 [hep-ph] 22 Sep 2016

arxiv: v1 [hep-ph] 22 Sep 2016 TTP16-037 arxiv:1609.06786v1 [hep-ph] 22 Sep 2016 Five-loop massive tadpoles Thomas Luthe Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology, Karlsruhe, Germany E-mail: thomas.luthe@kit.edu

More information

Feynman Integrals, Regulators and Elliptic Polylogarithms

Feynman Integrals, Regulators and Elliptic Polylogarithms Feynman Integrals, Regulators and Elliptic Polylogarithms Pierre Vanhove Automorphic Forms, Lie Algebras and String Theory March 5, 2014 based on [arxiv:1309.5865] and work in progress Spencer Bloch, Matt

More information

arxiv: v2 [hep-ph] 18 Nov 2009

arxiv: v2 [hep-ph] 18 Nov 2009 Space-time dimensionality D as complex variable: calculating loop integrals using dimensional recurrence relation and analytical properties with respect to D. arxiv:0911.05v [hep-ph] 18 Nov 009 R.N. Lee

More information

arxiv: v1 [hep-th] 10 Apr 2014

arxiv: v1 [hep-th] 10 Apr 2014 Prepared for submission to JHEP Iterative structure of finite loop integrals arxiv:404.2922v [hep-th] 0 Apr 204 Simon Caron-Huot a,b Johannes M. Henn a a Institute for Advanced Study, Princeton, NJ 08540,

More information

Functions associated to scattering amplitudes. Stefan Weinzierl

Functions associated to scattering amplitudes. Stefan Weinzierl Functions associated to scattering amplitudes Stefan Weinzierl Institut für Physik, Universität Mainz I: Periodic functions and periods II: III: Differential equations The two-loop sun-rise diagramm in

More information

Scalar One-Loop Integrals using the Negative-Dimension Approach

Scalar One-Loop Integrals using the Negative-Dimension Approach DTP/99/80 hep-ph/9907494 Scalar One-Loop Integrals using the Negative-Dimension Approach arxiv:hep-ph/9907494v 6 Jul 999 C. Anastasiou, E. W. N. Glover and C. Oleari Department of Physics, University of

More information

The Non-commutative S matrix

The Non-commutative S matrix The Suvrat Raju Harish-Chandra Research Institute 9 Dec 2008 (work in progress) CONTEMPORARY HISTORY In the past few years, S-matrix techniques have seen a revival. (Bern et al., Britto et al., Arkani-Hamed

More information

arxiv:hep-ph/ v1 21 Jan 1998

arxiv:hep-ph/ v1 21 Jan 1998 TARCER - A Mathematica program for the reduction of two-loop propagator integrals R. Mertig arxiv:hep-ph/980383v Jan 998 Abstract Mertig Research & Consulting, Kruislaan 49, NL-098 VA Amsterdam, The Netherlands

More information

P-ADIC STRINGS AT FINITE TEMPERATURE

P-ADIC STRINGS AT FINITE TEMPERATURE P-ADIC STRINGS AT FINITE TEMPERATURE Jose A. R. Cembranos Work in collaboration with Joseph I. Kapusta and Thirthabir Biswas T. Biswas, J. Cembranos, J. Kapusta, PRL104:021601 (2010) T. Biswas, J. Cembranos,

More information

NNLO antenna subtraction with one hadronic initial state

NNLO antenna subtraction with one hadronic initial state antenna subtraction with one hadronic initial state Alejandro Daleo, Aude Gehrmann-De Ridder Institute for Theoretical Physics, ETH Zürich E-mail: adaleo@phys.ethz.ch, gehra@phys.ethz.ch Thomas Gehrmann,

More information

Reduction of one-loop amplitudes at the integrand level-nlo QCD calculations

Reduction of one-loop amplitudes at the integrand level-nlo QCD calculations Reduction of one-loop amplitudes at the integrand level-nlo QCD calculations Costas G. Papadopoulos NCSR Demokritos, Athens Epiphany 2008, Krakow, 3-6 January 2008 Costas G. Papadopoulos (Athens) OPP Reduction

More information

Non-planar two-loop Feynman integrals contributing to Higgs plus jet production

Non-planar two-loop Feynman integrals contributing to Higgs plus jet production Non-planar two-loop Feynman integrals contributing to Higgs plus jet production Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of Technology Engesserstraße 7, D-76128 Karlsruhe,

More information

arxiv: v2 [hep-th] 8 Aug 2016

arxiv: v2 [hep-th] 8 Aug 2016 Prepared for submission to JHEP Bubble diagram through the Symmetries of Feynman Integrals method arxiv:1606.09257v2 [hep-th] 8 Aug 2016 Barak Kol Racah Institute of Physics, Hebrew University, Jerusalem

More information

arxiv: v2 [hep-th] 1 Feb 2018

arxiv: v2 [hep-th] 1 Feb 2018 Prepared for submission to JHEP CERN-TH-07-09 CP-7- Edinburgh 07/09 FR-PHENO-07-00 TCDMATH-7-09 Diagrammatic Hopf algebra of cut Feynman integrals: the one-loop case arxiv:704.079v [hep-th] Feb 08 Samuel

More information

(Elliptic) multiple zeta values in open superstring amplitudes

(Elliptic) multiple zeta values in open superstring amplitudes (Elliptic) multiple zeta values in open superstring amplitudes Johannes Broedel Humboldt University Berlin based on joint work with Carlos Mafra, Nils Matthes and Oliver Schlotterer arxiv:42.5535, arxiv:57.2254

More information

An Inverse Mass Expansion for Entanglement Entropy. Free Massive Scalar Field Theory

An Inverse Mass Expansion for Entanglement Entropy. Free Massive Scalar Field Theory in Free Massive Scalar Field Theory NCSR Demokritos National Technical University of Athens based on arxiv:1711.02618 [hep-th] in collaboration with Dimitris Katsinis March 28 2018 Entanglement and Entanglement

More information

Feynman integrals as Periods

Feynman integrals as Periods Feynman integrals as Periods Pierre Vanhove Amplitudes 2017, Higgs Center, Edinburgh, UK based on [arxiv:1309.5865], [arxiv:1406.2664], [arxiv:1601.08181] Spencer Bloch, Matt Kerr Pierre Vanhove (IPhT)

More information

The Pentabox Master Integrals with the Simplified Differential Equations approach

The Pentabox Master Integrals with the Simplified Differential Equations approach Prepared for submission to JHEP TTP15-042 The Pentabox Master Integrals with the Simplified Differential Equations approach Costas G. Papadopoulos ab Damiano Tommasini a and Christopher Wever ac a Institute

More information

arxiv: v1 [hep-ph] 12 Oct 2017

arxiv: v1 [hep-ph] 12 Oct 2017 Four-dimensional regularization of higher-order computations: FDU approach a,b, Félix Driencourt-Mangin b, Roger J. Hernández-Pinto c and Germán Rodrigo b arxiv:1710.04516v1 [hep-ph] 12 Oct 2017 a Dipartimento

More information

Review and Preview. We are testing QED beyond the leading order of perturbation theory. We encounter... IR divergences from soft photons;

Review and Preview. We are testing QED beyond the leading order of perturbation theory. We encounter... IR divergences from soft photons; Chapter 9 : Radiative Corrections 9.1 Second order corrections of QED 9. Photon self energy 9.3 Electron self energy 9.4 External line renormalization 9.5 Vertex modification 9.6 Applications 9.7 Infrared

More information

Understanding the log expansions in quantum field theory combinatorially

Understanding the log expansions in quantum field theory combinatorially Understanding the log expansions in quantum field theory combinatorially Karen Yeats CCC and BCCD, February 5, 2016 Augmented generating functions Take a combinatorial class C. Build a generating function

More information

NLO-QCD calculation in GRACE. - GRACE status - Y. Kurihara (KEK) GRACE Group LoopFest IV

NLO-QCD calculation in GRACE. - GRACE status - Y. Kurihara (KEK) GRACE Group LoopFest IV NLO-QCD calculation in GRACE - GRACE status - Y. Kurihara (KEK) GRACE Group 19/Aug./2005 @ LoopFest IV GRACE Author list J. Fujimoto, T. Ishikawa, M. Jimbo, T. Kaneko, K. Kato, S. Kawabata, T. Kon, Y.

More information

arxiv: v1 [hep-ph] 19 Apr 2007

arxiv: v1 [hep-ph] 19 Apr 2007 DESY 07-037 HEPTOOLS 07-009 SFB/CPP-07-14 arxiv:0704.2423v1 [hep-ph] 19 Apr 2007 AMBRE a Mathematica package for the construction of Mellin-Barnes representations for Feynman integrals Abstract J. Gluza,

More information

REDUCTION OF FEYNMAN GRAPH AMPLITUDES TO A MINIMAL SET OF BASIC INTEGRALS

REDUCTION OF FEYNMAN GRAPH AMPLITUDES TO A MINIMAL SET OF BASIC INTEGRALS REDUCTION OF FEYNMAN GRAPH AMPLITUDES TO A MINIMAL SET OF BASIC INTEGRALS O.V.Tarasov DESY Zeuthen, Platanenallee 6, D 5738 Zeuthen, Germany E-mail: tarasov@ifh.de (Received December 7, 998) An algorithm

More information

arxiv: v1 [hep-th] 22 Dec 2017

arxiv: v1 [hep-th] 22 Dec 2017 arxiv:1712.08541v1 [hep-th] 22 Dec 2017 DESY 17-225, DO-TH 17/37 Special functions, transcendentals and their numerics arxiv:yymmdd.xxxxx Jakob Ablinger a, Johannes Blümlein b, Mark Round a,b, and Carsten

More information

5 Infrared Divergences

5 Infrared Divergences 5 Infrared Divergences We have already seen that some QED graphs have a divergence associated with the masslessness of the photon. The divergence occurs at small values of the photon momentum k. In a general

More information

Differential Equations for Feynman Integrals

Differential Equations for Feynman Integrals for Feynman Integrals Ulrich Schubert Max-Planck-Institut für Physik Föhringer Ring 6, München January 18, 2015 based on work with M. Argeri, S. Di Vita, P. Mastrolia, E. Mirabella, J. Schlenk, L. Tancredi,

More information

PHYS 611, SPR 12: HOMEWORK NO. 4 Solution Guide

PHYS 611, SPR 12: HOMEWORK NO. 4 Solution Guide PHYS 611 SPR 12: HOMEWORK NO. 4 Solution Guide 1. In φ 3 4 theory compute the renormalized mass m R as a function of the physical mass m P to order g 2 in MS scheme and for an off-shell momentum subtraction

More information

Numerical Computation of a Non-Planar Two-Loop Vertex Diagram

Numerical Computation of a Non-Planar Two-Loop Vertex Diagram Numerical Computation of a Non-Planar Two-Loop Vertex Diagram Elise de Doncker, 1 Department of Computer Science, Western Michigan University, Kalamazoo, MI 498 Yoshimitsu Shimizu, 2 Hayama Center for

More information

arxiv: v2 [hep-ph] 4 Jun 2018

arxiv: v2 [hep-ph] 4 Jun 2018 Prepared for submission to JHEP Evaluating elliptic master integrals at special kinematic values: using differential equations and their solutions via expansions near singular points arxiv:1805.00227v2

More information

Single mass scale diagrams: construction of a basis for the ε-expansion.

Single mass scale diagrams: construction of a basis for the ε-expansion. BI-TP 99/4 Single mass scale diagrams: construction of a basis for the ε-expansion. J. Fleischer a 1, M. Yu. Kalmykov a,b 2 a b Fakultät für Physik, Universität Bielefeld, D-615 Bielefeld, Germany BLTP,

More information

Modern Approaches to Scattering Amplitudes

Modern Approaches to Scattering Amplitudes Ph.D. Workshop, 10 October 2017 Outline Scattering Amplitudes 1 Scattering Amplitudes Introduction The Standard Method 2 On-Shell vs Off-Shell On-Shell building blocks BCFW Recursion Relations 3 Amplitudes

More information

arxiv: v3 [hep-th] 17 Sep 2018

arxiv: v3 [hep-th] 17 Sep 2018 Prepared for submission to JHEP Bubble diagram through the Symmetries of Feynman Integrals method arxiv:1606.0957v3 [hep-th] 17 Sep 018 Barak Kol Racah Institute of Physics, Hebrew University, Jerusalem

More information

7 Veltman-Passarino Reduction

7 Veltman-Passarino Reduction 7 Veltman-Passarino Reduction This is a method of expressing an n-point loop integral with r powers of the loop momentum l in the numerator, in terms of scalar s-point functions with s = n r, n. scalar

More information

MASTERS EXAMINATION IN MATHEMATICS

MASTERS EXAMINATION IN MATHEMATICS MASTERS EXAMINATION IN MATHEMATICS PURE MATH OPTION, Spring 018 Full points can be obtained for correct answers to 8 questions. Each numbered question (which may have several parts) is worth 0 points.

More information

ggf Theory Overview For Highest Precision

ggf Theory Overview For Highest Precision ggf Theory Overview For Highest Precision Lumley Castle Franz Herzog Nikhef LHC Higgs Production in the Standard Model 2 LHC Higgs Data 3 Theoretical Formalism To compute cross sections we use the Factorisation

More information

FIELD DIFFEOMORPHISMS AND THE ALGEBRAIC STRUCTURE OF PERTURBATIVE EXPANSIONS

FIELD DIFFEOMORPHISMS AND THE ALGEBRAIC STRUCTURE OF PERTURBATIVE EXPANSIONS FIELD DIFFEOMORPHISMS AND THE ALGEBRAIC STRUCTURE OF PERTURBATIVE EXPANSIONS DIRK KREIMER AND ANDREA VELENICH Abstract. We consider field diffeomorphisms in the context of real scalar fields. Starting

More information

One-Loop Integrals at vanishing external momenta and appli. Higgs potentials reconstructions CALC Mikhail Dolgopolov. Samara State University

One-Loop Integrals at vanishing external momenta and appli. Higgs potentials reconstructions CALC Mikhail Dolgopolov. Samara State University One-Loop Integrals at vanishing external momenta and applications for extended Higgs potentials reconstructions CALC 2012 Samara State University 1. Basic examples and an idea for extended Higgs potentials

More information

Introduction The MPLs Hopf algebra Application to Feynman integrals. Federico Granata. Ph.D. XXIX cicle 16/09/2014 Tutor: Carlo Oleari

Introduction The MPLs Hopf algebra Application to Feynman integrals. Federico Granata. Ph.D. XXIX cicle 16/09/2014 Tutor: Carlo Oleari Federico Granata Ph.D. XXIX cicle 16/09/2014 Tutor: Carlo Oleari Seminar based on NNLO ante portas summer school 18-25 June 2014, Debrecen Hungary) Polylogarithms The analytic computation of Feynman scalar

More information

Curriculum Mapper - Complete Curriculum Maps CONTENT. 1.2 Evaluate expressions (p.18 Activity 1.2).

Curriculum Mapper - Complete Curriculum Maps CONTENT. 1.2 Evaluate expressions (p.18 Activity 1.2). Page 1 of 9 Close Window Print Page Layout Show Standards View Paragraph Format View Course Description MATH 3 (MASTER MAP) School: Binghamton High School Teacher: Master Map Email: Course #: 203 Grade

More information

Master Map Algebra (Master) Content Skills Assessment Instructional Strategies Notes. A. MM Quiz 1. A. MM Quiz 2 A. MM Test

Master Map Algebra (Master) Content Skills Assessment Instructional Strategies Notes. A. MM Quiz 1. A. MM Quiz 2 A. MM Test Blair High School Teacher: Brent Petersen Master Map Algebra (Master) August 2010 Connections to Algebra Learn how to write and -Variables in Algebra -Exponents and Powers -Order of Operations -Equations

More information