The Pentabox Master Integrals with the Simplified Differential Equations approach

Size: px
Start display at page:

Download "The Pentabox Master Integrals with the Simplified Differential Equations approach"

Transcription

1 The Pentabox Master Integrals with the Simplified Differential Equations approach Costas G. Papadopoulos INPP, NCSR Demokritos Zurich, August 25, 2016 C.G.Papadopoulos (INPP) 5box / 36

2 Introduction At The gluon fusion cross section N3LO, there are five contributions:!! Triple! virtual! Real-virtual squared Double virtual real Double real virtual Triple real C. Anastasiou, C. Duhr, F. Dulat, E. Furlan, T. Gehrmann, F. Herzog, A. Lazopoulos and B. Mistlberger, arxiv: C.G.Papadopoulos (INPP) 5box / 36

3 Factorization Perturbative QCD Factorization Collins,Soper,Sterman Calculate Scattering probability Gluon emission probability Measure Long distance interactions Particle decay rates Divide et Impera Quantity of interest: Total interaction rate Convolution of short & long distance physics σ p1p2 X = dx 1dx 2 f p1,i (x 1, µ 2 F )fp2,j (x2, µ2 F ) ˆσ ij X (x 1x 2, µ 2 F }{{}}{{} ) i,j {q,g} long distance physics short distance physics Stefan Höche From amplitudes to experiments 7 QCD as a perturbative quantum field theory: Fixed-order calculations C.G.Papadopoulos (INPP) High-energy phenomenology group Athens / 22 C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

4 Taming the beast... From Feynman graphs... gg ng # FG ,485 34, ,405 10,525, ,449,225 C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

5 Taming the beast... From Feynman graphs... gg ng # FG ,485 34, ,405 10,525, ,449,225 The Dyson-Schwinger recursion Imagine a theory with 3- and 4- point vertices and just one field. to Dyson-Schwinger recursion! Helac-Phegas Then it is straightforward to write an equation that gives the amplitude for 1 n = gg ng 2 3 HEP -4 NCSR5Democritos # C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

6 Taming the beast... C.G.Papadopoulos (INPP) 5box / 36

7 Perturbative QCD at NNLO What do we need for an NNLO calculation? p 1, p 2 p 3,..., p m+2 C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

8 Perturbative QCD at NNLO What do we need for an NNLO calculation? p 1, p 2 p 3,..., p m+2 σ NNLO + + m ( dφ m 2Re(M m (0) M m (2) ) + M m (1) 2) J m (Φ) ( )) dφ m+1 (2Re M (0) m+1 M(1) m+1 J m+1 (Φ) M (0) dφ m+2 2 J m+2 (Φ) m+1 m+2 m+2 VV RV RR RV + RR Antenna-S, Colorfull-S, STRIPPER, q T, N-jetiness A. Gehrmann-De Ridder, T. Gehrmann and M. Ritzmann, JHEP 1210 (2012) 047 P. Bolzoni, G. Somogyi and Z. Trocsanyi, JHEP 1101 (2011) 059 M. Czakon and D. Heymes, Nucl. Phys. B 890 (2014) 152 S. Catani and M. Grazzini, Phys. Rev. Lett. 98 (2007) R. Boughezal, C. Focke, X. Liu and F. Petriello, Phys. Rev. Lett. 115 (2015) no.6, C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

9 OPP at two loops coefficients of MI spurious terms N(q) D 0 D1 D m 1 = m 1 d(i 0 i 1 i 2 i 3 ) + d(q; i 0 i 1 i 2 i 3 ) D i 0 <i 1 <i 2 <i i0 Di1 Di2 Di2 3 m 1 c(i 0 i 1 i 2 ) + c(q; i 0 i 1 i 2 ) D i 0 <i 1 <i i0 D i1 D i2 2 m 1 b(i 0 i 1 ) + b(q; i 0 i 1 ) D i 0 <i i0 D i1 1 m 1 a(i 0 ) + ã(q; i 0 ) D i i0 0 + rational terms G. Ossola, C. G. Papadopoulos and R. Pittau, Nucl. Phys. B 763, 147 (2007) C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

10 OPP at two loops Write the OPP-type equation at two loops N (l 1, l 2 ; {p i }) D 1 D 2... D n = min(n,8) m=1 i1i2...im (l 1, l 2 ; {p i }) D i1 D i2... D im S m;n i1 i 2...i m (l 1, l 2 ; {p i }) D i1 D i2... D im spurious ISP irreducible integrals C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

11 OPP at two loops Write the OPP-type equation at two loops N (l 1, l 2 ; {p i }) D 1 D 2... D n = min(n,8) m=1 i1i2...im (l 1, l 2 ; {p i }) D i1 D i2... D im S m;n i1 i 2...i m (l 1, l 2 ; {p i }) D i1 D i2... D im spurious ISP irreducible integrals ISP-irreducible integrals use IBPI to Master Integrals Libraries in the future: QCD2LOOP, TwOLOop P. Mastrolia, T. Peraro and A. Primo, arxiv: [hep-ph]. J. Gluza, K. Kajda and D. A. Kosower, Phys. Rev. D 83 (2011) H. Ita, arxiv: [hep-th]. C. G. Papadopoulos, R. H. P. Kleiss and I. Malamos, PoS Corfu 2012 (2013) 019. C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

12 IBPI: The current approach m independent momenta l loops, N = l(l + 1)/2 + lm scalar products basis composed by D 1... D N, allows to express all scalar products D i = ({k, l} + p i ) 2 M 2 i F [a 1,..., a N ] = d d kd d l {k µ, l µ } d d kd d 1 l D a Da N N ( {k µ, l µ, υ µ ) } D a = 0 Da N N IBP Laporta: FIRE, AIR, Reduze reduce these to MI MI computed, Feynman parameters, Mellin-Barnes, Differential Equations Or numerical: SecDec, Weinzierl C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

13 IBPI: The current approach m independent momenta l loops, N = l(l + 1)/2 + lm scalar products basis composed by D 1... D N, allows to express all scalar products D i = ({k, l} + p i ) 2 M 2 i F [a 1,..., a N ] = d d kd d l {k µ, l µ } d d kd d 1 l D a Da N N ( {k µ, l µ, υ µ ) } D a = 0 Da N N IBP Laporta: FIRE, AIR, Reduze reduce these to MI MI computed, Feynman parameters, Mellin-Barnes, Differential Equations Or numerical: SecDec, Weinzierl C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

14 IBPI: The current approach m independent momenta l loops, N = l(l + 1)/2 + lm scalar products basis composed by D 1... D N, allows to express all scalar products D i = ({k, l} + p i ) 2 M 2 i F [a 1,..., a N ] = d d kd d l {k µ, l µ } d d kd d 1 l D a Da N N ( {k µ, l µ, υ µ ) } D a = 0 Da N N F. V. Tkachov, Phys. Lett. B 100 (1981) 65. K. G. Chetyrkin and F. V. Tkachov, Nucl. Phys. B 192 (1981) 159. IBP Laporta: FIRE, AIR, Reduze reduce these to MI MI computed, Feynman parameters, Mellin-Barnes, Differential Equations Or numerical: SecDec, Weinzierl C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

15 IBPI: The current approach m independent momenta l loops, N = l(l + 1)/2 + lm scalar products basis composed by D 1... D N, allows to express all scalar products D i = ({k, l} + p i ) 2 Mi 2 F [a 1,..., a N ] = d d kd d 1 l D a Da N N ( d d kd d {k µ, l µ, υ µ ) } l {k µ, l µ } D a = 0 Da N N IBP Laporta: FIRE, AIR, Reduze reduce these to MI S. Laporta, Int. J. Mod. Phys. A 15 (2000) 5087 C. Anastasiou and A. Lazopoulos, JHEP 0407 (2004) 046 C. Studerus, Comput. Phys. Commun. 181 (2010) 1293 A. V. Smirnov, Comput. Phys. Commun. 189 (2014) 182 MI computed, Feynman parameters, Mellin-Barnes, Differential Equations Or numerical: SecDec, Weinzierl C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

16 IBPI: The current approach m independent momenta l loops, N = l(l + 1)/2 + lm scalar products basis composed by D 1... D N, allows to express all scalar products D i = ({k, l} + p i ) 2 Mi 2 F [a 1,..., a N ] = d d kd d 1 l D a Da N d d kd d l {k µ, l µ } N ( {k µ, l µ, υ µ ) } D a = 0 Da N N IBP Laporta: FIRE, AIR, Reduze reduce these to MI MI computed, Feynman parameters, Mellin-Barnes, Differential Equations Z. Bern, L. J. Dixon and D. A. Kosower, Phys. Lett. B 302 (1993) 299. V. A. Smirnov, Phys. Lett. B 460 (1999) 397 T. Gehrmann and E. Remiddi, Nucl. Phys. B 580 (2000) 485 [hep-ph/ ]. J. M. Henn, Phys. Rev. Lett. 110 (2013) 25, [arxiv: [hep-th]]. Or numerical: SecDec, Weinzierl C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

17 IBPI: The current approach m independent momenta l loops, N = l(l + 1)/2 + lm scalar products basis composed by D 1... D N, allows to express all scalar products D i = ({k, l} + p i ) 2 M 2 i F [a 1,..., a N ] = d d kd d l {k µ, l µ } d d kd d 1 l D a Da N N ( {k µ, l µ, υ µ ) } D a = 0 Da N N IBP Laporta: FIRE, AIR, Reduze reduce these to MI MI computed, Feynman parameters, Mellin-Barnes, Differential Equations Or numerical: SecDec, Weinzierl S. Borowka, G. Heinrich, S. P. Jones, M. Kerner, J. Schlenk and T. Zirke, Comput. Phys. Commun. 196 (2015) 470 S. Becker, C. Reuschle and S. Weinzierl, JHEP 1012 (2010) 013 C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

18 IBPI: The current approach Find a better IBP algorithm... Generating function technique, Baikov? F a1...a N = P. A. Baikov, Nucl. Instrum. Meth. A 389 (1997) 347 V. A. Smirnov and M. Steinhauser, Nucl. Phys. B 672 (2003) 199 K. J. Larsen and Y. Zhang, Phys. Rev. D 93 (2016) no.4, i=masters c (i) a 1...a N G i Baikov polynomial LZ construction Sector cut ( δ (k + p) 2 m 2) z=0 dz 1 z n=1 Cut with higher powers in denominator C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

19 IBPI: The current approach Find a better IBP algorithm... Generating function technique, Baikov? F a1...a N = c a (i) 1...a N G i i=masters Baikov polynomial LZ construction Sector cut ( δ (k + p) 2 m 2) z=0 dz 1 z n=1 Cut with higher powers in denominator C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

20 IBPI: The current approach Find a better IBP algorithm... Generating function technique, Baikov? F a1...a N = c a (i) 1...a N G i i=masters Baikov polynomial LZ construction Sector cut ( δ (k + p) 2 m 2) z=0 dz 1 z n=1 Cut with higher powers in denominator C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

21 IBPI: The current approach Find a better IBP algorithm... Generating function technique, Baikov? F a1...a N = c a (i) 1...a N G i i=masters Baikov polynomial LZ construction Sector cut ( δ (k + p) 2 m 2) z=0 dz 1 z n=1 Cut with higher powers in denominator C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

22 IBPI: The current approach Find a better IBP algorithm... Generating function technique, Baikov? F a1...a N = c a (i) 1...a N G i i=masters Baikov polynomial LZ construction Sector cut ( δ (k + p) 2 m 2) 1 dz z n=1 z=0 Cut with higher powers in denominator (3d 10) (3d 8) (3d 10) (3d 8) (d 3) F = F (d 4) 2 (p 2 ) F (d 4) 2 (p 2 ) (d 4) p 2 F11110 C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

23 Differential Equations Approach The integral is a function of external momenta, so one can set-up differential equations by differentiating and using IBP p µ j p µ i G[a 1,..., a n ] C b1,...,b n F [b 1,..., b n ] C a 1,...,a n G[a 1,..., a n] Find the proper parametrization; Bring the system of equations in a form suitable to express the MI in terms of GPs f not MI! m f (ε, {x i }) = εa m ({x i }) f (ε, {x i }) m A n n A m = 0 [A m, A n ] = 0 J. M. Henn, Phys. Rev. Lett. 110 (2013) 25, [arxiv: [hep-th]]. Boundary conditions: expansion by regions or regularity conditions. B. Jantzen, A. V. Smirnov and V. A. Smirnov, Eur. Phys. J. C 72 (2012) 2139 [arxiv: [hep-ph]]. C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

24 Differential Equations Approach The integral is a function of external momenta, so one can set-up differential equations by differentiating and using IBP p µ j p µ i G[a 1,..., a n ] C b1,...,b n F [b 1,..., b n ] C a 1,...,a n G[a 1,..., a n] Find the proper parametrization; Bring the system of equations in a form suitable to express the MI in terms of GPs f not MI! m f (ε, {x i }) = εa m ({x i }) f (ε, {x i }) m A n n A m = 0 [A m, A n ] = 0 J. M. Henn, Phys. Rev. Lett. 110 (2013) 25, [arxiv: [hep-th]]. Boundary conditions: expansion by regions or regularity conditions. B. Jantzen, A. V. Smirnov and V. A. Smirnov, Eur. Phys. J. C 72 (2012) 2139 [arxiv: [hep-ph]]. C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

25 Differential Equations Approach The integral is a function of external momenta, so one can set-up differential equations by differentiating and using IBP p µ j p µ i G[a 1,..., a n ] C b1,...,b n F [b 1,..., b n ] C a 1,...,a n G[a 1,..., a n] Find the proper parametrization; Bring the system of equations in a form suitable to express the MI in terms of GPs f not MI! m f (ε, {x i }) = εa m ({x i }) f (ε, {x i }) m A n n A m = 0 [A m, A n ] = 0 J. M. Henn, Phys. Rev. Lett. 110 (2013) 25, [arxiv: [hep-th]]. Boundary conditions: expansion by regions or regularity conditions. B. Jantzen, A. V. Smirnov and V. A. Smirnov, Eur. Phys. J. C 72 (2012) 2139 [arxiv: [hep-ph]]. C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

26 Differential Equations Approach Iterated Integrals K. T. Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977) 831 Multiple Polylogarithms, Symbol algebra Goncharov Polylogarithms G (a n,..., a 1, x) = x with the special cases, G(x) = 1 and Shuffle algebra 0 1 dt G (a n 1,..., a 1, t) t a n G 0,... 0, x = 1 }{{} n! logn (x) n C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

27 Differential Equations Approach Iterated Integrals Multiple Polylogarithms, Symbol algebra Goncharov Polylogarithms A. B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Phys. Rev. Lett. 105 (2010) C. Duhr, H. Gangl and J. R. Rhodes, JHEP 1210 (2012) 075 [arxiv: [math-ph]]. G (a n,..., a 1, x) = x with the special cases, G(x) = 1 and 0 1 dt G (a n 1,..., a 1, t) t a n C. Bogner and F. Brown Shuffle algebra G 0,... 0, x = 1 }{{} n! logn (x) n C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

28 Differential Equations Approach Iterated Integrals Multiple Polylogarithms, Symbol algebra Goncharov Polylogarithms G (a n,..., a 1, x) = x with the special cases, G(x) = 1 and Shuffle algebra 0 1 dt G (a n 1,..., a 1, t) t a n G 0,... 0, x = 1 }{{} n! logn (x) n G (a 1, a 2 ; x) G (b 1 ; x) = G (a 1, a 2, b 1 ; x) + G (a 1, b 1, a 2 ; x) + G (b 1, a 1, a 2 ; x) C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

29 The Simplified Differential Equations Approach C. G. Papadopoulos, JHEP 1407 (2014) 088 Making the whole procedure systematic (algorithmic) and straightforwardly expressible in terms of GPs. Introduce one parameter G (x) = d d k 1 iπ d/2 (k 2 ) (k + x p 1 ) 2 (k + p 1 + p 2 ) 2... (k + p 1 + p p n) 2 Factorizing external momenta dependence: x : (q 1 = xp 1, q 2 = p 12 xp 1,...) x (q 1 = p 1, q 2 = p 2,...) Now the integral as a function of x, allows to define a differential equation with respect to x, schematically given by x G (x) = 1 x G (x) + xp 2 1 G x G C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

30 The Simplified Differential Equations Approach C. G. Papadopoulos, JHEP 1407 (2014) 088 Making the whole procedure systematic (algorithmic) and straightforwardly expressible in terms of GPs. Introduce one parameter G (x) = d d k 1 iπ d/2 (k 2 ) (k + x p 1 ) 2 (k + p 1 + p 2 ) 2... (k + p 1 + p p n) 2 Factorizing external momenta dependence: x : (q 1 = xp 1, q 2 = p 12 xp 1,...) x (q 1 = p 1, q 2 = p 2,...) Now the integral as a function of x, allows to define a differential equation with respect to x, schematically given by x G (x) = 1 x G (x) + xp 2 1 G x G C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

31 The Simplified Differential Equations Approach C. G. Papadopoulos, JHEP 1407 (2014) 088 Making the whole procedure systematic (algorithmic) and straightforwardly expressible in terms of GPs. Introduce one parameter G (x) = d d k 1 iπ d/2 (k 2 ) (k + x p 1 ) 2 (k + p 1 + p 2 ) 2... (k + p 1 + p p n) 2 Factorizing external momenta dependence: x : (q 1 = xp 1, q 2 = p 12 xp 1,...) x (q 1 = p 1, q 2 = p 2,...) Now the integral as a function of x, allows to define a differential equation with respect to x, schematically given by x G (x) = 1 x G (x) + xp 2 1 G x G C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

32 The Simplified Differential Equations Approach and using IBPI we obtain, for instance for the one-loop 3 off-shell legs ( ) ( ) m 1 xg x G 021 = 1 x d 4 G x m 3 /m ( ) ( ) + d 3 1 m 1 m 3 x 1 1 G101 G 110 x m 3 /m 1 x The integrating factor M is given by and the DE takes the form, d = 4 2ε, M = x (1 x) 4 d 2 ( m 3 + m 1 x) 4 d 2 x MG 111 = c Γ 1 ε (1 x) 1+ε ( m 3 + m 1 x) 1+ε ( ( m1 x 2) ε ( m3 ) ε) Integrating factors ɛ = 0 do not have branch points DE can be straightforwardly integrated order by order GPs. C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

33 The Simplified Differential Equations Approach and using IBPI we obtain, for instance for the one-loop 3 off-shell legs ( ) ( ) m 1 xg x G 021 = 1 x d 4 G x m 3 /m ( ) ( ) + d 3 1 m 1 m 3 x 1 1 G101 G 110 x m 3 /m 1 x The integrating factor M is given by and the DE takes the form, d = 4 2ε, M = x (1 x) 4 d 2 ( m 3 + m 1 x) 4 d 2 x MG 111 = c Γ 1 ε (1 x) 1+ε ( m 3 + m 1 x) 1+ε ( ( m1 x 2) ε ( m3 ) ε) Integrating factors ɛ = 0 do not have branch points DE can be straightforwardly integrated order by order GPs. C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

34 The Simplified Differential Equations Approach and using IBPI we obtain, for instance for the one-loop 3 off-shell legs ( ) ( ) m 1 xg x G 021 = 1 x d 4 G x m 3 /m ( ) ( ) + d 3 1 m 1 m 3 x 1 1 G101 G 110 x m 3 /m 1 x The integrating factor M is given by and the DE takes the form, d = 4 2ε, M = x (1 x) 4 d 2 ( m 3 + m 1 x) 4 d 2 x MG 111 = c Γ 1 ε (1 x) 1+ε ( m 3 + m 1 x) 1+ε ( ( m1 x 2) ε ( m3 ) ε) Integrating factors ɛ = 0 do not have branch points DE can be straightforwardly integrated order by order GPs. C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

35 The Simplified Differential Equations Approach and using IBPI we obtain, for instance for the one-loop 3 off-shell legs ( ) ( ) m 1 xg x G 021 = 1 x d 4 G x m 3 /m ( ) ( ) + d 3 1 m 1 m 3 x 1 1 G101 G 110 x m 3 /m 1 x The integrating factor M is given by and the DE takes the form, d = 4 2ε, M = x (1 x) 4 d 2 ( m 3 + m 1 x) 4 d 2 x MG 1 ( 111 = c Γ ε (1 x) 1+ε ( m 3 + m 1 x) 1+ε ( m1 x 2) ε ( m3 ) ε) Integrating factors ɛ = 0 do not have branch points DE can be straightforwardly integrated order by order GPs. How far we can go with the Simplified Differential Equations approach? C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

36 The Simplified Differential Equations Approach The two-loop 3-off-shell-legs triangle C.G.Papadopoulos (INPP) 5box / 36

37 The Simplified Differential Equations Approach We are interested in G The DE involves also the MI G , so we have a system of two coupled DE, as follows: x f (x) = A 3 (2 3ε)(1 x) 2ε x 1+ε (m 1 x m 3 ) 2ε 2ε(2ε 1) + m 1 ε(1 x) 2ε (m 1 x m 3 ) 2ε g(x) 2ε 1 x g(x) = A 3 (3ε 2)(3ε 1)( m 1) 2ε (1 x) 2ε 1 x 3ε (m 1 x m 3 ) 2ε 1 2ε 2 +(2ε 1)(3ε 1)(1 x) 2ε 1 (m 1 x m 3 ) 2ε 1 f (x) where f (x) M G and g (x) M G , M = (1 x) 2ε x ε+1 (m 1 x m 3 ) 2ε and M = x ε Solve sequentially in ε expansion Reproduce limit ε 0 C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

38 The Simplified Differential Equations Approach The regularized singularity at x = 0 is proportional to x 1+ε and can easily be integrated by the following decomposition x dt t 1+ε x F (t) = F (0) dt t 1+ε x + dt = F (0) xε x ε + F (t) F (0) dt t 0 F (t) F (0) t ε t ( 1 + ε log (t) ε2 log 2 (t) +... ) Reproduce correctly boundary term x = 0 C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

39 The Simplified Differential Equations Approach The regularized singularity at x = 0 is proportional to x 1+ε and can easily be integrated by the following decomposition x dt t 1+ε x F (t) = F (0) dt t 1+ε x + dt = F (0) xε x ε + F (t) F (0) dt t 0 F (t) F (0) t ε t ( 1 + ε log (t) ε2 log 2 (t) +... ) Reproduce correctly boundary term x = 0 Five-point one-loop integral with up to one off-shell leg at O(ε) C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

40 Simplified differential equations approach simple parametrization of external momenta based on Triangle rule: Criterion for the x parametrization xp 1 p 12 p 12 xp 1 Figure : Required parametrization for off mass-shell triangles after possible pinching of internal line(s). DE in one parameter: addressing problems with many scales Boundary terms straightforwardly obtained by the DE itself, based on one-scale MI Expressions in terms of GP s straightforwardly obtained by expanding the DE in ε C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

41 Two-loop, four-point, two off-shell legs xp1 p123 xp2 xp1 xp1 p123 xp2 p123 xp12 p123 xp12 p123 p123 xp12 xp2 Figure : The parametrization of external momenta for the three planar double boxes of the families P 12 (left), P 13 (middle) and P 23 (right) contributing to pair production at the LHC. All external momenta are incoming. xp1 p123 xp2 xp1 xp1 p123 xp2 p123 xp12 p123 xp12 p123 xp2 p123 xp12 Figure : The parametrization of external momenta for the three non-planar double boxes of the families N 12 (left), N 13 (middle) and N 34 (right) contributing to pair production at the LHC. All external momenta are incoming. C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

42 Two-loop, four-point, two off-shell legs Planar topologies G P 12 d a (x, s, ɛ) := e 2γ E ɛ d d k1 d k2 1 1 a 9 iπ d/2 iπ d/2 k 2a 1 1 (k 1 + xp 1 ) 2a 2 (k 1 + xp 12 ) 2a 3 (k 1 + p 123 ) 2a 4 1 k 2a 5 2 (k 2 xp 1 ) 2a 6 (k 2 xp 12 ) 2a 7 (k 2 p 123 ) 2a 8 (k 1 + k 2 ) 2a 9, G P 13 d a (x, s, ɛ) := e 2γ E ɛ d d k1 d k2 1 1 a 9 iπ d/2 iπ d/2 k 2a 1 1 (k 1 + xp 1 ) 2a 2 (k 1 + xp 12 ) 2a 3 (k 1 + p 123 ) 2a 4 1 k 2a 5 2 (k 2 xp 1 ) 2a 6 (k 2 p 12 ) 2a 7 (k 2 p 123 ) 2a 8 (k 1 + k 2 ) 2a 9, G P 23 d a (x, s, ɛ) := e 2γ E ɛ d d k1 d k2 1 1 a 9 iπ d/2 iπ d/2 k 2a 1 1 (k 1 + xp 1 ) 2a 2 (k 1 + p 123 xp 2 ) 2a 3 (k 1 + p 123 ) 2a 4 1 k 2a 5 2 (k 2 p 1 ) 2a 6 (k 2 + xp 2 p 123 ) 2a 7 (k 2 p 123 ) 2a 8 (k 1 + k 2 ) 2a 9, C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

43 Two-loop, four-point, two off-shell legs Planar topologies P 12 : { , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 111m10111, 11101m111}, P 13 : { , , , , , , , , , , , , , , , , , , , , , , , , , , , , m }, P 23 : { , , , , , , , , , , , , , , , , , , , , , , , , , , , 111m10111}. C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

44 Two-loop, four-point, two off-shell legs Non-planar topologies G N 12 d a (x, s, ɛ) := e 2γ E ɛ d d k1 d k2 1 1 a 9 iπ d/2 iπ d/2 k 2a 1 1 (k 1 + xp 1 ) 2a 2 (k 1 + xp 12 ) 2a 3 (k 1 + p 123 ) 2a 4 1 k 2a 5 2 (k 2 xp 1 ) 2a 6 (k 2 p 123 ) 2a 7 (k 1 + k 2 + xp 2 ) 2a 8 (k 1 + k 2 ) 2a 9, G N 13 d a (x, s, ɛ) := e 2γ E ɛ d d k1 d k2 1 1 a 9 iπ d/2 iπ d/2 k 2a 1 1 (k 1 + xp 1 ) 2a 2 (k 1 + xp 12 ) 2a 3 (k 1 + p 123 ) 2a 4 1 k 2a 5 2 (k 2 xp 12 ) 2a 6 (k 2 p 123 ) 2a 7 (k 1 + k 2 + xp 1 ) 2a 8 (k 1 + k 2 ) 2a 9, G N 34 d a (x, s, ɛ) := e 2γ E ɛ d d k1 d k2 1 1 a 9 iπ d/2 iπ d/2 k 2a 1 1 (k 1 + xp 1 ) 2a 2 (k 1 + xp 12 ) 2a 3 (k 1 + p 123 ) 2a 4 1 k 2a 5 2 (k 2 xp 1 ) 2a 6 (k 2 p 123 ) 2a 7 (k 1 + k 2 + xp 12 p 123 ) 2a 8 (k 1 + k 2 ) 2a 9. C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

45 Two-loop, four-point, two off-shell legs Non-planar topologies N 12 : { , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 1m , , 0m , , 1m , 1m1111m11}, N 13 : { , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , m , , m , 0m , 00111m111, , , , , m }, N 34 : { , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 11m010111, 110m10111, 11001m111, , m , 011m10111, 01101m111, , , , , 111m10111}. C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

46 Two-loop, four-point, two off-shell legs GP-indices { I (P 12 ) = 0, 1, }, q, s 12 s 12 q, q, 1 s 23 q s 23 q, 1 + s 23 s 12, s 12 s 12 + s 23 { } I (P 13 ) = q 0, 1,, s 12 + s 23 q q(q s 23 ),, ξ, ξ +, s 12 s 12 q s 23 q 2 (q + s 12 )s 23, { q I (P 23 ) = 0, 1,, 1 + s 23 q q,,, q s } 23, s 12 s 12 q s 23 s 12 + s 23 s 12 ξ ± = qs 12 ± qs 12 s 23 ( q + s 12 + s 23 ) qs 12 s 12 s 23. I (N 12 ) = I (P 23 ), { s12 I (N 34 ) = I (P 12 ) I (P 23 ), s 12 + s 23 q s 23 q I (N 13 ) = I (P 23 ) { ξ, ξ +, 1 +, q2 qs 23 s 12 s 23, s qs 23 + s 12 s 23 s 12 (q s 23 ) s 12 (s 12 + s 23 ) q s 12 + q q + s 23 }. }, C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

47 Two-loop, four-point, two off-shell legs Example G P ( x, {sij }, ɛ ) { A 3 (ɛ) 1 = x 2 s 12 ( q + x(q s 23 )) 2 2ɛ ( ( ) ( ) q q ɛ 3 GP ; x + 2 GP ; x s 12 q s GP(0; x) GP(1; x) + log ( s 12 ) + 9 ) + 1 ( ( ) ( ) q q 4 4ɛ 2 18 GP ; x 36 GP ; x s 12 q s 23 ( ) ( ) ( ) ) q q s23 q 8 GP 0, ; x + 16 GP 0, ; x + 8 GP + 1, ; x + s 12 q s 23 s 12 q s ( ( ( ) ) ( ( ) ) ) q q 9 GP 0, ; x + GP(0, 1; x) 4 GP 0, 0, ; x + GP(0, 0, 1; x) + ɛ s 12 s ( GP ( 0, 0, 1, ξ ; x ) + GP (0, 0, 1, ξ +; x) ) ( ) } q q (q s 23 ) 2 GP 0, 0,, q s 23 q 2 s 23 (q + s 12 ) ; x +. A 3 (ɛ) = e 2γ E ɛ Γ(1 ɛ)3 Γ(1 + 2ɛ). Γ(3 3ɛ) C. G. Papadopoulos, D. Tommasini and C. Wever, JHEP 1501 (2015) 072 C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

48 5box - one leg off-shell: all families C. G. Papadopoulos, D. Tommasini and C. Wever, arxiv: [hep-ph]. Figure : The three planar pentaboxes of the families P 1 (left), P 2 (middle) and P 3 (right) with one external massive leg. Figure : The five non-planar families with one external massive leg. C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

49 5box - one leg off-shell: P1 p(q 1 )p (q 2 ) V (q 3 )j 1 (q 4 )j 2 (q 5 ), q 2 1 = q 2 2 = 0, q 2 3 = M 2 3, q 2 4 = q 2 5 = 0. xp 1 p 1234 p 4 xp 2 p 123 xp 12 Figure : The parametrization of external momenta in terms of x for the planar pentabox of the family P 1. All external momenta are incoming. s 12 := p 2 12, s 23 := p 2 23, s 34 := p 2 34, s 45 := p 2 45 = p 2 123, s 51 := p 2 15 = p 2 234, q 2 1 = q2 2 = q2 4 = q2 5 = 0 q2 3 = (s 45 s 12 x) (1 x) q 2 12 = s 12x 2 q 2 23 = s 45 (1 x) + s 23 x q 2 34 = (s 34 s 12 (1 x)) x q 2 45 = s 45 q 2 51 = s 51x C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

50 5box - one leg off-shell: P1 xp1 p1234 xp 1 p 1234 xp1 p1234 p4 xp2 p123 xp12 xp2 p123 xp12 p4 xp 2 p 123 xp 12 p 4 xp 1 p 1234 p 4 xp 1 p 1234 p 4 xp1 p 1234 p 4 xp 2 p 123 xp 12 xp 2 p 123 xp 12 xp 2 p 123 xp 12 Figure : The five-point Feynman diagrams, besides the pentabox itself in Figure 4, that are contained in the family P 1. All external momenta are incoming. C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

51 5box - one leg off-shell: P1 G P 1 a 1 a 11 (x, s, ɛ) := e 2γ E ɛ d d k 1 d d k 2 1 iπ d/2 iπ d/2 k 2a 1 1 (k 1 + xp 1 ) 2a 2 (k 1 + xp 12 ) 2a 3 (k 1 + p 123 ) 2a 4 1 (k 1 + p 1234 ) 2a 5 k 2a 6 2 (k 2 xp 1 ) 2a 7 (k 2 xp 12 ) 2a 8 (k 2 p 123 ) 2a 9 (k 2 p 1234 ) 2a 10 (k 1 + k 2 ) 2a 11, P 1 : { , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 111m , m1111, , , , , m0111, , 010m , , , , , , 111m , m1101, , 1110m101011, , 111m , , m1111, 111m , , m0111, , m1111, 111m }, Choosing m= 1 or 2 C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

52 C.G.Papadopoulos = (s (INPP) (s s ) + s s + s (s 5box s )) 2 + 4s s s (s + s s ) QCD@LHC / 36 5box P1 - DE x G = M ({ s ij }, ε, x ) G x G = M G M = TMT 1 + ( x T) T 1 G = TG (M D ) IJ = δ IJ M II (ε = 0), I, J = G S 1 G, S = exp ( ) dx M D and M S 1 (M M D ) S C M IJ = N IJ (ε) IJ;ijk ε k 1 1 (x l i ) j + Letters (20): i=1 j=1 k=0 j=0 k=0 C IJ;jk ε k x j. 0, 1, 1 s 34 s 51 s 12, s 45 s 45 s 23, s 45 s 23 s 12, s 51 s 12, s 45 s 12, 1 s 34 s 12, 1 + s 23 s 12, s 45 s 23 +s 45 +s 51, s 45 s 34 +s 45, s 12 s 23 2s 12 s 45 s 12 s 51 s 23 s 34 +s 34 s 45 s 45 s 51 ± 1, 2s 12 (s 23 s 45 s 51 ) s 12 s 23 s 12 s 45 s 12 s 51 s 23 s 34 +s 34 s 45 s 45 s 51 ± 2, 2s 12 (s 23 s 45 s 51 ) s 12 s 23 s 12 s 51 s 23 s 34 +s 34 s 45 s 45 s 51 ± 1, 2s 12 (s 23 +s 34 s 51 ) s 12 s 45 ± 3 s 12 s 34 +s 12 s 45, s 45 s 12 +s 23,

53 C.G.Papadopoulos = (s (INPP) (s s ) + s s + s (s 5box s )) 2 + 4s s s (s + s s ) QCD@LHC / 36 5box P1 - DE x G = M ({ s ij }, ε, x ) G x G = M G M = TMT 1 + ( x T) T 1 G = TG (M D ) IJ = δ IJ M II (ε = 0), I, J = G S 1 G, S = exp ( ) dx M D and M S 1 (M M D ) S C M IJ = N IJ (ε) IJ;ijk ε k 1 1 (x l i ) j + Letters (20): i=1 j=1 k=0 j=0 k=0 C IJ;jk ε k x j. 0, 1, 1 s 34 s 51 s 12, s 45 s 45 s 23, s 45 s 23 s 12, s 51 s 12, s 45 s 12, 1 s 34 s 12, 1 + s 23 s 12, s 45 s 23 +s 45 +s 51, s 45 s 34 +s 45, s 12 s 23 2s 12 s 45 s 12 s 51 s 23 s 34 +s 34 s 45 s 45 s 51 ± 1, 2s 12 (s 23 s 45 s 51 ) s 12 s 23 s 12 s 45 s 12 s 51 s 23 s 34 +s 34 s 45 s 45 s 51 ± 2, 2s 12 (s 23 s 45 s 51 ) s 12 s 23 s 12 s 51 s 23 s 34 +s 34 s 45 s 45 s 51 ± 1, 2s 12 (s 23 +s 34 s 51 ) s 12 s 45 ± 3 s 12 s 34 +s 12 s 45, s 45 s 12 +s 23,

54 C.G.Papadopoulos = (s (INPP) (s s ) + s s + s (s 5box s )) 2 + 4s s s (s + s s ) QCD@LHC / 36 5box P1 - DE x G = M ({ s ij }, ε, x ) G x G = M G M = TMT 1 + ( x T) T 1 G = TG (M D ) IJ = δ IJ M II (ε = 0), I, J = G S 1 G, S = exp ( ) dx M D and M S 1 (M M D ) S C M IJ = N IJ (ε) IJ;ijk ε k 1 1 (x l i ) j + Letters (20): i=1 j=1 k=0 j=0 k=0 C IJ;jk ε k x j. 0, 1, 1 s 34 s 51 s 12, s 45 s 45 s 23, s 45 s 23 s 12, s 51 s 12, s 45 s 12, 1 s 34 s 12, 1 + s 23 s 12, s 45 s 23 +s 45 +s 51, s 45 s 34 +s 45, s 12 s 23 2s 12 s 45 s 12 s 51 s 23 s 34 +s 34 s 45 s 45 s 51 ± 1, 2s 12 (s 23 s 45 s 51 ) s 12 s 23 s 12 s 45 s 12 s 51 s 23 s 34 +s 34 s 45 s 45 s 51 ± 2, 2s 12 (s 23 s 45 s 51 ) s 12 s 23 s 12 s 51 s 23 s 34 +s 34 s 45 s 45 s 51 ± 1, 2s 12 (s 23 +s 34 s 51 ) s 12 s 45 ± 3 s 12 s 34 +s 12 s 45, s 45 s 12 +s 23,

55 C.G.Papadopoulos = (s (INPP) (s s ) + s s + s (s 5box s )) 2 + 4s s s (s + s s ) QCD@LHC / 36 5box P1 - DE x G = M ({ s ij }, ε, x ) G x G = M G M = TMT 1 + ( x T) T 1 G = TG (M D ) IJ = δ IJ M II (ε = 0), I, J = G S 1 G, S = exp ( ) dx M D and M S 1 (M M D ) S C M IJ = N IJ (ε) IJ;ijk ε k 1 1 (x l i ) j + Letters (20): i=1 j=1 k=0 j=0 k=0 C IJ;jk ε k x j. 0, 1, 1 s 34 s 51 s 12, s 45 s 45 s 23, s 45 s 23 s 12, s 51 s 12, s 45 s 12, 1 s 34 s 12, 1 + s 23 s 12, s 45 s 23 +s 45 +s 51, s 45 s 34 +s 45, s 12 s 23 2s 12 s 45 s 12 s 51 s 23 s 34 +s 34 s 45 s 45 s 51 ± 1, 2s 12 (s 23 s 45 s 51 ) s 12 s 23 s 12 s 45 s 12 s 51 s 23 s 34 +s 34 s 45 s 45 s 51 ± 2, 2s 12 (s 23 s 45 s 51 ) s 12 s 23 s 12 s 51 s 23 s 34 +s 34 s 45 s 45 s 51 ± 1, 2s 12 (s 23 +s 34 s 51 ) s 12 s 45 ± 3 s 12 s 34 +s 12 s 45, s 45 s 12 +s 23,

56 5box P1 - DE M IJ = N IJ (ε) i=1 j=1 k=0 C IJ;ijk ε k (x l i ) j j=0 k=0 C IJ;jk ε k x j. x 1 dt (t a n) 2 G (a n 1,..., a 1, t) 0 x 0 dt t m G (a n 1,..., a 1, t) Fuchsian N IJ (ε) = n J (ε) /n I (ε), G I n I (ε) G I M IJ = i=1 j=1 k=0 C IJ;ijk ε k (x l i ) j j=0 k=0 C IJ;jk ε k x j. G (I K i ) G, M (M x K i K i M) (I K i ) 1 i = 1, 2, 3 ( ) 19 M a x G = ε G (x l a=1 a) C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

57 5box P1 - DE Fuchsian N IJ (ε) = n J (ε) /n I (ε), G I n I (ε) G I M IJ = i=1 j=1 k=0 C IJ;ijk ε k (x l i ) j j=0 k=0 C IJ;jk ε k x j. G (I K i ) G, M (M x K i K i M) (I K i ) 1 i = 1, 2, 3 ( ) 19 M a x G = ε G (x l a=1 a) C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

58 5box P1 - DE Fuchsian N IJ (ε) = n J (ε) /n I (ε), G I n I (ε) G I M IJ = i=1 j=1 k=0 C IJ;ijk ε k (x l i ) j j=0 k=0 C IJ;jk ε k x j. G (I K i ) G, M (M x K i K i M) (I K i ) 1 i = 1, 2, 3 M (ε = 0) contains (x l i ) 2 and x 0 { dx(m (ε = 0))IJ I, J 69, 74 (K 1 ) IJ = 0 I, J = 69, 74 { dx(m (ε = 0))IJ I, J 74 (K 2 ) IJ = (K 3 ) IJ = 0 I, J = 74 dx(m (ε = 0)) IJ M.A. Barkatou and E.Pflügel, Journal of Symbolic Computation, 44 (2009),1017 ( ) 19 M a x G = ε G (x l a=1 a) C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

59 5box P1 - DE Fuchsian N IJ (ε) = n J (ε) /n I (ε), G I n I (ε) G I M IJ = i=1 j=1 k=0 C IJ;ijk ε k (x l i ) j j=0 k=0 C IJ;jk ε k x j. G (I K i ) G, M (M x K i K i M) (I K i ) 1 i = 1, 2, 3 ( ) 19 M a x G = ε G (x l a=1 a) C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

60 5box P1 - solution Solution: G = ε 2 b ( 2) 0 + ε 1 ( G am ab ( 2) 0 + b ( 1) ) 0 + ε 0 ( G ab M am b b ( 2) 0 + G am ab ( 1) 0 + b (0) ) 0 ( + ε Gabc M am b M c b ( 2) 0 + G ab M am b b ( 1) 0 + G am ab (0) ) 0 +b(1) 0 + ε 2 ( G abcd M am b M c M d b ( 2) 0 + G abc M am b M c b ( 1) 0 + Gab M am b b (0) 0 + G am ab (1) ) 0 +b(2) 0 b (k) 0, k = 2,..., 2 representing the x-independent boundary terms in the limit x = 0 at order εk 2 G ε k k+2 b (k) x 0 n logn (x) + subleading terms. k= 2 n=0 G a,b,... = G (l a, l b,... ; x) with a, b, c, d = 1,..., 19. Uniform transcendental: UT multi- vs one-parameter DE M a depend on kinematics, but eigenvalues not: (x l a) naε, n a positive integers, x l a. C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

61 5box P1 - solution Solution: G = ε 2 b ( 2) 0 + ε 1 ( G am ab ( 2) 0 + b ( 1) ) 0 + ε 0 ( G ab M am b b ( 2) 0 + G am ab ( 1) 0 + b (0) ) 0 ( + ε Gabc M am b M c b ( 2) 0 + G ab M am b b ( 1) 0 + G am ab (0) ) 0 +b(1) 0 + ε 2 ( G abcd M am b M c M d b ( 2) 0 + G abc M am b M c b ( 1) 0 + Gab M am b b (0) 0 + G am ab (1) ) 0 +b(2) 0 b (k) 0, k = 2,..., 2 representing the x-independent boundary terms in the limit x = 0 at order εk 2 G ε k k+2 b (k) x 0 n logn (x) + subleading terms. k= 2 n=0 G a,b,... = G (l a, l b,... ; x) with a, b, c, d = 1,..., 19. Uniform transcendental: UT multi- vs one-parameter DE M a depend on kinematics, but eigenvalues not: (x l a) naε, n a positive integers, x l a. C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

62 5box - boundary terms Resummed G res = lim x 0 G = j c j x i 0+jɛ + d j x i 0+1+jɛ + O(x i 0+2 ), DE: using the above and equating terms x i+jɛ, linear equations for c i and d i bottom-up: MI with homogeneous DE treated exactly MI needing special treatment (20) Expansion by regions (11) Shifted boundary point (6) Extraction from known integrals (3) C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

63 5box - boundary terms Resummed G res = lim x 0 G = j c j x i 0+jɛ + d j x i 0+1+jɛ + O(x i 0+2 ), DE: using the above and equating terms x i+jɛ, linear equations for c i and d i bottom-up: MI with homogeneous DE treated exactly MI needing special treatment (20) Expansion by regions (11) Shifted boundary point (6) Extraction from known integrals (3) C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

64 5box - boundary terms Resummed G res = lim x 0 G = j c j x i 0+jɛ + d j x i 0+1+jɛ + O(x i 0+2 ), DE: using the above and equating terms x i+jɛ, linear equations for c i and d i bottom-up: MI with homogeneous DE treated exactly MI needing special treatment (20) Expansion by regions (11) Shifted boundary point (6) Extraction from known integrals (3) C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

65 5box - boundary terms Resummed G res = lim x 0 G = j c j x i 0+jɛ + d j x i 0+1+jɛ + O(x i 0+2 ), DE: using the above and equating terms x i+jɛ, linear equations for c i and d i bottom-up: MI with homogeneous DE treated exactly MI needing special treatment (20) Expansion by regions (11) {( ), ( ), ( ), ( ), ( ), ( ), Shifted boundary point (6) ( ), (111m ), (111000m1111), ( ), (111001m0111)}. : {( ), ( ), ( ), ( ), ( )} (s 12 s 34 + s 51 )/s 12 : {( )} Extraction from known integrals (3) G (x, s 12, s 34, s 51 ) = G (x = 1, s 12, s 23, s 45 ), G (x, s 12, s 34, s 51 ) = G (x = 1, s 12, s 23, s 45 ), G 111m (x, s 12, s 34, s 51 ) = G 111m (x = 1, s 12, s 23, s 45 ), s 12 = x2 s 12, s 23 = xs 51, s 45 = xs 12 + xs 34 + x 2 s 12. (1) C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

66 5box - boundary terms Resummed G res = lim x 0 G = j c j x i 0+jɛ + d j x i 0+1+jɛ + O(x i 0+2 ), DE: using the above and equating terms x i+jɛ, linear equations for c i and d i bottom-up: MI with homogeneous DE treated exactly MI needing special treatment (20) Expansion by regions (11) Shifted boundary point (6) Extraction from known integrals (3) Systematic approach: combining information from the expansion by regions technique (asy2) and the DE itself Mellin-Barnes, XSummer C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

67 5box - on-shell All planar one-shell 5box by taking the limit x 1. x = 1 corresponds to l 2 G = n 2 n+2 ε n 1 i! c(n) i log i (1 x) i=0 with M 2 the residue matrix at x = 1 and G trunc G reg (x = 1) ( G x=1 = I M ) 2 M2 2 G trunc C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

68 5box - on-shell All planar one-shell 5box by taking the limit x 1. x = 1 corresponds to l 2 with M 2 the residue matrix at x = 1 and c (n) i = M 2 c (n 1) i 1 i 1 G reg = n 2 ε n c (n) 0. characteristic polynomial: x 61 (1 + x) 9 (2 + x) 4 ( (1 x) 2ε 1 ) ( (1 x) ε 1 ) G = G reg + ( 2ε) X + ( ε) Y X = ε n X (n) Y = ε n Y (n). n 1 n 1 ( 1) n M 2 n = M 2 2 ( 2 n 1 1 ) + M 2 ( 2 n 1 2 ), n 1. minimal polynomial: x(x + 1)(x + 2) G trunc G reg (x = 1) ( G x=1 = I M ) 2 M2 2 G trunc C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

69 5box - on-shell All planar one-shell 5box by taking the limit x 1. x = 1 corresponds to l 2 G = n 2 n+2 ε n 1 i! c(n) i log i (1 x) i=0 with M 2 the residue matrix at x = 1 and ( ) (1 x) 2ε 1 G = G reg + ( 2ε) X + ( ) (1 x) ε 1 ( ε) Y G trunc G reg (x = 1) ( G x=1 = I M ) 2 M2 2 G trunc C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

70 5box - numerical checks O(3, 000) GPs for all 74 MI Directly computed by using GiNaC All invariants negative (Euclidean): perfect agreement with SecDec O(10) secs. HyperInt analytic extraction of imaginary parts before numerics: increasing efficiency by O(100) Our physical region result published awaiting cross-checks when other calculations become available for 5boxes. Computing time expected after analytic extraction of imaginary parts O(10) secs for all 74 MI. C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

71 5box - numerical checks O(3, 000) GPs for all 74 MI Directly computed by using GiNaC J. Vollinga and S. Weinzierl, Comput. Phys. Commun. 167 (2005) 177 All invariants negative (Euclidean): perfect agreement with SecDec O(10) secs. HyperInt analytic extraction of imaginary parts before numerics: increasing efficiency by O(100) Our physical region result published awaiting cross-checks when other calculations become available for 5boxes. Computing time expected after analytic extraction of imaginary parts O(10) secs for all 74 MI. C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

72 5box - numerical checks O(3, 000) GPs for all 74 MI Directly computed by using GiNaC All invariants negative (Euclidean): perfect agreement with SecDec O(10) secs. HyperInt analytic extraction of imaginary parts before numerics: increasing efficiency by O(100) Our physical region result published awaiting cross-checks when other calculations become available for 5boxes. Computing time expected after analytic extraction of imaginary parts O(10) secs for all 74 MI. C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

73 5box - numerical checks O(3, 000) GPs for all 74 MI Directly computed by using GiNaC All invariants negative (Euclidean): perfect agreement with SecDec O(10) secs. HyperInt analytic extraction of imaginary parts before numerics: increasing efficiency by O(100) E. Panzer, Comput. Phys. Commun. 188 (2014) 148 Our physical region result published awaiting cross-checks when other calculations become available for 5boxes. Computing time expected after analytic extraction of imaginary parts O(10) secs for all 74 MI. C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

74 5box - numerical checks O(3, 000) GPs for all 74 MI Directly computed by using GiNaC All invariants negative (Euclidean): perfect agreement with SecDec O(10) secs. HyperInt analytic extraction of imaginary parts before numerics: increasing efficiency by O(100) Our physical region result published awaiting cross-checks when other calculations become available for 5boxes. Computing time expected after analytic extraction of imaginary parts O(10) secs for all 74 MI. C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

75 5box - numerical checks O(3, 000) GPs for all 74 MI Directly computed by using GiNaC All invariants negative (Euclidean): perfect agreement with SecDec O(10) secs. HyperInt analytic extraction of imaginary parts before numerics: increasing efficiency by O(100) Our physical region result published awaiting cross-checks when other calculations become available for 5boxes. Computing time expected after analytic extraction of imaginary parts O(10) secs for all 74 MI. C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

76 Discussion 1 SDE: proven reliable and efficient: evolving 2 IBP: better understanding 3 DE canonical form 4 Complete massless MI with up to 8 denominators, at least 3 of-shell legs 5 Including internal masses 6 Feynman parametrization - MB vs DE: pros and cons 7 Integrand reduction at two loops: implementation C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

77 Discussion 1 SDE: proven reliable and efficient: evolving 2 IBP: better understanding 3 DE canonical form 4 Complete massless MI with up to 8 denominators, at least 3 of-shell legs 5 Including internal masses 6 Feynman parametrization - MB vs DE: pros and cons 7 Integrand reduction at two loops: implementation C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

78 Discussion 1 SDE: proven reliable and efficient: evolving 2 IBP: better understanding 3 DE canonical form O. Gituliar and V. Magerya, arxiv: [hep-ph]. Christoph Meyer, Loops and Legs Complete massless MI with up to 8 denominators, at least 3 of-shell legs 5 Including internal masses 6 Feynman parametrization - MB vs DE: pros and cons 7 Integrand reduction at two loops: implementation C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

79 Discussion 1 SDE: proven reliable and efficient: evolving 2 IBP: better understanding 3 DE canonical form 4 Complete massless MI with up to 8 denominators, at least 3 of-shell legs 5 Including internal masses 6 Feynman parametrization - MB vs DE: pros and cons 7 Integrand reduction at two loops: implementation C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

80 Discussion 1 SDE: proven reliable and efficient: evolving 2 IBP: better understanding 3 DE canonical form 4 Complete massless MI with up to 8 denominators, at least 3 of-shell legs 5 Including internal masses 6 Feynman parametrization - MB vs DE: pros and cons 7 Integrand reduction at two loops: implementation C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

81 Discussion 1 SDE: proven reliable and efficient: evolving 2 IBP: better understanding 3 DE canonical form 4 Complete massless MI with up to 8 denominators, at least 3 of-shell legs 5 Including internal masses 6 Feynman parametrization - MB vs DE: pros and cons 7 Integrand reduction at two loops: implementation C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

82 Discussion 1 SDE: proven reliable and efficient: evolving 2 IBP: better understanding 3 DE canonical form 4 Complete massless MI with up to 8 denominators, at least 3 of-shell legs 5 Including internal masses 6 Feynman parametrization - MB vs DE: pros and cons 7 Integrand reduction at two loops: implementation C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

83 Summary 1 Understanding QFT and provide precise calculations for analysis of experimental data 2 NLO revolution: plethora of highly automated codes/software 3 LHC physics benefits: unprecedented 4 Moving beyond NLO: NNLO and N3LO 5 NNLO revolution: ante portas? C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

84 Summary 1 Understanding QFT and provide precise calculations for analysis of experimental data 2 NLO revolution: plethora of highly automated codes/software 3 LHC physics benefits: unprecedented 4 Moving beyond NLO: NNLO and N3LO 5 NNLO revolution: ante portas? C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

85 Summary 1 Understanding QFT and provide precise calculations for analysis of experimental data 2 NLO revolution: plethora of highly automated codes/software 3 LHC physics benefits: unprecedented 4 Moving beyond NLO: NNLO and N3LO 5 NNLO revolution: ante portas? C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

86 Summary 1 Understanding QFT and provide precise calculations for analysis of experimental data 2 NLO revolution: plethora of highly automated codes/software 3 LHC physics benefits: unprecedented 4 Moving beyond NLO: NNLO and N3LO 5 NNLO revolution: ante portas? C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

87 Summary 1 Understanding QFT and provide precise calculations for analysis of experimental data 2 NLO revolution: plethora of highly automated codes/software 3 LHC physics benefits: unprecedented 4 Moving beyond NLO: NNLO and N3LO 5 NNLO revolution: ante portas? C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

88 C.G.Papadopoulos (INPP) 5box / 36

89 Backup Slides C.G.Papadopoulos (INPP) 5box / 36

90 Two-loop, four-point, two off-shell legs Physical region S > ( M 23 + M 2 4 ) 2, T < 0, U < 0, M 2 3 > 0, M 2 4 > 0, q 2 = TU M2 3 M2 4 S > 0, q s 12 x > 1, > 1, xs 12 > q, q > 0. s 23 { s 23 < 0, s 12 + s 23 > q, q > 0 x > 1, s 23 > 0, s 12 + s 23 < q, s 12 > q/x. C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

91 Two-loop, four-point, two off-shell legs Analytic continuation Feynman propagator D D + iɛ C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

92 Two-loop, four-point, two off-shell legs Analytic continuation Feynman propagator D D + iɛ s ij (s 12, s 23 and q in the present study) and the parameter x, s ij s ij + iδ sij η, x x + iδ x η, with η 0. C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

93 Two-loop, four-point, two off-shell legs Analytic continuation Feynman propagator D D + iɛ s ij (s 12, s 23 and q in the present study) and the parameter x, s ij s ij + iδ sij η, x x + iδ x η, with η 0. δ sij and δ x are determined as follows: 1) Input data: G P ( ( 1 + x)( q + s 12 x)) 1 2ɛ (1 x) 1 2ɛ (1 xs 12 /q) 1 2ɛ ( q) 1 2ɛ C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

94 Two-loop, four-point, two off-shell legs Analytic continuation Feynman propagator D D + iɛ s ij (s 12, s 23 and q in the present study) and the parameter x, s ij s ij + iδ sij η, x x + iδ x η, with η 0. δ sij and δ x are determined as follows: 1) Input data: G P ( ( 1 + x)( q + s 12 x)) 1 2ɛ (1 x) 1 2ɛ (1 xs 12 /q) 1 2ɛ ( q) 1 2ɛ 2) Second graph polynomial: F C. Bogner and S. Weinzierl, Int. J. Mod. Phys. A 25 (2010) 2585 [arxiv: [hep-ph]]. in terms of s ij and x, should acquire a definite-negative imaginary part in the limit η 0. C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

95 Two-loop, four-point, two off-shell legs Analytic continuation Feynman propagator D D + iɛ s ij (s 12, s 23 and q in the present study) and the parameter x, s ij s ij + iδ sij η, x x + iδ x η, with η 0. δ sij and δ x are determined as follows: 1) Input data: G P ( ( 1 + x)( q + s 12 x)) 1 2ɛ (1 x) 1 2ɛ (1 xs 12 /q) 1 2ɛ ( q) 1 2ɛ 2) Second graph polynomial: F C. Bogner and S. Weinzierl, Int. J. Mod. Phys. A 25 (2010) 2585 [arxiv: [hep-ph]]. in terms of s ij and x, should acquire a definite-negative imaginary part in the limit η 0. E. Panzer, Comput. Phys. Commun. 188 (2014) 148 [arxiv: [hep-th]]. C.G.Papadopoulos (INPP) 5box QCD@LHC / 36

Simplified differential equations approach for NNLO calculations

Simplified differential equations approach for NNLO calculations Simplified differential equations approach for NNLO calculations Costas. G. Papadopoulos INPP, NCSR Demokritos, Athens UCLA, June 19, 2015 Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, 2015 1 / 39

More information

The Pentabox Master Integrals with the Simplified Differential Equations approach

The Pentabox Master Integrals with the Simplified Differential Equations approach Prepared for submission to JHEP TTP15-042 The Pentabox Master Integrals with the Simplified Differential Equations approach Costas G. Papadopoulos ab Damiano Tommasini a and Christopher Wever ac a Institute

More information

Simplified differential equations approach for the calculation of multi-loop integrals

Simplified differential equations approach for the calculation of multi-loop integrals Simplified differential equations approach for the calculation of multi-loop integrals Chris Wever (N.C.S.R. Demokritos) 1 C. Papadopoulos [arxiv: 1401.6057 [hep-ph]] C. Papadopoulos, D. Tommasini, C.

More information

Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method

Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method Matteo Becchetti Supervisor Roberto Bonciani University of Rome La Sapienza 24/01/2017 1 The subject of

More information

Evaluating multiloop Feynman integrals by Mellin-Barnes representation

Evaluating multiloop Feynman integrals by Mellin-Barnes representation April 7, 004 Loops&Legs 04 Evaluating multiloop Feynman integrals by Mellin-Barnes representation V.A. Smirnov Nuclear Physics Institute of Moscow State University Mellin-Barnes representation as a tool

More information

Multiloop integrals in dimensional regularization made simple

Multiloop integrals in dimensional regularization made simple Multiloop integrals in dimensional regularization made simple Johannes M. Henn Institute for Advanced Study based on PRL 110 (2013) [arxiv:1304.1806], JHEP 1307 (2013) 128 [arxiv:1306.2799] with A. V.

More information

One-Mass Two-Loop Master Integrals for Mixed

One-Mass Two-Loop Master Integrals for Mixed One-Mass Two-Loop Master Integrals for Mixed α s -Electroweak Drell-Yan Production work ongoing with Andreas von Manteuffel The PRISMA Cluster of Excellence and Institute of Physics Johannes Gutenberg

More information

arxiv: v2 [hep-th] 7 Jul 2016

arxiv: v2 [hep-th] 7 Jul 2016 Integration-by-parts reductions from unitarity cuts and algebraic geometry arxiv:1606.09447v [hep-th] 7 Jul 016 Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland E-mail: Kasper.Larsen@phys.ethz.ch

More information

NNLO antenna subtraction with two hadronic initial states

NNLO antenna subtraction with two hadronic initial states NNLO antenna subtraction with two hadronic initial states Institut für Theoretische Physik, Universität Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland E-mail: radja@physik.uzh.ch Aude Gehrmann-De

More information

Reducing full one-loop amplitudes at the integrand level

Reducing full one-loop amplitudes at the integrand level Reducing full one-loop amplitudes at the integrand level Costas Papadopoulos, Les Houches 2007 In collaboration with G. Ossola and R. Pittau 27/06/2007 HEP-NCSR DEMOKRITOS 1 The History Passarino-Veltman

More information

The rare decay H Zγ in perturbative QCD

The rare decay H Zγ in perturbative QCD The rare decay H Zγ in perturbative QCD [arxiv: hep-ph/1505.00561] Thomas Gehrmann, Sam Guns & Dominik Kara June 15, 2015 RADCOR 2015 AND LOOPFEST XIV - UNIVERSITY OF CALIFORNIA, LOS ANGELES Z Z H g q

More information

Reduction at the integrand level beyond NLO

Reduction at the integrand level beyond NLO Reduction at the integrand level beyond NLO Costas G. Papadopoulos NCSR Demokritos, Athens, Greece & CERN, Geneva, Switzerland Corfu 2012, September 15, 2012 Costas G. Papadopoulos (NCSR-D & CERN) NNLO

More information

NNLO antenna subtraction with one hadronic initial state

NNLO antenna subtraction with one hadronic initial state antenna subtraction with one hadronic initial state Alejandro Daleo, Aude Gehrmann-De Ridder Institute for Theoretical Physics, ETH Zürich E-mail: adaleo@phys.ethz.ch, gehra@phys.ethz.ch Thomas Gehrmann,

More information

Reduction to Master Integrals. V.A. Smirnov Atrani, September 30 October 05, 2013 p.1

Reduction to Master Integrals. V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction to Master Integrals V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction to Master Integrals IBP (integration by parts) V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction

More information

The Two-Loop Five-Point Amplitude in N=4 Super-Yang-Mills Theory and N=8 Supergravity

The Two-Loop Five-Point Amplitude in N=4 Super-Yang-Mills Theory and N=8 Supergravity The Two-Loop Five-Point Amplitude in N=4 Super-Yang-Mills Theory and N=8 Supergravity Lance Dixon (SLAC) S. Abreu, LD, E. Herrmann, B. Page and M. Zeng 1812.08941, 1901.nnnnn DESY Zeuthen, 24 January 2019

More information

Master integrals without subdivergences

Master integrals without subdivergences Master integrals without subdivergences Joint work with Andreas von Manteuffel and Robert Schabinger Erik Panzer 1 (CNRS, ERC grant 257638) Institute des Hautes Études Scientifiques 35 Route de Chartres

More information

Differential Equations for Feynman Integrals

Differential Equations for Feynman Integrals for Feynman Integrals Ulrich Schubert Max-Planck-Institut für Physik Föhringer Ring 6, München January 18, 2015 based on work with M. Argeri, S. Di Vita, P. Mastrolia, E. Mirabella, J. Schlenk, L. Tancredi,

More information

Numerical multi-loop calculations: tools and applications

Numerical multi-loop calculations: tools and applications Journal of Physics: Conference Series PAPER OPEN ACCESS Numerical multi-loop calculations: tools and applications To cite this article: S. Borowka et al 2016 J. Phys.: Conf. Ser. 762 012073 Related content

More information

arxiv: v1 [hep-ph] 28 Dec 2018

arxiv: v1 [hep-ph] 28 Dec 2018 MPP-208-06 All master integrals for three-jet production at NNLO D. Chicherin a, T. Gehrmann b, J. M. Henn a, P. Wasser c, Y. Zhang a, S. Zoia a a Max-Planck-Institut für Physik, Werner-Heisenberg-Institut,

More information

Reduction of one-loop amplitudes at the integrand level-nlo QCD calculations

Reduction of one-loop amplitudes at the integrand level-nlo QCD calculations Reduction of one-loop amplitudes at the integrand level-nlo QCD calculations Costas G. Papadopoulos NCSR Demokritos, Athens Epiphany 2008, Krakow, 3-6 January 2008 Costas G. Papadopoulos (Athens) OPP Reduction

More information

Recent developments in automated NLO calculations

Recent developments in automated NLO calculations Recent developments in automated NLO calculations Giuseppe Bevilacqua NCSR Demokritos, Athens Workshop on Standard Model and Beyond and Standard Cosmology Corfu - August 31, 2009 In collaboration with

More information

arxiv:hep-lat/ v1 30 Sep 2005

arxiv:hep-lat/ v1 30 Sep 2005 September 2005 Applying Gröbner Bases to Solve Reduction Problems for Feynman Integrals arxiv:hep-lat/0509187v1 30 Sep 2005 A.V. Smirnov 1 Mechanical and Mathematical Department and Scientific Research

More information

Numerical Evaluation of Loop Integrals

Numerical Evaluation of Loop Integrals Numerical Evaluation of Loop Integrals Institut für Theoretische Physik Universität Zürich Tsukuba, April 22 nd 2006 In collaboration with Babis Anastasiou Rationale (Why do we need complicated loop amplitudes?)

More information

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with: J. Carter and G. Heinrich Based on arxiv:124.4152 [hep-ph] http://secdec.hepforge.org DESY-HU

More information

From Tensor Integral to IBP

From Tensor Integral to IBP From Tensor Integral to IBP Mohammad Assadsolimani, in collaboration with P. Kant, B. Tausk and P. Uwer 11. Sep. 2012 Mohammad Assadsolimani From Tensor Integral to IBP 1 Contents Motivation NNLO Tensor

More information

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with G. Heinrich Based on arxiv:124.4152 [hep-ph] HP 8 :Workshop on High Precision for Hard Processes,

More information

Reduction of Feynman integrals to master integrals

Reduction of Feynman integrals to master integrals Reduction of Feynman integrals to master integrals A.V. Smirnov Scientific Research Computing Center of Moscow State University A.V. Smirnov ACAT 2007 p.1 Reduction problem for Feynman integrals A review

More information

Maximal Unitarity at Two Loops

Maximal Unitarity at Two Loops Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon Caron- Huot & Kasper Larsen 1108.1180, 1205.0801,

More information

Non-planar two-loop Feynman integrals contributing to Higgs plus jet production

Non-planar two-loop Feynman integrals contributing to Higgs plus jet production Non-planar two-loop Feynman integrals contributing to Higgs plus jet production Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of Technology Engesserstraße 7, D-76128 Karlsruhe,

More information

Evaluating double and triple (?) boxes

Evaluating double and triple (?) boxes Evaluating double and triple (?) boxes V.A. Smirnov a hep-ph/0209295 September 2002 a Nuclear Physics Institute of Moscow State University, Moscow 9992, Russia A brief review of recent results on analytical

More information

Linear reducibility of Feynman integrals

Linear reducibility of Feynman integrals Linear reducibility of Feynman integrals Erik Panzer Institute des Hautes Études Scientifiques RADCOR/LoopFest 2015 June 19th, 2015 UCLA, Los Angeles Feynman integrals: special functions and numbers Some

More information

Calculating four-loop massless propagators with Forcer

Calculating four-loop massless propagators with Forcer Calculating four-loop massless propagators with Forcer Takahiro Ueda Nikhef, The Netherlands Collaboration with: Ben Ruijl and Jos Vermaseren 18 Jan. 2016 ACAT2016, UTFSM, Valparaíso 1 / 30 Contents Introduction

More information

Towards improved predictions for electroweak vector boson pair production at the LHC

Towards improved predictions for electroweak vector boson pair production at the LHC Towards improved predictions for electroweak vector boson pair production at the LHC Kirill Melnikov TTP KIT Based on collaboration with M. Dowling, F. Caola, J. Henn, A. Smirnov, V. Smirnov Outline 1)

More information

Numerical evaluation of multi-scale integrals with SecDec 3

Numerical evaluation of multi-scale integrals with SecDec 3 Numerical evaluation of multi-scale integrals with SecDec 3 Sophia Borowka University of Zurich Project in collaboration with G. Heinrich, S. Jones, M. Kerner, J. Schlenk, T. Zirke 152.6595 [hep-ph] (CPC,

More information

Numerical evaluation of multi-loop integrals

Numerical evaluation of multi-loop integrals Max-Planck-Institut für Physik, München, Germany E-mail: sjahn@mpp.mpg.de We present updates on the development of pyse CDE C, a toolbox to numerically evaluate parameter integrals in the context of dimensional

More information

Multiple polylogarithms and Feynman integrals

Multiple polylogarithms and Feynman integrals Multiple polylogarithms and Feynman integrals Erik Panzer Institute des Hautes E tudes Scientifiques Amplitudes 215 July 7th ETH/University of Zu rich Topics 1 hyperlogarithms & iterated integrals 2 multiple

More information

The Higgs pt distribution

The Higgs pt distribution The Higgs pt distribution Chris Wever (TUM) In collaboration with: F. Caola, K. Kudashkin, J. Lindert, K. Melnikov, P. Monni, L. Tancredi GGI: Amplitudes in the LHC era, Florence 16 Oktober, 2018 Outline

More information

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS Germán F. R. Sborlini Departamento de Física, FCEyN, UBA (Argentina) 10/12/2012 - IFIC CONTENT Introduction Collinear limits Splitting functions Computing splitting

More information

arxiv: v2 [hep-ph] 4 Jun 2018

arxiv: v2 [hep-ph] 4 Jun 2018 Prepared for submission to JHEP Evaluating elliptic master integrals at special kinematic values: using differential equations and their solutions via expansions near singular points arxiv:1805.00227v2

More information

Forcer: a FORM program for 4-loop massless propagators

Forcer: a FORM program for 4-loop massless propagators Forcer: a FORM program for 4-loop massless propagators, a B. Ruijl ab and J.A.M. Vermaseren a a Nikhef Theory Group, Science Park 105, 1098 XG Amsterdam, The Netherlands b Leiden Centre of Data Science,

More information

arxiv: v2 [hep-ph] 25 Sep 2018

arxiv: v2 [hep-ph] 25 Sep 2018 Applications of integrand reduction to two-loop five-point scattering amplitudes in QCD arxiv:1807.09709v2 [hep-ph] 25 Sep 2018 Institute for Particle Physics Phenomenology, Department of Physics, Durham

More information

arxiv: v3 [hep-ph] 20 Apr 2017

arxiv: v3 [hep-ph] 20 Apr 2017 MITP/14-76 A quasi-finite basis for multi-loop Feynman integrals arxiv:1411.7392v3 [hep-ph] 2 Apr 217 Andreas von Manteuffel, a Erik Panzer, b, c and Robert M. Schabinger a a PRISMA Cluster of Excellence

More information

Discontinuities of Feynman Integrals

Discontinuities of Feynman Integrals CEA Saclay Brown University, Twelfth Workshop on Non-Perturbative Quantum Chromodynamics June 10, 2013 Outline Landau and Cutkosky Classic unitarity cuts I I I Dispersion relations Modern unitarity method,

More information

Towards Jet Cross Sections at NNLO

Towards Jet Cross Sections at NNLO Towards Jet Cross Sections at HP.4, September, MPI Munich Expectations at LHC Large production rates for Standard Model processes single jet inclusive and differential di-jet cross section will be measured

More information

Multiple polylogarithms and Feynman integrals

Multiple polylogarithms and Feynman integrals Multiple polylogarithms and Feynman integrals Erik Panzer Institute des Hautes E tudes Scientifiques Amplitudes 215 July 7th ETH/University of Zu rich Topics 1 hyperlogarithms & iterated integrals 2 multiple

More information

Two-loop Remainder Functions in N = 4 SYM

Two-loop Remainder Functions in N = 4 SYM Two-loop Remainder Functions in N = 4 SYM Claude Duhr Institut für theoretische Physik, ETH Zürich, Wolfgang-Paulistr. 27, CH-8093, Switzerland E-mail: duhrc@itp.phys.ethz.ch 1 Introduction Over the last

More information

ggf Theory Overview For Highest Precision

ggf Theory Overview For Highest Precision ggf Theory Overview For Highest Precision Lumley Castle Franz Herzog Nikhef LHC Higgs Production in the Standard Model 2 LHC Higgs Data 3 Theoretical Formalism To compute cross sections we use the Factorisation

More information

HyperInt - exact integration with hyperlogarithms

HyperInt - exact integration with hyperlogarithms HyperInt - exact integration with hyperlogarithms Erik Panzer erikpanzer@ihes.fr (CNRS, ERC grant 257638, F. Brown) Institute des Hautes Études Scientifiques 35 Route de Chartres 9144 Bures-sur-Yvette

More information

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases.

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases. Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases. Lorenzo Tancredi TTP, KIT - Karlsruhe Bologna, 18 Novembre 2014 Based on collaboration with Thomas Gehrmann,

More information

Automatic calculation of one-loop amplitudes

Automatic calculation of one-loop amplitudes The H. Niewodniczański Institute of Nuclear Physics Polisch Academy of Sciences Radzikowskiego, - Krakow, Poland E-mail: hameren@if.edu.pl C.G. Papadopoulos Institute of Nuclear Physics, NCSR Demokritos,

More information

NLO QCD calculations with the OPP method

NLO QCD calculations with the OPP method A. van Hameren The H. Niewodniczański Institute of Nuclear Physics Polisch Academy of Sciences Radzikowskiego 15, 31-3 Krakow, Poland E-mail: hameren@if.edu.pl Institute of Nuclear Physics, NCSR Demokritos,

More information

arxiv: v2 [hep-ph] 2 Apr 2019

arxiv: v2 [hep-ph] 2 Apr 2019 MITP/19-023 arxiv:1904.00382v2 [hep-ph] 2 Apr 2019 Two-loop master integrals for the mixed QCD-electroweak corrections for H b b through a Ht t-coupling Ekta Chaubey and Stefan Weinzierl PRISMA Cluster

More information

Loop-Tree Duality Method

Loop-Tree Duality Method Numerical Implementation of the Loop-Tree Duality Method IFIC Sebastian Buchta in collaboration with G. Rodrigo,! P. Draggiotis, G. Chachamis and I. Malamos 24. July 2015 Outline 1.Introduction! 2.A new

More information

Precision Physics at the LHC

Precision Physics at the LHC Precision Physics at the LHC V. Ravindran The Institute of Mathematical Sciences, Chennai, India IMHEP-2019, IOP, Bhubaneswar, 17-22 Jan 2019 Precision Physics Plan Why Precision Calculation (PC) Impact

More information

Single Higgs production at LHC as a probe for an anomalous Higgs self coupling

Single Higgs production at LHC as a probe for an anomalous Higgs self coupling Single Higgs production at LHC as a probe for an anomalous Higgs self coupling Brookhaven National Laboratory E-mail: pgiardino@bnl.gov We explore the possibility of probing the trilinear Higgs self coupling

More information

Sector Decomposition

Sector Decomposition Sector Decomposition J. Carter Institute for Particle Physics Phenomenology University of Durham Student Seminar, 06/05/2009 Outline 1 What is Sector Decomposition? Why is Sector Decomposition Important?

More information

Precision Higgs physics. at hadron colliders

Precision Higgs physics. at hadron colliders Precision Higgs physics at hadron colliders Claude Duhr in collaboration with C. Anastasiou, F. Dulat, E. Furlan, T. Gehrmann, F. Herzog, A. Lazopoulos, B. Mistlberger RadCor/LoopFest 2015 UCLA, 16/06/2015

More information

A. Mitov 3-loop time-like splitting functions in Mellin space and NNLO fragmentation

A. Mitov 3-loop time-like splitting functions in Mellin space and NNLO fragmentation Three-loop time-like splitting functions in Mellin space and NNLO fragmentation Alexander Mitov DESY Work in progress with: M. Cacciari; Lance Dixon; S-O. Moch Also based on: hep-ph/0604160 (with Sven

More information

Symbolic integration of multiple polylogarithms

Symbolic integration of multiple polylogarithms Symbolic integration of multiple polylogarithms Erik Panzer Institute des Hautes E tudes Scientifiques Applications of Computer Algebra July 22nd, 215 Kalamata, Greece Problem: Multiple integrals of rational

More information

arxiv: v2 [hep-th] 1 Aug 2018

arxiv: v2 [hep-th] 1 Aug 2018 Differential equations for loop integrals in Baikov representation Jorrit Bosma 1 Kasper J Larsen and Yang Zhang 1 3 1 ETH Zürich Wolfang-Pauli-Strasse 7 893 Zürich Switzerland School of Physics and Astronomy

More information

Numerical multi-loop calculations with SecDec

Numerical multi-loop calculations with SecDec Journal of Physics: Conference Series OPEN ACCESS Numerical multi-loop calculations with SecDec To cite this article: Sophia Borowka and Gudrun Heinrich 214 J. Phys.: Conf. Ser. 523 1248 View the article

More information

Automatic calculations of Feynman integrals in the Euclidean region

Automatic calculations of Feynman integrals in the Euclidean region Automatic calculations of Feynman integrals in the Euclidean region Krzysztof Kajda University of Silesia 9 dec 2008 Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals

More information

Automation of One-Loop Calculations with Golem/Samurai

Automation of One-Loop Calculations with Golem/Samurai Automation of One-Loop Calculations with Golem/Samurai Giovanni Ossola New York City College of Technology City University of New York (CUNY) In collaboration with: G. Cullen, N. Greiner, G. Heinrich,

More information

Bootstrapping One-Loop 2 n Amplitudes

Bootstrapping One-Loop 2 n Amplitudes Bootstrapping One-Loop 2 n Amplitudes Carola F. Berger Stanford Linear Accelerator Center with Zvi Bern, Lance Dixon, Darren Forde, David Kosower Loopfest V June 19th, 2006 [1] Z. Bern, L. J. Dixon, D.

More information

N-jettiness as a subtraction scheme for NNLO

N-jettiness as a subtraction scheme for NNLO N-jettiness as a subtraction scheme for NNLO! Xiaohui Liu based on:! arxiv:1504.02131, Boughezal, Focke, XL and Petriello arxiv:1505.03893, Boughezal, Focke, Giele, XL and Petriello arxiv:1504.02540, Boughezal,

More information

Feynman integrals and multiple polylogarithms. Stefan Weinzierl

Feynman integrals and multiple polylogarithms. Stefan Weinzierl Feynman integrals and multiple polylogarithms Stefan Weinzierl Universität Mainz I. Basic techniques II. Nested sums and iterated integrals III. Multiple Polylogarithms IV. Applications The need for precision

More information

Precision Calculations for the LHC

Precision Calculations for the LHC Precision Calculations for the LHC LHC Olympics 2006 Zvi Bern, UCLA with Carola Berger, Lance Dixon, Darren Forde and David Kosower hep-ph/0501240 hep-ph/0505055 hep-ph/0507005 hep-ph/0604195 hep-ph/0607014

More information

Analytic 2-loop Form factor in N=4 SYM

Analytic 2-loop Form factor in N=4 SYM Analytic 2-loop Form factor in N=4 SYM Gang Yang University of Hamburg Nordic String Theory Meeting Feb 20-21, 2012, NBI Based on the work Brandhuber, Travaglini, GY 1201.4170 [hep-th] Brandhuber, Gurdogan,

More information

Feynman Integrals, Polylogarithms and Symbols

Feynman Integrals, Polylogarithms and Symbols Feynman Integrals, Polylogarithms and Symbols Vittorio Del Duca INFN LNF based on work with Claude Duhr & Volodya Smirnov ACAT2011 7 September 2011 let us consider l-loop n-point Feynman integrals example:

More information

Functions associated to scattering amplitudes. Stefan Weinzierl

Functions associated to scattering amplitudes. Stefan Weinzierl Functions associated to scattering amplitudes Stefan Weinzierl Institut für Physik, Universität Mainz I: Periodic functions and periods II: III: Differential equations The two-loop sun-rise diagramm in

More information

Multi-loop calculations: numerical methods and applications

Multi-loop calculations: numerical methods and applications Journal of Physics: Conference Series PAPER OPEN ACCESS Multi-loop calculations: numerical methods and applications To cite this article: S. Borowka et al 217 J. Phys.: Conf. Ser. 92 123 View the article

More information

Towards One-Loop MHV Techniques

Towards One-Loop MHV Techniques Towards One-Loop MHV Techniques Carola F. Berger Snowmass - August 22, 2005 Carola F. Berger, SLAC Snowmass - August 22, 2005 Towards One-Loop MHV Techniques Carola F. Berger Snowmass - August 22, 2005

More information

Multiloop scattering amplitudes in the LHC Era

Multiloop scattering amplitudes in the LHC Era Multiloop scattering amplitudes in the LHC Era Francesco Moriello Based on arxiv:1609.06685 In collaboration with: R. Bonciani, V. Del Duca, H. Frellesvig, J.M. Henn, V. Smirnov October 26, 2016 Outline

More information

On-Shell Recursion Relations for Multi-Parton One-Loop Amplitudes

On-Shell Recursion Relations for Multi-Parton One-Loop Amplitudes for Multi-Parton One-Loop Amplitudes Carola F. Berger Stanford Linear Accelerator Center with Zvi Bern, Lance Dixon, Darren Forde, David Kosower SUSY06 June 13th, 2006 [1] Z. Bern, L. J. Dixon, D. A. Kosower,

More information

PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD. Taushif Ahmed Institute of Mathematical Sciences, India March 22, 2016

PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD. Taushif Ahmed Institute of Mathematical Sciences, India March 22, 2016 PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD Taushif Ahmed Institute of Mathematical Sciences, India March, 016 PROLOGUE: SM & MSSM SM Complex scalar doublet (4 DOF) 3 DOF transform into longitudinal modes

More information

MHV Diagrams and Tree Amplitudes of Gluons

MHV Diagrams and Tree Amplitudes of Gluons Institute for Advanced Study, Princeton, NJ 08540 U.S.A. E-mail: cachazo@ias.edu Institute for Advanced Study, Princeton, NJ 08540 U.S.A. E-mail: cachazo@ias.edu Recently, a new perturbation expansion

More information

Status of Higgs plus one jet at NNLO

Status of Higgs plus one jet at NNLO Status of Higgs plus one jet at NNLO Matthieu Jaquier Physics Institute University of Zürich Radcor-Loopfest UCLA 7 th June 205 Based on work with X. Chen, T. Gehrmann and E.W.N. Glover Matthieu Jaquier

More information

BACKGROUND EXPERIENCE AND THEORY INNOVATION FOR LHC

BACKGROUND EXPERIENCE AND THEORY INNOVATION FOR LHC BACKGROUND EXPERIENCE AND THEORY INNOVATION FOR LHC Babis Anastasiou ETH Zurich PADOVA 20-01-2010 A theory revolution Deeper understanding of the structure of gauge theories Sharp theoretical predictions

More information

Exploring the function space of Feynman integrals. Stefan Weinzierl

Exploring the function space of Feynman integrals. Stefan Weinzierl Exploring the function space of Feynman integrals Stefan Weinzierl Institut für Physik, Universität Mainz Mathematics intro: Physics intro: Part I: Part II: Periodic functions and periods Precision calculations

More information

arxiv: v2 [hep-ph] 17 Jan 2019

arxiv: v2 [hep-ph] 17 Jan 2019 Preprint typeset in JHEP style - HYPER VERSION TTP19-4 P3H-19-1 arxiv:191.513v [hep-ph] 17 Jan 19 Integrated triple-collinear counter-terms for the nested soft-collinear subtraction scheme Maximilian Delto

More information

Higher order QCD corrections via local subtraction

Higher order QCD corrections via local subtraction Higher order QCD corrections via local subtraction Gábor Somogyi MTA-DE Particle Physics Research Group, Debrecen with U. Aglietti, P. Bolzoni, V. Del Duca, C. Duhr, S.-O. Moch, Z. Trócsányi University

More information

arxiv: v1 [hep-th] 10 Apr 2014

arxiv: v1 [hep-th] 10 Apr 2014 Prepared for submission to JHEP Iterative structure of finite loop integrals arxiv:404.2922v [hep-th] 0 Apr 204 Simon Caron-Huot a,b Johannes M. Henn a a Institute for Advanced Study, Princeton, NJ 08540,

More information

Theoretical Predictions For Top Quark Pair Production At NLO QCD

Theoretical Predictions For Top Quark Pair Production At NLO QCD Theoretical Predictions For Top Quark Pair Production At NLO QCD Malgorzata Worek Wuppertal Uni. HP2: High Precision for Hard Processes, 4-7 September 2012, MPI, Munich 1 Motivations Successful running

More information

Higher Order Calculations

Higher Order Calculations Higher Order Calculations Zoltan Kunszt, ETH, Zurich QCD at the LHC St Andrews, Scotland, August 23, 2011 C The predictions of the SM for LHC are given in perturbation theory in the QCD improved standard

More information

Dipole subtraction with random polarisations

Dipole subtraction with random polarisations , Christopher Schwan, Stefan Weinzierl PRISMA Cluster of Excellence, Johannes Gutenberg University, Mainz goetz@uni-mainz.de schwan@uni-mainz.de stefanw@thep.physik.uni-mainz.de In this talk, we discuss

More information

PoS(DIS2017)295. Hadronic Higgs boson decay at order α 4 s and α 5 s

PoS(DIS2017)295. Hadronic Higgs boson decay at order α 4 s and α 5 s Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT) 7618 Karlsruhe, Germany E-mail: joshua.davies@kit.edu Matthias Steinhauser Institut für Theoretische Teilchenphysik, Karlsruhe

More information

The forward-backward asymmetry in electron-positron annihilation. Stefan Weinzierl

The forward-backward asymmetry in electron-positron annihilation. Stefan Weinzierl The forward-backward asymmetry in electron-positron annihilation Stefan Weinzierl Universität Mainz Introduction: I.: II: III: IV.: Electroweak precision physics Higher order corrections Infrared-safe

More information

arxiv: v1 [hep-ph] 26 Nov 2017

arxiv: v1 [hep-ph] 26 Nov 2017 Recent Developments in Higher-Order Calculations: Hard Functions at NLO with GoSam arxiv:1711.09462v1 [hep-ph] 26 Nov 2017 Alessandro Broggio a alessandro.broggio@tum.de Andrea Ferroglia b,c aferroglia@citytech.cuny.edu

More information

Two-Loop Corrections to Top-Quark Pair Production

Two-Loop Corrections to Top-Quark Pair Production Two-Loop Corrections to Top-Quark Pair Production Andrea Ferroglia Johannes Gutenberg Universität Mainz Padova, June 2, 29 Outline 1 Top-Quark Pair Production at Hadron Colliders 2 NNLO Virtual Corrections

More information

One-loop computations in QFT: a modern perspective

One-loop computations in QFT: a modern perspective One-loop computations in QFT: a modern perspective Kirill Melnikov Johns Hopkins University December 2012 Lectures based on R.K. Ellis, Z. Kunszt, K. Melnikov, G. Zanderighi, ``One-loop computations in

More information

LOOP-TREE DUALITY AND QUANTUM FIELD THEORY IN 4D

LOOP-TREE DUALITY AND QUANTUM FIELD THEORY IN 4D LOOP-TREE DUALITY AND QUANTUM FIELD THEORY IN 4D Germán F. R. Sborlini in collaboration with R. Hernández-Pinto and G. Rodrigo Institut de Física Corpuscular, UV- CSIC (Spain) and Departamento de Física,

More information

N = 4 SYM and new insights into

N = 4 SYM and new insights into N = 4 SYM and new insights into QCD tree-level amplitudes N = 4 SUSY and QCD workshop LPTHE, Jussieu, Paris Dec 12, 2008 Henrik Johansson, UCLA Bern, Carrasco, HJ, Kosower arxiv:0705.1864 [hep-th] Bern,

More information

arxiv: v1 [hep-ph] 22 Sep 2016

arxiv: v1 [hep-ph] 22 Sep 2016 TTP16-037 arxiv:1609.06786v1 [hep-ph] 22 Sep 2016 Five-loop massive tadpoles Thomas Luthe Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology, Karlsruhe, Germany E-mail: thomas.luthe@kit.edu

More information

Reducing differential systems for multiloop integrals

Reducing differential systems for multiloop integrals Reducing differential systems for multiloop integrals Roman N. Lee Amplitudes 2017 The Budker Institute of Nuclear Physics, Novosibirsk 1 Outline Differential equations in multiloop calculations Algorithm

More information

The Non-commutative S matrix

The Non-commutative S matrix The Suvrat Raju Harish-Chandra Research Institute 9 Dec 2008 (work in progress) CONTEMPORARY HISTORY In the past few years, S-matrix techniques have seen a revival. (Bern et al., Britto et al., Arkani-Hamed

More information

arxiv: v1 [hep-ph] 5 Aug 2016

arxiv: v1 [hep-ph] 5 Aug 2016 arxiv:608.0800v [hep-ph] 5 Aug 206, Félix Driencourt-Mangin, Germán F. R. Sborlini Instituto de Física Corpuscular, Universitat de València Consejo Superior de Investigaciones Científicas, Parc Científic,

More information

arxiv: v2 [hep-th] 26 Aug 2015

arxiv: v2 [hep-th] 26 Aug 2015 Prepared for submission to JHEP arxiv:1507.06310v2 [hep-th] 26 Aug 2015 Two-loop Integral Reduction from Elliptic and Hyperelliptic Curves Alessandro Georgoudis a Yang Zhang a a ETH Zürich, Institute for

More information

Anomalous dimensions and splitting functions beyond the next-to-next-to-leading order

Anomalous dimensions and splitting functions beyond the next-to-next-to-leading order Anomalous dimensions and splitting functions beyond the next-to-next-to-leading order Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, UK E-mail: Andreas.Vogt@liverpool.ac.uk

More information

Threshold Corrections To DY and Higgs at N 3 LO QCD

Threshold Corrections To DY and Higgs at N 3 LO QCD Threshold Corrections To DY and Higgs at N 3 LO QCD Taushif Ahmed Institute of Mathematical Sciences, India July 2, 2015 Threshold Corrections To DY and Higgs at N 3 LO QCD INFN Sezione Di Torino 1 Prologue

More information

Jet production in the colorful NNLO framework

Jet production in the colorful NNLO framework Jet production in the colorful NNLO framework Adam Kardos! University of Debrecen, MTA-DE Particle Physics Research Group and NCSR Demokritos", Athens! QCD matters High precision experiments demand high

More information